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ABSTRACT 

Studies in weightlifting have been characterized by unclear results and information paucity, 

mainly due to the lack of information sharing between athletes, coaches, biomechanists, 

physiologists and nutritionists. Becoming successful in weightlifting performance requires a 

unique physiological and biomechanics profile based on a distinctive combination of muscular 

strength, muscular power, flexibility, and lifting technique. An effective training which is 

carefully designed and monitored, is needed for accomplishment of consistent high 

performance. While it takes years of dedicated training, diet is also critical as optimal nutrition 

is essential for peak performance. Nutritional misinformation can do as much harm to 

ambitious athletes as good nutrition can help. In spite of several studies on nutrition guidelines 

for weightlifting training and competition as well as on design and implementation of 

weightlifting training programs, to the best of authors’ knowledge, there is no attempt to 

semantically model the whole “training-diet-competition” cycle by integrating training, 

biomechanics, and nutrition domains.  

This study aims to conceive and design an ontology-enriched knowledge model to guide and 

support the implementation of “Recommender system of workout and nutrition for 

weightlifters”. In doing so, it will propose: (i) understanding the weightlifting training system, 

from both qualitative and quantitative perspectives, following a modular ontology modeling, 

(ii) understanding the weightlifting diet following a modular ontology modeling, (iii) 

semantically integrating weightlifting and nutrition ontologies to mainly promote nutrition and 

weightlifting snatch exercises interoperability, (iv) extending modular ontology scope by 

mining rules while analyzing open data from the literature, and (v) devising reasoning 

capability toward an automated weightlifting “training-diet-competition” cycle supported by 

previously mined rules 

To support the above claims, two main artefacts were generated such as: (i) a weightlifting 

nutritional knowledge questionnaire to assess Thai weightlifting coaches’ and athletes’ 

knowledge regarding the weightlifting “training-diet-competition” cycle and (ii) a dual ontology-

oriented weightlifting-nutrition knowledge model extended with mined rules and designed 

following a standard ontology development methodology.  

Keywords: ontology, nutrition, weightlifting, biomechanics, semantics, reasoning 
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RESUMO 

Estudos em halterofilismo ou levantamento do peso têm sido caracterizadas por resultados 

dúbios e escassez de informação devidos à falta de partilha de informação entre os vários 

intervenientes, tais como atletas, treinadores, biomecânicos, fisiologistas e nutricionistas. Tornar-

se bem sucedido no desempenho do levantamento do peso requer um perfil fisiológico e 

biomecânico particular, baseado numa combinação única de força muscular, potência muscular, 

flexibilidade e técnica de levantamento. Para a obtenção de um alto desempenho consistente é 

necessário um treino eficiente, cuidadosamente planeado e monitorizado. Embora sejam 

necessários anos de treino dedicado, a dieta é também um fator crítico, pois a nutrição ideal é 

essencial para o máximo desempenho. A falta ou a errada informação nutricional pode causar 

tanto dano a atletas ambiciosos, quanto uma boa nutrição pode ajudar. Apesar de vários estudos 

sobre as orientações nutricionais para treino e competição de levantamento do peso, bem como 

no desenho e implementação de programas de treino de levantamento do peso, tanto quanto é 

do conhecimento dos autores, nunca houve tentativas de modelar semanticamente todo o ciclo 

de “treino-dieta-competição”, integrando os domínios biomecânico, treino e nutricional. 

Este estudo visa conceber e desenhar um modelo de conhecimento baseado em ontologias para 

orientar e apoiar a implementação de um “Sistema de recomendação de treino e nutrição para 

atletas do halterofilismo”. Ao fazê-lo, proporá: (i) compreender o sistema de treino de 

levantamento do peso, tanto qualitativo quanto quantitativo, seguindo uma modelação modular 

baseada em ontologias, (ii) entender a dieta de levantamento do peso seguindo uma modelação 

modular baseada  em ontologias, (iii) integrar semanticamente ontologias de levantamento do 

peso e nutrição, principalmente para promover a interoperabilidade do ponto de vista da nutrição 

e do exercício de levantamento do peso, (iv) ampliar o âmbito da ontologia modular por meio de 

regras baseadas em lógica a partir da análise de dados disponíveis na literatura e (v) desenvolver 

capacidade de raciocínio tendo em vista um ciclo automatizado de “treino-dieta-competição” 

apoiado por regras de lógica previamente definidas 

Para suportar os objetivos acima, dois artefactos principais foram criados: (i) um questionário de 

conhecimento nutricional para o levantamento do peso que visa avaliar o conhecimento dos 

treinadores e atletas tailandeses sobre o ciclo “treino-dieta-competição” e (ii) uma abordagem 

ontológica a um modelo de conhecimento nutricional e de levantamento do peso expandido com 

regras de lógica e desenvolvido seguindo uma metodologia padrão de desenvolvimento de 

ontologias. 

PALAVRAS-CHAVE: ontologia, nutrição, levantamento de peso, biomecânico, semântica, 

raciocínio lógico 
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CHAPTER 1 

General Introduction 

 
In Thailand, weightlifting is the most successful Olympic sport along with boxing. It is one of 
the only two sports in which Thailand has won gold, with three weightlifting gold medals in the 
last three Olympic Games. Becoming successful in weightlifting performance requires a 
unique physiological and biomechanics profile based on a distinctive combination of muscular 
strength, muscular power, flexibility, and lifting technique. An effective training which is 
carefully designed and monitored, is needed for accomplishment of consistent high 
performance. While it takes years of dedicated training, diet is also critical as optimal nutrition 
is essential for peak performance. This thesis develops a methodology supported by a 
computerized model; Ontology-Based Personalized Performance Evaluation and Dietary 
Recommendation for Weightlifting which will serve as a tool to help coach in prescribing and 
monitoring training and nutrition status of weightlifters. The current chapter presents the scope 
of this thesis, the research questions and the methodology proposed to answer them, and the 
structure of this thesis. 
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Introduction 

Weightlifting (also known as Olympic weightlifting) is a distinguished sport often for 

training sport performance professionals because it requires fine motor coordination, 

great kinesthetic awareness, quickness, explosive ability, and greater technical 

perfection of movement pattern (Cioroslan, 1997). It consists of two competitive 

movements: the snatch, and the clean and jerk. The ability to perform as a weightlifter 

is impacted by several performance-related characteristics: (i) a unique physiological 

and biomechanics profile based on a distinctive combination of muscular strength, 

muscular power, and flexibility, and (ii) lifting techniques that generate great muscle 

power during the lift and transfer this power effectively to the barbell (Enoka, 1979; 

Garhammer, 1985, 1991; Gourgoulis et al., 2000; Isaka et al., 1996; Stone et al., 

1998). A successful lifter will be able to sustain adequate power output long enough 

to lift the maximum weight with correct technique. Sustaining power output to efficiently 

overcome resistance involves two major factors: (i) the ability to sustain muscle energy 

production, and (ii) the ability to apply that muscle energy efficiently to overcome 

resistance. Improving the former requires both a well-designed training program and 

nutrition plan, whereas improving the latter requires the assistance of a sport 

biomechanist or a well-educated coach. They can help identify defective performance, 

prescribe measures to correct the identified deficiencies and finally implement the 

prescribed corrective procedures (Lamb, 1995). 

For the last three decades, considerable studies have been conducted to improve 

weightlifters’ performance (Akkus, 2012; Campos et al., 2006; Chiu et al., 2010; 

Enoka, 1988; Garhammer, 1980; Garhammer, 1981, 1985, 1991, 1993, 2001; 

Garhammer & Gregor, 1992; Garhammer & Takano, 2008; Gourgoulis et al., 2000; 

Gourgoulis et al., 2002; Gourgoulis et al., 2009; Gourgoulis et al., 2004; Hadi et al., 

2012; Hakkinen, 1984; Harbili, 2012; Harbili & Alptekin, 2014; Ho et al., 2011; Hori et 

al., 2006; Isaka et al., 1996; Kipp et al., 2012; Musser et al., 2014; Nelson & Burdett, 

1978; Okada et al., 2008; Winchester et al., 2009; Yavuz et al., 2015). They focused 

on training methodology, weightlifting biomechanics, nutrition, muscle architecture, 

and energy expenditure. Weightlifting biomechanics studies have been mainly 

focused on methodological issues. These include motion analysis methods, 

measurement reliability of biomechanics parameters, mechanical work, and power 

output at world championship level and during competition. The objective was to obtain 

data about performance characteristics of the world’s best weightlifters while they are 

competing. Data such as barbell kinematics, body segment orientations and power 
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output in the top physical condition and under maximal competitive pressure may help 

to better understand the movement or skill of lifting techniques. Researchers have 

assigned four broad classes of variables to the biomechanics of the snatch: (i) barbell 

movement, (ii) body movement, (iii) mechanical work and (iv) the power output. 

Although many studies have been investigated key variables which play a role in 

successful outcome of a snatch lift, few of them have integrated both barbell- and 

weightlifter-related data in their analyses. Moreover, Beardsley (2016) presents an 

extensive and updated Olympic weightlifting literature review, pointing out that studies 

in weightlifting have been characterized by unclear results and paucity of information 

regarding biomechanical analysis and training methodology. This point was also 

supported by the fact that nearly stagnant progress at international level has been 

registered since 1997 across all weight categories in snatch competitions. Ho et al. 

(2014) pointed out that such stagnant progress may be explained by the absence of 

reliable scientific support for weightlifting movement. Furthermore, a limited number of 

literature was also found in the field of nutrition. Researchers have been analyzing the 

actual dietary practices of Olympic weightlifters for the last four decades to figure out 

the benefits of nutrition related to exercise performance. It is often claimed in the 

weightlifting sport literature that the dietary habits of weightlifters may not yield the 

desired training gains and/or health benefits due to the emphasis placed on high 

protein consumption (with high fat) at the expense of adequate carbohydrate ingestion 

(Cabral et al., 2006; Chen et al., 1989; Grandjean, 1989; Heinemann & Zerbes, 1989; 

Van Erp-Baart et al., 1989). However, there were inconsistencies among existing 

studies relating diet quality to physical activity/exercise level and they justify such 

discrepancy to a relatively crude and imprecise self-reported measures of physical 

activity, unreliable dietary assessments, and/or small sample size (Capling et al, 

2017).  

Enhancing the understanding of the mechanics of successful lift, requires collaborative 

contributions of several stakeholders such as coach, nutritionist, biomechanist and 

physiologist as well as the aid of technical advances in motion analysis, data 

acquisition, and methods of analysis. Currently, there are still a lack of knowledge 

sharing between these stakeholders. The knowledge owned by these experts are not 

captures, classified or integrated into an information system for decision-making. 

Therefore, the studies in weightlifting have been characterized by unclear results and 

paucity of information regarding an integrated biomechanical analysis, training 

methodology, and nutrition analysis. Ontology is an alternative, among many 
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techniques, that has been wide accepted as a useful method to simulate human 

proficiency in narrowly defined domain during the problem solving stage, by integrating 

descriptive, procedural, and reasoning knowledges (Chau, 2007). An ontology-driven 

weightlifting knowledge model can be seen as a solution for promoting a better 

understanding of the weightlifting domain as a whole. It can unify concepts and 

terminologies among weightlifting stakeholders, while partially helping obviate the 

paucity and inconsistencies of existing results. However, the weightlifting knowledge 

model should be scalable to easily integrate further related domain of weightlifting, 

and also used to support the implementation of weightlifting recommender systems. 

In spite of several studies on nutrition guidelines for weightlifting training and 

competition as well as on design and implementation of weightlifting training programs, 

to the best of authors’ knowledge, there is no attempt to semantically model the whole 

“training-diet-competition” cycle by integrating training, biomechanics, and nutrition 

domains.  

This study aims to conceive and design an ontology-enriched knowledge model to 

guide and support the implementation of “Recommender system of workout and 

nutrition for weightlifters”. In doing so, it will propose: (i) understanding the weightlifting 

training system, from both qualitative and quantitative perspectives, following a 

modular ontology modeling, (ii) understanding the weightlifting diet following a modular 

ontology modeling, (iii) semantically integrating weightlifting and nutrition ontologies to 

mainly promote nutrition and weightlifting snatch exercises interoperability, (iv) 

extending modular ontology scope by mining rules while analyzing open data from the 

literature, and (v) devising reasoning capability toward an automated weightlifting 

“training-diet-competition” cycle supported by previously mined rules. To support the 

above claims, two main artefacts were generated such as: (i) a weightlifting nutritional 

knowledge questionnaire to assess Thai weightlifting coaches’ and athletes’ 

knowledge regarding the weightlifting “training-diet-competition” cycle and (ii) a dual 

ontology-oriented weightlifting-nutrition knowledge model extended with mined rules 

and designed following a standard ontology development methodology.  

This chapter presents an overview of the research, problems, and the structure of 

thesis. In accordance, the remainder of this chapter is organized as follows: Section 

1.1 describes scope of thesis; Section 1.2 presents the research questions and the 

methodology proposed to answer them; Section 1.3 describes state of art; and Section 

1.4 presents the structure of this thesis. 
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1.1 Scope of Thesis 

The scope of this thesis focuses on building a knowledge framework for Olympic 

weightlifting, bringing together related fields such as training methodology, 

weightlifting biomechanics, and nutrition while modeling the synergy among them. In 

so doing, terminology, semantics, and used concepts are unified among researchers, 

coaches, nutritionists, and athletes to partially obviate the recognized limitations and 

inconsistencies and so, leading to a research environment which promotes better 

understanding and more conclusive results. To make this goal achievable under the 

PhD time constraint, the weightlifting spectrum is narrowed to snatch-only movement.  

1.2 Research Questions and Methodology   

The weightlifting literature is full of experiments and analyzes related to biomechanics, 

dietary, and training methodologies and so, we believe that before more inconclusive 

experimental results, a knowledge framework should be in place to support 

individualized and holistic approach to snatch analysis, while obviating the above 

mentioned limitations and inconsistencies. For this reason, this thesis tries to answer 

to the following questions: 

(i) How can each of the main weightlifting research domains of biomechanics, 

nutrition, and training methodology be modeled? 

(ii) Which computer-based technology can be explored to model each involved 

domain related to weightlifting research and practice? 

(iii) How to semantically model the whole weightlifting “training-diet-competition” 

cycle? 

To answer them, the following methodology was approached: 

(i) Conceiving and designing the weightlifting training following a modular 

ontology modeling. 

(ii) Conceiving and designing the weightlifting biomechanics following a modular 

ontology modeling. 

(iii) Conceiving and designing the weightlifting dietary following a modular ontology 

modeling. 
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(iv) Semantically integrating training, biomechanics, and dietary ontologies to 

mainly promote nutrition and weightlifting snatch exercises interoperability. 

(v) Extending each modular ontology scope by mining rules while analyzing open 

data from the literature on collected training and nutritional data to improve 

modularity, flexibility and scalability. 

(vi) Devising reasoning capability toward an automated weightlifting “training-diet-

competition” cycle supported by previously mined rules. 

1.3 State of Art 

This section presents fundamental concepts and technical foundation related to 

weightlifting including the sport of weightlifting, biomechanics of weightlifting, and 

nutrition status of weightlifters. It also presents related works that used semantic web 

technologies to develop biomechanics and food recommendation systems. 

1.3.1 The Sport of Weightlifting 

Since 1972 two overhead lift competitions have been promoted in the sport of 

weightlifting, the snatch and the clean and jerk. The sport is often referred to as 

Olympic (style) weightlifting since it was contested in the Olympic Games (Komi, 

2003). Weightlifting is defined as the sport in which athletes attempt to lift the most 

weight in the snatch and the clean and jerk. In competition, the weightlifter has 3 

attempts in the snatch followed by 3 attempts in the clean and jerk. The heaviest 

successful attempt in each event is added together to determine the final classification. 

The recognized body weight classed are: men ≤ 56 kg, ≤62 kg, ≤ 69 kg, ≤ 77 kg, ≤ 85 

kg, ≤ 94 kg, ≤ 105 kg; and women ≤ 48 kg, ≤ 53 kg, ≤ 58 kg, ≤ 63 kg, ≤ 69 kg, ≤ 75 kg, 

and > 75 kg.  

A series of snatch movements starts with the barbell on the floor, and by applying 

proper technique, the lifter finishes with the barbell over the head in either the squat 

or split position. Squat snatch is characterized by the lifter lifting the bar as high as 

possible and pulls himself/herself under it in the squat position. In the spilt snatch, the 

lifter “split” his/her legs, placing one foot in front of them and one behind, allowing lifter 

to receive the bar lower as in the squat snatch (Akkus, 2012; Baumann et al., 1988; 

Gourgoulis et al., 2000). Snatch technique has been broken down into specifics 

phases and positions. Although the definition of the phases and positions is clearly 
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established, they are inconsistent across the literature (Akkus, 2012; Bartonietz, 1996; 

Campos et al., 2006; Gourgoulis et al., 2000; Ho et al., 2014; Storey & Smith, 2012). 

In this study, the snatch is divided into 5 phases and 6 positions (Figure 1.1) according 

to the change in direction of the knee angle and the height of the barbell as suggested 

by Bartonietz (1996) and Ho et al. (2014).  

 

Figure 1.1 Phases of snatch movement  (Bartonietz, 1996; Ho et al., 2012). 

 

(i) Start position is defined by the position where the middle of the foot is aligned 

(i.e., inline) with the stationary barbell, hips and knees flexed, and the back kept 

“neutral”. 

The first pull involves initiating the movement of the barbell off the ground. 

Although the back is maintained (or held) neutral, extension predominantly at 

the knee and, to a lesser extent, at the hip contributes to overcoming the 

barbell’s inertia. This phase is completed upon the barbell reaching knee level. 

(ii)  Bar at the knee level is defined by the position where barbell reach the knee 

level. 

The transition phase subsequently begins with shifting from knee extension to 

flexion to adopt the power position.  

(iii) Power position is defined by the position where the shoulders, hips, and heels 

are inline with the bar reaching the height of the hips, which is required to 

develop vertical force through the legs in the second pull. 
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When the second pull begins, a coordinated rapid hip and knee extension, with 

plantar flexion, results in the position with the lower limb joints reaching full 

extension and effectively generate and transfer power to the bar to displace it 

over the head.  

(iv) Fully extended is defined by the position where the lower limb joints reaching 

full extension. At this point, toward the end of the second pull phase, the bar 

reaches the peak velocity before the peak displacement.  

In the turnover phase, the weightlifter subsequently moves the body rapidly in 

a downward direction and pulls himself under the bar to adopt the catch 

position.   

(v) Catch position is defined by the position where the arms being kept extended 

and the weightlifter attaining a position identical to the bottom of an overhead 

squat.  

In the recovery phase, the weight is rested in the extended arms before an over 

head squat is performed and completes the lift. 

(vi) Fully recovered is defined by the position where the weightlifter completes the 

lift by standing in a fully recovered position. 
 

1.3.2 Biomechanics of Weightlifting  

In competition, the main objective of every weightlifter is trying to lift the weights near 

or above those of personal best lifts. To achieve that goal, lifters must be able to adopt 

their body position and the coordination of joint displacements at the different phases 

of the lifts precisely throughout the movement. This is to ensure that the force the lifter 

applies to the barbell will be transmitted efficiently to move the load upwards during 

the snatch (Garhammer, 1980; Garhammer, 1985; Ho et al., 2014). Moreover, the 

ability to optimize barbell displacement of weightlifters to their individual physical 

characteristic is also crucial (Campos et al., 2006; Wang & Pylypko, 2009). Although 

many research has been investigated the biomechanical features associated with 

technique and performance of snatch lifting, the identification of optimal technique and 

how does it contribute to the performance is still unclear. Ho et al. (2014) point out that 

this is due to the fact that errors in the technique during the lifting can be overcome by 

compensatory movements and a successful lift can still be achieved. This point causes 

a gap between the weightliter’s actual performance and what the weightlifter could 
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potentially lift. To narrow this gap, the identification of what determines success for 

each individual lifter is needed in order to better understand the interaction of various 

factors (e.g., which ones lead to efficient technique and which ones limit the 

performance) (Hoover et al., 2006; Isaka et al., 1996). The authors suggested that 

technique analysis of weightlifters should be classified as qualitative, quantitative, and 

predictive.  

Qualitative Analysis: Based on the coaches’ experience and observation 

Coaches use the illustration of precise positions at each phase of movement (as 

presented in the Figure 1.1) combined with their accumulation of experience through 

observation to develop their ability to pinpoint the errors in the lifter’s technique. For 

example, Jones et al. (2010) presents an extensive biomechanical analysis of the 

Olympic snatch movement. The major objective was to determine the correct bar path, 

the amount of time spent in each phase of the exercise, and/or the specific joint angles 

during those phases. More importantly, they split snatch movement in positions and 

phases as described earlier and then presented a checklist as a tool to evaluate the 

success of subjects in performing the Olympic snatch. Such a checklist provides 

detailed evaluation of an athlete’ strengths and weaknesses. Coaches can use it to 

design effective training programs tailored to athlete’s specific needs. The study of 

Winchester et al. (2009) supported this approach and proved that it can help athletes 

to improve their snatch performance. The possible strategy behind this approach is 

that the athletes use a more kinesthetic approach to learn efficient techniques, rather 

than depending on visualizing textbook (Takano, 1993).  

Quantitative Analysis: Based on the scientific measurement  

The use of quantitative technical analysis during snatch lifting allows sport scientists 

and coaches to identify defective technique, prescribe measures to correct the 

identified deficiencies, and implement the prescribed corrective procedures for 

weightlifters. This process requires a cooperation among coach, weightlifter, and 

scientist to establish a common focus when observing the movement (Lees, 2002; Ho 

et al., 2014). Kinematic and kinetic data are often used as feedback to athletes. These 

data can be obtained from the following instruments:  

(i) video cameras setup which offer two-dimensional kinematic data; this method 

has been used to explore snatch technique during competitions;  
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(ii) motion analysis systems using multiple infrared cameras which offer three-

dimensional kinematics data; this method provides a highly accurate angular 

displacement of all joints in the body as well as the bar; 

(iii) force platforms which offer kinetic data; this method has been used to 

investigated the movement of the center of mass, mechanical work, power, and 

internal joint kinetics (when combined it with motion analysis);  

(iv) surface electromyography (sEMG) which offers information such as pattern of 

force production by muscle and the relationship between mechanical work and 

metabolism; 

(v) isokinetic dynamometry which offers information about dynamic muscle 

contractions; 

(vi) ultrasound which offers information related to muscle architecture. 

By reviewing classical approaches to biomechanical analysis in weightlifting, Ho et al. 

(2014) proposed a deterministic model for the snatch (Figure 1.2). It involves both 

barbell- and weightlifter-related variables to promote a more individualized and holistic 

approach to snatch analysis. The key contributing factors to determine the success of 

weightlifters are a complex interaction of several variables. Therefore, several area of 

focus have been established in the literature such as studies dealing with barbell 

movement (Anderson et al., 2008; Bartonietz, 1996; Baumann et al., 1988; Chiu et al., 

2010; Garhammer, 1985; Gourgoulis et al., 2002; Gourgoulis et al., 2004). They 

classified barbell trajectory, identified optimal lifting techniques, and estimated barbell 

kinematic parameters. Studies regarding body movement have explored net joint 

moment, joint angular velocities, and joint angles (Enoka, 1988; Gourgoulis et al., 

2000b; Gourgoulis et al., 2002; Gourgoulis et al., 2009; Gourgoulis et al., 2004; Stone 

et al., 2006; Wang & Pylypko, 2009). Studies related to the relationship between 

mechanical work and metabolism have investigated EMG amplitude (Bisi et al., 2011; 

Brandon et al., 2013; Buchanan et al., 2005; Yavuz et al., 2015). Studies concerning 

power output have measured ground reaction force and total work done on the barbell 

(Cormie et al., 2007; Hori et al., 2007; Kawamori et al., 2005; Enoka, 1988; Kipp et al., 

2013; Kipp et al., 2012). 
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Figure 1.2 Deterministic model for the snatch integrating both barbell-related and weightlifter-related variables 
(Adapted from Ho et al. (2014). 

Lifters use a wide range of technique and patterns of movement. So far, it is unclear 

which one is the optimal, as the patterns are affected by both the lifted load and 

individual anthropometry (Anderson et al., 2008; Musser et al., 2014; Nejadian et al., 

2008). Gourgoulis et al. (2009) found no significant difference between successful and 

unsuccessful lifts in the angular displacement and velocity data of the lower-limb joints, 

the trajectory and vertical linear velocity of the barbell, or the generated work and 

power output during the first and second pulls of the lift. Consequently, the general 

movement pattern of the limbs and the barbell was not modified in unsuccessful lifts 

in relation to the successful ones. However, significant differences were found in the 

direction of the barbell’s resultant acceleration vector, suggesting that proper direction 

of force application onto the barbell is crucial for a successful performance in snatch 

lifts. Thus, the authors suggested that coaches should pay particular attention to the 

applied force onto the barbell from the first pull. Beardsley (2016) pointed out that the 

best way to train Olympic weightlifters is a contentious issue. Many existing 

frameworks and principles of weightlifting training are based on Bulgarian and Russian 

methods. The adoption of these two methods was justified due to the number of gold 

medals won by the two countries in the 1980’ Olympic Games. However, some studies 

(Fair, 1988; Franke & Berendonk, 1997; Storey & Smith, 2012) associated the 

possibility of such success to the extreme use of anabolic androgenic steroids (AAS) 

compared with other national teams.  Many studies (Garhammer, 1992; Storey, 2012) 

contrast the Russian and Bulgarian frameworks. The former involves a detailed 

planning and complicate periodization. The training plan is characterized by a wide 
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variety of exercise with high volume at lower relative loads. However, the latter is 

comprised of much less planning and periodization. This training plan is described by 

fewer exercises, mainly in the competition lifts. Training is performed at high volume 

and high relative loads. 

The relationship between mechanical work and metabolism has been studied for 

several years, but it is still not well understood (Bisi et al., 2011; Brandon et al., 2013; 

Buchanan et al., 2005; Yavuz et al., 2015). The paper’s main finding pointed the 

integration of a model for the muscle energy expenditure into musculoskeletal models 

(Bisi et al., 2011). Being able to measure energy expenditure will merge nutrition with 

biomechanics and training methodology. It will be crucial to recommend the amount 

of macronutrients intake during training and competition periods, mainly to avoid 

athletic fatigue or staleness (McArdle et al., 2010). To achieve more accurate 

estimates of several biomechanics parameters associated with Olympic weightlifting 

while using existing motion analysis systems, Beardsley (2016) suggested 

incorporating the three main aspects of muscle architecture: normalized fiber length 

(NFL), pennation angle (PA), and physiological cross-sectional area (PCSA). Including 

muscle architecture is important because the muscle determines the force production 

capacity, contraction velocity, and optimal function. Together, these three main factors 

can be used to describe any given muscle or individual muscle regions in terms of (i) 

architectural patterns or arrangement of muscle fascicles within a muscle, (ii) 

combination and variability of these three factors, (iii) how they can be measured, and 

(iv) how each specific type of training intervention, resting, increasing age, and surgical 

procedures can alter these factors (Albracht et al., 2008; Fukutani & Kurihara, 2015; 

Lieber &Friden, 2000, 2001; Noorkoiv et al., 2010; Stenroth et al., 2016; Wakahara et 

al., 2013). Muscular characteristics of strength-trained athletes has been studied to 

identify training-specific muscle adaptations and it allowed researchers to differentiate 

between athletes (Tesch & Karllsson, 1985; Tesch et al., 1984, Fry et al., 2003). Those 

studies include both genetics and non-genetic factors as well as training methods, 

especially the various types of resistance exercise (Fry et al., 2003). The main 

objective was to determine the relationship among muscle fiber subtypes, contractile 

protein expression, and physical performances of weightlifters. Several studies 

integrate a model for muscle energy consumption with conventional Hill-type model 

for muscle contraction (Bhargava et al., 2004; Bisi et al., 2011; Buchanan et al., 2005). 

To ensure the reliability of the biomechanics measurements, electromyography (EMG) 

has been used to measure and explore EMG amplitude within a muscle (Bisi et al., 
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2011; Brandon et al., 2013; Buchanan et al., 2005; Yavuz et al., 2015). EMG amplitude 

has been explored in the transverse abdominis, spinae, vastus lateralis, trunk muscle, 

gluteus medius, deltoid and/or biceps across different phases of training exercises. 

Figure 1.3 shows the flowchart of the modeling procedure proposed by Bisi et al. 

(2011), with subject-specific model parameters calibrated by comparing joint moment 

predictions of the model with joint moments estimated by inverse dynamics. 

 

Figure 1.3 Flowchart of the modeling procedure proposed by Bisi et al. (2011), consisting of the skeletal structure 

and muscles behavior sub models. 

Although most of the EMG-driven models address generic human movement, Brandon 

et al. (2011) work specifically assessed the reliability of a novel analysis system for 

Olympic weightlifting, comparing surface electromyography (sEMG) synchronized with 

electrogoniometry and a barbell position transducer. There was good reliability in all 

three variables measured: normalized sEMG amplitude of vastus lateralis, knee joint 

motion from electrogoniometry, and mean power from barbell displacement data 

during the concentric phase of the barbell squat exercise. Therefore, the authors 

concluded that the system used is relatively inexpensive and simple to use, which, 

combined with the good reliability, enables a useful monitoring tool of strength training, 

able to detect meaningful changes in muscle activation or performance. 

Power has been considered to be important for athletic performance because it is one 

indication of the ability to produce force quickly. While some researchers have found 

the correlations between the ability to produce high power outputs and specific 

measures of athletic performance (e.g. Sleivert et al. 2004), some have reported 

dissimilar findings (e.g. Harris et al. 2008a). In contrast, most investigations assessing 
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the correlation between muscular power output and playing ability level have reported 

significant relationships (e.g. Baker et al. 2001; Baker et al. 2002; Baker et al. 2008). 

Indeed, some researchers have found that power outputs are very good discriminators 

of which level athletes are currently competing at (e.g. Baker et al. 2008). In 

weightlifting, most of the many studies regarding mechanical power outputs during 

weightlifting exercise are related to external power outputs which focus on the effects 

of manipulating the load and the subsequent effects on maximal power outputs, 

obtained from either barbell kinematic data, ground reaction force (GRF) data, or a 

combination of both (Cormie et al., 2007; Hori et al., 2007; Kawamori et al., 2005). 

Only a few (Enoka, 1988; Kipp et al., 2013; Kipp et al., 2012) studied internal power 

outputs due to the expensive price of the equipment needed to acquire the data 

necessary to calculate the internal joint power, and also to alleviate required 

information, processing, effort, and time overheads. While the external power outputs 

data provide important information which is easy to acquire, they do not provide an 

insight into the used power production of the individual joint. Furthermore, although 

the internal power outputs data provide more information, they are not practical to use. 

Many instruments are widely utilized in literature to measure the gains in power output 

such as force platforms and position transducers (e.g., linear position transducer, 

video camera). While the former is often considered to be the preferred method as it 

directly measures the force applied to the ground through the feet, the validity of the 

latter has been questioned, given that the force values must be estimated (Cormie et 

al., 2007; Hori et al., 2007). Although the previous studies agree that linear position 

transducer measurements may not be directly comparable to force plate 

measurements, they still can be effectively used in the practical setting.  Given the 

cost-effective means of data collection, this is especially true when the same method 

is used to monitor athletes’ progress over time (Cormie et al., 2007; Cronin et al., 2004, 

Hori et al., 2007). 
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1.3.3 Nutrition Status of Weightlifters 

Besides providing the energy for training, competition, and recovery, in the case of 

weightlifting and other strength-power sports, nutrition also promotes training 

adaptations, including skeletal muscle hypertrophy (Slater & Phillips, 2011). A 

summary of the reported dietary intake of adult strength-power athletes in training 

(Chen et al., 1989; Hassapidou, 2001; Storey & Smith, 2012), regarding to 

macronutrient consumption, showed that weightlifters consume a greater number of 

daily servings of protein-rich sources when compared with other athletes. As a result, 

the protein intake of male weightlifters has been reported to range between 1.6 

g/kg/day and 3.2 g/kg/day, which is higher when compared with the recommended 

1.6–2.0 g/kg/day for resistance training athletes. Furthermore, weightlifters derive 

approximately 40–44% of their daily energy intake from dietary fat, which is also well 

above the acceptable range for health and athletic performance of 20–35%. This is 

probably a consequence of their greater intake of protein-rich animal products. 

Conversely, the reported carbohydrate intakes in weightlifters of 2.9–6.1 g/kg/day are 

insufficient according to the current recommended levels of 7–12 g/kg/day for athletic 

individuals (Rodriguez et al., 2009; Slater & Phillips, 2011). Combined, these reports 

suggest that the dietary habits of male weightlifters may not yield the desired training 

gains and/or health benefits, due to the emphasis placed on protein consumption (with 

high fat) at the expense of adequate carbohydrate ingestion. 

1.3.4 Semantics-related Works  

This section presents several related works that use semantic web techniques in 

similar situations and domains. It focuses on biomechanics, food/nutrition or health-

related fields using ontology and SWRL rules approaches.  

A) Ontology related to Biomechanics 

A survey of ontology-based work regarding to health-related fields is presented by 

Ullah & Khan (2015) but none of the described ontology address biomechanics. The 

main focus was on knowledge construction and representation by first identifying three 

main classes of medical ontologies: generic, specific, and Mass Casualties Incidents 

(MCI). Furthermore, they investigated the suitability of such ontologies for use in MCI 

which is one of the newly proposed security protocol to measure and handle all kinds 

of situation on disaster locations due to flood, earthquakes or plane crash. Rosse & 
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Mejino (2003) proposed Foundational Model of Anatomy (FMA) as a reference 

ontology in biomedical informatics for correlating different views of anatomy, aligning 

existing and emerging ontologies in bioinformatics ontologies, and providing a 

structure-based template for representing biological functions. FMA is based on the 

terminology and structure of the Terminologia Anatomica (TA), a structured vocabulary 

designating the anatomical entities that comprise the human body. Mogk et al. (2013) 

presented the Parametric Human Project (PHP) that is assisted by an evolvable 

ontological framework, supporting knowledge regarding human anatomy and 

biomechanics, and the relationship between form and function. Such framework 

incorporates sufficient granularity to support the assembly of a "complete" human 

model that enables multi-purpose, multi-scale modeling and simulation. It is assisted 

by existing anatomical and biomedical frameworks such as Ontology of Physics for 

Biology (OPB) and My Corporis Fabrica (MyCF). OPB was used to extend existing 

ontologies for biological entities (e.g., molecules, cells, and organs), with physical 

properties such as energies, volumes, and flow rates. Basically, OPB is a 

computational ontology designed by Cook et al. (2013) to declaratively represent the 

formal structure of systems dynamics theory and thermodynamics, as they relate to 

biological processes. Mainly, it is used in the annotation and representations of 

biophysical knowledge encoded in repositories of physics-based bio-simulation 

models. OPB was first described by two classes, the Physical entity and Physical 

property and later extended with the Physical dependency taxonomy of classes to 

represent rules by which physical properties of physical entities change during 

occurrences of physical processes. MyCF was built on FMA while extends it with 

topological, geometrical, and functional aspects of individualized anatomy. In PHP, 

MyCF is used to store multiple instances of the same anatomical entity and so, 

representing general variability in human anatomy based on the number of instances 

that exist in the database. Rabattu et al. (2015) describes MyCF Embryo assisted by 

3D models and an ontology to enable a declarative description of different 

embryological models that capture the complexity of human developmental anatomy. 

The proposed ontology describes the compositions of organs and structures while 

integrating a procedural description of their 3D representations, temporal deformation 

and relations with respect to their developments. Dicko et al. (2013) presented and 

discussed a biomechanical simulation ready-model through the integration of an 

anatomical ontology with specific data. Receiving user-defined functional descriptors, 

anatomical entities such as bones and muscles are generated according to the 

ontological knowledge. It also generates physical model based on reference geometry 
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and mechanical parameters assisted by user-defined functional descriptors. 

Additionally, they detailed an example of a musculoskeletal simulation of knee flexion 

and hip flexion and abduction, based on rigid bones and the Hill muscle model, with 

subject-specific 3D meshes non-rigidly attached to the simulated bones. Anderson et 

al. (2008) described a new ontology aimed towards the neuromuscular simulation field 

to promote collaboration and knowledge sharing between partners in different 

subdomains. The reusable knowledge infrastructure or ontology is extended to handle 

model specific data, simulation setup, results and discussions/conclusions. Gündel et 

al. (2013) presented, HuPSON, a human physiology simulation ontology as a basis 

for shared semantics and interoperability of simulations, models, algorithms, and other 

resources in the Virtual Physiological Human (VPH) domain. It is based on Basic 

Formal Ontology while adhering to the Minimum Information to Reference an External 

Ontology Term (MIREOT) principles. Dao et al. (2009) designed OSMMI, an 

extensible ontology to help understanding the impact of pathologies of the musculo-

skeletal system on the gait in biomechanics. OSMMI ontology focuses on the lower 

limbs of the human body and consists of 14 classes and their 10 relations. Classes 

are Nervous system, Ligament, Muscle, Tendon, Cartilage, Bone, Limb, Posture, 

Support of load, Diarthrosis Joint, Movement, Articular, Contact, Contact of 

environment and Gait while relations are inform, command, attach, compose, act, 

influence, form, support, create, and characterize. Turcin et al. (2013) described ways 

how OSMMI ontology can be mapped to data warehouse models and steps in decision 

support system creation. In so doing, they present a generic 7 steps data mining 

algorithm, data warehouse where measures are organized, collected, and represented 

as facts which are hold in fact tables, as well as issues regarding gait disorder based 

on knee injuries.  

To the authors’ knowledge only few of existing ontologies are oriented to biomechanics 

field but with the main focus on clinical settings, such as rehabilitation, orthopedics, 

and surgery. They are too generic and so, requiring further extensions to describe 

details demanded by biomechanics of weightlifting. 

B) Ontology related to food recommendation  

The attempt to implement and develop a knowledge-driven information system which 

is capable of generating consistent healthy diet plans based on users’ existing health 

and medical conditions (e.g., diabetic, losing weight, and chronic kidney disease) is 

not recent. There is a large number of projects and publications concentrating on this 

topic. The research work by Snae & Bruckner (2008) presented Food-Oriented 
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Ontology-Driven System (FOODS), a counseling system for food or menu planning in 

a restaurant. The ontology contains specifications of ingredients, substances, nutrition 

facts, recommended daily intakes for different regions, dishes, and menus. This expert 

system assists in finding the appropriate dish for the consumers based on their 

individual nutrition profiles. FOODS comprises of a food ontology, an expert system 

using the ontology and some knowledge about cooking methods and prices. Its user 

interface is suitable for both novices and experts in computers and diets. Protégé is 

used as the tool for setting up the ontology in OWL with the combination of bottom-up 

and top-down approaches. Fudholi et al. (2009) designed and developed the daily 

menu assistance using ontology concept. It includes the knowledge of the domain 

concept and its relationships based on semantic web application, with users entering 

their required personal data to calculate the energy expenditure. Then, the system 

calculates the data and gives an appropriate menu from database. The drawbacks of 

these systems are lacking the indicators of nutritent balance, energy requirement, and 

caloric ratios related to the meal or menu chosen. Many researchers developed a 

personalized food recommendation system more specifically for diabetics. The 

objectives are to help them controlling blood glucose level and to prevent the 

complications. Such as, Chang-Shing et al. (2008) proposed Intelligent Diet 

Recommendation Agent (IDRA) by using fuzzy set based inference mechanism to 

recommend diet menu for dinner. The system calculated and recommended menu by 

analyzing whole day taken meal with users entering their food eaten. Then the system 

adjusted how many calories and nutrients is needed or lack for dinner. The limitation 

of IDRA is the lack in defining relationships between food items and diabetes (e.g., 

which food item is recommended or not for diabetes) and counseling only the 

remaining calories for dinner intake, instead of all daily meals. Suksom et al. (2010) 

implemented a rule-based personalized food recommender system. The objective is 

to assist users who have a special nutrition need (e.g., diabetics) in daily diet 

selections based on some nutrition guidelines. The main components of the system 

are user personal profiles, food and nutrition databases, and knowledge base. The 

developed food and nutrition ontology is integrated with rules and stored in the 

knowledge base. The system utilizes the knowledge base in providing 

recommendations based on nutrition requirements of each user. However, the 

systems have limitations similar to those of FOODS, which were mentioned before. 

Phanich et al. (2010) proposed Food Recommendation System (FRS) by using food 

clustering analysis (i.e., Self-Organizing Map and K-mean clustering) to help diabetics 

select foods. They recommended the proper substituted foods in the context of 
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nutrition and food characteristic based on the similarity of eight significant nutrients. 

Food items are grouped together in various classifications based on their different 

nutrient values definition. Therefore, in order to use this system effectively, users 

should have some nutrition knowledge before using it. Exercise or physical activity 

which is considered to be an important factor to calculate the energy requirement is 

completely ignored. This is the limitation of all systems that were mentioned above. 

Therefore, some researchers tried to add “exercise or physical activity” as a factor to 

calculate energy requirement to their systems in order to make them more accurate. 

For example, Usthasopha et al. (2010) presented a new nutrition counseling system 

for food menu planning (NCS). It was designed and implemented by combining two 

technologies, K-means clustering and expert system in order to assist users to find 

appropriate food menu based on gender, height, weight, and exercise activity to meet 

their energy requirement. However, this system is not proper for users with chronic 

diseases or professional athletes. Faiz et al. (2014) developed Semantic Healthcare 

Assistant for Diet and Exercise (SHADE) by integrating ontology semantically (based 

on person, food, disease, and exercise domain). It generates recommendations as 

inferences based on data and rules using Pellet reasoner. SHADE recommends diet 

and exercise suggestion for diabetics. The recommendations are dynamic as they are 

based on recent blood glucose level, taken meal, and performed activities. However, 

this system is a prototype application, initially as a case study, for only type 2 diabetics.  

Only few researchers were interested to develop food recommending system for 

professionals and amateur athletes. For example, Minnea et al. (2011) proposed 

recommender system of workout and nutrition for runners by integrating web crawling 

and ontology. The system is a mixture between experts’ knowledge and a social 

dimension in generating the nutrition and workout plan. The system provides 

information to users regarding the workout (training program) and treatment 

recommend in case of injury alongside diet plan that best suits them, based on their 

profile information, food preferences, and goals. However, the user’s target group for 

this system is beginners, to assist them keeping the performers in shape. 

1.3.5 Conclusions 

The following Table 1.1 presents a gap analysis among the most important recent 

research frameworks compared to our envisioned solution.  
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We conclude that an ontology-driven weightlifting knowledge model may be the right 

solution for promoting a better understanding of the weightlifting domain as a whole, 

since it can unify concepts and terminologies among weightlifting stakeholders, and at 

the same time obviate the paucity and inconsistencies of existing results. The 

weightlifting knowledge model should be scalable to easily integrate further related 

domain of weightlifting, and also used to support the implementation of weightlifting 

Recommender Systems. By developing it in the form of ontology and presented as a 

separate component in the architecture of the recommender systems, it also leverages 

flexibility, adaptability, and easy upgradability to the latter. 

  

Table 1.1 Gap analysis among existing frameworks based on ontology support, scope, and intended use. 

References Ontology Nutrition Weightlifting Biomechanics 

FOODS (Snae & Bruckner, 2008)     

IDRA (Chang-Shing et al., 2008)     

Protégé, SWRL and SQWRL in 

Fuzzy Ontology-Based Menu 

Recommendation (Fudholi et al., 

2009) 

    

FRS (Phanich et al., 2010)     

Food and Nutrition Recommender 

System (Suksom et al., 2010) 

    

Nutrition Counseling System and 

Food Menu Planning  

(Usthasopha et al., 2010) 

    

The Runner (Donciu et al., 2011)     

SHADE  (Faiz et al., 2014)     

FOODS-Diabetes Edition 

(Boulos et al., 2015) 

    

Parametric Human Project  

(Mogk et al., 2013) 

    

OSMMI ontology (Dao et al., 2009)     

Ontology for Gait Analysis  

(Turcin et al., 2013) 
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1.4 Thesis Structure 

This thesis is organized as follows: 

 Chapter 2 describes the use of integrated PCA and HCA method as an 

exploratory tool to find and/or understand possible similarities and hidden 

patterns among lifters with different skills. 

 Chapter 3 describes the design and implementation of an ontology-based 

personalized dietary recommendation for weightlifting. The implemented 

system was used as an exploratory tool to partially understand the weightlifting 

TDC-cycle, mainly regarding the nutrition and training domains. 

 Chapter 4 presents and discusses the first-iterated Weightlifting TDC-cycle 

ontology rule- and knowledge-based system. It describes the ontology-driven 

approach used to model each identified domains (i.e., weightlifting, training, and 

nutrition), the analysis and design of each individual ontology, as well as the 

integration of individual ontologies. 

 Chapter 5 presents and discusses the second-iterated Weightlifting TDC-cycle 

ontology, refactored toward improved modularity, flexibility and scalability. 

 Chapter 6 presents and discusses the third-iterated Weightlifting TDC-cycle 

ontology, refactored toward improved flexibility and scalability, comparatively to 

the second iterated version. 

 Chapter 7 concludes this thesis by presenting the conclusions of our research 

and the limitations found during the development of our weightlifting knowledge 

model, as well as suggestion regarding the future work towards fulfilling the 

aforementioned limitations. 

 Next a list of references is presented. 

 Appendix presents A) Ethical Approval; B) Written consent form; C) Nutrition 

status of Thai national team weightlifters; D) The drafted questionnaire template 

used to collect knowledge regarding sport nutrition of Thai weightlifters; E) Used 

tools for modeling the ontologies. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

Power Output Patterns of                                       
Young Weightlifters during Snatch 

 
In order to provide biomechanical answer to the previously introduced main problem statement 
of this thesis (i.e., “How can each of the main weightlifting research domains of biomechanics, 
nutrition, and training methodology be modeled?”), experiments need to be conducted to 
investigate and define the biomechanical profile of weightlifter. The main interest is directed 
to “Power output” as an indicator to assess performance changes and provide feedback of 
training program. This current chapter proposes the use of integrated PCA and HCA method 
as an exploratory tool to find and/or understand possible similarities and hidden patterns of 
power output during snatch among young weightlifters with different skills. The chapter starts 
with the definition and the importance of muscle power, the methods of measuring the power 
output, the literature review of power output in Olympic weightlifters, and time series data 
mining. Then, it continues with the objectives, methods, results, and discussion. Lastly, the 
use of LCSS technique is presented to improve the power of the discrimination power output 
pattern in weightlifters.
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Introduction 

Power is a measure of how much work can be performed in a given period of time and 

it can be calculated as a product of force and velocity (Hedrick, 1993). In the Olympic 

weightlifting, as a sport activity which completed in a very short period of time, the 

success of a weightlifter’s attempt is largely affected by the athlete’s power output 

capacity (Hori et al., 2007). Therefore, improving power-generating ability of the 

muscle is one of the main goals for weightlifting training program. Moreover, 

monitoring and tracking the power output profile is useful for coaches and athletes to 

assess performance changes, provide feedback of training program, and detect 

fatigue or/and injuries. Therefore, much experimental research has been conducted 

to understand how power should be assessed and developed over the last two 

decades (Cormie et al., 2007; Enoka, 1988; Garhammer, 1980; Garhammer, 1985, 

1991, 1993; Hori et al., 2007; Kawamori et al., 2005; Kipp et al., 2013; Kipp et al., 

2012; Stone et al., 2003). Three common methods have been used to measure power 

output in the literature as following: (i) a position transducer is used as an equipment 

combined with inverse dynamic approach to calculate velocity and force from 

displacement-time data, (ii) a force platform is used to obtain force data along with the 

forward dynamic approach to calculate velocity from force-time data, and (iii) both a 

force platform synchronized with a position transducer are used to obtain velocity and 

force data. Theoretically, the most logical and valid methodology would be the values 

obtained from a force platform. However, no matter which method is utilized, the 

researchers are likely to report these data as the peak power or average power 

between 2 time points by using standard data analysis techniques. Although these 

statistical approaches are able to summarize and represent the individual 

biomechanics of a group in a single pattern (as an average behavior with deviations 

as possible errors; standard deviation band), they reduce the data severely. They may 

discard much important information (Donoghue et al., 2008) and, in particular, do not 

allow further insight into the pattern of power production of an individual athlete over 

time due to the fact that information is lost during the process of averaging (Hasson & 

Heffernan, 2011). Based on the importance of power output measurement and the 

relative absence of studies on the power output patterns of weightlifters, the purpose 

of this study was to apply PCA (Principle Component Analysis) combined with the 

HCA (Hierarchical Cluster Analysis) to a power output time series, attempting to 
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explore four questions: (i) What is the relative power output pattern of each young 

novice weightlifter during snatch?; (ii) Can the young weightlifters be grouped based 

on a similarity to one or more patterns?; (iii) Can these groupings be explained?; (iv) 

Is there any techniques better than PCA combined with the HCA to discriminate the 

power pattern of weightlifters? 

The remainder of this chapter is organized as follows: Section 2.1 describes the 

definition, the importance of muscle power and the methods of measuring the power 

output; Section 2.2 presents the literature review of power output in Olympic 

weightlifters; Section 2.3 presents time series data mining; Section 2.4 describes 

materials and methods; Section 2.5 presents results; Section 2.6 presents discussion; 

Section 2.7 explains the use of LCSS technique to improve the power of discrimination 

power output pattern in weightlifters; and Section 2.8 ends with some conclusions. 

2.1 Muscle Power  

2.1.1 The definition of Muscle Power  

Power, by definition, is a measure of how much work can be performed in a given 

period of time and it can be calculated as a product of force (N; Newton) and velocity 

(m/s). So, power can be expresses as a value in N∙m/s but it is widely reported as 

Watts (W) (Hedrick, 1993). In order to understand this topic well, the term of “muscle 

power” must be defined (e.g., what exactly is being investigate). As explained by 

Beardsley (2016), the most common outcome measure reported by studies as “muscle 

power” can be considered into three levels:  

(i) It is either a concentric or an eccentric action that the muscle itself performs. 

Putting it differently, it is a linear system in which a tensile (pulling) force is 

generated by the contractile machinery, subsequent to a neural signal; 

(ii) The muscle force acts on a bone, which is fixed to another bone at either one 

or both ends in the form of a joint. This joint means that there is a pivot and 

consequently a rotational system in which a perpendicular force acts on the 

moment arm to produce a moment/torque. If this moment acts on the joint and 

is not countered by an equal and opposite moment, then the moment produces 

a rotation of the joint and the rate at which it turns can be measured as an 

angular velocity. The product of the joint moment and the angular velocity is the 

joint power (internal power output); 
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(iii) Two or more joints act together in concert to produce a dynamic, compound 

movement (e.g., a leg press or a bench press) and then, there is a linear 

movement produced by the extremely coordinated interactions of the joints. The 

output of this linear system, which is sometimes called system power/external 

power to differentiate it from individual joint powers/internal power, can be 

measured simply as the force produced multiplied by its linear velocity.  

Therefore, internal power is defined as the product of the joint torque and the angular 

velocity whereas external power refers to the aggregate of multiple joint powers 

resulting in, such as a combination of hip, knee, and ankle power.  

2.1.2 The Importance of Power 

The concept of power seems to be so intuitive in weightlifting—a sport which requires 

explosiveness and the application of maximal strength in the shortest time possible 

(Newton & Jenkins, 2013). This explosiveness in sport is also termed “speed-strength” 

which is defined as “any capacity that contains both a force (strength) and speed 

component to muscular action” (Young, 1993). As proposed by Newton and Dugan 

(2002), factors contributing to a lifter’s power capacity include maximum strength, high 

load speed strength, low load speed strength, rate of force development, skill 

performance, and power endurance. For this reason, the success of a weightlifter’s 

attempt is largely affected by power-generating ability of the muscle (Hori et al., 2007). 

Therefore, research has been directed to the topic of how power can be assessed, 

developed, and monitored in order to assess performance changes and provide 

feedback to athletes and coaches. 

The correlation between the ability to produce high power and athletic performance 

remains unclear. While Sleivert et al. (2004) presented significant correlation between 

sprint start performance and power measured during concentric jump squats, Harris 

et al. (2008) reported very different results. On the contrary, the correlation between 

muscular power output and playing ability level have revealed significant relationships. 

As reported by Baker and Newton (2002), professional rugby league players showed 

significantly higher power output than high school players during weighted jump squat 

with 20 kg weight. Young et al. (2005) also reported that in professional football 

players, starters showed higher power output than non-starters during weighted jump 

squat with 40 kg weight and CMJ without external load. Therefore, it is suggested that 

power outputs can be used as an indicator to discriminate the level of the athletes. 
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2.1.3 Methods of Measuring the Power Output  

A) Direct Measurement  

Many instruments are widely utilized in literature to measure the gains in power output 

such as position transducers (e.g., linear position transducer, video camera) and force 

platforms. The power output is commonly measured by using one of the following 

methods:  

(i) using a position transducer, velocity and force are calculated from 

displacement-time data, while the resulting power generated to barbell is 

obtained using inverse dynamic approach (Baker et al, 2001); 

(ii) using a force platform, velocity is calculated from force-time data, while the 

resulting power in the system (barbell + body) is measured using the forward 

dynamic approach (Kawamori et al., 2005); 

(iii) using a position transducer, velocity and force are calculated from 

displacement-time data, while the resulting power in the system (barbell + body) 

is obtained through the inverse dynamic approach (Stone, O'Bryant, et al., 

2003); 

(iv) using a force platform synchronized with a position transducer, force data 

obtained from the force platform is multiplied by the velocity data read from the 

position transducer as the resulting power in the system (barbell + body) (Young 

et al., 2005).  

The power output calculated using these methods is classified as an external or 

system power. To calculate joint or internal power, a motion analysis system is needed 

to collect joint position data throughout the movement. Angular velocities and 

accelerations are derived from angular position data and they are used to calculate 

joint torques. The product of join torque and angular velocities is equal to the joint 

power (Noffal & Lynn, 2012). 

B)  Indirect Measurement 

Although the most logical and valid methodology to measure power output values is 

obtained directly from force platforms or position transducers, the access to those 

instruments is limited due to the expensive price of such equipment. Therefore, 
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coaches have been searching for alternative testing methods that can be easily 

performed in a practical setting. Previous research has showed the relationship 

between power output and measures of explosive strength such as weighted jump 

squats (Stone, O’Bryant, et al., 2003), bench press (Cronin et al., 2000), and throwing 

performance (Stone, Sanborn, et al., 2003). Vertical jump has also reported to 

measure and refer to this as a field-test approach for estimating power output and 

weightlifting ability (e.g., squat, snatch, and clean and jerk) (Carlock et al., 2004). 

2.2 Literature Review of Power Output in Olympic Weightlifters 

Most of the many studies regarding mechanical power outputs during weightlifting 

exercise are related to external power outputs which focus on the effects of 

manipulating the load and the subsequent effects on maximal power outputs, obtained 

from either barbell kinematic data, ground reaction force (GRF) data, or a combination 

of both (Cormie et al., 2007; Hori et al., 2007; Kawamori et al., 2005). Only a few 

(Enoka, 1988; Kipp et al., 2013; Kipp et al., 2012) studied internal power outputs due 

to the expensive price of the equipment needed to acquire the data necessary to 

calculate the internal joint power, and also to alleviate required information, 

processing, effort, and time overheads. While the external power outputs data provide 

important information which is easy to acquire, they do not provide an insight into the 

used power production of the individual joint. Furthermore, although the internal power 

outputs data provide more information, they are not practical to use. Consequently, 

Kipp et al (2013) tried to find correlations between internal and external power outputs 

during weightlifting exercise. Their findings supported the use of the traditional work-

energy method to make inferences about joint/internal power outputs from 

system/external power outputs during the clean at loads of 85% of 1-repetition 

maximum (1RM) and the impulse-momentum method to make inferences about the 

sum of all joint/internal power outputs from system/external power outputs at loads of 

75 and 85% of 1RM. The work-energy method calculates the power output by 

summing the total amount of potential and kinetic energies up to the point of maximum 

vertical barbell velocity and divides this sum by the time taken to reach this point. The 

impulse-momentum method calculates power output as the product between the 

vertical velocity of the barbell-lifter system and the vertical component of the GRF 

vector.  

No matter which method is utilized, the researchers are likely to report these data as 

the peak power or average power between 2 time points by using standard data 
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analysis techniques (i.e., determination of mean, standard deviation, etc.). They also 

focus on the best performance of an athlete in a particular phase (i.e., power output 

during the first pull phase or the second pull phase) (Akkus, 2012; Gourgoulis et al., 

2000; Hadi et al., 2012; Okada et al., 2008). Although these statistical approaches are 

able to summarize and represent the individual biomechanics of a group in a single 

pattern as an average behavior with deviations as possible errors (e.g. standard 

deviation band), they reduce the data severely. They may discard very important 

information (Donoghue et al., 2008) and, in particular, they do not allow further insight 

into the pattern of power production of an individual athlete over time because that 

information is lost during the process of averaging (Hasson & Heffernan, 2011). 

Because the investigation of the power output pattern (timing and temporal structure) 

may provide additional information for weightlifting training design, time-series data 

analysis techniques are needed to detect altered movement patterns or to differentiate 

the power output patterns of individual lifters. One of the statistical approaches which 

is suggested to be a powerful tool to solve these kind of problems is multivariate 

statistical analysis. It offers the capacity to eliminate collinearity and to facilitate 

analysis, presenting only the essential structures hidden in the data (Dona et al., 

2009). Among these multivariate statistical techniques, a method commonly used to 

identify and quantify movement techniques in sports is Principal Component Analysis 

(PCA) (Hotelling, 1933). PCA is a pattern recognition method used to extract feature 

from the large datasets (e.g., time-series data) or to classify and determine group 

differences. It is widely used in sport analysis (Dona et al., 2009; Kipp & Harris, 2015; 

Troje, 2002; Troje et al., 2005). Moreover, PCA can be combined with classification 

procedures such as cluster analysis (e.g., Hierarchical Cluster Analysis (HCA)) where 

PCA is defined as an unsupervised feature extraction technique (Webb, 2002), for 

instance to classify movement patterns of athletes with different skill levels (Schorer 

et al., 2007; Watelain et al., 2000). 

2.3 Time Series Data Mining 

The term “time series” can be defined as a sequence X= (x1, x2…, xm) of observed 

data over time, where m is the number of observations. By tracking a time series of 

data/phenomenon/movement and recognizing differences in patterns of data, 

important information can be produced. Typical characteristics of time series data are 

high-dimensionality and feature correlation, combined with the measurement-induced 
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noised which make the classic data mining algorithms analysis ineffective and 

inefficient for time series. As a results, time series data mining has received attention 

in the past two decades. Many approaches have been used for recognizing patterns 

and mining of time series data which can be classified into three categories: (i) 

unsupervised learning when a given pattern is assigned to an unknown class (e.g., 

clustering; hierarchical clustering), (ii) supervised learning, when a given pattern is 

assigned to one of the pre-defined classes, using labeled data to build a model or 

guide the pattern classification (e.g., classification; k-nearest neighbors), and (iii) semi-

supervised learning, when a given pattern is assigned to one of the pre-defined 

classes, using both labeled and unlabeled data (e.g., semi-supervised classification; 

1-NN) (Jessica Lin). However, when dealing with high-dimensional data, the 

computational cost of using those methods often prevents the method from being 

applied. Therefore, dimension reduction are carried out as a pre-processing step. 

Typically, this is accomplished by applying PCA. In this study, in the first session PCA 

and HCA are applied as “unsupervised classification” method to study the data 

structure, look for similarities between relative power output patterns among athletes, 

and evaluate whether clusters exist in a dataset.  

2.3.1 Principle Component Analysis (PCA) 

PCA (Hotelling, 1933) is probably the most popular multivariate statistical technique 

which is used by almost all scientific disciplines. The goals of PCA are to extract the 

most important information from the data table, compress the size of the data set by 

keeping only the important information, simplify the description of the data set, and 

analyze the structure of the observations and the variables. To achieve these goals, 

PCA must be able to compute new variables called principal components which are 

obtained as linear combinations of the original variables. The first principal component 

is required to have the largest possible variance (i.e., this component should explain 

or extract the largest part of the inertia of the data table). The second component is 

computed under the constraint of being orthogonal to the first component and to have 

the largest possible inertia. The other components are computed likewise. The values 

of these new variables for the observations are called factor scores. These factors 

scores can be interpreted geometrically as the projections of the observations onto the 

principal components (Abdi & Williams, 2010). While one can use the results of the 

PCA for the analysis of various data sets or for data reduction only, the results of PCA 
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can also be combined with classification procedures such as cluster analysis as 

described by Webb (2002), where PCA is defined as an unsupervised feature 

extraction technique for further analysis. 

PCA were used in sport biomechanics first time by Troje et al. (2002) to analyze the 

perception of gait in human. The authors showed that the whole body movement of 

gait contains information that allows human observers or computer classification 

algorithms to distinguish, for example, between male and female, young and old, 

happy or sad, relaxed or nerves walkers. Since then, there were many studies 

following their approach by using it to further investigate the perception of human 

movement and developing classification or identification algorithms in gait (Chang & 

Troje, 2009; Troje et al., 2005; Westhoff & Troje, 2007). Only few investigators have 

applied this method to sports: (i) Dona et al. (2009) applied functional PCA method to 

distinguish knee kinematic and kinetic differences of competitors at differing levels of 

expertise in race walking, (ii) Kipp et al. (2012) used PCA to identify multi-joint lower 

extremity kinematic and kinetic synergies in weightlifting, and (iii) Kipp and Harris 

(2015) applied the same approach to determine the patterns of barbell’s acceleration 

during the snatch in weightlifting competition.  

2.3.2 Hierarchical Cluster Analysis (HCA) 

Cluster analysis was developed to identify pattern in high-dimensional datasets. A 

dataset subjected to cluster analysis typically consists of a collection of objects of 

interest which are measured on several characteristic dimensions. In order to identify 

shared patterns between objects, a common metric among the different characteristics 

needs to be defined. Consequently, the identified metric might afford an estimation of 

the degree of (dis)similarity between the objects. Cluster analysis uses similarity 

information to quantitatively group objects into clusters in an iterative step-wise 

manner. Among the other clustering techniques, HCA (Ward, 1963) is the most 

popular. It is achieved by using an appropriate metric of samples distance (e.g., 

Euclidean distance) and linkage criterion among groups. This method begins with 

many clusters as there are observations, with each observation forming a separate 

cluster. The algorithm then merges nearest neighbors according to their predefined 

distance metric, resulting in combination of clusters. The process of combination 

continues by reducing the number of clusters at each step until all observations are 

clustered into a single group. The distance between observations are typically 
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displayed as a simple graphical view of the observation grouping called dendrogram 

(Blashfield & Aldenderfer, 1978; Kaufman & Rousseeuw, 2008; Rein et al., 2010). 

Cluster analysis approaches have been adopted by many researchers for studying in 

various sports movement. For example, Schorer, et al (2007) investigated movement 

pattern of five handball players. The objective was to analyze the movement patterns 

of handball players during throwing to different sections of a goal. Shoulder, elbow, 

wrist, and hip displacement of throwing side were recorded and analyzed. A two-stage 

strategy was adapted with a single linkage cluster analysis as the first stage to identify 

outliers, followed by a cluster analysis using the Ward-algorithm. A group of three 

major clusters were indicated based on the skill level of the participants. Moreover, by 

investigating the sub-grouping within clusters, they found that the player with the 

greatest skill exhibited the greatest levels of movement pattern variability compared 

with the novice player which used very few movement patterns. Ball and Best (2007) 

also applied cluster analysis to study force plate data recorded during golf swing. A 

combination of hierarchical and nonhierarchical cluster analysis method was used to 

analyze the movement of the center of pressure among 62 participants during swing. 

The results showed that weight transfer in participants can be distinguished according 

to two different strategies. The first one was involved in continuous movement of the 

center of pressure in the forward direction during and after club-ball contact, whereas 

the second one was involved in the reverse direction during club-ball contact.  

2.3.3 Longest Common Subsequence Distance (LCSS) 

Although Euclidean distance is most widely used to measure distance among time 

series due to its simplicity to perform and get the results, it presents several 

drawbacks, including: (i) it compares only time series of the same length, (ii) it does 

not handle outlier or noise, and (iii) it has no ability to manage time axis gap (Cassisi 

et al, 2012) (Figure 2.1a). Euclidean involves in matching a giving point from a time 

series with the point from another one that occurs at the same time. However, the 

results from a two-time series with the same shapes that do not occur concurrently on 

time axis may have high Euclidean distance, which is considered illogical and it can 

lead to a wrong interpretation.  

LCSS distance (Vlachos et al., 2002) is a time stretching distance developed to solve 

those problems. It matches two-time series together by allowing a given point from 

one-time series to match with one or several points from the other. Moreover, it allows 
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them to stretch, without rearranging the sequence of the elements. That is, LCSS can 

keep some elements unmatched by allowing one point of a time series to be matched 

with one or zero point of the other (Figure 2.1b). This feature made LCSS distance 

more resilient to noise than Euclidean distance. 

 

Figure 2.1a, and 2.1b Distance computation between two-time series with Euclidean (A) and LCSS (B) (Cassisi 

et al, 2012)  

2.3.4 Interpretation Variables 

Many methods have been suggested for the evaluation of the statistic significant of 

the cluster (e.g., Fisher test), but no satisfactory solution have been found due to the 

very different structure of clusters found in practical problem. In reality, the significance 

of a cluster is based on the possibility of interpretation. Interpretation means that the 

author uses external information to explain the results of each cluster suggested by 

dendrogram. Frequently, the real problem suggests that some categories exist, 

therefore, the interpretation step is to compare the number and the composition of the 

clusters with these categories.  

The dendrogram on one interpretation variable does not present mathematical 

difficulties. The abscissa is the interpretation variable and the ordinate is the similarity. 

In figure 2.2, is an example of the interpretation variable of the content of proteins. By 

cutting the dendrogram at similarity of 0.35, three clusters and a singleton are 

obtained.  
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Figure 2.2 An example of dendrogram on the content of proteins 

2.4 Materials and Methods 

2.4.1 Experimental Approach to the Problem 

The rationale of this study was that each lifter has a unique movement pattern which 

can be modified by training, injury, disease or disability. Some changes are easy to 

detect from traditional exercise data analysis (e.g., joint torque, joint angle). However, 

others are challenging. As such, PCA combined with HCA as an advanced human 

movement analysis technique was applied to a relative power output time series aimed 

at recognizing differences in patterns of movement. We hypothesized that (i) the 

analysis would extract and identify the power output pattern of each weightlifter, (ii) 

power output patterns can be used as a variable to group lifters based on their 

similarity, and (iii) by adding other biomechanical characteristics (e.g., barbell 

kinematic variables), we can explain the technical difference among lifters who exhibit 

a different pattern. To identify the relative power output patterns, we measured the 

kinematic characteristics of each weightlifter and barbell while they lifted 80% of their 

respective 1RM. PCA combined with HCA was used to extract the relative power 

output time-series pattern, while automated clustering was applied to group lifters 

based on the similarity of their relative power output patterns. The description of the 

related barbell kinematic variables in each phase of the lift (e.g., barbell velocity, 

barbell acceleration, and barbell displacement) were added as explanatory variables 

to the model (relative power output pattern) which could help to explain why individual 

athletes exhibit different patterns. 
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2.4.2 Subjects 

Seventeen young novice weightlifters (6 boys, 11 girls) participated in this study 

(mean±SD; age 15.06±1.78 years old; height 158.89±10.72 cm; body mass 

58.77±11.83 kg; 1 RM snatch: 46.88± 12.05 kg; relative 1RM snatch: 0.8±0.15 kg/kg). 

All lifters were actively engaged in resistance training programs that involved 

weightlifting exercises and were members of a school-level weightlifter team. Prior to 

the experiment, all weightlifters were briefed on the scope of the study and signed 

informed consent forms approved by the ethical committee of the Faculty of Sport, 

University of Porto (See in Appendix A and B). All participants reported that they were 

free of musculoskeletal injury at the time of the study. 

2.4.3 Procedures 

A brief warm-up was performed prior to beginning data collection. Then, the lifters 

performed 2–3 repetitions at 50, 65, and 80% of their self-reported 1RM for the snatch. 

Approximately 2–3 minutes of rest was allowed between each trial. Only data from the 

final set at 80% of 1RM were considered for further analysis in this study. This load 

limit was selected because the weightlifting technique stabilizes only at loads ≥ 80%, 

which can be used as a proxy for competitive weightlifting performance (Lukashev, 

1982). 

Six video cameras (Smart DX, BTS Bioengineering, Italy) were set up around the lifting 

stage to capture the three-dimensional motion of the subject and the movement of the 

barbell at 100 Hz. Sixteen reflective markers were placed on the lifter’s body and two 

reflective markers were placed at the right and left edge of the barbell axis. GRF data 

were synchronically collected using two force platforms (Kistler, Switzerland) at 400 

Hz. 

The kinematic characteristics of each lifter and barbell were determined by the 

following steps. First, a human model was created and selected anatomical points 

were digitized manually with the aid of tracking software (Smart tracking, BTS 

Bioengineering). The points were: base of great toe, ankle, knee, hip, shoulder, elbow, 

wrist, and barbell. Second, the snatch motion data were associated with the defined 

model (Smart analyzer, BTS Bioengineering). Third, the raw position-time data were 

smoothed using a 4th order low-pass Butterworth digital filter with a cut-off frequency 

of 4 Hz. Fourth, the kinematic variables of the “barbell + lifter” system were computed 
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(system center of mass position and velocity). Finally, derived biomechanical 

quantities such as power (GRF*VCM) were computed based on the impulse-

momentum method (Hori et al., 2007; Kipp et al., 2013). This method calculated the 

mechanical power output as the product between the vertical velocity of the barbell + 

lifter system and the vertical component of the GRF vector. We used this method to 

calculate the external power output because the correlation of the external power 

output calculated from this method and the internal power output are more robust over 

a greater range of loads than any other method. This method captures the power 

production of the entire lower extremity and the entire lift-barbell system, whereas 

other methods capture only the mechanical power generated to the barbell (Kipp et 

al., 2013). 

The relative power output (power per total weight i.e., body weight + bar weight) and 

barbell kinematic variables (e.g., barbell velocity, barbell acceleration, and barbell 

displacement) were computed as a means of inter-subject comparison (Garhammer, 

1981; Hoover et al., 2006; Isaka et al., 1996). However, at the end of this stage, only 

relative power output time-series data were stored for further processing.  

2.4.4 Data Processing for PCA combined with HCA 

As a pre-processing step, all relative power time-series were differentially rescaled in 

time so that the duration of each of the sub-phases became the same among all 

individuals. Interpolating the time series with cubic spines, the first pull on all lifters 

expanded to 82 points, the transition to 18 points, the second pull to 11 points, the 

turnover to 27 points, and the catch to 194 points. This means that we lost the precise 

timing information, but we could compare the power evolution on each sub-phase 

among lifters.  

The data processing step was performed by applying PCA combined with HCA on the 

relative power output time-series (from first phase to catch phase). It consisted of a 

two-step process. First, the rescaled relative power time-series data were arranged in 

one 17 x 336 (snatch lifts x time points) data matrix that was used as the input to PCA 

(Hotelling, 1933). The PCA operated to reduce the dimensionality of data and 

produced a set of eigenvectors and eigenvalues. In order to determine how many 

meaningful components should be retained for interpretation, we follow “Proportion of 

variance accounted for” criteria. Based on this criteria, the chosen factors should 
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explain at least 85% of the variance of the original data (SAS Institute Inc., 2000). 

Secondly, HCA was used based on the Euclidean distance of the calculated coefficient 

matrix for automated clustering to identify the inter-individual differences in the relative 

power output patterns between lifters.  

The results of this analysis (PCA+HCA) can be presented as a tree diagram 

(dendrogram) where each line represents the similarity or the distance between lifters. 

The length of the vertical lines measures the separation between the merged clusters. 

It is common practice to “cut” the dendrogram at the similarity corresponding to the 

longest branches, to obtain “significant” clusters (Forina et al., 2002). Then, the 

cophenetic correlation coefficient (CPCC) (Sokal & Rohlf, 1962) was computed to 

measure how well the cluster tree generated by the clustering algorithms (Euclidean 

distance) reflected the original data. The closer the value of CPCC is to 1, the more 

accurately the clustering solution reflects the original data (Saraçli et al., 2013). 

2.5 Results 

Descriptive data related to power output are presented in Table 2.1. The mean relative 

peak power output was 4.91± 3.17 W/kg, with the subject K showing the greatest value 

(15.5 W/kg). The mean total relative power output was 98.13±29.84 W/kg, with 

subjects Q, B, O, and K showing higher value compared to the mean of the group.  

PCA was used to extract the relative power output time series with the first-six principal 

components accounting for 85.56% of the variance in all relative power output profiles 

(Figure 2.3). Once the six primary principal components were extracted, they were 

used as the inputs for HCA, which revealed the relationships among lifters. The 

projection of the dendrogram on the relative power output time series shown in Figure 

2.4 revealed that based on the similarity of power patterns, the lifter K showed a 

significant difference compared with the other lifters (CPCC = 0.9436). Consequently, 

it can be observed that young novice weightlifters in our study had two different 

patterns underlying the relative power output time series (Figures 2.5a, 2.5b). The first 

pattern was performed by the lifter K and was characterized by a very high power 

output spike during the transition pull phase and another regular power output spike 

during the catch phase. The second pattern was performed by the rest of lifters and it 

is related to two regular power output spikes during transition to the second pull phase 

and another one during the turnover phase. Although, the lifter P showed the spike 

during the first pull phase, it was not big enough to be detected. 
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Table 2.1 Power output and the description of related barbell kinematic variables in each phase of the snatch lift. 

 

Subject 

Body 

Weight 

(kg) 

Lifted 

Load 

(kg) 

Relative Peak 

Power Output 

(W/kg) 

Total Relative 
Power Output 

(W/kg) 

Barbell’s  

Velocity  

1st to 2nd 

pull (%) 

Max Bar 

Acceleration 

(m/s2) 

Max Bar  

Height 

(m) 

Max Bar 

Height/ 

Subject’s 

height (%) 

Drop  

Distance 

(m) 

A 29.8 25 6.67 96.13 +35.60 6.90 1.12 84 0.23 

B 46.3 32 7.43 144.37 +28.50 8.67 1.23 85 0.24 

C 58.7 39 3.12 71.80 +31.56 10.78 1.33 82 0.28 

D 65.8 40 2.44 57.93 +48.70 5.51 1.42 87 0.27 

E 67.6 43 2.78 85.79 +40.70 10.87 1.42 88 0.31 

F 47.7 40 5.40 86.87 +38.16 4.84 1.21 81 0.19 

G 62.9 38 4.09 106.65 -8.59 11.15 1.38 84 0.20 

H 66.9 49 1.83 56.25 +19.11 12.73 1.23 79 0.22 

I 68.8 52 4.92 99.68 -2.74 13.07 1.51 84 0.32 

J 69.4 64 4.78 106.40 +34.44 7.30 1.37 78 0.20 

K 46.1 50 15.5 126.95 +42.21 6.90 1.08 76 0.12 

L 49.0 38 1.77 73.39 +21.38 2.66 1.28 83 0.24 

M 54.6 42 3.46 71.68 -5.54 15.36 1.21 78 0.09 

N 54.8 57 4.56 82.02 +11.25 7.60 1.24 81 0.21 

O 68.5 60 4.81 127.09 +28.60 4.0 1.42 85 0.26 

P 69.0 70 6.16 112.54 +26.15 8.11 1.37 83 0.25 

Q 

Mean 

SD  

73.2 

58.77 

11.83 

58 

46.88 

12.05 

3.69 
 

4.91 
 

3.17 

162.72 
 

98.13 
 

29.84 

-14.86 
 

22.03 
 

19.45 

13.75 
 

8.84 
 

3.65 

1.18 
 

1.29 
 

0.12 

75 
 

81.94 
 

3.72 

0.07 
 

0.22 
 

0.07 

 

 

 

 

Barbell kinematic variables are shown in Figure 2.6-2.9 to explain the technical 

difference between lifters who exhibited such a different relative power output pattern 

(lifter K and other lifters (mean ±SD)). More description of related barbell kinematic 

variables in each phase of the lift are presented in Table 2.1. The results showed that 

the mean of barbell velocity increase during transition phase was 22.03±19.45%, i.e., 

Relative peak power = Peak power output/ total weight (body weight + barbell), Total relative power output = Total power 
output time series/total weight (body weight + barbell), Barbell’s velocity 1st to 2nd pull = Barbell’s velocity during transition 
phase (which increase/decrease from the end of 1st pull to 2nd pull phase), Max bar acceleration = Maximum barbell 
acceleration during the 2nd pull phase. Max bar height = Maximum bar height during the pull phase, Max bar height/ 
Subject’s height = (Maximum barbell height/the subject’s height) *100, Drop distance = Distance travelled at peak vertical 
displacement to the point of stability in the catch position. 
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only 4 lifters (Q, M, G, I) lost barbell velocity from first to second pull. The mean of 

maximum barbell acceleration during second pull was 8.84±3.65 m/s2 and 7 lifters (C, 

E, G, H, I, Q, M), showing a maximum barbell acceleration higher than the mean of 

the group. The mean of maximum barbell height was 1.29±0.12 m (81.94±3.72% of 

subject’s height) and lifters Q and K showed the lowest maximum barbell height. The 

mean of drop distance was 0.22±0.07 m, lifters Q, M and K showed the lowest drop 

distance value compared to the mean of the group. 

 

 

Figure 2.3 Variance explained by principal components for relative power output in sagittal plane. Each bar 
represents the variance explained by the corresponding PC (Principal Component); the line above each bar shows 
the cumulative percentage. 

 

 

Figure 2.4 Dendrogram of the hierarchical cluster based on Euclidean distance presenting the classification of 
relative power output during snatch (from lift-off to catch phase) of young novice weightlifters. 
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Figure 2.5a Comparison pattern of relative power output time series between the lifter K and other lifters (error 
bars shown mean±SD). 

 

 

 
Figure 2.5b Comparison pattern of relative power output time series between individual lifters. 
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Figure 2.6 Comparison pattern of barbell velocity time series between lifter K and other lifters (mean±SD). 

 

 

 
Figure 2.7 Comparison pattern of barbell acceleration time series between lifter K and other lifters (mean±SD). 
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Figure 2.8 Comparison pattern of vertical barbell displacement time series between lifter K and other lifters 
(mean±SD). 

 

 

 
Figure 2.9 Comparison pattern of horizontal barbell displacement time series between lifter K and other lifters 
(mean±SD). 

2.6 Discussion 

The results of this study showed that by applying PCA combined with HCA to the 

relative power output time series, we were able to identify the power output pattern of 

each weightlifter, separate lifters who had a distinctly different pattern out of the group 

and group those who were similar. Moreover, by adding barbell kinematic variables as 

explanatory variables, we were able to speculate on the technical variation that may 

explain these differences.  

The relative power output pattern of young novice weightlifters in this study can be 

identified according to two different patterns. The first pattern was performed by the 
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lifter K (i.e., high peak during transition phase and regular peak during catch phase) 

and the second pattern was performed by the rest of the group (i.e., regular peak 

during transition and turnover phase) (Figure 2.5). This finding is different from 

previous research (Garhammer, 1980; Garhammer, 1991; Gourgoulis et al., 2000) 

which reported the performance of adult elite weightlifters. The previous research 

results showed that the majority of power production of weightlifters during snatch is 

related to the pulling movement component, with the mechanical power presented in 

the second pull phase being significantly higher than that in the first pull phase. 

Gourgoulis et al (2004) found that the average relative power output was significantly 

lower for adolescent weightlifters during both the first and second pull phases 

compared to adult weightlifters. The difference can be explained by the fact that the 

explosive power output in the second pull is a result of flexion of the knee during the 

transition phase. Such knee flexion should be performed rapidly enough to allow the 

storage of elastic energy and elicit a stretch reflex immediately following the concentric 

contraction of the knee and hip joint extensor muscles. The adolescents showed 

significantly less bending in the knee joint during the transition phase and less angular 

extension velocity of the knee during the second pull phase. These characteristics 

indicate their lower ability to utilize the stored elastic energy compared to the adults. 

Therefore, the results of adults might not be a valid comparison in this study because 

our subjects were young weightlifters with different levels of maturity. Our finding was 

also different to that of Gourgoulis et al (2004) in some points, i.e., our study reported 

the power output pattern along the snatch movement in which peak power appeared 

during the transition phase, whereas Gourgoulis reported only the power output during 

the first pull and the second pull phase, while it seemed that the peak power happened 

in the second pull. This difference is perhaps due to:  

(i) The different level of athletes as subjects in the previous study were national-

level weightlifters with relative 1RM 1.50 kg/kg, while our subjects were school-

level weightlifters with relative 1RM 0.8 kg/kg; 

(ii) The different method of calculating external mechanical power output as in the 

previous study is used the work-energy method which only calculates 

mechanical power generated to the barbell (the ability to import power to an 

external object). Therefore, it excludes power produced by the lifter-barbell 

system or the lifter alone (Gourgoulis et al., 2004; Hori et al., 2007), while our 
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study used the impulse-momentum method which calculated mechanical power 

from GRF and velocity data of the lifter-barbell system (reflects the mechanics 

of the entire system). Most of researches (Garhammer, 1980; Garhammer, 

1991; Gourgoulis et al., 2000; Gourgoulis et al., 2004) used the work-energy 

method because there is no equipment required (e.g., force plate). However, 

we used another method because it is more suitable for our subjects. Since our 

subjects were young novice weightlifters, most of the mechanical power they 

generated were to lift their own center of mass more than lift the barbell.  

Improved performance in weightlifting can result from increased strength and 

improved technique (Garhammer, 1980) and both of these changes would increase 

the power output value. Therefore, in this study, we attempted to use barbell kinematic 

variables as explanatory variables to help explain the technical difference between 

lifters who exhibited different relative power output patterns. The pattern of the 

barbell’s vertical linear velocity is important for assessing the lifting technique 

(Baumann et al., 1988; Garhammer, 1985; Isaka et al., 1996). A lifter with a good, 

effective technique is one who can pull the barbell smoothly during the transition phase 

without a notable dip in the velocity. On the other hand, decreasing the barbell’s 

velocity before the second pull (appearing as two velocity peaks) indicates an 

ineffective technique because the lifter is required to produce more force than 

necessary in order to reaccelerate the barbell during the second pull phase (Baumann 

et al., 1988). In this study, the lifter K displayed a steady increase in the barbell’s 

velocity from the first pull to the second pull phase up to a single velocity peak with no 

notable dip in the velocity profile (+42.21% in Table 2.1 and Figure 2.4), while 25% of 

the rest of the group, consisting of 4 lifters, lost barbell velocity during the transition 

phase.  

The excessive magnitudes of the barbell’s acceleration (Figure 2.7) which appeared 

during the second pull phase indicated a waste of force used to achieve greater barbell 

acceleration than needed. Instead, it should be transferred into lifting the barbell loads 

(Kipp & Harris, 2015). This is due to the fact that the goal of weightlifting is to lift the 

maximum weight, not to generate the maximum acceleration. In this study, 68% of the 

other lifters (11 athletes) showed higher magnitudes of barbell acceleration compared 

to the lifter K.  
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Regarding the pattern of the barbell’s displacement (Figure 2.8), the lifter K showed 

the lowest peak vertical barbell displacement (1.08 m; 76% of subject’s height) and 

lower travelled distance at peak vertical displacement to the point of stability in the 

catch position (drop distance; 0.12 m) compared to the other lifters. These results were 

consistent with the suggestion of Baumann et al (1988) that the maximum height of 

the barbell in the turnover phase should be around 70% of the lifter’s height. This is 

considered as the sufficient maximum barbell displacement and the drop distance 

should be minimized to allow for a more upright position to be adopted in the catch 

position. These movements have been proven to help increase the technical efficiency 

of the snatch in elite weightlifters (Isaka et al., 1996).  

The horizontal barbell’s displacement during the lift is considered as a parameter that 

indicates “efficient lifting”. Baumann et al (1988) reported that the horizontal barbell’s 

displacement for the best weightlifter was smaller than for the poorest lifter in each 

weight category. In this study, by looking at the pattern of horizontal displacement, we 

can assume that the lifter K has a barbell horizontal movement pattern quite different 

from the others as he/she can manage to project his/her body upward, minimize 

horizontal movement, and keep the barbell close to the reference line (a vertical line 

drawn from the starting point of the barbell) throughout the lift. This finding was 

supported by Akkus (2012) who suggested that successful lifts are not dependent on 

a specific trajectory pattern but they are more a result of power output. The greater the 

power output, the more consistent the horizontal barbell displacement pattern.  

In conclusion, PCA was applied combined with HCA to the relative power output time 

series of young novice weightlifters and considering those results together with a 

description of related barbell kinematic variables in each phase of the lift. It could 

therefore be argued that the pattern of relative power output of each lifter reflects their 

underlying technical element. Specifically, in our study, the lifter K tended to attain 

his/her peak power higher and earlier in the transition phase and later in the turn over 

phase, he/she seemed to be the lifter with a better technique compared to the rest of 

the group. Therefore, it is suggested that power output pattern can be used as an 

index for technical evaluation to assess performance changes and provide feedback 

for coaches and athletes rather than relying on the average power production. 

However, more research is needed to establish a certain pattern which can be used 

to distinguish between lifters of different skill levels. 
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Our study should be considered in light of few limitations. First, the load that subjects 

performed in this study was 80% of 1RM. This load was chosen to avoid injury and 

damage to both subjects and equipment. The fact that the subjects were young novice 

weightlifters meant that when they were asked to perform the lifts on force plates with 

several markers attached to their body, they tended to be nervous about the task and 

failed to lift at their maximum weight. Nevertheless, using the impulse-momentum 

method to calculate the external power output proved that inferences can be made 

about the internal joint power at loads of 75 and 85% of the 1RM. Second, subjects 

who participated in this study were young novice, school-level weightlifters, as 

reflected in the load they lifted during the experiment. The range of performance levels 

of the lifters was fairly narrow. As a result, the application of PCA combined with HCA 

could only detect a single outlier in the group. This was probably because by using 

PCA, it was necessary to determine how many and which principal components should 

be extracted or retained. Most studies retain only a few of the first of several PCs with 

the largest explained variance while rejecting the smaller ones. This may lead to the 

loss of useful hidden information. As Jolliffe (1982) pointed out, the principal 

components with small eigenvalues can be as important as those with a large 

variance. Therefore, it is possible that other studies may try to use other statistical 

techniques with greater sensitivity to detect differences in relative power output time-

series in weightlifting. 

2.7 Using LCSS Technique to Improve the Power of Discrimination Power 

Output Pattern in Weightlifters  

As above results showed, PCA combined with Euclidean-assisted HCA was not 

powerful enough to clearly differentiate the relative power output pattern of young 

weightlifters. Therefore, in this paragraph we aim to improve the results from the 

previous one by using a more robust and efficient similarity measuring algorithm for 

finding similarity between time series. This technique is called the Longest Common 

Subsequence (LCSS).  

2.7.1 Data Processing: LCSS Technique as HCA’s Distance Metric  

Relative power output time-series data were the same as those from the previous 

paragraph in the topic titled as “Procedure”. Then, those time series were appropriately 

compared following a three-step-based approach supported by similarity computation 

methods. Firstly, all data sets were time normalized to 100% of the pull phase of the 
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snatch (i.e., from the time the barbell lost contact with the platform to the time the 

barbell is stabilized over the head) to facilitate between-subjects’ comparisons as the 

duration of the pull phase varied slightly from one subject to another. Secondly, 16-bit 

quantization was applied to all datasets for reducing digital noise. Lastly, Longest 

Common Subsequence (LCSS) technique was used for evaluating the similarity 

among the above normalized time series datasets.  

2.7.2 Results and Discussion 

The LCSS technique was used to measure the similarity of relative power output time 

series. The projection of dendrogram in Figure 2.10 revealed that based on the 

similarity of power patterns, 17 samples were classified into two main clusters. Cluster 

I consists of 9 subjects which are F, K, M, A, C, I, N, D, L and cluster II consists of 8 

subjects which are H, O, G, J, Q, P, B, E (Figure 2.11). Although both patterns were 

characterized by a high relative power output spike during the transition, second pull, 

and turn over phase, they were difference from each other. The curve of the former 

group has gradually increased from the first pull until reached its peak at the transition 

phase. Then, it went down immediately before reaching another peak in the second 

pull phase, whereas the latter group showed the curve spike and wave during first pull 

until catch phase (Figure 2.12). 

To explain the differences between those two power output patterns, barbell kinematic 

variables must be taken into account. When comparing the pattern displayed by 

barbell’s velocity and barbell’s acceleration through the phases of snatch (Figure 2.13, 

2.14), it showed that subjects in cluster I can better maintain the barbell’s acceleration 

with no notable dip, whereas subjects in cluster II showed the decreasing of barbell’s 

acceleration during the transition phase. When considering the vertical barbell’s 

displacement (Figure 2.15), subjects in cluster I showed lower average peak barbell’s 

displacement compare to subjects in cluster II (1.27±0.13 VS 1.32±0.09 m and 

81.8±0.03% VS 82.1±0.04% of lifter’s height), whereas the average travelled distance 

at peak vertical displacement to the point of stability in the catch position (i.e., drop 

distance) of both group are quite the same (0.21± 0.06 VS 0.21± 0.07 m). 
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Figure 2.10 Dendrogram of the LCSS distance presenting the classification of relative power output during 
snatch (from lift-off to catch phase) of young novice weightlifters. 

 

 

Figure 2.11 An individual relative power output pattern in cluster I (Left side) and cluster II (Right side). 
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Figure 2.12 Comparison pattern of relative power output time series between cluster I (2.12 a) and II (2.12b). 
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Figure 2.13 Comparison pattern of barbell’s velocity time series between cluster I and cluster II group (mean±SD). 
 

 

Figure 2.14 Comparison pattern of barbell’s acceleration time series between cluster I and cluster II group 
(mean±SD). 
 

 

Figure 2.15 Comparison pattern of vertical barbell’s displacement time series between cluster I and cluster II group 
(mean±SD). 
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Figure 2.16 Comparison pattern of horizontal barbell’s displacement time series between cluster I and cluster II 
group (mean±SD). 

For horizontal barbell’s displacement (Figure 2.16), subjects in cluster I showed more 

consistent average horizontal displacement of the barbell pattern than subjects in 

cluster II. From the results of these barbell kinematic variables, they indicate that 

subjects in cluster I have higher ability to provide power output in an efficient manner 

than subjects in cluster II. Therefore, it can be determined that subjects in cluster I are 

more skillful than subjects in cluster II. Consequently, we can conclude that the 

analysis of LCSS was sensitive enough to discriminate different power output patterns 

of weightlifters with different skillful.  Moreover, this technique provided more relevant 

information to that of standard technique for the analysis of power output time series 

derived from young weightlifters performing snatch. As found in the result of relative 

power output values (Table 2.1), even though subject D and H displayed values quite 

similar (57.93 VS 56.25 W/kg), LCSS analysis classified them into a different cluster 

due to the similarity of power output pattern, which is identical to the case of subject K 

and O. This finding supports the idea that only looking on the relative power output 

values is not enough to determine the lifter’s skillful/performance. Thus, considering 

relative power output values together with their patterns for the whole movement is 

one way to help coach and lifters to determine correctly the performance of lifters. 

In conclusion, by using LCSS technique, we were able to distinguish different patterns 

of power output among those lifters of different skill levels into two clusters, as lifters 

which are more skillful (n=9) and less skillful (n=8). The advantage of using LCSS over 

PCA combined with HCA are: (i) it is more resilient to noise, (ii) information is not lost 

during the process, and (iii) there is no need for interpolating the time-series before 

using LCSS technique. 
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2.8 Conclusions 

The integrated PCA and HCA algorithm was implemented in Matlab by first extracting 

features while reducing the dimensionality of the collected weightlifting data, followed 

by the reconstruction of original data from the chosen principal components to obtain 

the residual data, and only then clustering together the features on the residual data. 

While trying to answer the four questions of section 2.4, it became obvious that PCA 

and HCA are an arbitrary method and it should only be used for exploring similarities 

and hidden patterns among lifters with different skills. Firstly, the choice of the HCA’s 

distance metric was not trivial and it should always be tested. Secondly, both PCA and 

HCA standard methods offered by Matlab can be corrupted with extreme values (i.e., 

outliers), if they are not previously removed from the collected data. Thirdly, our 

experiment suffers from the missing data problem as we discarded very important 

information regarding lifter’s body movement variables, which offer a better and 

consistent model of the lifting execution. Furthermore, our experiment purposely 

deviated a little from related works with some pointed disadvantages, as it targeted 

novice lifters instead of high-performance ones, the maximum power output was found 

in transition phase instead of in the second pull phase, and lifters performed with 

barbell weights at 80% of their self-reported 1RM instead of barbell weights closer to 

their 1 RM. 

For more conclusive answers, more robust classification method (e.g., artificial neural 

networks) should be applied, as tried by the existing weightlifting literature, but 

unfortunately also with inconclusive results.



 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

Ontology-Based Personalized Dietary 
Recommendation for Weightlifting 

 
After exploring the importance of muscle power in the previous chapter, we continue to answer 
one more question of this thesis “Which computer-based technology can be explored to model 
each involved domain related to weightlifting research and practice?” 

To answer this question, in term of nutrition domain, we design and implement an ontology-
based personalized dietary recommendation for weightlifting. The used methodology is based 
on conceiving and designing the weightlifting training and weightlifting dietary following a 
modular ontology. It requires tool including Protégé as an open-source platform which allows 
users to build an ontology in OWL and Pellet as a reasoner. This implemented system was 
used as an exploratory tool to partially understand the weightlifting TDC-cycle, mainly the 
nutrition and training domains. Subsequently, this chapter presents relevant research on food 
recommendation system, nutrition and ontology background. Then, it describes the system 
design and finishes with suggestions for future work.
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Introduction  

Sport nutrition is considered as a new area of study involving the application of 

nutritional principles to enhance sports performance. The nutritional requirements of 

athlete are different in different sports. They will be influenced by many factors such 

as body mass and amount and intensity of training load. For weightlifters, the main 

nutrition goal is to obtain the adequate energy and necessary nutrients for fueling of 

resistance training, recovery from this training, and promotion of training adaptations. 

Those adaptations include muscle growth and optimal body composition. Although it 

is widely recognized that a well-planned nutrition program can significantly enhance 

athletic performance, many research reported that weightlifters did not achieve optimal 

dietary practice. For example, the protein intake of male weightlifters is reported to 

range between 1.6 g/kg/day and 3.2 g/kg/day (Chen et al., 1989; Hassapidou, 2001; 

Storey & Smith, 2012), which is higher than the recommendation. Furthermore, 

weightlifters derive approximately 40–44% of their daily energy intake from dietary fat 

(Chen et al., 1989; Grandjean, 1989), which is also well above the acceptable range 

for health and athletic performance of 20–35%. This is probably a consequence of 

their greater intake of protein-rich animal products. Conversely, the reported 

carbohydrate intakes in weightlifters of 2.9–6.1 g/kg/day (Cabral et al., 2006; Van Erp-

Baart et al., 1989) are insufficient according to the current recommended levels of 6–

10 g/kg/day for athletic individuals. These results are in accordance with our 

preliminary study (See in Appendix C) which reported that a high proportion of Thai 

national team weightlifters were not in energy balance and so, failed to meet 

carbohydrate, protein, and micronutrient recommendations. The primary reason for 

such inadequate diets may come from the fact that some athletes lack of nutrition 

knowledge and express some nutritional misconceptions, so they are unable to make 

appropriate food choices. Traditional consultation and development of athletes’ 

nutrition plans require sport nutritionists to perform a series of steps including (i) 

nutrition assessment to get to know the athlete and understand his/her situation and 

his/her objectives, (ii) nutrition evaluation to determine the athlete’s calories and 

nutrients need, address the goal, and determine the athlete’s nutrient timing needs for 

training and for competition day, (iii) nutrition intervention to create nutrition and 

hydration plan for all phases of training and completion cycle as well as provide a 

specific amount of nutrients recommendation, and (iv) nutrition monitoring to 

determine and measure the amount of progress from nutrition plan. These general 
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steps involve many type of information: athlete’s condition; anthropometric data, 

biochemical data, current dietary habits, type of sport; specific sport, training program 

and time line, nutrition requirements, special nutrient needs, nutrient restrictions, and 

food nutrition composition. A nutrition plan must to incorporate not only nutrition 

strategy but also strategies for hydration and recovery that an athlete can follow on a 

daily basis. It also includes design protocol for pre, during, and post workout nutrition 

to ensure adequate and timely carbohydrate and protein intake to enhance recovery 

from the training sessions. Therefore, to develop a specific nutrition plan for an 

individual, the sport nutritionist must be able to integrate the complex logical 

relationships between the athlete’s metrics and the various concept from literature. 

In this chapter, the designed and implemented ontology-based personalized dietary 

recommendation for weightlifting is described. The objective is to answer the 

previously introduced main problem statement of this thesis (i.e., “Which computer-

based technology can be explored to model each involved domain related to 

weightlifting research and practice?”). We followed a methodology based 

on conceiving and designing the weightlifting training and weightlifting dietary 

approaching a modular ontology. It requires tool including Protégé as an open-source 

platform which allows users to build an ontology in OWL and Pellet as a reasoner. We 

also developed a Thai-based sport nutrition knowledge questionnaire (See in 

Appendix D) as a tool to evaluate nutrition knowledge of athletes. With this 

implemented system, we expect that it can help us to partially understand the 

weightlifting TDC-cycle, mainly concerning to the nutrition and training domains. 

The remainder of this chapter is organized as follows: Section 3.1 describes relevant 

research on food recommendation system; Section 3.2 describes nutrition 

background; Section 3.3 presents ontology background; Section 3.4 presents system 

design; Section 3.5 presents conclusions and future work.  
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3.1 Relevant Research on Food Recommendation System 

In this paragraph we shall briefly present some relevant research on Food 

Recommendation System. Fudholi et al (2009) designed and developed a daily menu 

assistance in the context of a health control system of a population. This project uses 

ontology to model a nutrition needs domain while implementing a rule-based inference 

engine. It is implemented as a semantic web application, where users enter abstinence 

foods and personal information to calculate several parameters while being presented 

with an appropriate menu from database. Cantais et al. (2005) designed a food 

ontology for diabetes control from a nutrition point of view to support health care of 

diabetes patients. The ontology was developed based on some referenced nutrition 

guides for diabetes patients. The food ontology consists of 177 classes, 53 properties, 

and 632 instances. Thirteen major classes of food types were defined including 

unprocessed aliments, major miscellaneous categories, and food types determined by 

the main ingredient. Some of the defined properties include nutrition elements such as 

fat, fiber, and carbohydrate.  Also for diabetes control, Hong et al (2008) implemented 

web-based expert system for nutrition counseling and management, also based on 

ontologies.  This system uses food, dish and menu database which are fundamental 

data to assess the nutrient analysis. Clients can search food composition and 

conditional food based on nutrient name and amount. The system is able to organize 

food according to Korean menus, and it is able to read nutrient composition of each 

food, dish, and menu. The Food-Oriented Ontology-Driven System (FOODS) (Snae & 

Bruckner, 2008) is another ontology-based expert system of a counseling system for 

food or menu planning. It uses a food-oriented ontology to implement a system which 

has two user interfaces, one for who cooks and another for costumers or users that 

want advice for their meals. Suksom et al. (2010) implemented a rule-based system 

for a personalized food recommender system, aimed to assist users in daily diet 

selections. It is based on some nutrition guidelines ontology and focused on 

personalization of recommendation results by adding user’s health status information 

that may affect their nutrition needs. 

Our work adopted some food ontology design schemes from these references. 

However, comparing to those works, our work was focus only in weightlifting athletes. 

We extended the personalized food ontology defined in previous studies by adding 

information related to athletes’ training program that may affect their nutrition needs, 

while unifying the food and sport ontologies. Our recommendations are based on sport 

nutrition guidelines, which were transformed into rule-based knowledge. 
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3.2  Nutrition Background 

3.2.1 Fuel utilization and energy systems in weightlifting 

To set the structure of subsequent nutritional recommendation for weightlifters, a brief 

overview of energy system and fuel utilization should be explained. Chemical energy 

is released when the body break down macronutrients (i.e., carbohydrate, fat, and 

protein). Then, that energy is converted into Adenosine Triphosphate (ATP) which is 

the form of energy that can be utilized by the body. ATP is considered as the “cellular 

currency” for muscle contraction. Without adequate supplies of ATP, muscular 

contraction and training adaptations from resistance training will not occur. For 

weightlifting competition, the main energy provider is the phosphagen system. This 

energy system supplies for a very high intensity exercise lasting up to 8 to10 seconds. 

The phosphagen system is the quickest way to resynthesize ATP. Creatine phosphate 

(CP), which is stored in skeletal muscles, donates a phosphate to Adenosine 

Diphosphate (ADP) to produce ATP. No carbohydrate or fat is used in this process 

because the regeneration of ATP comes only from stored CP. The entire process can 

occur without the presence of oxygen which makes it an anaerobic system. However, 

in the weightlifting training, especially with the high volumes, a lifter may also rely on 

the fast glycolytic system. This energy system supplies for a moderate to very high 

intensity exercise lasting from 6 seconds up to about 30 seconds, and up to 2 minutes 

for moderate to high intensity exercise. It is considered as the second-fastest way to 

resynthesize ATP. The energy source for the regeneration of ATP comes from blood 

glucose (from food) and muscle glycogen (the stored form of glucose in the body). 

This process is also an anaerobic system (Bompa & Buzzichelli, 2015; Rodriguez et 

al., 2009; Slater & Phillips, 2011; Stellingwerff et al., 2011). 

3.2.2 Guideline for macronutrients, micronutrients, and supplementation intake 

The first nutritional priority for all athletes is to meet their energy needs. Energy intake 

supports optimal body function, determines the capacity of macro-and micronutrient, 

and assists in manipulating body composition (Rodriguez et al., 2009). A small energy 

deficit between energy intake and output can cause body fat loss at the beginning. 

However, long term energy deficit induces a loss of muscle mass and thus, loss of 

strength and endurance injury, and illness. Ultimately, leading to a decrease of 

training/competition performance. To avoid this problem, athletes should concentrate 
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on maintaining an energy balance to suit their energy expenditure. For weightlifters, it 

is challenging to meet their energy needs due to their high body weight and high-

volume intense training. According to Scala et al. (1987), energy expenditures of elite 

weightlifters can be as high as 600-1,000 kcal/hour or >3,000 kcal/week during the 

preparation phase. However, it will be lower during tapering. Most of energy 

expenditure happens during recovery which depends on the volume of training. The 

complete recovery can take as much as 24 to 48 hours (Burleson et al., 1998; Melby 

et al., 1993; Schuenke et al., 2002). Nevertheless, even in the same type of sport, the 

energy requirement for each athlete is different. It depends on body size, physique, 

event, training load, and training volume on the periodized training and competition 

cycle (as an example in Figure 3.1).  

 

 

Figure 3.1 General nutrition recommendations during different yearly training phases for strength and power 

athletes. Nutrition recommendations for a 70–kg strength and power sport athlete (Slater & Phillips, 2011; 

Stellingwerff et al., 2011). 
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The following paragraphs are the guideline for carbohydrate, protein, fat intake. 

The guideline for strength/power athletes proposes a range of daily carbohydrate 

intakes between 6 and 12 g/kg body mass per day (depending on individual training 

volume and intensity) (Slater & Phillips, 2011; Stellingwerff et al., 2011). Although the 

recommendations for carbohydrate feeding before exercise are wildly accepted for 

endurance exercise to enhance work capacity (Hargreaves et al., 2004), a specific 

recommendation for an optimum rate or timing for strength-power athletes before and 

during any training session cannot be determined due to the inconsistency of the 

results. A beneficial role of acute carbohydrate ingestion has reported in some studies 

(Haff et al., 2001; Haff et al., 1999; Lambert et al., 1991) to increased total work 

capacity at a rate of 1g/kg body mass before resistance exercise and 0.5 g/kg body 

mass during exercise. However, the others did not find any benefit (Haff et al., 2000; 

Kulik et al., 2008). To optimize glycogen recovery, it is generally recommending to 

ingest carbohydrate immediately after exercise at a rate of 1 to 1.2 g/kg body mass 

(Burke et al., 2004). However, for strength and power athletes, the combination of 

carbohydrate and protein ingestion acutely after resistance training results in more 

favorable recovery outcome, including restoration of muscle glycogen stores and 

muscle protein metabolism, than either carbohydrate or protein alone (Miller et al., 

2003). A rate of 0.8 g/kg/h carbohydrate plus 0.4 g/kg/h protein is recommended for 

the acute recovery period (Slater & Phillips, 2011). It results in a similar muscle 

glycogen resynthesize over 5 hours as 1.2 g/kg/h carbohydrate alone after intermittent 

exercise (Van Loon et al., 2000) and it may reduce muscle damage which often seen 

in strength trained athletes (Cockburn et al., 2010). 

Strength and power athletes have been educated to consume high protein diet for 

many years. Therefore, the majority of athletes easily achieved the protein needs 

recommendation even if the amount is approximately twice compared with the current 

recommendations for sedentary or as much as 1.6 -1.7 g protein/kg body mass/day 

(Slater & Phillips, 2011). Exceeding protein intake guidelines were often found in 

strength and power athletes as reported by Chen et al. (1989) and Heinemann & 

Zerbes (1989) that the protein intake of weightlifters were as high as 3.0 g/kg/day. 

There is no evidence that these high daily protein intakes can provide any more 

benefits regarding to the response of training or increase the gains in muscle mass 

and strength (Thomas et al., 2016). Furthermore, there is evidence supporting that the 
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dietary protein requirement for experienced resistance-trained athletes is reduced. It 

is because an intense period of resistance training reduces protein turnover and 

improves net protein retention (Hartman et al., 2006). The requirement of protein 

intake can be elevated as high as 2.0 g/kg/h in case of energy restriction or when 

sudden inactivity occurs (e.g., injury). When it is spread over the day, it may have an 

advantage of preventing fat free mass (FFM) loss (Rodriguez et al., 2007). Rather than 

the amount of protein, the attention for strength and power athletes should be directed 

to the daily distribution of protein intake as it relates to training and the source of dietary 

protein (Tang & Phillips, 2009). Consequently, the current guidelines focus instead on 

total protein intake over the day as the traditional guidelines. They highlight that the 

muscle adaptation can be maximized by ingestion protein at rate 0.3 g/kg immediately 

after key exercise session and every 3 to 5 hours over multiple meals (Moore et al., 

2009; Phillips, 2014). In addition to optimal protein sources, it is well documented that 

high-quality proteins are effective for maintenance, repair, and synthesis of muscle 

proteins (Tipton et al., 2007).  

For weightlifters, the optimum daily fat intake should be 20-35% of total energy intake 

(Thomas et al., 2016). For athletes who want to reduce body fat or lose body weight, 

a fat intake of 0.5-1.0g/kg body mass per day is suggested and the focus should be 

on increasing sources of unsaturated or essential fatty acids (Kreider et al., 2010).  

To maintain fluid balance and prevent hypo-hydration, the recommendations suggest 

the ingestion fluid at a rate of 0.5-2 l/hour, every 5-20 minutes, with small amount of 

150-200 ml each time. Furthermore, it should be increased in hot and humid 

environments (Kerksick et al., 2008; Kreider et al., 2010). During recovery from 

exercise, rehydration should include replacement of both water and salt lost in sweat, 

especially when the exercise takes place for more than two hours and sweat losses 

are high (Shirreffs & Sawka, 2011). Any event lasting longer than one hour, which 

results in fatigue, will benefit from carbohydrate intake at a rate of 20-60 g/h. The use 

of sports drink with 4-8% carbohydrate content allows carbohydrate and fluid need to 

be met simultaneously in most situations.  

Supplement usage rate is reported to be high in sports such as bodybuilders, 

weightlifters, track, and flied athletes (Brill & Keane, 1994; Burke et al., 1991; Froiland 

et al., 2004). While multi-vitamin and mineral supplements are highly used by all 

athletes, other products such as protein powders, specific amino acid supplements, 
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caffeine, and creatine monohydrate appear to be popular among strength-trained 

athletes (Nieper, 2005; Sheppard et al., 2000; Slater & Phillips, 2011). This is due to 

the fact that these kind of supplements are the only supplement that has been reported 

to be “Apparently effective and generally safe” to enhance skeletal muscle hypertrophy 

and functional capacity in response to resistance training (Kreider et al., 2010; 

Trakman et al., 2016).  

3.3 Ontology Background 

For this study we need a knowledge based framework and for that, a unified ontology 

of nutrition and sports was designed and implemented for exploratory purpose. 

Ontology in the computers science field is a data model that describes concepts 

(classes) in a specific domain alongside their relationships. Ontology was successfully 

used to share concepts across applications and exchange information. It exchanges 

information based on semantics rather than using syntax (Noy & McGuinness, 2001). 

While programming with object-oriented, we center around methods on classes, and 

we make design decisions based on the operational properties of classes, in ontology 

we make the decisions based on the structural properties of a class. 

There are four main elements of ontology, concepts or classes, individuals, properties, 

and relationships which together make it a knowledge base. Classes are collections 

of objects, sets or abstract groups, describing concepts in the ontology specific 

domain. They can contain both a subclass that describes more specific concepts and 

an individual. An example of a class would be a food class that would contain various 

subclasses like food type and food group. Individuals are the basic components of 

ontology. The individuals may be concrete concepts like a specific menu or an 

ingredient or an abstract one like numbers. Properties are related to individuals or 

class, as they are something that define or explain them. There are two types of 

properties: data type used to assign a valor to a property or class, (e.g., a menu 

hasEnergy 150 kcal) or object type through which an object can be attributed to other 

(e.g., menu A hasIngredient b). The last of the main elements of ontology are the 

relationships that consist in all relations between classes and individuals. So, ontology 

is the exact description of things and the relationship between them.  

The recommender engine interprets the ontology data in OWL (Web Ontology 

Language) format that is a standard ontology language designed for processing web 
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information. OWL is written in XML and so, it can be exchanged between different 

computers and different applications. The expert engine performs questions on the 

ontology data to get back the nutrition/food data saved there, as well as inferring on 

athlete information and preferences to give the menu recommendations for each 

specific case. The application for insertion of the data is developed in Java and it works 

with Jess API for the interaction with the ontology. Later on Chapter 4, the ontology 

concept will be more deeply described. 

3.4 System Design   

The unified Sports and Nutrition ontology was developed in Protégé (Protégé, 2013), 

a free and open-source platform which allows users to build an ontology in OWL.  

Protégé also enabled the use of SWRL rules (Horrocks et al., 2004), SWQRL queryies, 

PELLET (Clark et al., 2004), and a reasoner in this project.  Figure 3.2 presents a 

knowledge base framework for food and nutrition recommendations engine in sports. 

Used tools for modeling the ontologies will be more deeply described in Appendix E. 

 

Figure 3.2 Knowledge base framework for food and nutrition recommendation engine in sports                                 

(Adapted from Fudholi et al., 2009). 

3.4.1 Ontology Development 

A) Modeling Concept  

The development of the ontology involved defining the four main elements of ontology, 

i.e., the classes or concepts, the individuals, the proprieties, and all the relationships. 

In this case, we decided to start with only one specific sport which is the weightlifting.  
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We used a top-down approach by starting with the definition of the most general 

concepts in the domain and then, subsequently, the specialization of those concepts. 

Such ontology was modeled around the four main concepts which are Athlete, Food, 

Nutrition, and Sports (Figure 3.3). It consists of 120 classes, 950 individuals, and 25 

properties. 

 

Figure 3.3 Ontology main concepts. 

The Athlete Concept: The athlete class represents the concept of the athlete profile 

with the athlete information saved in a database, providing all the necessary 

information about the required personal data such as Name, Age, Gender, Height, 

Weight, and Number of training hours. 

The Food Concept: The food class is the root of this model and represents the 

concept of the food which consists of multiple subclasses such as Food Group, Food 

Type, Process Type, and Type of Meals. 

The Nutrition Concept: The nutrition concept represents all the nutrition needs of an 

athlete and all the nutrients present in an ingredient/food item. 

The Sports Concept: The sport concept represents athletes’ characteristic which 

affect their nutrition needs. 

B) Modeling Classes and Subclasses 

Classes are collections of objects, sets or abstract groups describing concepts in the 

ontology specific domain. They can contain both a subclass that describes more 

specific concepts and an individual. We have our main classes as the main concepts 

which are mentioned above (e.g., Athlete concept, Food concept, Nutrition concept, 
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and Sport concept). An example of subclass in Food Concept will be explained in detail 

as follows (Figure 3.4) 

 

Figure 3.4 Concepts, classes, and sub-classes of an ontology. 

The Food concept consists of 4 subclasses: 

Food Group – This subclass is divided into 5 groups and each group will be divided 

into smaller sub-classes for more specific type of food. For example: 

Group 1: Grain food consists of Whole grain (individual: wheat, brown-rice, oat, 

etc.), Refined grain (individual: white flour, white bread, white rice, etc.), etc. 

Group 2: Vegetables, Beans, and Fruits consist of Vegetables (individuals: 

cabbage, tomato, cucumber, etc.), Beans (individuals: lentil, green bean, black 

bean, etc.), and High sugar fruits (individuals: lychees, figs, mango, etc.) and Low 

sugar fruits (individuals: cranberries, raspberries, blackberries, etc.), etc. 

Group 3: Meat and nuts consist of Seafood alongside the following subclasses 

of Fish (Individuals: sardines, salmons, catfish, trout, etc.); Mollusk (individuals: 

oysters, scallops, mussels, squid, octopus, etc.); Crustaceans (individuals: 

shrimps, crabs, lobsters, etc.); Other Seafood (individuals: jelly fish, frogs, etc.); 
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Poultry (individuals: chicken, duck, Turkey, etc.); Non-Poultry (individuals: pork, 

beef, lamb, etc.); and Nut (individuals: almonds, walnuts, peanuts), etc. 

Group 4: Dairy Product consists of Cheese (individuals: soft, hard), Milk 

(individuals: whole fat, low fat, non-fat), Yogurt (full fat, low-fat, non-fat), etc.  

Group 5: Fats, Oils, and Sweets consist of Fats (individuals: salad dressing, 

mayonnaise, butter, margarines, etc.), Oil (individuals: canola oil, olive oil, soybean 

oil, etc.), Sweets (individuals: candy, soft drinks, jams, jellies, etc.), etc. 

Food Menu – This subclass represents the different type of food items according to 

the following three categories: main dish, dessert and snack, or beverage. For 

example; 

Main dish such as spicy basil chicken, pork steak, barbecue shrimp, etc.  

Dessert and snack such as chocolate, cake, cookie, ice cream, etc. 

Beverage such as tea, soft drink, juice, etc. 

Process Type – This subclass represents how the food item is cooked (e.g., grill, 

roasted, stir-fry, fry, or smoked). 

Type of Meals – This subclass represents the food item advised time of ingestion. 

(e.g., breakfast, lunch, dinner, before workout, during workout, after workout). All food 

items can have more than one type. 

The Nutrition concept consists of 4 subclasses: 

Nutrient Type – Macronutrients are presented in all ingredients or food items (e.g., 

Egg consists of carbohydrate, protein and fat). 

Nutrition Level – It represented the level of nutrients per ingredient or food item (e.g., 

Rice: high carbohydrates or Egg: high protein). 

Nutrition Goal – The amount of nutrients that meet an individual’s requirement (e.g., 

carbohydrate 300 g/day or protein 120 g/day). 

Nutrition Plan – A special plan in which an individual athlete needs (e.g., to maintain 

weight/increase muscle or decrease weight/maintain muscle). 

The Sport concept has 1 subclass: 
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Periodization of training – The systematic planning of athletes training consists of 

general preparation phase, specific preparation phase, competition phase, and 

transition phase. The athletes’ energy needs are different according to the different 

phase of training.  

C) Modeling Properties  

Properties are related to individuals or classes, as they are something that defines or 

explains them. Individuals can have two types of properties: either the data type, which 

is used to assign a value to a property or class or the object type, which is used to 

attribute one object to another one. The object type and data type properties for 

nutrition and food knowledge based are list as follows (See Figure 3.5 and 3.6): 

 

                          Figure 3.5 Object type properties.                         Figure 3.6 Data type properties. 

Object type properties:   

hasProcessType: This property attributes a specific type of food processing to a 

menu. So, it can be assured that every menu item has a food process.   

Domain: Beverages, Dessert_snack, Main_dish 

Range: Process_Type  

Example: Spicy_basil_chickenhasProcessTypeStir_fry 
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hasIngredient: This property attributes a specific ingredient to a menu. So, it can be 

assured that all menus have ingredients (one or more).  

Domain: Beverages, Dessert_snack, Main_dish  

Range: Food_Group  

Example: Spicy_basil_chickenhasIngredientChicken 

hasNutrient: This property attributes a specific nutrient to a menu or ingredient. So, it 

can be assured that all menus or ingredient have specific nutrients (one or more). 

Domain: Beverages, Dessert_snack, Main_dish  

Range: Type_of_nutrients  

Example: Spicy_basil_chickenhasNutrientProtein 

hasNutritionLevel: This property attributes a specific nutrition level to a menu or 

ingredient. So, it can be assured that all menus and ingredient have nutrition levels.  

Domain: Beverages, Dessert_snack, Main_dish  

Range: Nutrition_Level  

Example: Spicy_basil_chickenhasNutritionLevelLowFat 

hasTypeofMeal:  This property attributes a type of meal to a menu. So, it can be 

assured that all menus have meal types.  

Domain: Beverages, Dessert_snack, Main_dish  

Range: Type_of_Meal  

Example:  Spicy_basil_chickenhasTypeofMealLunch 

Data type properties: 

Figure 3.6 presents data type properties. All these properties have the same domain 

and range as follows: 

Domain: Beverages, Dessert_snack, Food_Group, Main_dish, Type_of: nutrients  

Range: Float  

Example: ChickenhasProtein = 30.0g 
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D) Modeling Individuals  

Individuals are the basic components of an ontology. The individuals may be concrete 

concepts like a specific menu, an ingredient, or an abstract one like numbers of 

calories in a menu. Since the number of individuals are very large (e.g., all menus, 

ingredients, etc.), only some examples will be presented. All the lowest subclasses 

have at least one individual. For example: 

Individuals of type of processing: baking, boiling, smocking, frying, stir-frying, 

roasting, etc. 

Individuals of beverages: apple juice, Coca-Cola, coffee, tea, ice-tea, etc. 

Individuals of type of meal: breakfast, lunch, dinner, before workout, during workout, 

after workout. 

Individuals of nutrient: carbohydrate, protein, fat, calcium, etc. 

Individuals Form (Figure 3.7) is the form in Protégé which is used to enter individual 

data items with in a data class. It contains the data-entry field for each propriety which 

will be attached to a class. Data entry field can be texts, integers, cardinality, etc. 

Therefore, this form is used to enter all properties to food and ingredients that is 

attached to them. 

 

Figure 3.7 Individual form 
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3.4.2 Menus Calculation 

The classic energy balance equation states that if energy intake (total kilocalories 

consumed) equals energy expenditure (total kilocalories expended), then weight is 

maintained. That maintenance of body weight and body composition over time 

requires not only that energy intake equal energy expenditure but also that intakes of 

protein, carbohydrate, fat equal their oxidation rates, People who meet these criteria 

are in energy balance. 

A) Estimate Total Energy Expenditure  

Energy expenditure is one side of the energy balance equation. Any alternation in 

energy expenditure can result in weight gain or loss if energy intake and consumption 

are held constant. In this chapter, the predicting energy expenditure based on age, 

gender, and anthropometric measurements are used to estimate energy expenditure 

of an athlete. To avoid confusion with other terms, we use term “Total energy needed 

(TEN)” to refer to the value obtained from equation 1 or predicting energy expenditure 

based on age, gender, and anthropometric measurements. 

In this study, TEN was calculated by the factorial method (equation 1). TEN comprises 

the Resting metabolic rate (RMR), Thermic effect of food (TEF), and Energy expended 

in physical activity which includes activities of daily living calculated by General activity 

factor (GAF) and planned exercise events calculated by Exercise energy expenditure 

(EEE). RMR was calculated by either the Cunningham or Harris-Benedict equation. 

Once a values of RMR has been obtained, TEN can be estimated by a variety of 

factorial methods which depend on the type and intensity of activity. In this study, both 

GAF and EEE were estimated. While the former represents energy expended for 

everyday activities (e.g., walking, driving, watching TV, and going to the class), the 

latter is the activity expended in planned or purposeful activity (e.g., running, 

swimming, and weight training) for a scheduled amount of time and at a specific level 

of intensity. Those factors were calculated as indicate below: 

TEN = (RMR x GAF) +EEE*+ TEF**                              (Equation 1) 

 

*EEE (in kcal) = 0.0175 x value of METs (mL∙kg-1∙min-1) x body weight (kg) x duration of activity (min) 

        **TEF = 10% ((RMR x GAF) + EEE) 
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Resting Metabolic Rate (RMR): RMR is the energy required to maintain systems of 

the body plus thermoregulation regulation at rest. The RMR accounts for 60-80% of 

total daily energy expenditure in most sedentary healthy adults (Manore et al., 2009). 

In athletes, this percentage varies depending on the intensity of the activities. 

Thompson et al. (1993) found that RMR represented only 38-47% of total energy 

expenditure in male endurance athletes while Beidleman et al (1995) reported RMR 

may represent <20% of total energy expenditure in ultramarathon in women. It is well 

documented that RMR is mainly influenced by age, gender, and fat free mass (FFM) 

which generally explain about 80% of the variability of RMR (Bogardus et al., 1986). 

RMR prediction equations have been developed from different laboratories using 

populations differing in age, gender, and level of activity. It is best to use the RMR 

equation most representative of the studied population. The Cunningham (Equation 2) 

and Harris-Benedict equation (Equation 3) are the best equations to predict RMR in 

both active men and women (Thompson & Manore, 1996). While the former requires 

the measurement of lean body mass (LBM), the latter is easier to use when LBM 

cannot be directly measured. 

The Cuningham Equation (Cuningham, 1980): 

    RMR = 500 + 22 (LBM)                                            (Equation 2) 

The Harris – Benedict Equation (Harris&Benedict, 1918): 

Males: RMR = 66.47 + 13.75 (weight in kg) + 5 (height in cm) – 6.76 (age in years) 

(Equation 3) 

Females: RMR = 655.1 + 9.56 (weight in kg) + 1.85 (height in cm) – 4.68 (age in years)                                 

(Equation 4) 

Thermic Effect of Food (TEF): TEF represents the increase in energy expenditure 

above RMR that results from the consumption of food and beverage throughout the 

day. TEF includes the energy cost of food, digestion, absorption, transport, 

metabolism, and storage within the body. It is generally accounts for 6-10% of total 

daily energy needed, but vary from 4-15%, depending on size of the meal and its 

composition (e.g., percentage of kilocalories from protein, fat, carbohydrate, alcohol) 

(Manore et al., 2009). 
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General Activity Factor (GAF): To obtain GAF, the general activity factor will be 

determined for the time the athlete is not participating in specific activities and then 

multiply this factor by the predicted RMR. GAF can be as low as 10-20 % of RMR for 

a sedentary person and as high as more than 100% of RMR for a very active person. 

Although many researches establish unique activity factors for their research setting, 

factor of 1.2-1.6 are commonly used with sedentary people and those who have light 

activity. This factor can be applied to either the whole day or a weighted activity factor.  

Table 3.1 Activity factor for a general activity. 

 

A sedentary person refers to a person who has minimum movement during the day. 

Most activities mainly involve with sitting or lying, watching television or reading.  

A very light activity person refers to a person who has activities involved with seated 

and standing activities, painting trades, driving, laboratory work, typing, sewing, 

ironing, cooking, playing cards, playing musical instrument. 

A light activity person refers to a person who has activities involved walking on a level 

surface at 2.5-3 mph, garage work, electric trades, carpentry, restaurant trades, house 

cleaning, child care, golf, table tennis. 

A moderate activity person refers to a person who has activities involved with walking 

on a level surface at 3-4 mph, carrying a load, cycling, skiing, tennis, dancing.  

A heavy activity person refers to a person who has activities involved with walking with 

a load uphill, tree felling, a heavy manual digging, basketball, climbing, football, 

soccer. 
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Exercise Energy Expenditure (EEE): To obtain EEE, the amount of energy 

expended in the specific activities is determined by using the standardized and 

comprehensive list of energy cost values for a wide variety of activities published by 

Ainsworth et al. (2000) which is reported in metabolic equivalents (METs). An example 

of METs for weightlifting activities is presented in Table 3.2. MET is a unit of 

measurement that represents work rate or oxygen uptake (VO2). One MET is equal to 

a VO2 of 3.5 mL∙kg-1∙min-1 which can be converted to kcal∙kg-1∙min-1 equal 0.0175 

kcal∙kg-1∙min-1. Therefore, EEE was calculated according to the following steps. Firstly, 

multiply the value of METs (mL∙kg-1∙min-1) by 0.0175 to convert it to kcal∙kg-1∙min-1 and 

then, multiply the value (from previous step) by the kilogram body weight of the 

individual and the number of minutes spent in the activity. 

Table 3.2 The metabolic equivalent for weightlifting (Ainsworth et al., 2000). 

 

Other Input Variables: The system provides three options for athletes to select from, 

regarding the weight management or weight goal (i.e., lose weight, maintain weight or 

gain weight). If an athlete selects “lose weight”, the system will calculate energy 

recommendation less than TEN for 500 kilocalories/day. If an athlete selects “maintain 

weight”, it will calculate energy recommendation equal TEN, and if an athlete selects 

“gain weight”, it will calculate energy recommendation more than TEN for 500 

kilocalories/day. 

The Recommended Amount and Percentage of Nutrients Per Day: According to 

sport nutrition guidelines from ADA, ASCM, IOC, and sport-specific nutrition guidelines 

for strength and power sports (Rodriguez et al., 2009; Slater & Phillips, 2011), it can 

be summarized using recommendations for daily nutrient intake and nutrient timing for 

weightlifters, as shown in Table 3.3. Because weightlifters usually need high energy 

intakes to meet their high-volume intense training, the suggested balanced diet 

servings need to be adjusted in to several meals (e.g., breakfast, lunch, dinner, before 

workout, during workout, and after workout). Table 3.4 and 3.5 show the modified 
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intake servings suggested from each food group by calories requirements for 

weightlifters.   

In this study, the proposed system calculates energy recommendation per meal by 

dividing the TEN by the number of meals. Normally, weightlifters have their training 2 

times a day; morning and afternoon session. Therefore, they will eat 5-7 meals a day, 

i.e., before morning training session, during training, breakfast (within 30 min after 

training), lunch, before afternoon training session, during training, and dinner (within 

30 min after training). Since it is not possible to get a perfect value of energy for each 

menu or combined menus, we need to determine a margin of energy per meal. For 

example, an athlete’s demanding energy intake of 711 kcal for breakfast, it is possible 

that there is no menu perfectly matching that value on the list. The margin was 

determined as TEN_MIN (for each meal) = 50-(TEN*%Meal), TEN_MAX (for each 

meal) = 50+(TEN*%Meal). In this way, the athlete will receive recommended menus 

which have an energy between 661-761 kcal. Table 3.6 presents the percentage of 

each meal according to nutrient recommendations and nutrient timing. 

Table 3.3 Summary of the recommendations for daily nutrient intake and nutrient timing for weightlifters. 

 

Table 3.4 An example of suggested food group intakes in servings (per day) by calories requirements.  
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Table 3.5 An example of suggested food group intakes in servings (per meal) by calories requirements.  

 

Table 3.6 The percentage of each meal. 

 

Table 3.7 An example of the food items nutrients database from INNUMAL-Nutrient software. 
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Table 3.8 An example of the menus nutrients database from INNUMAL-Nutrient software. 

 

Daily Menu Calculation: A menu is defined according to the food composition that is 

consumed by an athlete during one meal. The calculation of calories and nutrients in 

each menu is done by means of INMUCAL-Nutrient Software, Institute of Nutrition, 

Mahidol University, Thailand (Manual of INMUCAL-Nutrients, 2009) (Figure 3.7, 3.8). 

While most macronutrients (carbohydrate, protein, fat) could be found in this 

software’s database, some micronutrients for local food items may not be present. The 

data which is not covered by the software was sourced from Thai Food Composition 

Table of Nutrition Division, Department of Health, Ministry of Public Health of Thailand 

(Sinwat, 2001). Adequacy of each nutrient intake is determined based on sport-

specific nutrition guidelines for strength and power sports (e.g., weightlifting) which are 

available in the following two references: Rogozkin (2000), Slater & Phillips (2011) and 

the 2003 Dietary Reference Intake of Thai People ("Dietary Reference Intake (DRI)", 

2006). 

B) Rule Engine  

The rules were developed using SWRL Protégé editor, and all tested from the SQWRL 

tab which runs a Protégé application that allows the query of the ontology inside 

Protégé execution environment. The rules were defined using nutrition and sports 

knowledge to determine the athlete’s calories and nutrients need according to athlete’s 

profile and training phase. The more restrictions the athlete put, the less food menus 

will be recommended. All those rules were written in SWRL, a language that allows 

the definition of rules as well as querying the ontology via Java. Therefore, we can get 
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the menus in our application with the specific rules constrains. Table 3.9 presents 

some examples of possible scenarios and queries. 

Table 3.9 An example of possible scenarios and queries. 

 

3.4.3 Expert Recommender Engine Application 

A) Main Page Interface: Personal, Training Profile, and Food Preferences 

The Java application was developed in a way that an athlete as a main user can add 

all the data needed and then received the specific menus; all the data can be saved 

in a database for future usage and update. The application works with the Jess API 

(Smith & Friedman-Hill, 2013) which is a rule engine fully compatible with OWL and 

SWRL. The main page interface is a personal profile where the athlete adds his/her 

information (Figure 3.8). To give menu recommendations as demanded by the athlete, 

various variables must be added both in training and food preferences’ parts. In the 

training part: data about age, gender, weight, height, level of activity, duration of 

training, training phase, and weight goal are necessary to estimate the energy needs 

to achieve the goal. Athletes can also choose the favorite and non-favorite menus or 

ingredients, so the system will avoid the non-favorite and will choose between the 

menus with the favorite ingredients. More options are allowed to be chosen from, such 

as the process type of cooking preferences (e.g., steaming, baked, grill etc.) or the 
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number of beverage needed (Figure 3.9). After the submission of the personal profile, 

training, and food preferences interfaces, all filled information are transformed in a 

SQWRL query that will question the ontology, producing all the recommendations 

results following the rules as previously saved in the ontology-assisted knowledge 

base. 

 

Figure 3.8 The user application for insertion of all the personal athlete data. 

 

Figure 3.9 The user application for insertion of training goals and food preferences. 

B) Results Interface: Select Your Meals  

In this page, the athlete has 7 meals to consider. Each meal has 3 options to select 

from (i.e., first item, second item, or third item). It depends on the total energy needed 

for each meal and the energy and nutrients content of each recommended food item. 

For example, when athlete selects the first item for breakfast, the system will check if 
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the energy content of that selected food item is in the range of the total energy needed. 

If only one food item can fulfill the total energy needed, no other food items will be 

available for selection. However, if it does not fulfill the total energy needed, the athlete 

will be able to select the second and the third food items to achieve the energy goal 

(Figure 3.10). 

 

 

Figure 3.10 Choose your meal for today interface. 

C) Results Interface: Report Dietary Recommendation  

All information about the athlete can be seen in this page, including personal profile, 

training profile, an estimate total energy and macronutrients requirement, and dietary 

recommendation (Figure 3.11). 
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Figure 3.11 An example of recommended results of menus for 1 day. 

  

TEN 
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3.5 Conclusions and Future Work  

This chapter described the developed personalized food and nutrition 

recommendation system for weightlifting by using a rule-based knowledge framework. 

In doing so, a unified ontology of nutrition and sports was designed and implemented 

using Protégé. The four main concepts of ontology are including; Athlete, Food, 

Nutrition, and Sport. Under each concept, related sub-concepts and instances were 

asserted. Each domain knowledge was modeled according to the gathering data from 

literatures and interviewing experts in nutrition field. SWRL and SQWRL were used to 

create semantic rules. This implemented system is able to calculate the athlete’s 

calories and nutrients needed based on the individual profile and recommend specific 

menus according to the training phase and weight goal. However, populating the fact 

base of such ontology-based system was a labored task due to the huge dimension 

of Food Concept. Therefore, requiring a lot of effort and time to insert individual data 

items in order to cover all available menus items. 

Observations or results captured while using this system will be applied during 

modeling, design and implementation of the weightlifting TDC cycle knowledge base, 

which will be iteratively improved through the next chapters. For instance, some of the 

above defined and instantiated individuals can be used to populate the fact base of 

the new weightlifting ontology, while some of the above SWRL rules will be refactored, 

extended and pruned to tackle specific weightlifting TDC-cycle problems. Future work 

should be directed to the real-time data gathering through sensors and automatically 

updating database without user intervention. Following these approaches, the 

recommendation will be more precise and accurate and it will also allow the use of 

alerts when some parameter is not input correctly. To be able to communicate with the 

sensor via Java application, a DLL (dynamic linked library) should be created in C++ 

because Java doesn’t allow user to directly communicate with hardware. For the 

communication between the DLL and Java, JNI (java native interface), a framework 

that specifies a communication protocol between Java code and external library’s, 

should be considered. 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

Modeling Weightlifting “Training-Diet-Competition” 
Cycle with Domain and Task Ontologies 

 
This chapter is an extension of the previous chapters and it aims to promote a complete and 
better understanding of the proposed weightlifting rule- and knowledge-based system.  

This chapter tries to answer the research questions of how to semantically model the whole 
weightlifting “training-diet-competition” cycle by conceiving and designing each individual 
ontology (i.e., training, biomechanics, and dietary) and semantically integrating them to mainly 
promote biomechanics, nutrition and weightlifting snatch exercises interoperability. It presents 
and discusses the lightweight, first-iterated weightlifting Training-Diet-Competition cycle (TDC-
cycle) Ontology. 
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Introduction  

Although ontology and its design methodology were shortly introduced during the 

exploratory Chapter 3, both definition will be extended over here to promote a better 

and clear understanding of the proposed weightlifting rule- knowledge-based system, 

as presented below in the Figure 4.3. Observations from exploratory chapter 2 and 3 

were applied, while extended with main stakeholders’ ideas collected during interviews 

to draw the competence questions presented in section 4.2. 

Philosophically, ontology is the study of being, kinds and structures of objects. It 

includes properties, events, processes, and relations in every area of reality. It also 

deals with all questions about entities, and concerns how they are hierarchically 

classified according to similarities and differences. From an artificial intelligence 

perspective, ontology is the outcome of analysis and modeling that makes use of the 

concepts of modularity and connection. It translates into an explicit and structured 

framework of concepts and semantics, with the capacity to present novel relationships. 

Hence, ontology is viewed as a data model describing concepts in a specific domain. 

This data model is presented as classes along with classes’ relationship. It 

conceptualizes the domain by explicitly defining all primitives, concepts, and 

constraints. It is represented by a formal language that can be processed by 

computers. Ontology was successfully used to share concepts across applications and 

exchange information based on semantics rather than using syntax.  

  

Figure 4.1 Ontology versus Taxonomy (Jashapara, 2011). 
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Another way to understand the meaning of ontology is by direct comparison to object-

orientation where the focus is on classes’ methods and decisions assisted by 

operational properties of classes, while in ontology decisions are based on the 

structural properties of classes. Ontology can also be compared to taxonomy (see 

Figure 4.1). While the former includes cardinality and restrictions, the latter is limited 

to “is a” kind of relationship. In other words, it organizes controlled vocabulary terms into 

a tree-like structure, being the controlled vocabulary the list of authorized keywords 

used to describe individuals of a taxonomy or ontology. 

The main elements of an ontology are classes, individuals, properties, and 

relationships. An ontology together with a set of individual instances of classes 

constitutes a knowledge base. It is stored as entities and the relationships between 

them. Classes are collections of objects, sets or abstract groups, describing concepts 

in specific domain. They can contain both a subclass describing more specific 

concepts and an individual. An example of a class would be a Food class that would 

contain various subclasses like food type and food group.  Individuals may be concrete 

concepts like a specific menu or an ingredient or an abstract concept like food 

preference. Properties are related to individuals or classes, as they are something that 

defines or explains them. Individuals can have two types of properties: either a data 

type, which is used to assign a value to a property or class, (e.g., a menuhasEnergy 

150kcal)) or the object type, which is used to attribute one object to another one (e.g., 

menu A hasIngredient b). Relationships are unlimited not only in quantitative terms but 

also in complexity. They made modularity become a necessary demand for ontology 

modeling. Modularity allows researchers to model a given domain in many different 

ways. For example, a domain can consist of objects that relate to each other, possess 

attributes, participate in processes, may have one or more states or situations defining 

values of its attributes, react to events triggering the change of its state, and contain 

other objects. However, by using a logical description based on their properties to 

describe ontologies, the following relations must be presented: (i) relation between 

classes, (ii) relation between individuals or classes instances, and (iii) the relations 

between classes and individuals.  

Ontologies have been used for: (i) expressing domain-general terms in a top-level 

framework, (ii) knowledge sharing, for communication in multi-agent systems, (iii) 

natural language understanding, (iv) making document navigation easier, browsing 
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and search, (v) consistency checking, (vi) configuration support, (vii) interoperability 

of tools and data, (viii) system engineering support, among many others. In system 

engineering, ontology has been used to identify system requirements and constraints, 

as well as to define relationships among components and subsystems that compose 

a system. Additionally, it can be used to support reuse-by-design of modules among 

different software systems. 

There are different types of ontologies which are defined by Obitko (2001) as following:  

(i) Workplace Ontologies which specify boundary conditions characterizing and 

justifying problem solving behavior in the workplace. 

(ii) Task Ontologies which establish a vocabulary for describing a problem-solving 

structure of all existing tasks. They are independent from the domain by 

assigning roles to each object and the relations between them. Perez (1999) 

describe the reasoning process of a knowledge-based system in an 

implementation- and domain-independent manner. They usually are 

characterized by (i) inference steps required to achieve the goal of a task, (ii) 

control structures over the defined steps, and (iii) knowledge roles to specify 

the role that domain knowledge plays in each inference step. 

(iii) Domain Ontologies which can be either task-dependent or task-independent. 

The former requires some specific domain knowledge in order to be able to 

solve a task whereas the latter describes the structure and behavior of an object 

or theories and principles that govern a domain. 

In addition, Prestes et al. (2013) presented another classification for different kinds of 

ontologies based on the level of generality. Examples include top-level/upper, 

application, core, domain, and task ontologies. Top-level ontologies are independent 

of a particular problem or domain. They are used to describe very general concepts 

like space, time, matter, object, event, action. Application ontologies are strictly related 

to a specific application. They are used to describe concepts of a particular domain 

and task. Core ontologies are viewed as mid-level ontologies (i.e., between top-level 

ontologies and domain ontologies). They specify generic concepts and relationships 

in a large domain by reusing upper ontology concepts complemented with new ones 

specific to domains and tasks. 

The remainder of this chapter is organized as follows: Section 4.1 describes the 

methodology used for modeling and designing performance-oriented domains, 
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including task ontologies; Section 4.2 describes in detail domain scope and problem 

scenarios of the weightlifting TDC cycle and briefly presents a proposed TDC 

Competency Questions Engine; Section 4.3 presents the building of the whole domain 

ontology by individually describing each ontology subset and relationships between 

classes, following the proposed approach; Section 4.4 describes the building of task 

ontology, including the set of semantic rules that relate facts to infer new knowledge; 

Section 4.5 evaluates the ontology-based knowledge representation; Section 4.6 ends 

with some conclusions. 

4.1 Ontology Development Methodology  

Several generation of methodologies for building ontologies has been reported. 

Among them the following ones are enumerated: 

(i) First generation with main focus on the ontology modeling and development 

process while ignoring issues such as maintenance and reuse (Ribeiro et al., 

2006). It is mainly represented by methodologies applied in TOVE (Grüninger 

& Fox, 1995) and ENTERPRISE (Uschold & Tate, 1998), both consisting of the 

following steps: (i) identification of the ontology purpose, (ii) domain knowledge 

acquisition, formally coding of the domain knowledge, and (iii) ontology 

evaluation. In TOVE a set of competence questions identified during the first 

step is compared against the formally expressed ontology. 

(ii) Second generation with main focus on performing specification, 

conceptualization, integration, and implementation as often as required, during 

the ontology lifetime. It is mainly represented by the methodology described in 

the first version of Methontology (Lopez et al., 1997) which uses translators to 

generate the ontology from a set of intermediate representations. 

(iii) Third generation with main focus on reusability and configuration management 

as activities of the development process. It is best represented by On-To-

Knowledge (Sure, 2003) which focused on content-driven knowledge 

management through evolving ontologies. On-To-Knowledge leverages the 

use of ontologies for various tasks of information integration tasks and 

mediation. 
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(iv) Fourth generation with main focus on strengthening modularity and reuse of 

engineering design ontologies to better deal with the complexity of knowledge 

that is required to be brought together to support the design of knowledge-

based decision-making system. It is mainly represented by the novel 

knowledge-based engineering (KBE) framework which adopts best practices 

from previous ontology development methods along with a model-driven 

architecture style to implement platform-independent knowledge-enabled 

product design systems, e.g., within the aerospace industry (Sanya & Shehab, 

2014). Another representative of this generation is the middle-out approach 

suggested by Obrst et al. (2012), mixing aspects of top-down and bottom-up 

analyzes. Bottom-up and top-down analyzes require understanding the 

semantics of the underlying data sources which are to be integrated and the 

end-users who will actually use the resulting ontology-informed, semantically 

integrated set of data sources, respectively.  

The NeOn methodology (Berges et al., 2016) follows a completely different approach 

for ontology engineering than previous ones as it does not prescribe a rigid workflow. 

Instead it suggests a variety of pathways for developing ontologies. Basically, it is a 

scenario-based methodology for building ontologies and ontology networks through 

collaborative aspects of ontology development and reuse. Scenarios consist of several 

processes or activities that can be combined in flexible ways to achieve the expected 

goal. 

In this study, ontological modeling and designing the weightlifting TDC cycle demands 

collaborative contributions of several stakeholders such as athletes, coaches, 

nutritionist, biomechanist, knowledge engineer, and device designer to better 

construct concepts into a domain ontology and process/task ontology, representing 

declarative and procedural knowledge, respectively. These two kind of knowledge 

must be complemented with facts or instances, as well as inference knowledge to build 

the weightlifting TDC cycle knowledge base.  

The first proposal for ontologically modeling the weightlifting TDC cycle, which is 

described next in this chapter, drives its main focus toward avoidance of complexity, 

memory exhaustion, ontology load time, and performance degradation than on 

modularity at domain-level and scalability issues, as dictated by fourth generation 

methodologies. Therefore, it consists of only one domain ontology and one task 
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ontology. The domain ontology contains several areas of domain knowledge (i.e., 

training, nutrition, and biomechanics knowledge) of the weightlifting TDC cycle, which 

include qualitative and quantitative values. The task ontology describes the problem-

solving structures of all existing tasks. Additionally, the number and complexity of 

axioms are well-balanced to reduce computation time, as the ontology became easier 

while helping the reasoner to perform faster. In so doing, reasoning tasks are solvable 

in polynomial time with respect to the size of the whole input ontology (i.e., ontology 

itself plus its individuals). Hence, based on the guidelines proposed by Chi et al. 

(2015), the following steps are proposed to ontologically model and design the first 

version of the weightlifting TDC cycle: 

(i) Establishing the domain scope and analyzing the problem scenarios for each 

individual domain of the TDC cycle to identify tasks and task knowledge 

needed for problem solving with respect to each individual domain knowledge. 

(ii) Modeling each individual domain as a subset of the domain ontology by 

gathering data from literatures and interviewing domain experts. It will be 

guided by a controlled vocabulary, including common terms for the purpose of 

reference and communication. It will basically produce a hierarchical taxonomy 

complemented with identification of concept to properties and concept to 

instance relationships. 

(iii) Modeling each individual task ontology as a subset of the task ontology by 

describing and implementing identified problem solving broken into subtasks 

and steps to perform a task. Each task ontology subset comes with asserted 

and inferred properties where the latter corresponds to at least one axiom for 

implementing the reasoning process. 

(iv) Developing semantic rules through logical and non-logical axioms collected 

from known facts to infer implicit knowledge. These axioms will be used to build 

the inference mechanism used to solve TDC issues, as well as to closely 

integrate each individual and modular ontology subsets previously built. 

Although the foundation for sport ontology was first addressed in earlier 1970 through 

published studies conducted first by Huizinga and later by Ellen Gerber (Morgan, 

1976), there are only few ontologies targeting sport domain. Rigorous and appropriate 

manner about thinking in sport started with these two controversial essays of Huizinga 
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and Ellen Gerber. Huizinga’s essay which is the precursor of Gerber's essay, 

"Arguments on the Reality of Sport", established a pre-ontological experience of sport 

phenomenon by following an ontic approach (i.e., based only on factual observations). 

The ontological shift was leveraged by Gerber's essay criticizing Huizinga’s negative 

rendering of play/sport following an ontological perspective (i.e., moving from factual 

observations to constitutive elements and criteria used for concepts it formulates). 

Few found examples about sport ontologies are:  

(i) SmartWeb system (Oberle et al., 2007) was designed around a simple 

lightweight Sport Event domain ontology for publishing data about competitive 

sports events. The Sport Event ontology is originated in a specific BBC use 

case and it models football events of varying granularity (tournaments, 

matches, and match events such as goal shots) as well as persons, places, 

and some more abstract entities like result tables.  The Sport Event ontology 

promotes interoperability with more general ontologies such as Smart SUMO 

DOLCE and SUMO while featuring a large set of instances that primarily model 

facts of the Football World Cups 1930–2006. 

(ii) Muthulakshmi (2015) presents an ontology for sport training through e-learning 

which is based on a query template for storage and retrieval of sports 

information. It has a basic concept of sports ontology complemented with 

physiological variable measured before and after events, as well as with 

physical activity. The dataset of BBC 2012 with the information about the 

events, venue, schedule, and the performance of the athlete was enhanced 

with physiological variable to better improve the performance of the e-learner 

system. 

(iii) CaseLP (Zini & Sterling, 1999) is a declarative logical framework for prototyping 

agent-based applications which proposes an approach to add explicit 

ontologies in multi-agent systems based on logic programming. A domain 

ontology from sport results and an agent level ontology are exploited in CaseLP 

to perform semantic checks of agent architectural descriptions, to check agent 

behavioral rules used by an agent to provide its services, and as a knowledge 

repository to be exploited during agent execution. This ontology of sports 

models concepts such as sport, competition, competitors as well as 

relationships that relate these concepts. 
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(iv) Miksch & Hammermuller (1999) represent the sport workout as time-oriented 

skeletal plans using Asbru.  Asbru is a machine-readable language to represent 

and to annotate guidelines based on the task-specific ontology. Skeletal plans 

are plan schemata at various levels of detail that capture the essence of the 

procedure that can be instantiated and refined dynamically over significant 

periods of time and in highly dynamic environments. To automatically transfer 

various interactions between different workout exercises to the current situation 

of an individual athlete, they address issues such as the transfer of available 

knowledge, individual adaptation, and effective evaluation of intended effects 

after the planned exercises. 

(v) Nwe Ni Aung & Naing (2011) present information retrieval from Sports Domain 

Ontology using First-Order Logic rules and retrieve relevant semantic 

relationships between concepts from it. Contrary to most of existing ontology-

based information retrieval systems which use concepts mapping, they use 

semantic relationships between ontology of concepts to retrieve more relevant 

and correct results.  

(vi) Zhai & Zhou (2010) present a sport ontology addressing fine-grained granularity 

and wide coverage of information for semantic retrieval for sports information 

in WWW. They use SPARQL query language to realize the intelligent retrieval 

at semantic level according to the relations of “synonymy of”, “kind of” and “part 

of” between sports concepts.   

Although not uniquely associated to sport domain, a task ontology is fundamental in 

modeling, design, and implementation of smart ontology-based systems addressing 

the planning of a sport workout as demonstrated by Miksch & Hammermuller (1999). 

Task ontologies have been described in several studies such as the following ones: 

(i) Mitsuru et al. (1998) investigate the property of problem solving knowledge, 

design its ontology and then illustrate the design principle of a Conceptual LEvel 

Programming Environment (CLEPE) as an implemented system based on Task 

ontology. 

(ii) Yuan & Liu (2012) propose an abstract task ontology model that models 

temporal relationships among tasks into relation in task ontology model while 

can also be instantiated to task ontologies for tasks in different domains. The 
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knowledge about a specific task is modeled in its task ontology and retrieved 

by an ontology reasoning component supporting a domain independent 

dialogue manager.  

(iii) Rajpathak et al. (2001) discuss ontology as a reference model describing 

entities which exist in a universe of discourse and their properties and they also 

present a generic task ontology for scheduling problems which is both domain 

and application independent. They describe main concepts and axioms in their 

scheduling task ontology, while briefly comparing it to other task ontology 

proposals. 

(iv) Smith & Becker (1997) discuss the use of ontologies as a basis for structuring 

and simplifying the process of constructing customized domain-specific task 

scheduling solutions. By studying commonality and variability in scheduling 

system their proposed scheduling ontology (named OZONE) defines a reusable 

and extensible base of concepts for describing and representing scheduling 

problems, domains and constraints. In so doing, the OZONE ontology provides 

a framework for analyzing the information requirements of a given target 

domain, and a structural foundation for constructing an appropriate domain 

model. 

(v) Veer et al. (2002) present Task World Ontology derived from the conceptual 

framework of Groupware Task Analysis (GTA) to describe the way we look at 

the task world during task analysis. GTA is a task analysis method and its main 

focus goes toward group users or organizations and their activities according 

to a sequential temporal relation. GTA’s task model contains three different 

aspects of the task world, including agents, work, and situation. 

(vi) Benjamins & Pierret-Golbreich (1996) present an architecture for problem-

solving method (PSM) consisting of three interrelated parts: functional 

specification, requirements, and operational specification. They also identify 

two gaps around PSM mainly between a PSM and the domain knowledge it 

uses as well as between PSM and the goal that it is supposed to achieve. Then, 

they present two types of assumptions based on an architecture of PSM to 

bridge the two gaps: one is used to strengthen a PSM, and another one to 

weaken the goal to be achieved in a particular domain. 
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(vii) Chandrasekaran & Josephson (1997) describe method ontology as task and 

method-dependent and then they identify two dimensions (i) Knowledge about 

the objective realities in the domain of interest, (ii) Knowledge about problem-

solving on which such content theories might lie to make the problem-solving 

knowledge sharable and reusable.  

(viii)  Chi et al. (2015) integrate multiple knowledge domains such as chronic kidney 

disease, food nutrient composition, and problem solving method to implement 

a chronic disease dietary consultation system. The system consists of three 

major design components: a domain ontology, a task ontology, and semantic 

rules. They describe the task ontology in terms of conceptual structure as well 

as in terms of problem solving knowledge while separating asserted properties 

from inferred properties with the latter described through the use of SWRL and 

SQWRL. 

To the best of authors’ knowledge supported by a literature review, there is no ontology 

exploring the interoperability among nutrition, weightlifting training, and biomechanics 

domains. 

4.2 Establishing the Domain Scope and Analyzing Problem Scenarios 

Managing training and competition performance of weightlifters is a very challenging 

problem due to the interplay among multiple sources of unobserved heterogeneity at 

athletes’ profile, competition, training model, dietary protocol, research, resource, or 

year level. It involves several knowledge sources, spreading into several information 

dimensions such as biomechanics, coaching and training as well as nutrition dietary 

(see Figure 4.2). Nutritional knowledge, for example, includes the definition of dietary 

protocol, energy expenditure estimation, energy balance, as well as food composition 

in terms of macronutrients and micronutrients. Dietary protocol as a concept, includes 

recommended food intake according to athletes’ preferences and restrictions at 

specific training and competition instants. Coaching and training knowledge supports 

a qualitative analysis technique which includes a controlled vocabulary consisting of 

common terms to alleviate semantic differences between training methods (e.g., 

Russian and Bulgarian models), lifting exercises and their phases concepts, as well 

as barbell and body kinematics and kinetics. The coaching and training dimension is 

mostly represented by descriptive terms or abstract values regarding lifting exercises’ 



97 
 

performance which can be mapped to ground values measured in real-time by 

biomechanics analysis systems or energy expenditure measurement devices. 

Biomechanics knowledge supports a quantitative analysis approach based on ground 

values and it includes a controlled vocabulary consisting of sub-concepts (e.g., 

acquisition method, calibration method, and analysis method) and concepts like lifting 

analysis, resource, and muscle activity. 

 

Figure 4.2 The problem solving for improving weightlifting ability. 

To compound the problem, such multiple-dimensional information space is still 

sensitive to:  

(i) Device or resource internal knowledge consisting of inner working of devices 

and the process by which data are transferred, processed, and analyzed. It is 

required to obtain high data quality, discriminating between error and noise-free 

measurement data (George et al., 2014). 

(ii) Integration of training metrics other than performance such as weight cutting, 

as weightlifters need to maintain their ideal bodyweight category and so, facing 

certain amount of dieting before competition (Laputin, 1982) 

(iii) Years of dedicated training (5 to 10) for an athlete to reach full potential with 

heavier athletes taking longer than lighter athletes (Laputin, 1982) 

(iv) Nervous systems as weaker athletes require more volume at lower intensity 

than stronger ones (Laputin, 1982) 
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(v) Athletes’ choices about effort and risk-taking in a tournament setting which 

encourages to take more risks towards outstanding performance (Christos & 

Mario, 2008) 

(vi) ‘Choking under pressure’ phenomenon which suggests athletes may perform 

badly under pressure, even though motivation and effort may be high (Christos 

& Mario, 2008) 

Furthermore, the device internal knowledge will be a must in insuring a proper 

biomechanics laboratory’s set up which will leverage a near noise-free collected 

signal, mainly due environmentally-based sources of error (e.g., electrical 

interference, thermal or chemical noise) while preventing sport biomechanist of being 

another source of measurement error. Such knowledge will dictate, in some way, the 

involvement of embedded system engineers as another stakeholder in the modeling 

of weightlifting TDC cycle as they know the design and function of devices (e.g., signal 

sampling, flow, amplification, and processing as well as device calibration), as well as 

how to interpret devices’ technical information such as linearity, hysteresis, cross-talk, 

natural frequency, and maximum frequency ratio. 

To implement the problem scenarios analysis for the management of weightlifting 

training and competition performance, we firstly tackle individually each information 

dimension of the TDC cycle and only then formalize the problem solving according to 

the following two sets of non-logical axioms, required to estimate and/or measure 

performance and energy production, as well as to examine and monitor the designed 

and prescribed training and nutrition programs to each individual athlete: 

4.2.1 Assessment and Monitoring of Nutrition Features 

Several prediction equations and method of analyzes will be required to estimate and 

measure the energy expenditure which depends on muscular activation and muscle 

contraction. Both anthropometric and metabolic measurements having been carried 

out because physical activities are usually classified in terms of their mutually 

dependent biomechanical and metabolic aspects, as well as their intensities and 

durations. Therefore, not only body composition should be assessed but also other 

potential sources of change in energy expenditure during lifting activities through 

activation levels of major muscles groups. By assessing the activation patterns and 

energy expenditures while lifting, the prescribed energy intake is examined to 
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determine the energy balance status and then accordingly adjusted (i.e., in terms of 

macronutrients and micronutrients) for a more suitable dietary intake. For accurate 

measurement of energy expenditure and outcome assessment, accelerometer-, 

electromyography-, heart rate-, calorimetric-, spectrometric-, or stadiometric-based 

devices have been used to collected data related to diverse energy expenditure 

components which are later processed using analysis or optimization methods such 

as artificial neural networks, ANOVA, and many other statistical methods. Meng & Kim 

(2012) grouped existing physical activity measurements into three categories: 

subjective methods (e.g., questionnaires, activity diaries, and interviews), objective 

methods (e.g., physiological measurements and motion sensors), and criterion 

methods (e.g., calorimetry and doubly labeled water). Several approaches for above 

methods are described in the following studies: (Bisi et al., 2011; Cen et al., 2011; 

Dickin et al., 2017; Gerrior et al., 2006; Grüninger & Fox, 1995; Haskell & Kiernan, 

2000; Hay et al., 2008; Levine, 2005; Ogata et al., 2016; Thomas et al., 2016; Tikkanen 

et al., 2014) 

4.2.2 Assessment and Monitoring of Biomechanics Features 

To maintain consistence in each lift while enhancing performance, weightlifting 

biomechanics have been analyzed following qualitative, quantitative, and predictive 

approaches, as well as combinations of them. Quantitative approaches within Olympic 

weightlifting biomechanics have been toward kinetics and kinematics of barbell and 

weightlifter body, mainly trying to classify barbell trajectory, identify optimal lifting 

technique, explore low back joint loads, quantify barbell parameters (e.g., barbell 

velocity, barbell acceleration, barbell displacemnent, and barbell lift duration), joint 

kinematic, joint angular velocities, and joint angular displacement, and the effect of the 

loads. Furthermore, EMG has been explored to leverage accurate and reliable 

measurement while several other studies focus on measuring relationships among the 

above quantified parameter, such as: (i) measuring relationships of force, velocity, and 

power exerted in a specific movement pattern, (ii) correlating force, or torque, velocity 

for groups of muscles, (iii) correlating internal and external mechanical power output 

and internal mechanical joint power output across different loads, and (iv) correlating 

skill and load to join-power. In so doing, it requires several devices such as 

goniometers, motion capture systems, force plates, EMG-based sensors, and 

accelerometers, as well as several and different method of analysis based on artificial 
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neural network, intra-repetition analysis, analysis of variance, dynamic equations of 

motions, genetic algorithm, and 3D kinematic analysis. Additionally, some studies 

described simulated kinematics based on mathematical modeling and optimization of 

snatch technique using several models for: joint moments, anthropometric data, 

barbell trajectory, weightlifter multi-body on sagittal plane, muscle activations, muscle 

geometry, barbell kinematics, and weightlifter biomechanical at various positions. 

Approaches regarding above mentioned methods can be found in the following 

studies: (Beardsley, 2016; Enoka, 1988; Ho et al., 2014; Kipp et al., 2013; Nejadian & 

Rostami, 2007; Rahmati & Mallakzadeh, 2014; Ross et al., 2017; Wang & Buchanan, 

2002; Zhai & Zhou, 2010) 

The choice or design of the proper research methodology based on the above variety 

of equations and analysis methods will be inevitable and should be mainly supported 

by accuracy and statistical power associated to each of them. Alternatively, new 

research should be designed to maximize statistical power of some promising 

identified approaches (e.g., by enlarging sample size, effect size, and level of 

statistical significance), as well as integrating some of them (e.g., merging objective in 

the lab assessment with qualitative in the field assessment).   

Having already defined the motivation for addressing issues related to the weightlifting 

TDC cycle, the following general competence questions (i.e., typical consultation 

questions) were formulated to be answered by the ontology and so, limiting the 

ontology scope: 

(i) Did the athlete properly lift the barbell? 

(ii) Did the athlete’s body move accordingly during exercises phases?  

(iii) Was the athlete well-served in terms of macronutrients and micronutrients 

according to the training protocol specificity? 

(iv) Did the rhythmic execution reflect an efficient snatch technique? 

The rhythmic execution, should be understood as the definition presented by Ho et al. 

(2014) and Szabo (2012), i.e., the coordination movement of the weightlifter-barbell 

system for an efficient and effective lift. 

Figure 4.3 shows the proposed TDC Competency Questions Engine Architecture with 

its main building blocks, stakeholders and perspectives. Each actor plays a 
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fundamental role in the assessment task. The Reasoning and Knowledge Base layer 

encompass three non-overlapping sublayers. The four perspectives are defined as 

follows: 

 

                 Figure 4.3 Weightlifting TDC-cycle OWL- and Rule-Knowledge-based System. 

 Task Fact Base (FB) encloses task related instances. The Athlete creates his 

profile by inserting relevant personal data. The Training Manager and Lab 

Technician are in charge of updating the knowledge base with training data, 

respectively, providing qualitative and quantitative assessments. 

 Reasoning and Knowledge Base (KB) is composed of all available knowledge 

over which the reasoning is performed. The Task FB input is used as a trigger 

to start the inference process, which is based on SWRL rules. The output of 

this process is given as a series of axioms, representing detailed results with 

practical, human readable data. 

 Task Rules comprises all SWRL rules created to infer knowledge from training 

related instances. These rules may be created or updated by several experts 

from different domains such as Nutrition, Biomechanics, and Physiology. 

 Domain Knowledge Base refers to the application-independent axioms, which 

can be updated to better cope with improvements in the understanding of 

applicable fields. 

Knowledge bases (KB) are implemented as ontologies, which were divided into 

assertion axioms (i.e., Fact base; FB) and terminological axioms (i.e., Concepts and 
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Attributes; CA) to illustrate the interaction of both areas in the global architecture. Each 

KB and respective rules were created using Protégé and its plug-ins.  Given the 

modularity of this approach and the flexibility of knowledge insertion and revision, this 

architecture favors extensibility without compromising the overall adopted structure. 

4.3 Modeling and Design of the Weightlifting Domain Ontology 

For the overall design and development process, the methodology outlined in the work 

of Chi et al. (2015), briefly described above in Section 4.2.2 and illustrated by Figure 

4.4, was followed. 

 

Figure 4.4 Methodology for building ontologies: its steps, key modeling, and design artefacts (Adapted from Chi et 

al., 2015). 

To obtain a deep understanding of aspects and concrete entities comprising the 

weightlifting TDC cycle, repetitive collaboration meetings were organized between 

athletes, coaches, and multidisciplinary researchers as biomechanist and 

nutritionist of Porto University along with electronics and software engineers of 

University of Minho. The following design artefacts express ontologies in the 

weightlifting TDC-cycle knowledge-based system i.e., the TDC-Ontology = (CA, CV, 

FB, R, A): 

(i) CA is a series of concepts set and attributes set related to concepts, 

representing both domain and task ontologies; 

(ii) CV is a controlled vocabulary, consisting of a list of authorized common 

keywords used to describe individuals of CA on the fact base (FB); 
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(iii) FB complements the CA structure with set of individuals that are instantiations 

for the concepts from CA and both aim for a common understanding of the 

domain for ontological sharing and reuse; 

(iv) R represents relationships between classes, mainly object properties of “has-

a” type, which are used on SWRL rules specified in A to enable problem solving; 

(v) A is a set of axioms to facilitate reasoning about individuals on FB and it aims 

for solving specific weightlifting TDC-cycle problems, previously formulated 

through competency questions. 

A) Concepts and Attributes (CA) 

Different concepts in the TDC-Ontology have been divided into four main knowledge 

sets, namely, training, biomechanics, nutrition, and problem solving, complemented 

with an athlete profile concept as nearly all observation and measurement are around 

athlete's activities. The first three sets correspond to domain ontology which identifies 

general concepts and their relations in the field of weightlifting, while the fourth one is 

part of the task ontology. Figure 4.5 shows a partial conceptual model of the domain 

ontology with concepts organized in a taxonomic ‘is-a’ hierarchy. 

 Training- or coaching-related ontology subset refers to classes modeling 

exercises performed by athlete, with each exercise consisting of several phases 

or sub-exercises. Basically, these concepts are used to promote a qualitative 

weightlifting analysis and are mainly represented by abstract values regarding 

observable lifting performance by a coach. 

 Biomechanics-related ontology subset is used to leverage a quantitative 

weightlifting analysis and are represented by the ExerciseProperty concept 

which main purpose is complementing qualitative lifting performance values 

with biomechanics ground values measured during a lifting exercise phase, 

using biomechanics equipment. Figure 4.6 presents several subclasses of the 

ExerciseProperty concept, where each instance has associated data properties 

measuring the read values (e.g., barbell position).  

Another view of the involved classes can be seen in Figure 4.7 In this perspective, 

irrelevant classes were removed, and all relations are of type hasSubclass. 
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Figure 4.5 Fragment of the TDC-Cycle hierarchy of classes. 
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Figure 4.6 Class hierarchy of ExerciseProperty. 

 

Figure 4.7 Biomechanics-related classes. 

 Nutrition-related ontology subset is also used to leverage a quantitative 

weightlifting analysis and it is modeled by the following subclasses (see Figure 

4.8). The DietaryProtocol related to each workout period, the respective 

NutrientPortions, and the Consumable having nutrients. Nutritional ground 

values are measured for a lifting exercise, using a combination of energy 

expenditure measurement equipment, prediction equations, and methods of 

analysis.  
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Figure 4.8 Classes or concepts used to model nutrition-related knowledge. 

The DietaryProtocol concept prescribes the receipt of nutrient portions for a 

specified workout phase, the NutrientPortions concept identifies a specific 

nutrient and its amount in terms of macro- and micro-nutrients and the 

Consumable concept represents the food and drink that are sources of 

nutrients. Analogously to the displayed perspective on Figure 4.8, nutrition 

related classes are also shown on Figure 4.9 with hasSubclass relations. 

 
Figure 4.9 Nutrition-related classes. 
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Table 4.1 Data properties of each concept presented on the domain ontology. 

Concept Property Type Range Description 

Consumable HasNutrientPortion* Asserted NutrientPortion  

 hasCalories Asserted (double)  

Control Vocabulary     

Acquisition Method hasAccuracy Asserted (double)  

 hasIntrusionLevel Asserted (int)  

Analysis Method hasAccuracy Asserted (double)  

Calibration Method hasAccuracy Asserted (double)  

Nutrient hasName Asserted (string)  

Dietary Protocol hasAthlete* Asserted AthleteProfile 
Analysis 

 

 hasAthletePreference* Asserted Consumable  

 hasAthleteRestriction* Asserted Consumable  

 hasNutrientPortion* Asserted NutrientPortion  

 hasWorkoutPhase* Asserted WorkoutPhase  

ExerciseProperty hasMax Asserted (double)  

 hasMin Asserted (double)  

 hasName Asserted (string)  

NutrientPortion hasNutrient* Asserted Nutrient  

 hasValue Asserted (double)  

*indicates an object property 

B) The Controlled Vocabulary (CV) 

Horizontal to concepts defined in CA, there is a list of authorized keywords, used 

across both domain and task ontology. As shown in Figure 4.10, the list contains nine 

subclasses and under each of them, authorized keywords are used to provide 

reference and indexing for communication with other concepts and instances. 

 WorkoutPhase concept defines periods for which a dietary protocol is 

prescribed which is instantiated as authorized keywords Preworkout, 

Duringworkout, and Postworkout. 

 DayPart concept represents day time prescribed for weightlifting training and 

dietary intake. It is instantiated as authorized keywords Morning, Afternoon, and 

Evening. 
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Figure 4.10 Nine controlled vocabulary concepts. 

 AcquisitionMethod concept establishes methods used to collect quantitative 

ground values, e.g., heart rate monitor, motion analysis, electromyography, or 

force measurement. 

 Muscle concept defines muscles where activity should be measured, e.g., 

quadriceps femoris muscle. 

 AnalysisMethod concept establishes analysis methods used for the 

assessment of energy expenditure and biomechanics features from several 

kinds of collected data such as kinetics, kinematics, and physiological. 

 CalibrationMethod concept establishes some known methods for proper 

calibration of biomechanics equipment (e.g., for force plates: a method for 

calibrating the vertical force axis is to apply a dead weight of known value) 

which is instantiated as authorized keywords OnePointCal, TwoPointCal, and 

CurveFittingCal. 

 ResourceType concept defines resource types used for quantitative 

measurement of barbell kinematics/kinetics and body kinematics/kinetics (e.g., 

video cameras, infrared cameras, force platform, position transducer), body 

composition, and energy expenditure as well as training resource (e.g., barbell 

and weight plates). 
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 Nutrient concept includes groups of macro- and micro-nutrients, as standard 

vocabulary used in energy expenditure assessment and dietary intake to 

promote optimal health and performance across different scenarios of 

weightlifting training. 

 ExerciseMethod concept classifies weightlifting training methods under 

Bulgarian or Russian frameworks and principles. 

C) The Fact Base as a set of individuals (FB) 

Concepts in the domain ontology are further elaborated and terminal concepts are 

described in terms of instances. These individuals belonging to the ontology will act 

as the foundations of the knowledge base supporting the problem solving activity. The 

fact base is populated by a collection of facts generated through the elaboration of 

domain ontology concepts, i.e., terminal concepts are described in terms of instances. 

These instances contain measured nutritional and biomechanics ground values as 

well as observable training-related abstract values collected by coaches which are 

mapped to corresponding ground values. As an example, Figure 4.11 shows the 

NutritionPortion concept filled with its constituent instances. See Figure 4.12 for more 

individuals or facts.  

 

Figure 4.11 (Left) Constituent instances of 

NutritionPortion concept. 

Figure 4.12 (Right) Fragment of individuals or 

facts inserted in the fact base. 
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D) Relationships between classes (R) 

Excluding the data properties presented in Table 4.1, the remaining relationships (i.e., 

among classes) are constructed as object properties given in Figure 4.13, while Figure 

4.14 shows an individual of ExercisePhase concept and its associated asserted data 

and object properties.  

 

Figure 4.13 A fragment of object properties among concepts on TDC-Ontology. 

 

Figure 4.14 An individual and its associated asserted data and object properties. 

Figure 4.15 displays some individuals that represent the analysis of a phase of the 

Snatch exercise. The Snatch exercise individual is related to 5 phases (6 positions) by 

the object property hasExercisePhase and, for the Liftoff position (first pull phase), 

there are some ExerciseProperty individuals where each is related to a Result 
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individual that belongs to an individual of the PhaseAnalysis concept, called 

LiftoffAnalysis. 

 

Figure 4.15 Some individuals and their associated object properties. 

4.4 Engineering the Task Ontology 

To solve specific weightlifting TDC-cycle problems as previously formulated through 

competency questions, the task ontology uses the conceptual structure of the domain 

ontology expressing the semantic knowledge of biomechanics, nutrition, and training 

dimensions of the TDC-cycle, while defining other concepts’ constituent properties to 

describe the problem solving structure. Basically, (i) property values of known facts or 

unknown knowledge are defined to separate asserted properties from inferred ones 

(see Table 4.2), (ii) the corresponding domain and range of properties are asserted, 

and then, (iii) SWRL rules supported by SQWRL are created for reasoning about 

individuals on FB and so, addressing the insufficient expressivity of ontologies in 

properties association and operation required by the formulated competency 

questions. 

Generically, the problem solving structure consists of two main groups, i.e., nutrition 

analysis and training analysis (i.e., addressed both in terms of qualitative and 

quantitative analysis, being the latter achieved through biomechanics analysis) 

according to Figure 4.2 and also the aforementioned competency questions.  
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Table 4.2 Definition of Concepts attributes in the Task Ontology. 

 

Concept Property Type Range Description 

AthleteProfile 
Analysis 

hasMuscleModel* Asserted MuscleModel  

 hasTrainingDay* Asserted TrainingDay  

 hasAge Asserted (double)  

 hasEEE Inferred (double) Exercise Energy 
Expenditure 

 hasGAF Asserted (double) General Activity 
Factor 

 hasGender Asserted {"Female", 
"Male"} 

 

 hasHeight Asserted (double)  

 hasWeight Asserted (double)  

 hasName Asserted (string)  

PhaseAnalysis hasExercisePhase* Asserted ExercisePhase  

 hasMuscleActivity 
Sample* 

Asserted MuscleActivity 

Sample 

 

 hasResource* Asserted Resource 
Analysis 

 

 hasResult* Asserted ExeciseProperty 

Analysis 

 

 hasEnergyExpenditure 

Measurement 

Asserted (double)  

 hasEvaluation Inferred (string)  

 hasProblem Inferred (string)  

 isCompensated Asserted (boolean) Indicates if a phase 
is considered well 
executed 
qualitatively 
(coaching) despite 
of what is 
measured 
quantitatively 
(biomechanics) 
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*indicates an object property 

Therefore, some concepts that constitute the problem solving structure are: 

 AthleteProfileAnalysis concept contains 9 properties, being 8 asserted 

properties (age, gender, name, weight, height, training day, muscle model, and 

general activity factor) and 1 inferred from rule EEE (Exercise Energy 

Expenditure). 

 PhaseAnalysis concept contains 8 properties. 6 are asserted properties and 2 

are inferred properties, which are used for the evaluation of an exercise's 

phase. (see rule analyze) 

Concept Property Type Range Description 

Resource 
Analysis 

hasAccuracy Inferred (double)  

 hasAcquisition 
Method* 

Asserted Acquisition 
Method 

 

 hasAnalysisMethod* Asserted AnalysisMethod  

 hasCalibration 
Method* 

Asserted Calibration 
Method 

 

 hasResourceType* Asserted ResourceType  

 hasName Asserted (string)  

ExerciseProperty 
Analysis 

hasExerciseProperty* Asserted Exercise 
Property 

 

 hasEvaluation Inferred/ 
Asserted 

(string)  

 hasValue Asserted (double)  

TrainingDay 
Analysis 

hasPhaseAnalysis* Asserted PhaseAnalysis  

 hasTrainingDay* Asserted TrainingDay  

 hasDietaryMargin Asserted (double)  

 hasDietaryProblem Inferred (string)  

 hasEEE Inferred (double) Exercise Energy 
Expenditure 

 hasEnergyDifference Inferred (double)  

 hasEnergyIntake Inferred (double)  

 hasRMR Inferred (double) Resting Metabolic 
Rate 

 hasTEN Inferred (double) Total Energy 
Needed 
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 ResourceAnalysis concept contains 5 asserted properties (name, type, 

acquisition method, calibration method, and analysis method) and 1 inferred 

property that represents the accuracy of the resource and it is inferred using 

rule topResources. 

 ExercisePropertyAnalysis concept contains 2 asserted properties (name and 

exercise property) and another property that is either asserted or inferred, to 

represent the evaluation of the result. When inferred, this evaluation maps to 

rules evaluateMax, evaluateMin, and evaluateMinMax. 

 TrainingDayAnalysis concept contains 9 properties, where 3 are asserted 

(phase analysis, training day, and dietary margin) and 6 are inferred. The EEE 

is inferred by rule EEE. TEN and RMR are inferred by rules TENmale or 

TENfemale. The energy intake is inferred by rule EI while the difference 

between consumed and needed energy is mapped to Rule balance. 1 property 

used to report dietary problems of the training day, which is inferred from rules 

evaluateNutrientsMax and evaluateNutrientsMin. 

Three of these concepts are combined to form a complete biomechanics and nutrition 

analysis chain, being the core of the problem solving structure. Starting with the 

ExercisePropertyAnalysis, this concept analyzes the individual biomechanics 

characteristics of an exercise which are mapped to the ExerciseProperty concept. 

Then, PhaseAnalysis focuses on several phases of each exercise and provides a 

broader analysis of the biomechanics of an exercise. Lastly, TrainingDayAnalysis 

encompasses the analysis of nutrition for a full training day of multiple exercises. 

4.5 Analysis of Semantic Rules  

All the 11 inferred properties of the Task Ontology require semantic rules that relate 

facts and, thus, are able to infer new knowledge. In order to answer all the competency 

questions, SWRL-based rules and SQWRL queries were used. SWRL rules operate 

over the instances of the ontology and are expressed as a chain of atoms that, if all 

hold true, a consequence is produced. SQWRL queries work similarly to the SWRL 

rules but are used for retrieving knowledge from the ontology instead of creating it. 

Also, query's result needs to be manually added to the ontology. Overall, 9 rules and 

3 queries were created and these can be separated into three broad categories: 

Biomechanics/Coaching, Nutrition, and Resource reliability. 
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A) Biomechanics/Coaching rules 

(i) evaluateMinMax used for the evaluation of an exercise and it starts by 

evaluating if each of its properties are within a considered favorable range. It 

verifies whether the value of an exercise property's result is within the specified 

range, and in case of being true, it causes the result to receive a positive 

evaluation denoted by the word "OK". Breaking down the rule, it starts by 

obtaining an ExercisePropertyAnalysis individual called r (1) and its value (2) 

using the r's hasValue data property. Then it obtains, through the 

hasExerciseProperty object property, the ExerciseProperty individual p (3) and, 

like before, its min and max values (4-5) are retrieved using the hasMin and 

hasMax data properties, respectively. After obtaining all the necessary values, 

the rule then checks if the result's value is within the exercise property's range 

(6-7) and it asserts r's evaluation as "OK" (8). 

Rule: evaluateMinMax  

ExercisePropertyAnalysis(?r)                             (1) 

^ hasValue(?r, ?v) (2) 

^ hasExerciseProperty(?r, ?p) (3) 

^ hasMin(?p, ?min) (4) 

^ hasMax(?p,?max) (5) 

^ swrlb:greaterThanOrEqual(?v, ?min) (6) 

^ swrlb:lessThanOrEqual(?v, ?max) (7) 

-> hasEvaluation(?r, "OK") (8) 

(ii) evaluateMin is used to evaluate if the value of the result is below the minimum. 

It uses the ExerciseProperty's name to be easily identifiable, as this evaluation 

will be later used for the overall examination of the exercise. 
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Rule: evaluateMin 

ExercisePropertyAnalysis(?r) 

^ hasExerciseProperty(?r, ?p) 

^ hasValue(?r, ?v) 

^ hasMin(?p, ?min) 

^ swrlb:lessThan(?v, ?min) 

^ hasName(?p, ?n) 

^ swrlb:stringConcat(?s, ?n, 
" is below minimum") 

-> hasEvaluation(?r, ?s) 

(iii) evaluateMax is similar to the previous rule, and it is only used to evaluate if 

the value is above the maximum. 

Rule: evaluateMax 

ExercisePropertyAnalysis(?r) 

^ hasExerciseProperty(?r, ?p) 

^ hasValue(?r, ?v) 

^ hasMax(?p, ?max) 

^ swrlb:greaterThan(?v, ?max) 

^ hasName(?p, ?n) 

^ swrlb:stringConcat(?s, ?n, 
" is above maximum") 

-> hasEvaluation(?r, ?s) 

(iv) analyze examines if the exercise was not properly executed by checking if 

there are any unsuccessful results and so, reporting all associated problems. 

Rule: analyze 

PhaseAnalysis(?a) 

^ hasResult(?a, ?r) 

^ hasEvaluation(?r, ?s) 

^ swrlb:notEqual(?s, "OK") 

^ isCompensated(?a, ?c) 

^ swrlb:equal(?c, false) 

->hasEvaluation(?a,"Failed") ^ 
hasProblem(?a, ?s) 

 

  



117 
 

B) Nutrition rules 

(i) EEE calculates the Exercise Energy Expenditure based on the formula EEE = 

METs * 0.0175 * Weight * Duration. 

Rule: EEE 
TrainingDayAnalysis(?tda) 
^ hasPhaseAnalysis(?tda, ?pa) 
^ hasResult(?pa, ?r) 
^ hasExercisePhase(?pa, ?ep) 
^ EPDuration(?p) 
^ hasExerciseProperty(?r, ?p) 
^ hasValue(?r, ?d) 
^ hasTrainingDay(?tda, ?td) 
^ hasAthlete(?td, ?a) 
^ hasWeight(?a, ?w) 
^ hasExerciseRoutine(?td, ?er) 
^ hasExercise(?er, ?e) 
^ hasExercisePhase(?e, ?ep) 
^ hasMET(?e, ?m) 
^ swrlb:multiply(?v0, "0.0175"^^xsd:float, ?m) 
^ swrlb:multiply(?v1, ?v0, ?d) ^ swrlb:multiply(?v2, 
?v1, ?w)  ̊ sqwrl:makeBag(?b, ?v2) 
˚ sqwrl:makeBag(?b, ?v2) 
^ sqwrl:groupBy(?b, ?tda) 
˚ sqwrl:sum(?s, ?b) 
-> sqwrl:select(?tda, ?s) 

(ii) femaleTEN calculates the Resting Metabolic Rate (RMR) and the amount of 

energy needed (TEN) by an athlete, in this case, a female athlete. 

Rule: femaleTEN 
TrainingDayAnalysis(?tda) 
^ hasTrainingDay(?tda, ?td) 
^ hasAthlete(?td, ?a) 
^ hasGender(?a, "Female") 
^ hasWeight(?a, ?w) 
^ hasHeight(?a, ?h) 
^ hasAge(?a, ?age) 
^ hasGAF(?a, ?g) 
^ hasEEE(?tda, ?eee) 
^ swrlb:multiply(?ww,9.56,?w) 
^ swrlb:multiply(?hh,1.85,?h) 
^ swrlb:multiply(?aa,4.68,?age) 
^ swrlb:add(?r1,655.1,?ww) 
^ swrlb:add(?r2,?r1,?hh) 
^ swrlb:subtract(?rmr,?r2,?aa) 
^ swrlb:multiply(?rmr2,?rmr,?g) 
^ swrlb:add(?ten,?rmr2,?eee) 
-> hasRMR(?tda, ?rmr) ^ hasTEN(?tda, 
?ten) 
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(iii) EI is used to calculate the necessary energy intake for a training day, based 

on the meals consumption for that day. 

Rule: EI 
TrainingDayAnalysis(?tda) 
^ hasTrainingDay(?tda, ?td) 
^ hasMeal(?td, ?m) 
^ hasConsumable(?m, ?c) 
^ hasCalories(?c, ?cal) 
˚ sqwrl:makeBag(?b, ?cal) 
^ sqwrl:groupBy(?b, ?td) 
˚  sqwrl:sum(?s, ?b) 
-> sqwrl:select(?td, ?s) 

(iv) balance compares the energy intake with the amount of energy needed to 
calculate the energy difference. 

Rule: balance 
TrainingDayAnalysis(?tda) 
^ hasEnergyIntake(?tda,?i) 
^ hasTEN(?tda,?e) 
^ swrlb:subtract(?r,?i,?e) 
->hasEnergyDifference(?tda,?r) 

(v) evaluateNutrientsMin evaluates the athlete's nutrients intake for each 

workout phase. In this case, it evaluates if the intake is below the 

recommended level and reports a problem. 

Rule: evaluateNutrinetsMin 
TrainingDayAnalysis(?tda) 
^ hasDietaryMargin(?tda, ?dm) 
^ hasTrainingDay(?tda, ?td) 
^ hasMeal(?td, ?m) 
^ hasWorkoutPhase(?m, ?wp) 
^ hasName(?wp, ?wpn) 
^ hasConsumable(?m, ?c) 
^ hasNutrientPortion(?c, ?cnp) 
^ hasNutrient(?cnp, ?n) 
^ hasName(?n, ?nn) 
^ hasValue(?cnp, ?cv) 
^ hasDietaryProtocol(?td, ?dp) 
^ hasWorkoutPhase(?dp, ?wp) 
^ hasNutrientPortion(?dp, ?np) 
^ hasNutrient(?np, ?n) 
^ hasValue(?np, ?v) 
^ swrlb:multiply(?r1, ?v, ?dm) 
^ swrlb:subtract(?r2, ?v, ?r1) 
^ swrlb:lessThan(?cv, ?r2) 
^ swrlb:stringConcat(?s1, ?wpn, " nutrient intake is 
below recommended level (") 
^ swrlb:stringConcat(?s2, ?s1, ?nn) 
^ swrlb:stringConcat(?s3, ?s2, " should be: ") 
^ swrlb:stringConcat(?s4, ?s3, ?v) 
^ swrlb:stringConcat(?s5, ?s4, " but it is: ") 
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^ swrlb:stringConcat(?s6, ?s5, ?cv) 
^ swrlb:stringConcat(?s7, ?s6, ")") 
-> hasDietaryProblem(?tda, ?s7) 

 

C) Resource Reliability rule 

(i) topResources retrieves all the resources for each type in descending order of 

accuracy. 

Rule: topResources 

ResourceAnalysis(?res) 

^ hasResourceType(?res, ?rt) 

^ hasMethod(?res, ?m) 

^ hasAccuracy(?m, ?ac) 

˚ sqwrl:makeBag(?b, ?ac) 

^ sqwrl:groupBy(?b, ?rt, ?res) 

˚ sqwrl:max(?max, ?b) 

-> sqwrl:select(?rt, ?res, ?max) 

 

4.6 Evaluation of the Knowledge Representation 

The implemented rule based inference is only possible when the FB is duly populated. 

SWRL rules generate results only when the conditions specified in the antecedent 

(body) hold. This is true when the domain instances exist and are correctly classified.  

Open data sources were analyzed to gather these instances. Different literature pieces 

were used to cross-check the legitimacy of the acquired information. 

The knowledge representation can be evaluated from different perspectives: 

 Consistency, which performs a semantic evaluation on the asserted instances, 

among other logical checks. The semantic assessment feature applied on 

object or data property based relations is the most used in the KB. This is true 

due to the absence of axioms, specifically asserted for the computation of class 

subsumption hierarchies. 

 Applicability, being the inference results the main focus of this point. The 

competency questions were objectified in the form of SWRL rules. This process 

has no specific formula and the interpretation of those questions is crucial to 



120 
 

perform an adequate translation to a logical description. Nevertheless, it is an 

iterative process which may suffer improvements at any time. The following 

section will evaluate the reasoning results. 

To illustrate the reasoning process, a simple test case was inserted in Protégé. The 

athlete had to perform a full Snatch lift, while monitoring numerous biomechanical 

variables. To accomplish that, six instances of PhaseAnalysis were created along with 

several phase related sensor results. These values, which are 

ExecisePropertyAnalysis instances (see Figure 4.16), were linked to the analysis 

instance via the hasResult object property. 

 
Figure 4.16 Snatch, its six phases and all associated exercise property analysis instances. 

Upon comparison of the results with exercise ranges (domain knowledge), Pellet, 

which was the chosen reasoner, inferred the existence of 2 values out of bounds in 

the third phase of the exercise. Since there were problems to be reported and the 

exercise was not declared as compensated by the Training Manager, the evaluation 

shows a failure message, as can be seen in Figure 4.17. Each problem is described 

in natural language instead of description logics. On the right side of the same figure 

is the analysis of the fifth phase, which generated no problems, since it was manually 

reported as being compensated by the Training Manager. 

Queries were tested using the SQWRL Tab plug-in of Protégé. The developed 

resource-related query evaluates the accuracy of every resource based on its 

analysis, acquisition and calibration methods. Figure 4.18 presents the obtained 

results for each resource in a descending order of accuracy.  
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Figure 4.17 Rule based evaluation of Transition phase and Turnover phase of Snatch. 

 
Figure 4.18 Result of the topResources query. 

4.7 Conclusions 

This study demonstrated the use of OWL and SWRL to semantically model the whole 

weightlifting TDC-cycle, bringing together related knowledge subdomains such as 

training methodology, weightlifting biomechanics, dietary, muscle’s architecture and 

energy expenditure while modeling the synergy among them. Nutritional, 

biomechanics, and coaching/training facts were combined with SWRL rules 

representing rhythmic execution and energy balance to infer athlete’ lifting 
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performance. Moreover, these rules can be used to trigger and classify any qualitative-

quantitative lifting mismatch as corner cases which will deserve deeper and future 

quantitative analysis, both regarding nutritional and biomechanics perspectives. 

Each KB and respective rules in TDC Competency Questions Engine Architecture 

were created using only Protégé and its plug-ins, resulting into: 43 classes, 57 

properties, and 29 relationships. Overall, 9 SWRL rules and 3 SQWRL queries were 

created and these can be separated into three broad categories: 

Biomechanics/Coaching (e.g., evaluateMinMax, evaluateMin, evaluateMax, and 

analyze), Nutrition (e.g., EEE, EI, femaleTEN, balance, and evaluateNutrinetsMin), 

and Resource reliability (e.g., topResources). 

In spite of the mentioned applicability of the proposed weightlifting TDC-cycle OWL 

knowledge-based system, few drawbacks have been identified to be later tackled in 

the next iterated TDC-ontology: 

(i) Re-design the TDC-Ontology to address domain-level modularity, as well as 

being more scalable, while applying fully fourth generation methodologies. 

(ii) Devise the integration of new concepts and properties which will ease the 

modeling of corner cases (i.e., qualitative-quantitative lifting mismatch).   

(iii) Enable energy expenditure to be evaluated using different non-logical axioms 

based on prediction equations (e.g., EEE) as well as on analysis and 

optimization methods which take into account muscular activation and muscle 

contraction, for more accurate measurement. 

(iv) Iteratively tune rhythmic execution SWRL rules according to identified corner 

cases, biomechanics analysis, and optimization approaches, as well as to 

reference top performance athletes, both in terms of rhythm and anthropometric 

features. 

(v) Re-design the TDC-Ontology around existing ontologies to leverage easy 

management, updating and sharing of the TDC-Cycle information. Possible 

ontologies candidates are OPA, OPE, SHCOntology, and Kinect-Ontology 

(Diaz Rodriguez et al., 2013), only to name a few. 

Furthermore, more tests should be made based not only on open data presented and 

discussed in the existing literature but also lively collected during weightlifting training 

at Porto University.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

Modeling Weightlifting TDC-cycle following               
a Modular and Scalable Approach 

 
This chapter presents and discusses the second-iterated Weightlifting TDC-cycle ontology, 
refactored toward improved modularity, flexibility and scalability. The deeper focus is on 
qualitative semantics rules to leverage better rhythm understanding based on drafted 
heuristics and procedural rules. The rhythmic execution SWRL rules are iteratively tuned 
according to identified corner cases, biomechanics analysis, and optimization approaches, as 
well as to reference top performance athletes, both in terms of rhythm and anthropometric 
features. A two-level analysis technique is proposed for the integration of observed and 
measured data to enhance the understanding of weightlifting performance and consequently 
a better explanation for observed mismatched lifting rhythm. The refactoring process followed 
during modeling and design of the second-iterated TDC Cycle Ontology is described. Then, 
the new refactored task ontology is presented. Lastly, the new refactored semantic rules or 
axioms are proposed, which provides the context for this chapter. 
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Introduction 

The previous chapter presented the first-iterated weightlifting TDC-cycle ontology. The 

domain ontology was modeled only briefly and minimally. Each identified information 

dimension of biomechanics, coaching and training, and dietary nutrition was modeled 

as subdomains. The objectives were to seize some more insight about weightlifting 

TDC cycle and to speed up the reasoner performance. In this chapter, however, the 

second-iterated model for weightlifting TDC cycle is, contrary to the previous one, 

much more flexible, modular, and scalable through much more elaborated and 

extended ontologies, at each of the above identified domain levels. Putting it 

differently, each information dimension is declaratively extended and modeled by its 

own ontology. Then, it is accordingly interrelated with the other ones through object 

properties and well-designed heuristics and procedural rules. 

Furthermore, the main focus is on qualitative semantics rules to leverage better rhythm 

understanding based on drafted heuristics and procedural rules.  The rhythmic 

execution SWRL rules are iteratively tuned according to identified corner cases, 

biomechanics analysis, and optimization approaches, as well as to reference top 

performance athletes, both in terms of rhythm and anthropometric features. The 

method proposed in this chapter consists in a two-level analysis technique: the lower-

level statistical analysis and the higher-level semantic analysis. The main focus of this 

chapter goes to semantics analysis. The statistical analysis, data, devices, and 

optimization methods are extracted and identified from literature review to be later 

transformed to semantics artefacts (i.e., data properties and rhythmic execution SWRL 

rules). We believe that such a two level-analysis is crucial for the integration of 

observed and measured data to enhance the understanding of weightlifting 

performance and consequently a better explanation for observed mismatched lifting 

rhythm. 

The remainder of this chapter is organized as follows: Section 5.1 describes the 

refactoring process followed during modeling and design of the second-iterated TDC 

Cycle Ontology; Section 5.2 presents the new refactored task ontology; Section 5.3 

describes the new refactored semantic rules or axioms; Section 5.4 presents some 

conclusions. 
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5.1. A Generic, Flexible, and Modular Weightlifting TDC Cycle Ontology-based 

Knowledge Representation  

The design of new weightlifting TDC cycle declarative knowledge was driven through 

the following steps. Firstly, collecting new insights about weightlifting TDC cycle during 

modeling of the first-iterated ontology. Secondly, leveraging the concept of bring the 

problem to a broader context by partially (i.e., only at domain-level and not at design-

level) approaching the automated scenario-based training (SBT) as proposed by 

Peeters et al. (2014). SBT is a practical training form in high-risk professions during 

which learners engage in interactive role-playing exercises, called ‘scenarios’. 

Scenarios are usually staged within a simulated environment. Therefore, the previous 

weightlifting TDC cycle declarative knowledge was refactored in a similar way to the 

domain ontology proposed for SBT, but excluding the scenario generator and the 

associated system or design ontology. Additionally, another main focus was toward 

the extended ontologies for each dimension of weightlifting TDC cycle and existing 

interoperability among them. This feature helped us to identify and define corner cases 

under the mismatching of two binomials: coaching-biomechanics (e.g., mismatched 

lifting rhythm) and planned energy intake-expenditure (e.g., energy imbalance) for a 

given training day or session. Such corner cases are characterized by both qualitative 

(e.g., coach and nutritionist observations) and quantitative (biomechanics 

measurement and nutrition assessment), which are expressed by well-designed 

heuristics and procedural rules. 

Before the refactoring of the previously constructed domain ontology starts, it was 

reviewed by the indicated domains’ experts and stakeholders (as presented in the right 

side of Figure 4.3). This is to ensure that the required knowledge to reason about the 

problem scenarios of the weightlifting TDC cycle are fully covered. This process was 

achieved by the two following steps. Firstly, the previous domain ontology was 

evaluated for consistency and applicability by both advisors from UMinho and UP as 

well as software engineering (UMinho). This review session led to the identification of 

the four drawbacks which was presented at the end of chapter 4 (on page 122):  

(i) weak modularity and scalability, 

(ii) missing corner cases modeling, 

(iii) inaccurate measurement of energy expenditure and, 

(iv) inaccurate modeling of rhythmic execution. 
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Secondly, the previous domain ontology was evaluated for completeness by several 

Thai weightlifters and coaches as well as a physiologist from Kasetsart University 

(Thailand), ontology experts from Jilin University (China), both advisors as a 

biomechanist and software engineering (Portugal). As a result, this second review 

session suggested (i) addition of some concepts (e.g., anthropometric features) to 

more clearly differentiate qualitative from quantitative parameters, (ii) loose-coupling 

those parameters through axioms which model the coaching-biomechanics and 

energy intake-expenditure binomials, and (iii) improvement of modularity and 

scalability. These suggestions led to the adjustment of the previous domain ontology 

at the Task Rules Sublayer (Figure 4.3). 

The following paragraphs describe the refactored TDC-Ontology, starting with each 

individual ontology on training, biomechanics, nutrition, and stakeholder domains, 

while enumerating and commenting changes suggested during the evaluation 

process. Figure 5.1 generically and partially represents the refactored TDC-Ontology 

= (CA, CV, FB, R, A) as its focus is mainly on sets CA and R, but it is also extended 

in term of the sets A and FB. 

Figure 5.2 partially shows only the implemented TDC-Cycle taxonomy of the new 

refactored ontology (i.e., representing a class hierarchy based only on is-a kind of 

relations).  
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Figure 5.2 Fragment of the TDC-Cycle taxonomy on iteration 2. (Enlage version in Appendix)
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5.1.1 The Training or Coaching Domain 

In the training domain ontology (Layer 1 of Figure 5.1), the central concept is the 

Exercise which is composed by several smaller or more specific analysis or steps. It 

is expressed by means of isPartOf arrow and contains diamond. Exercises are 

performed in an Environment (e.g., a Gym), which is composed by one or more 

Resources or equipment (e.g., like barbell and/or weight plates). An environment has 

specific configuration or Setting expressed as a set of attributes (e.g., humidity and 

temperature). These setting can challenge not only an athlete capability to 

appropriately perform the proposed exercise but it also affects the energy expenditure, 

when exercising in such environment. It should be noted that the Environment concept 

was modeled based on the work of Ermolayev et al. (2008). The environment setting 

is expressed as a set of data properties, while exercises target specific athlete’s goals 

and dietary programs are represented through relationships hasAthleteGoal and 

changes (i.e., change of DietaryPlan), respectively. Accordingly, the FB artefact of the 

TDC-Ontology is extended with some instances of Exercise concept, through three 

subclasses. They are, namely, Supplement, Snatch and Clean&Jerk. The instances 

of Supplement subclass are GoodMorning, Lunge, PowerClean, PowerSnatch, and 

Front&Back Squats. All exercises follow a model which is expressed by the concept 

of Model. In this case, exercises consist of two instances (i.e., Bulgarian and Russian) 

and two relationships (i.e., follows and plan&periodize). While performing an exercise, 

several kinematics and kinetics attributes of the barbell and the athlete’s body are 

generated through qualitatively observation of coaches as well as quantitatively 

measurement using sport biomechanics technology. These relationships are 

represented by relationships observes and a hidden one related to the Result concept, 

respectively.  

The following Figure 5.3 depicts the OWL implementation, using Protégé, of the 

training domain class hierarchy. For practical reasons, it should be noted that each 

name inside its associated domain/class are preceded by the domain name, (e.g., 

TrainingEnvironment and TrainingExercise are classes from the training domain). The 

TrainingExerciseMovement class and its sub-classes are added to create terminology 

for positions and phases of an exercise (as explained earlier in section 1.3.1). Based 

on these concepts, the class TrainingExerciseSequence specifies the set of phases 

and positions for a kind of exercise (Figure 5.4). As our main exercise is snatch, 

TrainingSnatch is defined by both TrainingSequencePositionSnatch and Training 

SequencePhaseSnatch classes (Figure 5.5). 
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Figure 5.3 The Training Domain class hierarchy. 

Figure 5.4 Description of class TrainingSequencePositionSnatch using OWL axioms. 

Figure 5.5 Description of class TrainingSnatch using OWL axioms. 
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According to the concept of snatch movement, at least one of those sequences, 

position or phase, must be presented. In fact, when assessing an exercise, it is done 

according to static perspective (positions; considered on athlete’s body) or dynamic 

perspective (phases; considered on barbell). To quantify the movement, it requires a 

joined role of coaches and biomechanics measurements. Therefore, based on these 

collected static (body movement) and dynamic data (barbell movement), alongside the 

support of OWL rules, it is possible to assess the quality of the movement in terms of 

positions and rhythm, as suggested by Lenjannejadian & Rostami (2008), Lin et al 

(2015), and Szabo (2012). 

Figure 5.6 shows a set of individuals which represent static perspective or body 

movement in the TrainingExercise class. These individual include several object 

properties related to movement (Figure 5.7). The important aspect of this 

implementation is the binding between the training domain and the biomechanics 

domain. In this example, it can be seen that a position (e.g. power position) is related 

to a set of biomechanical individuals (e.g. center of mass, knee joint angle, etc.). Each 

biomechanical individuals asserts a quantitative value, given by a measurement 

device. 

 

Figure 5.6 The individuals that form static perspective (body movement) in TrainingExercise class. 
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Figure 5.7 Training domain object properties. 

5.1.2 The Biomechanics Domain 

In the biomechanics domain ontology (Layer 2 of Figure 5.1), the central concept is 

the Analysis which is composed by several smaller or more specific analysis or steps. 

It expressed by means of isPartOf arrow and contains diamond. Several resources 

with specific configuration or Setting, which are used during the analyzes, are 

expressed by data properties. There are several instances of biomechanics resources 

such as 2D/3D motion analysis systems, force platforms, EMG-based sensors, linear 

position transductor, accelerometers or calorimeter. They are expressed by the ‘is-a’ 

relationship as indicated by the arrow. During analysis, several results are produced 

and expressed by the relationship provides. These results can be proposedly used for 

energy expenditure estimation and/or qualitative-quantitative comparative analysis. 

For the latter, the set of axioms (i.e., the artefact of the set A) in the TDC-Ontology is 

accordingly extended to evaluate the rhythmic execution. The Result concept is also 

a composite and it can be estimated on barbell and body kinematics/kinetics, power 

output, muscle activities, and so on. For example, the barbell kinematics can be 

represented through a set of sequential xy-coordinates using a kind of flow data 

property; muscle activities can be measured on major muscles groups such as Vastus 

Lateralis, Biceps Femoris, Pectineus Gracilis and many more. An analysis is qualified 

or driven through the specify relationship with an acquisition method, represented by 

the composite concept of AcquisitionMethod. This concept is internally described by a 

set of annotation properties to add static knowledge to the TDC-ontology, transmitting 

important information to the stakeholder domain individuals (e.g., athletes, coaches, 

nutritionist, biomechanist). Such kind of annotation properties can be valuable even to 
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electronics engineers. In case the devices are wrongly calibrated or improperly 

calibrated, they can try to understand and fix those errors. Individually, each 

acquisition method is specified by two other fully annotated composite concepts of 

CalibrationMethod and AnalysisMethod. Subclasses of the latter concept are 

DoublyLabeledWater, MechanicalPowerAnalysis, VideoAnalysis, EMGAnalysis, 

IndirectCalorimetry, only to mention a few.  

Figure 5.8 presents the implemented class hierarchy of the biomechanics domain after 

being designed using the Protégé environment. Regarding the original drafted class 

diagram of Figure 5.1, two classes, BioMechResultFacets and BioMechMuscles, were 

introduced, just for clarification purpose. The first one includes several results facets 

that a biomechanical result can be assigned to while the latter groups a set of muscles. 

In Figure 5.9 is presented the objects relationships, or properties in ontology parlance, 

of the biomechanics domain. Any other relations involving classes in other domains, 

Figure 5.8 Biomechanics 
ontology class hierarchy. 

Figure 5.9 Object properties of 
biomechanics ontology. 

Figure 5.11 A measurement artefact as an instance of 
BioMechResult class. 

Figure 5.10 The BioMechResult class description. 
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such as nutrition and training, is implemented in the whole TDC-Cycle ontology that 

wraps together the four individual domain ontologies, including the stakeholder 

domain.  

Figure 5.10 and 5.11 presents the definition of the BioMechResult concept/class and 

an individual of such class, respectively. 

5.1.3 The Nutrition Domain 

In the nutrition domain ontology (Layer 3 of Figure 5.1), the central concept is the 

DietaryProtocol. It is also a composite which relates to the Consumable concept 

through prescribes and its inverse (i.e., prescribedby) relationships. Each dietary 

protocol can prescribe several consumables from different food categories as 

expressed by the following subclasses of Drink, NaturalFood and DietarySupplement. 

Individually, each consumable contains a certain amount of macro- and micro-

nutrients. Micronutrients consist of three key nutrients expressed by the concepts of 

Protein, Fat and Carbohydrate, alongside the multiple cardinality relationship of 

contains.  Micronutrients contain two groups of nutrients represented through 

VitaminGroup and MineralGroup concepts. Traditionally, a dietary protocol is 

administrated on several pre-workout, during-workout, post-workout, or competition 

day, accordingly to an established timing sequence. The energy expenditure analysis 

is applied on each dietary protocol after its administration and at the end of the above 

four stages of pre-workout, during-workout, post-workout, or competition day. It uses 

collected metabolic rate measurements as performed by using both technologically 

and analytically approaches. Analytical technique for determination of energy-

expenditure is achieved based on specific configuration or Setting given by a set of 

data property (e.g., age, gender, weight, height, GAF, SAF and METs).  

The implemented class hierarchy of the nutrition domain is presented in Figure 5.12. 

with its associated object properties (Figure 5.13). While the NutritionDietaryOccasion 

class was created to group the meals/nutrient prescription occasions, the 

NutritionDietaryProtocol class was implemented to model both meals and nutrients 

prescriptions (Figure 5.14, 5.15). A meal (i.e., an individual of NutritionDietaryProtocol 

class) has consumables which is given by the hasNutritionDPPresribesConsumable 

relationship. Each consumable has nutrients (i.e., hasNutritionNutrient) in which each 

nutrient has a nutritional value (i.e., hasNutritionNutrientValue). 
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Figure 5.12 Nutrition domain class hierarchy. 

Figure 5.13 Object properties of the nutrition 
domain. 

Figure 5.14 Definition of the NutritionDietaryProtocol class. 

Figure 5.15 Set of individuals composing a meal domain. 
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5.1.4 The Stakeholder Domain 

All three layers, as described above, demand for information provided by key involved 

stakeholders in the weightlifting sports. In the stakeholder domain, the central concept 

is the Actor. It is described by a set of data properties (e.g., name and role). The Actor 

concept is composed by five subclasses, namely, vAgent (virtual agent), Coach, 

Athlete, Nutritionist and Biomechanist through the ‘is-a’ relationship. Key role of a 

virtual agent, if implemented, will be alerting coaches and other stakeholders for the 

occurrences of abnormal observations/measurements. The main concern is the corner 

cases (e.g., unbalanced rhythm and nutrition) according to designed SWRL rules. 

Furthermore, a coach is also notified or alerted of any abnormal observations or 

measurements by biomechanist and nutritionist. The Coach concept is related to the 

training ontology through the concept Exercise and relationship observe&change. This 

is because a coach can prescribe, change, and qualitatively assess some exercises 

attributes. Similar kind of observe&change relationships relate Biomechanist and 

Nutritionist concepts to biomechanics and nutrition ontologies through Analysis and 

DietaryProtocol concepts, respectively. Additionally, the nutritionist prescribes a 

particular dietary protocol to an athlete. The Athlete concept has several set of data 

properties. Anthropometric (Khaled, 2013) and metabolic features as well as the 

rhythmic execution of a top performance athlete are grouped as a reference athlete. 

A goal is set by coaches and nutritionists during the prescription of an exercise and 

dietary protocols, respectively. Therefore, possible subclasses of the Goal concept are 

given by the concepts of Performance and WeightCutting. 

The implemented stakeholder domain class hierarchy and its domain object properties 

are presented in Figure 5.16 and 5.17, respectively. 

 
Figure 5.16 The Stakeholder domain class hierarchy. 

Figure 5.17 The Stakeholder domain object properties. 
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5.2. The Refactored Task Ontology 

With all individual domain ontologies already designed, the whole weightlifting TDC-

cycle ontology wraps them all together while being extended by integrating the task 

domain ontology (Figure 5.18). 

As mentioned previously on Chapter 4, the task domain is extended with concepts 

required to establish relation between individual domains of nutrition, biomechanics 

and training in order to later infer about energy expenditure and rhythm quality from 

both qualitative and quantitative perspectives.  

 

Figure 5.18 The whole weightlifting TDC-cycle ontology. 

Compared to the previous task domain ontology which consists of 

AthleteProfileAnalysis, PhaseAnalysis, ResourceAnalysis, ExercisePropertyAnalysis 

and TrainingDay Analysis concepts, the new task domain was refactored around more 

generic concepts of AthleteNutritionReference, TrainingDay, and TrainingReference, 

as shown in Figure 5.18. It hosts individuals of nutrition, biomechanics and training 

domains, required for SWRL reasoning about energy expenditure and rhythm quality. 

Thus, TrainingDay, AthleteNutritionReference, and TrainingReference are classes 

hosting individuals representing an athlete’s training days, prescribed nutrients to an 

athlete, and a top reference athlete data, respectively. It is worth noting that the 

TrainingReference class contains not only anthropometric features but also 

quantitative rhythmic execution parameters (e.g., barbell/body kinematics and barbell 

trajectory on each snatch phase). The former was created to ensure that the athletes 

are comparable in the same weight class. In other words, TrainingReference class 

contains individuals like a passive actor (i.e., an athlete reference) as well as 
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individuals regarding snatch exercises, as correctly performed by the associated 

reference athlete. The definition of the TrainingReference class is presented in Figure 

5.19. 

 

Figure 5.19 Definition of TrainingReference class using OWL axioms. 

Unlike the previous version, the first-iterated version where the task domain ontology 

had their own data properties, in this version all data properties are “inherited” from 

the various domains (i.e., through the TrainingReference, AthleteNutritionReference 

and TrainingDay). For example, the TrainingReference class in Figure 5.19 is a 

wrapper for a set of two TrainingExercise. It represents the range of parameters for a 

successful rhythmic execution, according to a top reference athlete. Therefore, the 

task domain ontology implicitly uses the data properties of TrainingExercise class 

individuals (as given in the above Figure 5.6). The same approach applies for data 

properties of AthleteNutritionReference class individuals (Figure 5.15). 

 

Figure 5.20 Example of an inferred data property, hasEvaluation, as ‘inherited’ by the task domain ontology 
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Figure 5.20 exhibits the setting of the inferred hasEvaluation data property in a 

TrainingDay’s individual after the execution of one of the drafted SWRL rules in the 

following paragraph 5.3. It should be mentioned that each inferred data property is 

related to a SWRL rule and composed by chaining the concept in which such property 

belongs to other individuals. In doing so, it is easier to reason about energy 

expenditure and rhythm execution quality. 

 

Figure 5.24 Fragment of individuals or facts created to 
populate the new fact base. 

Figure 5.22 Two identified training sessions, 
TD1A1 and TD1A2, by running the OWL 
reasoner on the TrainingDay class.  

Figure 5.23 Description of TD1A1, an individual 
of TrainingDay class.  

Figure 5.21 The Description of the 
TrainingDay Concept. 
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Figure 5.21 presents the description of the TrainingDay concept as an integrator class 

for all domains and it is composed by some exercises, performed by an athlete, and 

the meals taken during that day. In fact, the individuals of such class became the 

foundation for most of drafted SWRL rules. One can see that there is no reference to 

the biomechanics features as they are implicit to the exercise as shown below in Figure 

5.22. In this example, by executing the reasoner, two different individuals of training 

sessions TD1A1 and TD1A2 were identified. TD1A1 is described in Figure 5.23. 

Figure 5.24 exhibits some individuals of concepts in the CA set (i.e., they are 

instantiations for the concepts from CA). They are created to populate the fact base 

and so, updating the knowledge base with quantitative values (ground values) as well 

as qualitative values (abstract values). While the former can be measured and 

collected using biomechanics devices, the latter are asserted by coaches and 

nutritionists through direct observation. Furthermore, these two actors can map some 

of their abstract or observed values to specific ground values. For instance, when 

assessing the rhythmic execution quality of a given athlete, comparatively to his/her 

related top reference athletes. 

5.3 The Refactored Set of Axioms 

Having the FB already populated, then each inferred data property must be related to 

a SWRL rule, relating individuals’ asserted data properties to create new knowledge, 

for instance, about energy expenditure and rhythm execution quality. Next, some of 

the drafted SWRL rules and queries are described and they are based on the following 

points:  

(i) Data properties related to the task domain ontology can be of four types (1) 

quantitative or ground value, (2) qualitative or abstract value, (3) abstract value 

mapped to ground value, and (4) processed values which are outputs of 

mathematical models for biomechanical/nutritional activities (e.g., lifting 

trajectory or formulas for energy-expenditure) or statistical analysis which is 

given through artificial neural networks, dedicated regression equations, and so 

on (see Ammar et al., 2018; Knight et al., 2005; Kowsar et al., 2016; 

Staudenmayer et al., 2009; Velloso et al., 2013). 

(ii) SWRL rules are drafted according to the written observations and comments in 

the conclusions and discussions paragraphs of papers in the literature review. 
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The following SWRL rules are divided into two main parts. The first part (rules A-F) 

which is related to rhythmic execution are implemented based on training movements 

and the respective biomechanics data as presented in Figure 5.25. To model the 

rhythmic execution as envisioned by Ho et al. (2014), we believe that body movements 

must be mapped on exercise positions while barbell captured on exercise phases. For 

each exercise perspective, position and phase, a set of biomechanics data is 

collected. The second part (rules G-L) which relates to energy balance between intake 

and expenditure. Energy and nutrients intake data are obtained from menus in which 

nutritionist precribed for an athlete in a given training day, whereas energy and 

nutrients expenditure data are obtained from estimated energy expenditure equations 

and the nutrients reference values. 

  

Figure 5.25 Concepts, properties and their interactions in the modeling and design of rhythmic execution rule. 

A) SWRL rule: AthleteExerciseEvaluation-BodyPosMin/Max  

The AthleteExerciseEvaluation-BodyPosMin SWRL rule evaluates alongside its pair 

rule AthleteExerciseEvaluation-BodyPosMax, if an exercise was well-performed by an 

athlete according to the static (based on the exercise's positions) perspective. Due to 

the carefully implemented ontology, either static or dynamic perspectives are inferred 

and/or asserted using a similar set of rules.  
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As a template for the set of rules, the rule AthleteExerciseEvaluation-BodyPosMin 

evaluates if the quantitative data collected for the athlete’s movement positions are 

below a minimum, regarding a reference athlete. 

Rule: AthleteExerciseEvaluation-BodyPosMin  

TrainingDay(?td)  
^ hasWLAthlete(?td, ?at) ^ hasWLAthleteWeightClass(?at, ?awc) ^ 
hasWLAthleteGender (?at, ?ag) 

  
(1) 

^ hasExercise(?td, ?te) ^ hasWLTechImprovement (?te,?tei) ^  
hasTrainingExeciseName(?te, ?tenm) ^ hasTrainingInstanceLabel(?te, 
?tel)  

 
(2) 

^ hasTrainingBodyMovement(?te, ?bm) (3) 
^ hasTrainingExerciseSequencePosition(?bm, ?es) (4) 
^ hasTrainingExerciseMovement(?es, ?mp) ^ 
hasTrainingInstanceLabel(?mp, ?mpl) ^ 
hasTrainingInstanceLabelString(?mp, ?mps)     
  

 
(5) 

^ hasTraining2BioMechBodyResult(?mp, ?br) ^ 
hasBioMechInstanceLabel(?br, ?brl) ^ hasBioMechStringValue(?br, 
?brs) ^ hasDataBioMechResultvalue(?br, ?brv)   

 
(6) 
 

^ TrainingReference(?tr) ^ hasWLAthlete(?tr, ?atr) ^ 
hasWLAthleteWeightClass(?atr, ?awc)  
^ hasWLAthleteGender (?atr, ?ag) 

 
(7) 

^ hasExerciseMin(?tr, ?ter) ^ hasTrainingInstanceLabel(?ter, ?tel) (8) 
^ hasTrainingBodyMovement(?ter, ?bmr)   (9) 
^ hasTrainingExerciseSequencePosition(?bmr, ?esr) (10) 
^ hasTrainingExerciseMovement(?esr, ?mpr) ^ 
hasTrainingInstanceLabel(?mpr, ?mpl) 

(11) 

^ hasTraining2BioMechBodyResult(?mpr, ?brr) ^ 
hasBioMechInstanceLabel(?brr, ?brl) ^ 
hasDataBioMechResultvalue(?brr, ?brrv) 

 
(12) 
 

^ swrlb:lessThan(?brv, ?brrv) ^ swrlb:stringConcat(?str, "Exercise: 
", ?tenm " ", "Body position: ",?mps, ": ", ?brs, " is below 
minimum")   

 
(13) 

-> hasEvaluation(?td, ?str) ^ hasResultIndividual(?te, 
AthleteExerciseEvaluationNOTOKClassInst)  

(14) 

Lines (1) to (6) capture athlete results, by proceeding with the following SWRL rule 

chaining: (1) TrainingDay has an athlete, which has a weight class and a gender. The 

two parameters will be used later to match the respective reference athlete. It must be 

noted that since male and female’s weight classes are not disjoint, the gender attribute 

must also be used. (2) A TrainingDay has also an exercise, and this has a name, and 

a reference label (hasTrainingInstanceLabel). All labels referenced in this rule were 

inferred by other OWL assertions axioms. The purpose of those label is only to support 

the rule implementation, and so, matching the respective individual in the reference 

athlete side. (3) An exercise has a body movement alongside a barbell movement, but 

for computing efficiency purposes, the latter is implemented by another SWRL set of 

rules. (4) A body movement has an exercise sequence position. (5) The exercise 

sequence position has several exercise movements. In case of snatch lifting, they 
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consist of start, knee level, power, fully extended, catch and fully recovered. (6) Each 

exercise movement has collected biomechanical ground values or processed values. 

Each of the ground/processed value will match the respective reference athlete for the 

comparable set of values, in terms of measuring the same body/barbell part with the 

same quantities or instrument (e.g. measuring the knee angles at the start position). 

Lines (7) to (12) mimic the previous rules but with regard to the reference athlete. It 

proceeds with the following chaining: (7) The TrainingReference will match the 

athlete’s weight class and gender, and so, selecting the reference athlete. (8) For the 

selected reference athlete, the minimum reference values will be selected for the 

appropriate exercise, e.g. snatch lifting. (9) As in the athlete side, an exercise has 

movements and, in this case, they are body movements. (10) The exercise sequence 

will match athlete’s sequence. (11) The same goes for the exercise movements. (12) 

Each exercise movement, from the reference athlete, has associated biomechanics 

ground values or processed results.  

Finally, the line (13) compares the athlete’s attributes to the minimum attributes of the 

reference athlete, while the line (14) sets the inferred hasEvaluation data property in 

the TrainingDay individual, with the appropriate value. The other atom sets a property, 

in each exercise that will be used for rhythm assessment in the ExerciseConfict rule. 

As mention earlier, the AthleteExerciseEvaluation-BodyPosMax SWRL rule is 

grouped with previous one to provide the upper bound of “valid” athlete’s movement 

positions. The rule is similar to the previous one, but different in line (8) where 

hasExerciseMax(?tr, ?ter) is used instead to look for upper bound values in the 

reference athlete, in line (13) the function swrlb:greaterThan(?brv, ?brrv) checks the 

upper limits, and in the remaining atom at the same line which must be accordingly 

changed. Another related rule, AthleteExerciseEvaluation-BodyPosOK, verifies if the 

values are in-between these min and max references and if so, it sets a property in 

the exercise, stating that the body movement performed was OK. This property will be 

used in theExerciseOK rule.    

B) SWRL rule: AthleteExerciseEvaluation-BarbellPhaseMin/Max 

The other group of rules, implemented by AthleteExerciseEvaluationBarbellPhaseMin 

and AthleteExerciseEvaluationBarbellPhaseMax checks if the exercise was well 
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performed from the dynamic perspective, i.e., regarding the barbell's parameters 

during the exercise phases. The approach is the same as presented in Athlete 

ExerciseEvaluation-BodyPosMin rule but replacing hasTrainingBodyMovement at line 

(3), (9) and hasTrainingExerciseSequencePosition at lines (4), (10) by hasTraining 

BarbellMovement and hasTrainingExerciseSequencePhase, respectively. As in the 

body movement rules which presents AthleteExerciseEvaluation-BodyPosOK, for 

barbell movement, there is also a rule AthleteExerciseEvaluation-BarbellPhaseOK. 

The objective is to verify if the values of the barbell movements are in-between the 

min and max references and also in that case it sets a property in the exercise stating 

that the barbell movement was OK. This property will also be used in theExerciseOK 

rule.      

C) SWRL rule: BarbellTrajectory 

This rule is computationally intensive and complex due to the usage of array of points. 

The goal of this rule is to access if the movement in each phase is in accordance with 

a reference movement. If it is, the rule asserts an individual, AthleteExerciseTrajectory 

OKClassInst, which will be later used by ExerciseOK rule to validate the overall 

exercise. It is similar to AthleteExerciseEvaluation-BodyPosMin rule, except that it is 

dealing with barbell movements at line (3), mapping the phases of an exercise at line 

(4) and with their movements at line (5). The measurements used by this rule, are 

points of a trajectory, in an ordered sequence (6). Lines (7) to (12) relate these values 

to the reference values, as in AthleteExerciseEvaluation-BodyPosMin rule. The 

difference is that, unlike the latter which compares with a lower threshold, this rule 

checks whether user points are inside the defined range for each point. A unique range 

value for all the trajectory points could be set, but for improving flexibility a tolerance 

was defined for each point. In line (12) the reference values and tolerance are obtained 

while at line (13) they are compared with the user data. If all points of all phases, are 

in the tolerance range of the reference then, a specific individual is asserted at line 

(14) to signal success.  

Rule: TrainingTrajectory  

TrainingDay(?td) ^ hasWLAthlete(?td, ?at) ^ hasWLAthleteWeightClass(?at, 
?awc) ^  
hasWLAthleteGender (?at, ?ag)                             

 
(1) 

^ hasExercise(?td, ?te) ^ hasWLTechImprovement (?te,?tei) ^ 
hasExeciseName(?te, ?tenm) ^ hasTrainingInstanceLabel(?te, ?tel)   

(2) 

^ hasTrainingBarbellMovement(?te, ?bm) (3) 

^ hasTrainingExerciseSequencePhase (?bm, ?es) (4) 



146 
 

^ hasTrainingExerciseMovement(?es, ?mp) ^ hasTrainingInstanceLabel(?mp, 
?mpl) ^ hasTrainingInstanceLabelString(?mp, ?mps)  

 
(5) 

^ hasTraining2BioMechBodyResult(?mp, ?br) ^ hasBioMechInstanceLabel(?br, 
?brl) ^ hasBioMechSeqValue(?br, ?brs) ^ hasDataBioMechResultXvalue(?br, 
?brvx) ^ hasDataBioMechResultYvalue(?br, ?brvy) 
 

 
 
(6) 

^ TrainingReference(?tr) ^ hasWLAthlete(?tr, ?atr) ^ 
hasWLAthleteWeightClass(?atr, ?awc)  
^ hasWLAthleteGender (?atr, ?ag)       
   

 
(7) 

^ hasExerciseMin(?tr, ?ter) ^ hasTrainingInstanceLabel(?ter, ?tel) (8) 

^ hasTrainingBarbellMovement (?ter, ?bmr) (9) 

^ hasTrainingExerciseSequencePhase (?bmr, ?esr) (10) 

^ hasTrainingExerciseMovement(?esr, ?mpr) ^ 
hasTrainingInstanceLabel(?mpr, ?mpl) 

(11) 

^ hasTraining2BioMechBodyResult(?mpr, ?brr) ^ 
hasBioMechInstanceLabel(?brr, ?brl)  
^ hasBioMechSeqValue(?brr, ?brs) ^ hasDataBioMechResultXvalue (?brr, 
?brrvx)  
^ hasDataBioMechResultYvalue (?brr, ?brrvy) ^ 
hasDataBioMechResultvalueTolerance(?brr, ?brrvto) 
^ swrlb:multiply(?tolx, ?brrvx, ? brrvto) ^ swrlb:multiply(?toly, 
?brrvy, ? brrvto)  
^ swrlb:subtract(?minx, ?brrvx, ?tolx) ^ swrlb:subtract(?miny, ?brrvy, 
?toly)  
^ swrlb:add(?maxx, ?brrvx, ?tolx) ^ swrlb:add(?maxy, ?brrvy, ?toly)  
^ swrlb:greaterThan(?brvx, ?minx) ^ swrlb:lessThan(?brvx, ?maxx) 
 
^ swrlb:greaterThan(?brvy, ?miny) ^ swrlb:lessThan(?brvy, ?maxy) 
 

 
 
 
(12) 
 
 
 
 
 
(13) 

-> hasResultInstance(?te, BarbelTrajectoryOKClassInst) (14) 

 

D) SWRL rule: TechniqueImprovement 

Both SWRL rules mentioned earlier aim to check if the exercise technique improves 

and if so, it invokes the following rule, TechniqueImprovement, for validation of such 

goal. It is known that the lifting technique depends on the load, so weightlifting 

literature (e.g., Szabo (2012)) suggested that the ideal weight for technique 

improvement should be on the range of 80-85%. Usually, this label is used to map a 

type of exercise, in this case, to a snatch lifting exercise.  

Rule: TechniqueImprovement 
 

TrainingDay(?td) ^ hasWLAthlete(?td, ?at) ^ 

hasWLAthleteWeightMax(?at, ?awm)  

^ hasExercise(?td, ?te) ^ hasExeciseWeight(?te, ?tew) ^ 

swrlb:multiply(?lowv, awm, 0.80)^ ^ swrlb:multiply(?hiv, awm, 

0.85)^swrlb:greaterThan(?tew, ?lowv) ^ swrlb:lessThan(?tew, ?hiv) 

-> hasWLTechImprovement (?te, "OK") 
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E) SWRL rule: ExerciseOK 

The atom chaining of ExerciseOK rule starts at line (1) by scanning each exercise in 

a TrainingDay and checking at line (2) if both body/barbell movements and barbell 

trajectory are correct. If they are correct, at line (3) a property is asserted stating that 

the exercise was well performed. 

Rule: ExerciseOK  

TrainingDay(?td) ^ hasExercise(?td, ?te) ^ hasExeciseName(?te, 
?tenm) ^ hasTrainingInstanceLabel(?te, ?tel)                     

 
(1) 

^hasResultIndividual( te, BarbelMovementOKClassInst) ^  
hasResultIndividual( te, BodyMovementOKClassInst) ^ 
hasResultIndividual( te, BarbellTrajectoryOKClassInst) ^ 
swrlb:stringConcat(?str, "Exercise: ", ?tenm, "- well performed")  

 
 
 
(2) 

-> hasEvaluation(?td, ?str) (3) 

 

The following Figure 5.26 illustrates the execution of the ExerciseOK rule.   

 

Figure 5.26 Output info generated after executing the SWRL rule designated as ExerciseOK. 

 

F) SWRL rule: ExerciseConfict 

What if in certain cases there is a mismatch between an executed exercise 

performance and its related reference performance, while the former is acceptable by 

the coach? This is considered as an interesting “corner case” where different 

properties interact together to compensate each other. The rule ExerciseConfict, 

allows for the identification of such cases. As the system also highlights the error, it is 

easy to find the properties that are compensating each other. The atom chaining of 

ExerciseConfict rule starts at line (1) by scanning each exercise in a TrainingDay and 

checking at line (2) if it is not correctly performed (i.e., if the AthleteExercise 
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EvaluationNOTOKClassInst was asserted by the movement rules). At line (3) is 

checked if the coach approved the exercise (i.e., if the AthleteExerciseCoach 

EvaluationOKClassInst was asserted by the coach). At line (4) a property is asserted, 

stating that the exercise was qualitatively accepted by the coach but not quantitatively, 

based on biomechanical measurement.  

Rule: ExerciseConfict  

TrainingDay(?td) ^ hasExercise(?td, ?te) ^ hasExeciseName(?te, ?tenm) 
^ hasTrainingInstanceLabel(?te, ?tel)     
                               

 
(1) 

^ hasResultIndividual (te, AthleteExerciseEvaluationNOTOKClassInst) ^ (2) 

hasExerciseMovementCoachEvaluationOK( te, 
AthleteExerciseCoachEvaluationOKClassInst) ^ 
swrlb:stringConcat(?str, "Exercise: ", ?tenm, "- validated by coach – 
NOT BY THE SYSTEM ") 

(3) 

-> hasEvaluation(?td, ?str) (4) 

 

In Figure 5.27 two aspects have been checked. The individual AthleteExercise 

EvaluationNOTOKClassInst asserted by the coach, and the individual 

AthleteExercise EvaluationNOTOKClassInst inferred by the execution of one of 

the movement rules. Based on the information showed in Figure 5.28, previous 

rules make the reasoner infers that the exercise was “validated by the coach” 

(see Figure 5.28). 

 
 

 

 

Figure 5.27 Qualitative and quantitative evaluation of a movement by running one of the above movement rules. 
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Figure 5.28 Qualitative evaluation of a lifting movement. 

G) SWRL rule: ExerciseEnergyExpenditure 

The ExerciseEnergyExpenditure rule is a SQWRL which uses the following analytical 

equation of energy expenditure, EEE = 0.0175 * METs * Weight * Duration, to calculate 

the expended energy for a training day. Its obtained result will be used in the TEN 

calculations and its atoms are chained as follows. At line (1) a TrainingDay has an 

associated athlete with his weight. At line (2) is expressed that such athlete performed 

a set of exercises, each exercise has its own duration and METs value. At line (3) the 

above EEE formula is applied using as inputs data properties retrieved using 

preceding atoms. At line (4) the result is outputted per each training day and used to 

assert the HAS_EEE data property in the respective TrainingDay individual. 

Rule: ExerciseEnergyExpenditure  

TrainingDay(?td) ^ hasWLAthlete(?td, ?ta) ^ hasWeight(?ta, ?taw)                       (1) 

^ hasExercise(?td, ?te) ^ hasTrainingExerciseMET(?te, ?MET) ^ 
hasTrainingExerciseDuration 
(?te, ?ed) 

(2) 

swrlb:multiply(?METw, "0.0175"^^xsd:float, ?MET) ^^ 
swrlb:multiply(?r1, ?ed, ?METw) ^ swrlb:multiply(?r2, ?r1, 
?taw)  .  sqwrl:makeBag(?b, ?r2)  

(3) 

-> sqwrl:select(?td, ?EEE)  (4) 

H) SWRL rule: TENFemale/Male 

The TENFemale rule calculates the TEN (total energy needed) and RMR (resting 

metabolic rate) of an athlete, in this case, a female athlete, although the latter value is 

not used by now. The rule uses the same analytical equations as presented earlier in 
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page 72, 73. The chaining of its associated atoms starts at line (1) expressing that a 

TrainingDay has a hasEEE data property, as calculated earlier. At line (2), each 

training day also refers to an athlete from which is selected several attributes. At line 

(3) these attributes are used to calculate the RMR, while at line (4) the previous result 

is also retrieved to obtain the TEN. Finally, at line (5) both obtained results are used 

to assert hasRMR and hasTEN data properties of the involved TrainingDay individual. 

A TENMale rule is similarly drafted and implemented.  

Rule: TENFemale  

TrainingDay(?td) ^ hasEEE(?td, ?eee)                                (1) 

^ hasTrainingAthlete(?td, ?ta) ^ hasWLAthleteGender(?ta, 
AthleteGenderFemaleClassInst) ^    hasHeight(?ta, ?hgt) ^ 
hasWeight(?ta, ?wgt) ^ hasAge(?ta, ?age) ^ hasGAF(?ta, ?gaf) 

 
 
(2) 

^ swrlb:multiply(?a1, "4.68"^^xsd:float, ?age) ^ swrlb:multiply(?h1, 
"1.85"^^xsd:float, ?hgt) ^ swrlb:multiply(?w1, "9.56"^^xsd:float, 
?wgt) ^ swrlb:add(?r1, "655.1"^^xsd:float, ?w1)  

^ swrlb:add(?r2, ?r1, ?hgt) ^ swrlb:subtract(?rmr, ?r2, ?a1) 

 
 
 
(3) 

^ swrlb:multiply(?r3, ?rmr, ?gaf) ^ swrlb:add(?r4, ?eee, ? r3)             
^ swrlb:multiply(?ten, "1.1"^^xsd:float, ?r4)   

 
(4) 

-> hasRMR(?td, ?rmr) ^ hasTEN(?td, ?ten)                (5) 

I) SWRL rule: EnergyIntake 

The EnergyIntake rule is a SQWRL which calculates the energy intake for a training 

day, based on the meals consumption for that day. The chaining of its atoms starts at 

line (1) addressing each taken meal of a TrainingDay. At line (2) consumables are 

selected and from each of them it is individually selected the caloric value. At line (3) 

the result accumulatively added to those from other consumables from all other meals 

in that training day. Finally, at line (4) the results are outputted per each training day, 

while the HAS_EI data property in the respective TrainingDay individual is asserted. 

Rule: EnergyIntake  

TrainingDay(?td) ^ hasMeal(?td, ?m)                              (1) 

^ hasNutritionDPPrescribesConsumable(?m, ?mc) ^  
hasNutritionCalories(?mc, ?cal)        

 
(2) 

. sqwrl:makeBag(?b, ?r1) . sqwrl:sum(?EI, ?b) (3) 

-> sqwrl:select(?td, ?EI)  (4) 
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J) SWRL rule: EnergyBalance 

The Balance rule compares the energy intake as calculated by the EnergyIntake rule, 

with the amount of energy needed (i.e., the previously computed TEN value) to 

calculate the energy difference. 

Rule: EnergyBalance 

TrainingDay(?td) ^ hasEnergyIntake(?td,?i) ^ hasTEN(?td,?e) ^ 
swrlb:subtract(?r,?i,?e) 
-> hasEnergyDifference(?td,?r) 

K) SWRL rule: TotalNutrients 

The TotalNutrients rule is a SQWRL which sums all the nutrients for a given meal. Its 

chaining starts at line (1) by selecting the consumables for each meal in a training day. 

At line (2) is expressed that each consumable has a set of nutrients, with a name and 

value. At line (3) a set of these values is created, grouped by meal and training day, 

and added according to its grouping. Finally, at line (4) the results are provided in a 

tabular form, while they are used to assert or populate the data properties such as 

HAS_VitaminA, HAS_Iron, etc. in the respective meal individuals.  

Rule: TotalNutrients  

TrainingDay(?td) ^ hasMeal(?td, ?m) ^ 
hasNutritionDPPrescribesConsumable(?m, ?mc)                             

(1) 

^ hasNutritionNutrient(?mc, ?mn) ^ hasNutritionNutrientName(?mn, ?mnn) 
^ hasNutritionNutrientValue(?mn, ?mnv)       
  

 
(2) 

. sqwrl:makeBag(?b, ?mnv) ^ sqwrl:groupBy(?b, ?td, ?m, ?mnn) . 
sqwrl:sum(?NUT, ?b) swrlb:multiply(?r1, ?cal)                          
. sqwrl:makeBag(?b, ?r1) . sqwrl:sum(?EI, ?b) 

 
(3) 

-> sqwrl:select(?td, ?m, ?mnn, ?NUT) ^ 
sqwrl:columnNames("TrainingDay", "Meal", "NutritionNutrientName", 
"NutritionNutrientValue")      

(4) 

 

The following Figure 5.29 presents the result of the execution of the TotalNutrients 

rule. Based on the results obtained from the execution of the TotalNutrients rule, 

several other rules were created to check if each result is in accordance with the 

respective athlete’s nutritional profile. Below is presented the NutritionEvaluation 

VitaminAMin rule for the evaluation of the level of vitamin A in a consumed, meal 

according to a given athlete’s nutritional profile. Similar rules were also created for the 

evaluation of Vitamin A, Vitamin C, etc.  
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Figure 5.29 Tabular form with results of the TotalNutrients SWRL query-based rule execution. 

L) SWRL rule: NutritionEvaluationVitaminAMin 

The atom chaining of NutritionEvaluationVitaminAMin rule starts at line (1) by selecting 

the athlete and his/her intake meals for a given training day. At line (2) is expressed 

that each meal has its scheduled intake time or nutritional occasion (i.e., pre, post or 

during workout). At line (3) and line (4) are expressed that a meal has a total of vitamin 

A and an athlete has associated a nutritional reference values, respectively. At line (5) 

the respective occasion reference values must be chosen in order to compare them 

to meal values, while at line (6) is guaranteed that the nutrition element must be the 

same. At line (7) the comparison is performed and a string with the result is constructed 

in case of a problem. Finally, at line (8) a property is asserted in the meal individual. 

The following Figure 5.30 presents the result of the execution of the 

NutrientionEvaluationVitaminAMin rule. 

Rule: NutritionEvaluationVitaminAMin  

TrainingDay(?td) ^ hasWLAthlete(?td, ?at) ^ hasMeal(?td, ?m) ^  
hasNutritionMealName(?m, ?mn)                              

 
(1) 

^ hasNutritionDPAdministratedOn(?m, ?ao) ^ 
hasNutritionProtocolName(?ao, ?aon)  

(2) 

^ HAS_VITAMINA(?m, ?v) (3) 

^ AthleteNutritionReference(?ar) ^ hasWLAthleteReference(?ar, ?at)
  

(4) 

^ hasNutritionDPAdministratedOn(?ar, ?ao) (5) 

^ hasNutritionReferenceMin(?ar, ?nrm) ^ 
hasNutritionDPPrescribesConsumable (? nrm, ?nrmc) 
^hasNutritionNutrient(?nrmc, ?nnr) ^ VitaminA(?nnr ) ^ 
hasNutritionNutrientValue(?nnr, ?nnrv) 

 
(6) 

^ swrlb:lessThan(?v, ?nnrv) ^ swrlb:stringConcat(?s1, "In meal ", ?mn, 
" (at occasion ", ?aon, ") VitaminA intake is below recommended 
level")        

 
(7) 

-> hasDietaryProblem(?td, ?s1) (8) 
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Figure 5.30 Tabular form with results of the NutritionEvaluationVitaminAMin SWRL query-based rule execution. 

5.4 Conclusions 

This second-iterated TDC-ontology was mainly refactored toward better domain-level 

modularity, and scalability, while partially moving to fourth generation methodologies. 

More specifically, each information dimension was declaratively extended and 

modeled by its own ontology, expressed at different layers, and then interrelated 

among them by improved heuristics and procedural rules. Each layer was modeled 

around its designated composite central concept such as Exercise, Analysis, and 

Dietary Protocol at training, biomechanics, and nutrition layers, respectively. 

Furthermore, gender differentiation was leveraged according to existing weight 

classes, mainly because only 69 kg class is common between male and female 

weightlifters. Also, a new information dimension was modeled through the stakeholder 

domain. In so doing, any top reference athlete is instantiated as any regular athlete 

individual for easy and direct comparison of training features during rhythmic execution 

analysis. This will also enable rhythm comparison among low-performance athletes, 

which we hope it will help, to some extent, understanding the failing/mismatched 

pattern.  

In spite of the mentioned better modularity and scalability of the proposed weightlifting 

TDC-cycle OWL knowledge-based system, few drawbacks have been identified to be 

later addressed in the next improved/iterated TDC-ontology: 

(i) Some concepts seem to be overlapped among the three domains, suggesting 

further refactoring of the declarative knowledge. For instance, the three central 

concept of each layer can all be modeled through a smaller declarative generic 
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task ontology. Notice that the task domain ontology as defined in this work is a 

very specific implementation, according to our problem solving structure.   

(ii) Also the Environment concept modeled at the training layer can be moved to 

the above declarative task ontology and then refactored around Resource and 

Consumable concepts presented at biomechanics and nutrition layers, 

respectively. 

(iii) Missing of annotation properties for describing statistical and mathematical 

models and only drafting the rules around the conclusion and discussion 

section of paper. Only then, the output of math/statistical methods are used to 

assert data properties ‘inherited’ by the task domain ontology. 

(iv) Conceptually mapping the rhythm rules is on an upper layer as they are based 

the correct execution of the athlete in terms of kinetics and kinematics.  

However, after a considerable effort to populate the FB with all individuals required to 

exercises the prescribed rules, promising results and knowledge regarding the 

understanding of rhythmic execution were collected.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

Modeling Weightlifting TDC-cycle by                
Mapping it to an Upper Ontology 

 
This chapter presents and discusses the third-iterated Weightlifting TDC-cycle ontology, 
refactored toward improved flexibility and scalability, comparatively to the second-iterated 
ontology. 

The main focus is on modeling an abstract or generic upper ontology to decouple task, actor, 
and environment concepts from weightlifting domain specificities. An upper ontology will offer 
the advantage of being able to semantically model any other sports domains (e.g., swimming 
or long jumping). With this approach, it will simplify the semantic integration of previous domain 
ontologies of nutrition, training, biomechanics and stakeholder, by defining general and 
sharable concepts which are restricted in compositions by axioms applicable across all them. 
After modeling and designing the upper ontology, it will serve as a foundation of the previous 
four domain ontologies, as it will be mapped to them.
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Introduction 

According to Chapter 4 where the task ontology was modeled and designed in the 

first-iterated weightlifting TDC-cycle ontology and Chapter 5 where it was partially and 

implicitly embedded on each domain ontologies of the second-iterated TDC-cycle 

ontology, the main objective was strictly focused on weightlifting needs, leading, 

according to Arp et al., 2015, to non-sharable data and non-optimal use of resources. 

Notice that the notion of problem-solving method is presented not only at the whole 

architecture of weightlifting TDC-cycle, but also at a lower-level of each individual 

domain which composes it. Therefore, instead of only a specific-purpose task ontology 

for the weightlifting TDC-cycle problem-solving structure (as presented in the first two 

versions), here an abstract or generic upper ontology is also modeled, following similar 

approaches to those presented in Peeters et al. (2014) and Mizoguchi et al. (1995), to 

decouple Task, Actor, and Environment concepts from weightlifting needs. In doing 

so, such an upper ontology will be commonly used to semantically model any other 

sports domains (e.g., swimming or long jumping). More specifically, it will simplify the 

semantic integration of previous domain ontologies of nutrition, training, 

biomechanics, and stakeholder, by defining general and sharable concepts. These 

concepts are restricted in compositions by axioms applicable across all them. After 

modeling and designing the upper ontology, it will serve as a foundation of the previous 

four domain ontologies as it will be mapped to them. 

The remainder of this chapter is organized as follows: Section 6.1 describes modeling 

and design of the abstract TDC-cycle upper ontology; Section 6.2, Section 6.3 and 

Section 6.4 present and discuss the third-iterated refactored training, nutrition and 

biomechanics domain ontologies, respectively; Section 6.5 shortly presents some 

conclusions. 
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6.1The TDC-cycle Upper Ontology  

The proposed upper-level ontology for the TDC-cycle was modeled around generic 

central concepts of Actor, Process, and Environment as presented in Figure 6.1. It will 

be applicable to a generic characterization of the previously identified domain 

ontologies of the TDC-cycle and later restricted through some axioms for consistency 

purpose.  

 

Figure 6.1. The upper ontology modeled around abstract concepts of Actor, Environment and Process/Task. 

For modeling and designing of such an upper ontology for TDC-cycle, we postulate 

that any process has its own environment(s), while the process describes the problem 

solving structure associated to training execution/analysis (i.e., exercise and 

observation), nutrition analysis (i.e., quantitative energy expenditure) and 

biomechanics analysis (i.e., quantitative analysis of performed exercise). Furthermore, 

stakeholders such as coach, biomechanist, nutritionist, and athlete can act on their 

related processes of observations, analyzes, and exercising. 

In fact, the concept of Process is a generalization of the central concepts of Exercise, 

Analysis, and DietaryProtocol as modeled in the second-iterated TDC-Ontology. 

Hence, it is expressed as a composite of plans and stages in which each stage will be 
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performed in an environment at a given scheduled time. Basically, the concept of Plan, 

offers a way to express the sequencing and timetable or schedule of each stage of a 

process, while the concept of Stage represents: (1) acquisition, processing, and result 

interpretation during a biomechanical analysis, (2) first pull, transition, second pull, 

turnover, catch, and recovery phases while exercising a snatch or (3) pre-workout, 

during-workout, post-workout and in-competition according to a prescribed dietary 

protocol. For multiple-stage sports like triathlon which involves swimming, cycling, and 

running, multiple environments will be involved. Each environment consists of several 

and different resources. Obviously, resources will change from weight plate and 

barbell in a training session to micro- and macro nutrients in a dietary consumption 

and to force plate, and 3D motion capture system during a biomechanics analysis. 

To fully model the TDC-cycle upper ontology, the definition of bridging axioms 

becomes crucial, to avoid the usage of relations outside their intended meaning. In 

doing so, relations are defined that hold between classes and between individuals (i.e., 

class- and instance-level relations), while specifying the kind of entities between which 

they are asserted, according to the previous domains of nutrition, training, 

biomechanics and stakeholder. Unambiguous relation for each meaning are defined 

using axioms. It clearly describes all possible ways in which a given relation is 

satisfiable or unsatisfiable. For instance, although Exercise, Analysis, and 

DietaryProtocol are aligned to Process in the upper ontology, which is performed in an 

environment, the defined contains diamond relation between Process and 

Environment concepts must clearly discriminate and validate which resources as well 

as the kind of environment are allowed. Putting it simply, while a gym is a possible 

instance of an environment for regular weightlifting training, it is usually not a lab for 

biomechanics or nutrition analyzes. It is mainly because both depends on quite 

different required resources and settings. Furthermore, the relation actsOn between 

Process and Actor are clearly discriminated. For example, only an athlete performs a 

snatch exercise, while only a nutritionist can prescribe a dietary protocol, and a coach 

and a biomechanist can realize a training session and analysis, respectively. In a 

similar way, axioms are defined among Process and Stage, alongside Stage and 

Output. The only relation that is universal is the one between Plan and Process.  

With the TDC-cycle upper ontology on place, the domain ontologies from different 

information dimensions are integrated by alignment to it. 
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6.2 The Refactored Third-Iterated Training Ontology 

By aligning terms of the sport information space, divided into its multiple dimensions 

of training, nutrition, biomechanics, and stakeholder, with a minimalist set of 

foundational classes modeled in the TDC-cycle upper ontology, each domain ontology 

is modeled as a low-level ontology which describes the details of those foundational 

concepts and their related properties for a particular information dimension (see Figure 

6.2). Therefore, Exercise, the central concept of the previous second-iterated training 

ontology, is refactored as a subclass of Process class in the TDC-cycle upper ontology 

through Snatch, Clean&Jerk, and Supplements classes, while a gymnasium is a 

subclass of Environment class. Similarly, the TDC-cycle upper ontology concept of 

Resource is re-used to specify Barbell and WeightPlate as its subclasses, while barbell 

and body movements are refactored as two subclasses of Output class. Obviously, 

Bulgarian and Russian models are both refactored as Plan subclasses, while first pull, 

transition, second pull, turnover, catch, and recovery phases are refactored as 

subclasses of the class Stage of the TDC-cycle upper ontology. After refactoring the 

previous second-iterated training ontology around the TDC-cycle upper ontology 

concepts, the new ontology is complemented with new concepts (e.g., the three 

subclasses of Supplement class represented by Good_Morning, Power_Snatch, and 

Front&BackSquat) as well as data properties and relations (e.g., imported from the 

previous second-iterated training ontology) which are specific to the training domain. 

Finally and optionally, new axioms are added to the training ontology using relations 

offered by the TDC-cycle upper ontology, according to the previously mentioned 

bridging axioms.  
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Figure 6.2. Third-iterated training domain ontology refactored around the TDC-cycle upper ontology.
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6.3 The Refactored Third-Iterated Nutrition Ontology 

Following a similar refactoring approach as above, the nutrition domain is modeled as 

a low-level ontology describing in details those foundational concepts of TDC-Cycle 

upper ontology and their related properties for nutritional information dimension. The 

central concept, DietaryProtocol, of the previous second-iterated training ontology is 

refactored as a subclass of Process class in the TDC-cycle upper ontology (see Figure 

6.3), while the HumanBody concept is a subclass of Environment class. An athlete’s 

body was envisioned as a receptacle of macro- and micro-nutrients, and so, it is 

defined as the main environment for the nutrition analysis. However, the nutrition 

environment can be envisioned as a composite of environments incorporating also the 

physical environment under which the energy expenditure measurement is realized, 

according to the used anthropometric and metabolic measurement devices (e.g., 

electromyography-, heart rate-, calorimetric-, mass spectrometric-, or stadiometric-

based devices).  

In doing so, it became obvious that data properties and axioms need to be introduced 

to clearly discriminate the meaning and usage of nutrition resources in consumables 

(i.e., macro- and micro-nutrients) and measurement devices (e.g., heart rate and 

spectrometric devices). However, we decided to model all kind of measurement and 

related physical environment as part of the biomechanics laboratory, and so 

simplifying the modeling of the central concept of nutrition ontology only around the 

dietary protocol (i.e., targeting only qualitative measurement). Therefore, the modeling 

of nutrition quantitative analysis techniques is differed and then modeled into the 

biomechanics domains.   The EnegyExpenditure concept is refactored as a subclass 

of Output class. Pre-Workout, In-Workout, Post-Workout, and In-Competition are 

refactored as subclasses of the class Stage of the TDC-cycle upper ontology, while 

for each stage a given schedule is provided as subclasses of the class Plan. Therefore, 

the refactored nutrition ontology is then complemented with new concepts such as 

Vitamin, Mineral, Fat, Protein, Carbohydrate, Drink, NaturalFood, and 

DietarySupplement, which are specific to the nutrition domain. It also models the last 

three concepts as being composed by macro- and micro-nutrients. 

From Figure 6.3, both Analysis and DietaryProtocol classes are subclasses of the 

class Process. For consistency purpose, bridging axioms are provided to discriminate 

between stages and compose each of them. 
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Figure 6.3. Third-iterated nutrition domain ontology refactored around the TDC-cycle upper ontology.
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6.4 The Refactored Third-Iterated Biomechanics Ontology 

The biomechanics domain is also modeled as a low-level ontology aligned to the TDC-

Cycle upper ontology concepts and complemented with detailed biomechanics 

information already established in the second-iterated biomechanics ontology (see 

Figure 6.4). As the central concept of the biomechanics ontology, Analysis is 

refactored as a subclass of Process class in the TDC-cycle upper ontology. The 

environment for the biomechanics analysis is usually represented by the concept Lab, 

a subclass of Environment, which is equipped with several kind of resources/devices 

ranging from force to kinetics/kinematics for data capture (e.g., force plates, 

dynamometers, and 3D motion capture systems). Several kinds of output (e.g., body 

and barbell kinematics, power output and muscles’ activities) can be reported during 

a biomechanical analysis and they are all refactored as subclasses of Output class. A 

biomechanical analysis is performed through several stages such data acquisition, 

data analysis and resources’ calibration, whose classes are subclasses of the Stage 

class of the TDC-cycle upper ontology. Each individual scheduled time is refactored 

as a subclass of Plan class of the TDC-cycle upper ontology. Finally, the so far 

refactored biomechanics ontology is complemented with specific classes of this 

information dimension, such as analyzes’ techniques (e.g., MechanicalPowerAnalysis, 

VideoAnalysis, EMGAnalysis and IndirectCalorimetry). Additionally, muscles’ activities 

are measured on different muscles’ regions/groups and therefore, the MuscleActivity 

concept is defined as a composite of VastusLateralis, BicepsFemoris, 

PectineusGracilis and so on. According to the decision made while modeling the 

nutrition domain toward only qualitative analysis, devices (e.g., electromyography-, 

heart rate-, calorimetric-, mass spectrometric-, or stadiometric-based devices) and 

quantitative measurement techniques (e.g., IndirectCalorimetry and DoublyLabeled 

Water) related to nutrition field are here modeled as part of the biomechanics ontology. 

To conclude the declarative modeling of the weightlifting TDC-cycle ontology, the 

stakeholder domain starts by defining athletes, coaches, biomechanists, or 

nutritionists as subclasses of Actor class of the TDC-cycle upper ontology. 

Furthermore and similarly to the above refactored ontologies, the stakeholder ontology 

is complemented with specific imported concepts, data properties, and relations from 

the previous second-iterated ontologies.
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Figure 6.4. Third-iterated biomechanics domain ontology refactored around the TDC-cycle upper ontology.
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6.5 Conclusions 

The third-iterated domain ontologies were refactored by assigning super-classes and 

generic relations from a minimal TDC-cycle upper-level ontology as a foundation for 

their classes and relations, while ontologically modeling classes and relations in sport 

TDC-cycle ontology. The proposed upper ontology mainly offers a generic 

characterization for each individual sport domain ontology, according to the meaning 

of their central concepts, supported by relations at class- and instance-levels which 

are restricted through some bridging axioms for consistency purpose. This minimalist 

upper ontology was drafted as an integrated fragment of the task ontology (Peeters et 

al., 2014) and environment ontology (Ermolayev et al., 2008), to easily enable future 

compatibility with sport domain ontologies developed using any upper-level ontology. 

Although still under development and following a whole refactoring process quite 

similar to the previously done for the second-iterated weightlifting TDC-cycle ontology, 

several works are recommended, such as: 

(i) Implementing a tool to help populating the FB with all individuals required to 

exercises the prescribed rules, and so, minimizing the needed total effort spent 

on such activity. 

(ii) Furthermore, it is need a way for tuning the prescribed rules in order to be easily 

applied to any work on the literature, while avoiding possible false positives. 

(iii) Devising, for example, artificial neural networks, where rhythmic execution is 

analyzed based on the reference athlete profile, alongside all other parameters, 

such as kinetics, kinematics, and applied forces, barbell velocities, and 

trajectories. 

(iv) Completing the moving to fourth generation of ontology building methodologies 

by later integrating existing ontologies, for instance, Basic Formal Ontology 

(BFO) (Arp et al., 2015), Foundational Model of Anatomy (FMA) (Rosse & 

Mejino, 2003) and so on. In so doing, we first recommended a study of the 

compatibility between the TDC-cycle upper ontology with different upper-level 

ontologies used by those existing ontologies. 

(v) Asserting data properties of the TDC-cycle task domain ontology with 

processed values outputted from artificial neural networks or dedicated 

regression equations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7  

General Discussion and Conclusion 

 
This final chapter reflects on the contribution of this thesis to the scientific domain of sport 
weightlifting, as well as on some lessons-learned used as advices for future work. 
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Summary 

This PhD summarizes the initial work of a proposed larger research project to solve 

the existing contentious issue around the contemporary weightlifting training practices 

and analysis. Existing limitations and inconsistencies in the literature of weightlifting 

sport were deeply discussed in two paragraphs of Chapter 1, more precisely, the 

Introduction and State of Art. The specific aims of this PhD were, firstly, driven by an 

exploratory stage to better understand the contemporary weightlifting training and 

dietary practices during the TDC-cycle, and secondly, to leverage a knowledge 

framework to support individualized and holistic approach to snatch analysis, while 

obviating the identified limitations and inconsistencies. The aims of the PhD have been 

achieved through the modeling, designing and implementation of a rule- and ontology-

based systems that progressed from its declarative to procedural knowledges, mainly 

trying to semantically model the whole weightlifting TDC-cycle, while iteratively tuning 

the semantic lifting rhythm rules toward the identification of corner cases. 

The inherent complexity of weightlifting analysis comes from heterogeneous 

information dimensions related to biomechanics, dietary, and training domains and 

their related methodologies, which is more and more forced to adopt an integrated and 

collaborative analysis approach in order to achieve better reasoning and on-time 

decision making during the TDC-cycle. Therefore, we hypothesized that contemporary 

weightlifting analysis should target, as a whole, both dietary and mechanical 

specificities, with the latter addressed from both qualitative (i.e., training) and 

quantitative (i.e., biomechanics) perspectives. This summary paragraph of the 

concluding Chapter 7, also shortly described in separated paragraphs, the work done 

in each previous chapters, starting from Chapter 2, before presenting the main findings 

and answers, as well as future recommendations: 

To better grasp the biomechanics perspective of the weightlifting analysis, 

experiments were conducted to investigate and define the biomechanical profile of 

weightlifter, using “Power output” as an indicator to assess performance changes. An 

integrated PCA and HCA approach was followed to find and/or understand possible 

similarities and hidden patterns of power output during snatch lifting among young 

weightlifters with different skills. These experiments concluded that for more 

conclusive answers, more robust classification method (e.g., artificial neural networks) 

should be applied, as tried by the existing weightlifting literature, but unfortunately also 

with inconclusive results. 
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The nutritional status of Thai weightlifters was identified through the use of dietary 

record and questionnaires. This exploratory study reported that a high proportion of 

Thai national team weightlifters were not in energy balance and so, failed to meet 

carbohydrate, protein, and micronutrient recommendations. The primary reason for 

such inadequate diets may come from the fact that some athletes lack of nutrition 

knowledge and express some nutritional misconceptions, so they are unable to make 

appropriate food choices. To close such knowledge gap, an ontology-based 

personalized dietary recommendation for weightlifting was modeled, designed and 

implemented to calculate the athlete’s calories and nutrients need, based on the 

individual profile and recommend specific menus according to the training phase and 

weight goal. Populating the fact base of such ontology-based system was a labored 

task due to the huge dimension of Food concept, and so, requiring a lot of effort and 

time to insert individuals’ data items in order to cover all available menus items. 

For the design of the first-iterated TDC-cycle ontology, firstly, a methodology for 

building of ontologies was selected by clearly establishing steps, key modeling 

knowledges and design artefacts. Secondly, the weightlifting problem scenario was 

defined alongside the problem solving for improving weightlifting ability, by explicitly 

identifying the major non-logical axioms. Thirdly, an architecture for the TDC 

Competency Questions Engine Architecture was proposed with its main building 

blocks and stakeholders interplays. Finally, a minimalist weightlifting domain and task 

domain ontologies for a whole weightlifting TDC-cycle OWL- and Rule- Knowledge-

based System was modeled, designed and implemented to seize, through testing and 

validation, some more insight about weightlifting TDC cycle and secondly, to speed up 

the reasoner performance. 

The first-iterated weightlifting TDC-cycle ontology was refactored toward a much more 

flexible, modular and scalable features, through much more elaborated and extended 

ontologies, at each of the above identified domain levels of nutrition, training and 

biomechanics. For this second-iterated weightlifting TDC-cycle, four individual and 

self-contained ontologies were modeled, designed and implemented, including an 

explicit new stakeholder domain. The refactored fact base was quite fully populated to 

exercise the new refactored SWRL rules according to the new refactored ontologies.  

The third-iterated weightlifting TDC-cycle ontology is a refactored version of the 

second-iterated one, toward a more generic-purpose task ontology as well as more 
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generic TDC-cycle problem-solving structure, supported by an abstract or generic 

upper ontology. Such generic-purpose task ontology serves as a foundation of the 

individual domain ontologies which are all integrated by alignment to it. It was modeled 

and designed around main abstract concepts of Actor, Environment and Process to 

easily model any other sport domain, while leveraging ease integration of existing 

similar upper ontologies. 

7.1 Conclusions 

The work reported in this thesis has the potential to advance the state-of-the-art in 

contemporary weightlifting TDC-cycle analysis, mainly due to the following reported 

findings while trying to answer the three research questions presented in Research 

Questions of Chapter 1:  

(i) Finding 1: “The heterogeneity of information and involved stakeholders, 

demand for a collaborative analysis of the weightlifting TDC-cycle which is very 

complex and hard to be analytically- or statistically-only solved”. 

Finding 2: “Several approaches for the analysis of rhythmic execution have 

been described, but all of them fall short because they were performed in a very 

specific and constrained training context”. For instance, most of them address 

only specific and isolate weightlifting training specificity of body/barbell 

trajectory patterns, applied force on the barbell or velocity of movement, 

excluding completely athlete anthropometric features or comparison with top 

reference athlete data. Furthermore, most of them were biomechanical in 

nature. 

We started by partially addressing both of the above findings by holistically and 

simultaneously integrating several knowledge domains, including task domain 

to an integrated and collaborative weightlifting analysis approach, assisted by 

several stakeholders, such as coaches, biomechanics, athletes and 

nutritionists. 

(ii) Finding 3: “Semantics technology can promote external interoperability among 

researchers from different projects as well a kind of standardization which easily 

allows comparison and exportation of data and results from different 

experiments”.  
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Finding 4: Additionally, semantics technology can reduce and even avoid home 

brew of a new solution, while being attractive to applied researchers with limited 

computational and statistical background. 

Our proposal for both findings went toward the leveraging of weightlifting 

ontology-assisted analysis through logical reasoning. Ontology was also 

chosen as the modeling paradigm due to its expressivity and reasoning abilities 

to ensure understanding and semantic interoperability between involved inter-

actors in a collaborative weightlifting TDC-cycle analysis. 

(iii) Finding 5: “Existing weightlifting analysis cannot leverage real-time decision 

making to improve the lifting as well as promote lifting training personalization 

for each specific athlete”. 

Our proposal promotes the combination of the semantic analysis with 

analytical/statistical analysis, with the latter through numerical reasoning. Such 

combination also completes the answer to the first two findings by easily 

integrating qualitative with quantitative evaluations. Although not yet 

implemented, numerical reasoning can be directly integrated with logical 

reasoning through asserted data properties. 

The proposed weightlifting TDC-cycle system as it is conceived, designed and 

implemented, can easily leverage the integration of qualitative and quantitative 

analysis through asserted data properties, for example, qualitatively by coaches or 

using analytical model of lifting rhythm. Notice that known ‘good’ rhythmic executions 

can have multiple small variations, that are not necessarily mistake, but probably 

leading to several false positives or negatives, when only numerical or semantic 

reasoning are used. Such cases can happen from quantitative perspective, for 

instance, due to inefficient data cleaning to remove outlier and noisy as well as 

recognizes missing values in the collected training data. To discover and study any 

kind of mismatched lifting rhythm, one can create different individuals through coach’ 

observation and biomechanics measurement and later comparing them by executing 

implemented SWRL rules. 
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7.2 Limitations 

As any research work, the implemented solution for the weightlifting TDC-cycle has 

limitations, but the main one is due to the weakness of the collected practical problem-

solving experiences, mainly regarding to the rhythmic execution evaluation. Several 

artificial data were used to assert data properties of created individuals stored in the 

fact base. Although, some data properties were asserted after manually calculating 

their values, using the numerical model applied in the existing works, the following 

reasons can be pointed to the weakness of the collected practical problem-solving 

experiences:  

(i) Most of the described experiments are performed in a specific training context, 

with different loads and repetitions; 

(ii) Most of the described experiments are only biomechanical-assisted, missing 

values from other involved domains of the weightlifting TDC-cycle; 

(iii) Most of the described experiments address only some lifting stages or phases 

and not all of them were applied to snatch lifting;  

(iv) Combining data from different experiments is not possible as they are collected 

under different training contexts and they also addressed different and specific 

goals as pointed by the three above points; 

(v) It is required years of dedicated training for an athlete to reach full potential with 

heavier athletes taking longer than lighter athletes; 

(vi) Access to top performance athlete’s rhythmic execution data and their 

anthropometric features are quite impossible both in Portugal and Thailand. 

The same also applies for training and competitions data of regular athletes. 

Another drawback can be pointed to the drafting and creation of one specific rule for 

each interpretation of conclusion and discussion paragraphs of each existing work in 

the literature, leading to a heavy task due to the diversity and amount of existing works. 

To solve this weakness is recommended the creation of generic SWRL rules with 

weighted atoms, later tuned for any given referenced work. However, this approach is 

not appealing to applied researchers with limited computational and statistical 

background. 
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7.3 Future Work 

Drawing on the conclusion paragraph of Chapter 6, future work will encompass a 

logical progression of the proposed larger research project, starting with the full 

implementation of the third-iterated weightlifting TDC-cycle ontology. Therefore, the 

following main refinements of the current design are recommended: 

(i) Extending the TDC-cycle individual domains with physiotherapy and 

psychologic domains and related actors (e.g., physiotherapist and 

psychologist) to better approach recovering from injury as well as better 

management of lifting during competition (e.g., due to the chocking under 

pressure’ phenomenon);  

(ii) Modeling other sport domains such as cycling, swimming, hurdling, long jump, 

triple jump or pole vault by aligning their ontologies to the TDC-cycle upper 

ontology;  

(iii) Devising, for example, artificial neural networks (i.e., for numerical reasoning), 

were rhythmic execution is analyzed based on the reference athlete profile, 

alongside all other parameters such as kinetics, kinematics (not appealing to 

applied researchers with limited computational and statistical background); 

(iv) Completing the moving to fourth generation ontology building methodologies by 

integrating existing upper ontologies; 

(v) Embedding complex mathematical expression for numerical reasoning in 

SWRL rules, as proposed by Alfonso Sánchez-Macián el al. (2007). 

Mathematical and problem semantics are separated to create rules that include 

complex mathematical equations and formulas requiring unsupported 

mathematical operators (i.e., not built-in to SWRL). OpenMath (Buswell et al., 

2004) was used to represent the formula that is passed to a mathematical 

software tool.   

(vi) Furthermore, it is necessary a way for tuning the prescribed rules in order to 

easily apply them to any work on the literature, while avoiding possible false 

negatives and positives. To deal with such uncertainty of qualitative analysis 

techniques, Fudholi et al (2009) suggested the use of SWRL to build fuzzy 

ontology classes and properties mapping, and also calculations, while Bach et 

al. (2010) suggested the use of Probabilistic Soft Logic to weight rules and 

entities to reflect the level of confidence on them. 
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Appendix D: Thai-based Sport Knowledge Questionnaire 

Below is the questionnaire template used to collect knowledge regarding sport nutrition 

of Thai weightlifters. The main objective is to determine sport nutrition knowledge of 

athletes and coaches. The questionnaire was adapted from Zinn et al. (2005) and 

modified to fit the Thai context. Most of questions were identical to the original sport 

knowledge questionnaire, excepted for some food items such as creamed rice, 

cheese, margarine, marmite, marshmallow, Chelsea bun, and some brand name 

sport/energy drinks (i.e., Mizone, Replace, Restore, V). These kind of food items are 

not familiar to Thai people as they do not consume it regularly. Therefore, these items 

were replaced to some other food items which are more practical and familiar to Thai 

people. However, before consider using this questionnaire, the contrast validity, 

internal consistency reliability, and test-retest reliability need to be performed.  

This questionnaire consists of five main knowledge sub-categories (62 questions) as 

following: (i) General nutrition concept (21 questions) regarding macronutrients and 

micronutrients, (ii) Fluid (5 questions), (iii) Recovery (11questions), (iv) Weight control 

(14 questions), (v) Supplements (11 questions).   
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Appendix E: Used tools for Modeling the Ontologies 

1. Semantic Web Technology 

A) The Needs of Semantic Web Technology 

Initially, computer was used for numerical computing but currently their predominant 

usages are for information processing, database application, text processing, and 

games. Therefore, the direction towards the view of computers has changed from 

entry points to the information superhighway (the capable of transferring all types of 

digital information at the high speed). This can be found presently in the web content 

which is generated automatically from databases. Apart from the existence of links 

that establish connections between documents, the main valuable tools are search 

engines (e.g., Yahoo, and Google). Although the search engines are the key success 

of the using today’s web, some problems were associated with the usage of legacy or 

old search engines, such as: (i) High recall, low precision: there are many relevant and 

irrelevant pages retrieved together, (ii) Low or no recall: users do not get any answer 

for their request or the relevant pages are not retrieved, (iii) Results are highly sensitive 

to vocabulary, and (iv) Results are single pages: user is the one to initiate several 

queries to collect the relevant document.    

The main obstacle to improve in older search engine technology was that the meaning 

of web content was not machine-accessible. Moreover, most information is available 

in weakly structure form (e.g., text, audio, and video). From the knowledge 

management perspective, older search engine technology suffered from limitation of 

the following areas: (i) only keyword based searching is permitted, (ii) extract 

information consumes more time and effort, (iii) removing outdated information is 

inconsistency and failure, (iv) new knowledge is still difficult for distributed and 

collection of documents are weakly structured, and (v) views and hiding information 

from the database are hard to realize. 

Therefore, the Semantic Web was created to allow much more advantaged knowledge 

management systems:  

(i) It organizes knowledge in conceptual spaces according to its meaning;  

(ii) It supports maintenance by checking for inconsistencies and extracting new 

knowledge; 
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(iii) It replaces keyword-based search by query answering. Requested knowledge 

will be retrieved, extracted, and presented in a human friendly way; 

(iv) It supports query answering over several documents; 

(v) It is possible to define who may view certain parts of information. 

 

B) The Evolution of Web 

The following table presents the various developed technologies that made the 

concept of the Semantic web possible.  

Table1 The evolution of Web (Antoniou & vanHarmelen, 2004). 

 Static Dynamic Syntax Semantic 
 

Encoding HTML +RDBMS +XML +RDF/OWL 
Creation Manually Generated by server-

side applications  
Generated by server-

side applications 
based on schema 

Generated by server-
side applications 
based on schema 

 
Users Humans Humans Humans and 

applications 
Humans and 
applications 

 
Paradigm Browse Create/ 

Query/Update 
 

Integrate Interoperate 

Application Browsers Browsers Process Integration, 
EAI, BPMS, Workflows 

Intelligent, agents, 
Semantic engines 

 

 

The original Web was a vast set of static Web pages linked together. Many 

organizations still use static HTML files to deliver their information on the Web. 

However, dynamic publishing methods which offer great advantages are replacing the 

ones constructed from static HTML pages. The objective is to answer the inherent 

dynamic nature of businesses. That is, the information on the Web can be used by 

computers not only for display purposes, but also for interoperability and integration 

between system and applications. By enabling machine-to-machine exchange and 

automate processing, it will provide the information in such a way the computers can 

understand it. This becomes the objective of the Semantic Web which is “to make 

possible the processing of Web information by computers”. According to this definition, 

Semantic Web is an extension of current web in which information is well-defined 

meaning given, enabling better computers and people to work in cooperation” 

1995 2000 2005 
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(Berners-Lee et al., 2001). Currently, the evolution of web is undergoing. Different 

approaches are being sought for solution to combine Semantics to Web resources.  

As illustrated in the Figure 1 (from the left to the right side of figure), new standard and 

languages are being investigated and developed to give meaning to resources and 

links of Syntactic Web. 

 

Figure 1 The evolution of the web (Antoniou & vanHarmelen, 2004). 

C) Levels of Semantics 

Semantics is defined as the study of meaning, in language or programming languages. 

It concerned with the relationship between signifiers such as words, phases, signs, 

and terms. It depends on the approaches, models or methods used to add semantics 

to terms. There are four different degree levels of semantics (see Figure 2) as follows: 

 

 

Figure 2 Levels of semantics (Antoniou & vanHarmelen, 2004). 

(i) Controlled vocabulary: A controlled vocabulary is a list of terms. It can be words, 

phased or notations that have been enumerated explicit. All term in a controlled 

of vocabulary should have an unambiguous, non-redundant definition. Table 2 
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is an example of controlled vocabulary that was used by Amazon.com for 

customer to search their products. 

(ii) Taxonomy: It is a subject-based classification that arranges the terms in a 

controlled vocabulary into a hierarchy. Figure 3 is an example of the taxonomy 

arrangement in a home.  

(iii) Thesaurus: Thesaurus is a networked collection of controlled vocabulary terms 

with conceptual relationships between terms. A thesaurus is an extension of 

taxonomy which allows terms to be arranged in a hierarchy and also allows 

other statements and relationships to be made about the terms. Table 3 shows 

the semantic relationships of a thesaurus suitable example. 

(iv) Ontology can be defined as a vocabulary of concepts and relations which is rich 

enough to enable user to express knowledge and intention without semantic 

ambiguity. It describes domain knowledge and provides an agreed-upon 

understanding of a domain. Ontologies are collections of statements written in 

a language such as RDF and OWL that define the relations between concepts 

and specify logical rules for reasoning about them. Computers will understand 

the meaning of semantic data on a web page by following links to specified 

ontologies.  Ontologies establish a joint terminology between members of a 

community of interest. These members can be human or automated agents. 

The basis of ontology is conceptualization and consists of the identified 

concepts (e.g., objects, events, beliefs) (Gilles et al., 2011). Figure 4 presents 

an example of ontology.  

 
Table 2 Controlled vocabulary used by Amazon.com.                      

 

  

Figure 3 Example of a taxonomy (Reprinted from 
Antoniou & vanHarmelen, 2004).        
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Table 3 The semantic relationships of a Thesaurus (Antoniou & vanHarmelen, 2004). 

 
 

 

Figure 4 An example of ontology (Antoniou & vanHarmelen, 2004). 
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D) Layered Architecture of Semantic Web 

Semantic Web is the new generation Web that aimed to present information in a 

machine-manageable way, not only for display purposes, but also for automation, 

integration, and reuse across applications (Berners-Lee et al., 2001). Moreover, 

semantic Web can be used for explicitly declaring the knowledge embedded in many 

Web based applications, integrating information in an intelligent way, providing 

semantic based access to the Internet, and extracting information from texts. 

Generally, HTML is the standard structured document published on the Internet. It 

promotes the growth of the Web due to its simplicity. However, it seriously obstructs 

advanced applications such as processing, understanding, and sematic 

interoperability of information contained in several documents. Semantic Web as the 

new generation Web is able to express information in precise and machine-

interpretable form. Moreover, intelligent services such as information brokers, search 

agents, and information filters are enabled with greater functionality and 

interoperability. Semantic Web promotes Web based application with both semantic 

and syntactic interoperability. The explicit representation of meta-information, which 

accompanied by domain theories (i.e., ontologies) will enable a Web to provide a 

qualitatively new level of service. Extremely knowledgeable systems with various 

specialized reasoning services may ultimately be created through this process. 

The architecture of semantic web is illustrated in Figure 5. It consists of six layers as 

follows: 

(i) Uniform Resource Identifiers (URI) is a fundamental component of the current 

web. It provides a unique identification of resources and the relationship 

between these resources. A uniform resource locator (URL) refers to the subset 

of URI that identifies resources via a representation of their primary access 

mechanism. For example:  

 The URL http://dme.uma.pt/jcardoso/index.htm identifies the location from 

where a Web page can be retrieved. 

(ii) Unicode provides a unique number for every character independently of the 

underlying platform, program, or language. Previously before the Unicode was 

created, various different encoding systems have been used. It made the 

manipulation of data complex due to the diverse encoding. There was always 
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the risk of encoding conflict because two encodings could use the same number 

for two different characters, or use different numbers for the same character. 

Examples of well-known encoding systems include ASCII and EBCDIC. 

(iii) Extensible Markup Language (XML) layer with XML namespace and XML 

schema definitions assure that there is a common syntax used in the semantic 

Web. XML namespaces allow specifying different markup vocabularies in one 

XML document. XML schema serves for expressing schema definition of a 

particular XML document.  

(iv) Resource Description Framework (RDF) stay on top of XML for representing 

information about resources in a graph form. RDF is based on triples O-A-V, 

which form a graph data with a relation among an object (a resource), an 

attribute (a property), and a value (a resource). RDF Schema (RDFS) defines 

the vocabulary of RDF model. It provides a mechanism to describe domain-

specific properties and classes of resources to which those properties can be 

applied, using a set of basic modeling primitives (e.g., class, subclass-of, 

property, sub property-of, domain, range, and type). However, RDFS is rather 

simple and it still does not provide exact semantics of a domain.  

(v) Ontology comprises of a set of knowledge terms (e.g., the vocabulary, the 

semantic interconnections, simple rules of inference, and logic for some 

particular topic). Ontologies applied to the Web in order to create the Semantic 

Web. Ontologies offer a number of advantages, including facilitating knowledge 

sharing, providing reusable Web contents, Web services, and applications. Few 

of the ontology languages are DAML (DARPA Agent Markup Language), OIL 

(Ontology Interference Layer), and OWL (Web Ontology Language). The 

development of OWL is starting from description logic and DAML+OIL. OWL is 

a set of XML elements and attributes, with well-defined meaning, that are used 

to define terms and their relationships. There are three types of OWL: (i) OWL-

Lite for taxonomies and simple constraints, (ii) OWL-DL for full description logic 

support, and (iii) OWL-Full for maximum expressiveness and syntactic freedom 

of RDF. For ontology representation, it is widely used OWL-DL. In practice, 

ontologies are often developed using integrated, graphical, ontology authoring 

tools, e.g., Protégé, OilED, OntoEdit, Vitro, WebODE, and ontoRAMA. 
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(vi) Logic, Proof, Trust, and Digital Signature The logic layer is used to enhance the 

ontology language further and it allows the writing of application-specific 

declarative knowledge. The proof layer involves in the actual deductive 

process, the representation of proofs in Web languages, and proof validation. 

Finally, the trust layer will emerge through the use of digital signatures and other 

kinds of knowledge.  

 

 

 

Figure 5 Semantic Web (Berners-Lee et al., 2001). 

2. Ontology Development Tool 

There are many tools available for ontology editing as shown in the Figure 6. The 

comparison of ontology editing tools have been described and compared in different 

articles with different criteria (Alatrish, 2013; Buraga et al., 2006; Dhingra & Bhatia, 

2015; Funk et al., 2007; Kapoor & Sharma, 2010; Norta et al., 2010). In our study, 

Protégé tool, developed by Stanford University, was used for ontology development. 

A) The Protégé Ontology Editor 

Protégé is a free, open-source Java-based platform, which provides ontology 

developers a suite of tools to develop knowledge-based ontologies. It is available to 

download at http://protégé.stanford.edu. Protégé implements a rich set of knowledge-

modeling structures and actions. It supports the creation, visualization, and 

manipulation of ontologies in various representation formats. It can be customized to 

provide domain-friendly support for creating knowledge models and entering data. 
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Furthermore, it can also be extended by a plugin architecture. Protégé allows the 

definition of classes, class hierarchy’s variables, variable-value restrictions, and the 

relationships between classes and the properties of these relationships. There are two 

main ways of developing ontologies. The first one is the Protégé-Frames editor which 

enables users to build and populate ontologies that are frame-based, in accordance 

with the Open Knowledge Base Connectivity protocol (OKBC). The second one is the 

Protégé-OWL editor which enables users to build ontologies for the Semantic Web, in 

particular OWL; Web Ontology Language. As part of its update, Protégé now includes 

an interface for SWRL (Semantic Web Rule Language). It sits on top of OWL to do 

math, temporal reasoning, and adds Prolog-type reasoning rules (Emhimed, 2012; 

Saripalle et al., 2013). The significant advantage of Protégé over the other exist tools 

is that it supports tool builders, knowledge engineers, and domain specialists 

simultaneously, while the others are typically targeted at the knowledge engineer and 

lack flexibility for meta-modeling (Kapoor & Sharma, 2010). The most popular type of 

plug-ins are tab plugins which provide advanced capabilities such as visualization, 

ontology merging, version management, and inference. 

 

Figure 6 Different Ontology Development Tools (Adapted from Dhingra & Bhatia, 2015). 

B) SWRL (Semantic Web Rule Language) 

The cores of Semantic Web languages are OWL and SWRL. OWL was developed to 

construct ontologies. These ontologies are created by building hierarchies of classes 

describing concepts in a domain and relating the classes to each other using 

properties. The important characteristic of OWL-DL is that it provides strong 

decidability guarantees. The consistency checking and inference processes are 

guaranteed to terminate with definite conclusions no matter how complex the 

underlying ontologies. However, its limitations are poor support for reasoning with data 
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values and poor or no representation for certain types of interrelationships between 

multiple entities in an ontology. 

The Semantic Web Rule Language (SWRL) (Horrocks et al., 2004) was proposed to 

expand OWL-DL expressiveness by adding rules to OWL. SWRL allows users to write 

rules that can be expressed in terms of OWL concepts and that can reason about 

OWL individuals. Semantically, SWRL is built on the same description logic foundation 

as OWL. Also, strong formal guarantees are provided when performing inference. It is 

considerably more expressive power than OWL alone, particularly when dealing with 

complex interrelationships between OWL individuals, or when reasoning with data 

values. With these advantages, SWRL rapidly became the OWL’s rule language.  

SWRL rules are divided in two parts (i) the antecedent; also called body and (ii) the 

consequent or head. It has the form of: 

[antecedent] → [consequent] 

Following is an example of adding SWRL rule described in Protégé saying that an 

individual X from the Person class, which has parent Y and Z (Y has spouse Z) belongs 

to a new class ChildofMarriedParents: 

 

From this rule, if Ivan has Lenka and Martin as Parents. Lenka has Martin as a Spouse. 

Then, Ivan belong to the class ChildOfMarriedParents 

C) SQWRL (Semantic Query-Enhanced Web Rule Language) 

A query language called SQWRL has developed to support the knowledge extraction. 

It is an extension of SWRL rule language to support querying of OWL ontologies. 

SQWRL is implemented as a built-in library using the standard SWRL built-in 

mechanism. A pattern specification for a query is taken from rules’ antecedent while a 

retrieval specification is taken from rules’ consequent. Any valid SWRL antecedent is 

a valid SQWRL pattern specification. SWRL’s built-in libraries are used as an 

extension point (O'Connor & Das, 2009). An example of the core operator in SQWRL 

is aqwrl:select. The select operator takes one or more arguments, which are variables 
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in the pattern specification of the query, and builds a table using the arguments as the 

columns of the table.  

Following is an example of query retrieves all persons in an ontology with a known 

age that is less than 9, together with their ages:  

Person (?p) ^ hasAge (?p,?a) ^ swrlb:lessThan (?q,9)→ sqwrl:select (?p?a) 

This query will return pairs of individuals and ages with one row for each pair. By using 

the orderBy and orderByDecescending built-ins, the results can be ordered.  

Following example is a query to return a list of persons ordered by age: 

Person (?p) ^ hasAge (?p,?a) → sqwrl:select (?p?a) ^ sqwrl:orderBy (?a) 

The left side of a SQWRL query operates like a standard SWRL rule antecedent with 

its associated semantics.  The atom Person (?p) will match not only all OWL individual 

that are directly of class Person, but will also match individuals that are entailed by the 

ontology to be individuals of that class. Therefore, all variables that would be bound in 

a SWRL rules antecedent will also be bound in a SQWRL pattern specification. 

SQWRL does not support subqueries, but it is achieved by using the intermediate 

inferences made by SWRL rules. This mechanism is used to decompose the complex 

queries.  

D) Ontology Based Reasoning: Pellet 

Pellet is an open source OWL-DL reasoning engine developed in Java (Sirin et al., 

2007). It is a complete and capable OWL-DL reasoner with a number of unique 

features. Pellet reasoner is used for checking:  

(i) Consistency: to ensure that an ontology does not contain any contradictory 

facts;  

(ii) Concept satisfiability: to checks if it is possible for a class to have any instances. 

If class is unsatisfiable, then defining an instance of the class will cause the 

whole ontology to be inconsistent;  

(iii) Classification: to ensure that the complete class hierarchy is created. It 

computes the subclass relations between every named classes;  

(iv) Realization: to find the most specific classes that an individual belongs to. If 

there is any exist inconsistency, reclassification will be necessary.  




