98 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Specifying and reasoning about concurrent systems in logic

    Get PDF
    Imperial Users onl

    Programming Languages for Distributed Computing Systems

    Get PDF
    When distributed systems first appeared, they were programmed in traditional sequential languages, usually with the addition of a few library procedures for sending and receiving messages. As distributed applications became more commonplace and more sophisticated, this ad hoc approach became less satisfactory. Researchers all over the world began designing new programming languages specifically for implementing distributed applications. These languages and their history, their underlying principles, their design, and their use are the subject of this paper. We begin by giving our view of what a distributed system is, illustrating with examples to avoid confusion on this important and controversial point. We then describe the three main characteristics that distinguish distributed programming languages from traditional sequential languages, namely, how they deal with parallelism, communication, and partial failures. Finally, we discuss 15 representative distributed languages to give the flavor of each. These examples include languages based on message passing, rendezvous, remote procedure call, objects, and atomic transactions, as well as functional languages, logic languages, and distributed data structure languages. The paper concludes with a comprehensive bibliography listing over 200 papers on nearly 100 distributed programming languages

    Logic programming for real-time control of telecommunication switching systems

    Get PDF
    AbstractAn experiment using logic programming in the specification and implementation of a telecommunication switching system is reported, and one of the main modules in the system, a telephone-line controller, is described in detail as an illustrative example. The system is described in terms of transition relations in a labeled transition system. The programming language used is a variant of the parallel logic language PARLOG augmented with annotations to express timing constraints. The operational model of PARLOG is modified to handle time by allowing each goal-reduction process in a query to maintain its own logical clock, which can be read and set by the goal-reduction process itself. A metainterpreter is given to describe the operational behavior and an implementation scheme for the language

    Transforming specifications of observable behaviour into programs

    Get PDF
    A methodology for deriving programs from specifications of observable behaviour is described. The class of processes to which this methodology is applicable includes those whose state changes are fully definable by labelled transition systems, for example communicating processes without internal state changes. A logic program representation of such labelled transition systems is proposed, interpreters based on path searching techniques are defined, and the use of partial evaluation techniques to derive the executable programs is described

    Design, application and implementation of a paralled logic programming language

    Get PDF
    Imperial Users onl

    Logic Programming: Context, Character and Development

    Get PDF
    Logic programming has been attracting increasing interest in recent years. Its first realisation in the form of PROLOG demonstrated concretely that Kowalski's view of computation as controlled deduction could be implemented with tolerable efficiency, even on existing computer architectures. Since that time logic programming research has intensified. The majority of computing professionals have remained unaware of the developments, however, and for some the announcement that PROLOG had been selected as the core language for the Japanese 'Fifth Generation' project came as a total surprise. This thesis aims to describe the context, character and development of logic programming. It explains why a radical departure from existing software practices needs to be seriously discussed; it identifies the characteristic features of logic programming, and the practical realisation of these features in current logic programming systems; and it outlines the programming methodology which is proposed for logic programming. The problems and limitations of existing logic programming systems are described and some proposals for development are discussed. The thesis is in three parts. Part One traces the development of programming since the early days of computing. It shows how the problems of software complexity which were addressed by the 'structured programming' school have not been overcome: the software crisis remains severe and seems to require fundamental changes in software practice for its solution. Part Two describes the foundations of logic programming in the procedural interpretation of Horn clauses. Fundamental to logic programming is shown to be the separation of the logic of an algorithm from its control. At present, however, both the logic and the control aspects of logic programming present problems; the first in terms of the extent of the language which is used, and the second in terms of the control strategy which should be applied in order to produce solutions. These problems are described and various proposals, including some which have been incorporated into implemented systems, are described. Part Three discusses the software development methodology which is proposed for logic programming. Some of the experience of practical applications is related. Logic programming is considered in the aspects of its potential for parallel execution and in its relationship to functional programming, and some possible criticisms of the problem-solving potential of logic are described. The conclusion is that although logic programming inevitably has some problems which are yet to be solved, it seems to offer answers to several issues which are at the heart of the software crisis. The potential contribution of logic programming towards the development of software should be substantial

    Distributed Programming with Shared Data

    Get PDF
    Until recently, at least one thing was clear about parallel programming: tightly coupled (shared memory) machines were programmed in a language based on shared variables and loosely coupled (distributed) systems were programmed using message passing. The explosive growth of research on distributed systems and their languages, however, has led to several new methodologies that blur this simple distinction. Operating system primitives (e.g., problem-oriented shared memory, Shared Virtual Memory, the Agora shared memory) and languages (e.g., Concurrent Prolog, Linda, Emerald) for programming distributed systems have been proposed that support the shared variable paradigm without the presence of physical shared memory. In this paper we will look at the reasons for this evolution, the resemblances and differences among these new proposals, and the key issues in their design and implementation. It turns out that many implementations are based on replication of data. We take this idea one step further, and discuss how automatic replication (initiated by the run time system) can be used as a basis for a new model, called the shared data-object model, whose semantics are similar to the shared variable model. Finally, we discuss the design of a new language for distributed programming, Orca, based on the shared data-object model. 1
    • ā€¦
    corecore