7 research outputs found

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    D-CaseLP: un ambiente distribuito per l\u27integrazione di Agenti Eterogenei.

    Get PDF
    It concerns the design of a rapid prototyping environment to ease the development of Multi-Agent Systems taking into account the declarative properties of logic programming paradigm and FIPA specification

    Logic-based Technologies for Multi-agent Systems: A Systematic Literature Review

    Get PDF
    Precisely when the success of artificial intelligence (AI) sub-symbolic techniques makes them be identified with the whole AI by many non-computerscientists and non-technical media, symbolic approaches are getting more and more attention as those that could make AI amenable to human understanding. Given the recurring cycles in the AI history, we expect that a revamp of technologies often tagged as “classical AI” – in particular, logic-based ones will take place in the next few years. On the other hand, agents and multi-agent systems (MAS) have been at the core of the design of intelligent systems since their very beginning, and their long-term connection with logic-based technologies, which characterised their early days, might open new ways to engineer explainable intelligent systems. This is why understanding the current status of logic-based technologies for MAS is nowadays of paramount importance. Accordingly, this paper aims at providing a comprehensive view of those technologies by making them the subject of a systematic literature review (SLR). The resulting technologies are discussed and evaluated from two different perspectives: the MAS and the logic-based ones

    Simulating social relations in multi-agent systems

    Get PDF
    Open distributed systems are comprised of a large number of heterogeneous nodes with disparate requirements and objectives, a number of which may not conform to the system specification. This thesis argues that activity in such systems can be regulated by using distributed mechanisms inspired by social science theories regarding similarity /kinship, trust, reputation, recommendation and economics. This makes it possible to create scalable and robust agent societies which can adapt to overcome structural impediments and provide inherent defence against malicious and incompetent action, without detriment to system functionality and performance. In particular this thesis describes: • an agent based simulation and animation platform (PreSage), which offers the agent developer and society designer a suite of powerful tools for creating, simulating and visualising agent societies from both a local and global perspective. • a social information dissemination system (SID) based on principles of self organisation which personalises recommendation and directs information dissemination. • a computational socio-cognitive and economic framework (CScEF) which integrates and extends socio-cognitive theories of trust, reputation and recommendation with basic economic theory. • results from two simulation studies investigating the performance of SID and the CScEF. The results show the production of a generic, reusable and scalable platform for developing and animating agent societies, and its contribution to the community as an open source tool. Secondly specific results, regarding the application of SID and CScEF, show that revealing outcomes of using socio-technical mechanisms to condition agent interactions can be demonstrated and identified by using Presage.Open Acces

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Ontology-based personalized performance evaluation and dietary recommendation for weightlifting.

    Get PDF
    Studies in weightlifting have been characterized by unclear results and information paucity, mainly due to the lack of information sharing between athletes, coaches, biomechanists, physiologists and nutritionists. Becoming successful in weightlifting performance requires a unique physiological and biomechanics profile based on a distinctive combination of muscular strength, muscular power, flexibility, and lifting technique. An effective training which is carefully designed and monitored, is needed for accomplishment of consistent high performance. While it takes years of dedicated training, diet is also critical as optimal nutrition is essential for peak performance. Nutritional misinformation can do as much harm to ambitious athletes as good nutrition can help. In spite of several studies on nutrition guidelines for weightlifting training and competition as well as on design and implementation of weightlifting training programs, to the best of authors' knowledge, there is no attempt to semantically model the whole "training-diet-competition" cycle by integrating training, biomechanics, and nutrition domains.This study aims to conceive and design an ontology-enriched knowledge model to guide and support the implementation of "Recommender system of workout and nutrition forweightlifters". In doing so, it will propose: (i) understanding the weightlifting training system, from both qualitative and quantitative perspectives, following a modular ontology modeling, (ii) understanding the weightlifting diet following a modular ontology modeling, (iii) semantically integrating weightlifting and nutrition ontologies to mainly promote nutrition and weightlifting snatch exercises interoperability, (iv) extending modular ontology scope by mining rules while analyzing open data from the literature, and (v) devising reasoning capability toward an automated weightlifting "training-diet-competition" cycle supported by previously mined rulesTo support the above claims, two main artefacts were generated such as: (i) a weightliftingnutritional knowledge questionnaire to assess Thai weightlifting coaches' and athletes'knowledge regarding the weightlifting "training-diet-competition" cycle and (ii) a dual ontologyoriented weightlifting-nutrition knowledge model extended with mined rules and designed following a standard ontology development methodology.Studies in weightlifting have been characterized by unclear results and information paucity, mainly due to the lack of information sharing between athletes, coaches, biomechanists, physiologists and nutritionists. Becoming successful in weightlifting performance requires a unique physiological and biomechanics profile based on a distinctive combination of muscular strength, muscular power, flexibility, and lifting technique. An effective training which is carefully designed and monitored, is needed for accomplishment of consistent high performance. While it takes years of dedicated training, diet is also critical as optimal nutrition is essential for peak performance. Nutritional misinformation can do as much harm to ambitious athletes as good nutrition can help. In spite of several studies on nutrition guidelines for weightlifting training and competition as well as on design and implementation of weightlifting training programs, to the best of authors' knowledge, there is no attempt to semantically model the whole "training-diet-competition" cycle by integrating training, biomechanics, and nutrition domains.This study aims to conceive and design an ontology-enriched knowledge model to guide and support the implementation of "Recommender system of workout and nutrition forweightlifters". In doing so, it will propose: (i) understanding the weightlifting training system, from both qualitative and quantitative perspectives, following a modular ontology modeling, (ii) understanding the weightlifting diet following a modular ontology modeling, (iii) semantically integrating weightlifting and nutrition ontologies to mainly promote nutrition and weightlifting snatch exercises interoperability, (iv) extending modular ontology scope by mining rules while analyzing open data from the literature, and (v) devising reasoning capability toward an automated weightlifting "training-diet-competition" cycle supported by previously mined rulesTo support the above claims, two main artefacts were generated such as: (i) a weightliftingnutritional knowledge questionnaire to assess Thai weightlifting coaches' and athletes'knowledge regarding the weightlifting "training-diet-competition" cycle and (ii) a dual ontologyoriented weightlifting-nutrition knowledge model extended with mined rules and designed following a standard ontology development methodology
    corecore