
S p ecify in g  and R ea so n in g  a b o u t  

C on cu rrent S y stem s in  L ogic

David Roger Gilbert

A thesis submitted to the University of London 

for the degree of Doctor of Philosphy

Department of Computing

Imperial College of Science, Technology and Medicine

June 1990

Copyright © 1990 D.R. Gilbert



A b s tr a c t

This thesis reports research which attempts to unite the specification, implementation and 

conformance testing of concurrent systems by the use of a common formalism, first order 

logic.

A technique employing the formalism has been developed for the specification of the in

tended behaviour of basic instances of concurrent systems. Communication in a concurrent 

system is viewed as occurring through bindings made by atomic unification to shared logic 

variables. The behaviour is conceptualised as atomic observations which belong to par

tially ordered sets of the states of logic variables. It is possible to describe these sets by 

sentences in first order logic which can then be transformed into Horn clause programs 

and interpreted mechanically. Such computations bind variables in the query to data 

structures which represent the sets of observations of the specified system.

The partially ordered sets of observations can also be characterized by Horn clause de

scriptions which relate the members of a set of observations to its maximal elements. 

These secondary descriptions form the basis of logic programs which when executed on an 

interpreter employing a suitable computation rule exhibit the behaviour described by the 

specification from which they were derived.

A logic programming language SILCS has been developed whose operational semantics 

encapsulate the computational rule required for the correct interpretation of these Horn 

clause programs. SILCS is expressive enough to describe many of the behaviours as

sociated with concurrent systems including concurrency, parallelism and sequentiality. 

The logical basis of SILCS facilitates reasoning about the behaviour of SILCS programs. 

Equivalence relations are considered for SILCS programs which permit the comparison of 

data-structure and process-network stores.

Methods are described for the translation of SILCS programs into programs in concurrent 

logic programming languages that are capable of implementing concurrent systems. A 

theory of conformance and equivalence is presented which permits comparisons to be 

made between specifications and implementations in logic of concurrent systems. The 

construction of a sequential interpreter for SILCS programs and its use in comparing the 

behaviour of these programs with logic specifications is reported.

2



A c k n o w le d g e m e n ts

Firstly I would like to thank Chris Hogger, my supervisor at Imperial College. Chris has a 

deep understanding of the theory and practice of logic programming and a special interest 

in the relationship between logic specifications and programs. His dedication to the use 

of classical logic as a framework for reasoning and computation kept me firmly on the 

classical path. Chris has always been willing to make time, whatever the hour, to discuss 

the progress of my research and to comment on the progress reports that I submitted to 

him.

My thanks also go to many other people in the Department of Computing at Imperial 

College who provided me with the stimulating environment and support needed for my re

search. The members past and present of the Parlog group and logic programming section 

have been especially supportive as well as being good friends. Steve Gregory deserves my 

special thanks for his initial suggestions regarding the direction of my research. I should 

also like to include the administrative and secretarial staff and the untiring members of 

Technical Support in my thanks.

During the course of my studies I moved from my research post at Imperial College to 

take up a position as a lecturer in the Department of Computer Studies, Loughborough 

University of Technology. My sincere thanks are due to the Head of Department, Profes

sor Ernest Edmonds, who provided me with the time and resources which enabled me to 

complete the thesis. Without this support I would undoubtedly have left the task unfin

ished. I would also like to express my thanks to John Cooke at Loughborough with whom 

I had many fruitful discussions, and all the technical staff who supported my hardware 

and software requirements.

Finally my thanks are due to my father, Leslie Gilbert, for much useful advice, the rest of 

my family for putting up with me and Mary Medyckyj who understood and encouraged 

me.

My research has been partially funded by the Science and Engineering Council, ESPRIT 

and the Department of Computer Studies at Loughborough University of Technology.

3



Contents

1 Introduction 10

1.1 Alms........................................................................................................... 16

1.2 Specifying and implementing concurrent systems........................................ 16

1.3 Contributions.............................................................................................  18

1.4 Overview of chapters..................................................................................  19

2 Concurrent systems and their specifications 22

2.1 Fundamental aspects of concurrent systems..................................................22

2.1.1 Concurrent computation-based systems............................................ 23

2.1.2 Processes and systems........................................................................26

2.1.3 Suspension, deadlock and livelock........................................................ 27

2.1.4 Communication patterns..................................................................... 28

2.1.5 Synchronous and asynchronous communication..................................29

2.1.6 Observational equivalence...................................................................30

2.2 Illustrative mini-systems................................................................................ 30

2.2.1 Synchronous communication ............................................................. 31

2.2.2 Concurrent value passing: producers and consumers...........................32

4



2.2.3 Sequential value passing.................................................... 33

2.2.4 Buffers and pipes................................................................................ 33

2.2.5 Queues .............................................................................................. 34

2.2.6 Transformers......................................................................................34

2.3 Issues in the specification of concurrent systems..............................................36

2.4 Primitive process constructions -  Milner’s principles.....................................36

2.5 Existing formalisms and languages................................................................38

2.6 Logics for specification of concurrent systems............................................... 41

2.6.1 Standard first order lo g ic .................................................................. 41

2.6.2 Temporal Logic...................................................................................42

2.7 Summary...................................................................................................... 42

3 Specifications in logic of concurrent systems 44

3.1 Introduction...................................................................................................44

3.3 First Order Logic.......................................................................................... 54

' 3.4 Observations of logic programming systems.................................................59

3.5 Unification ................................................................................................... 60

3.5.1 The unification algorithm...................................................................60

3.6 Communication and unification.....................................................................62

5



3.6.1 Computations, paths and states...........................................................64

3.6.2 Channels............................................................................................66

3.6.3 Streams.............................................................................................. 73

3.6.4 Complexity of systems.........................................................................76

3.7 Observations .............................................................................................. 76

3.7.1 Observable variables........................................................................... 76

3.7.2 Observable states.............................................................................  77

3.7.3 Observations of stream based systems................................................78

3.8 Mapping natural language descriptions to observable states...................... 80

3.8.1 Faithfulness and stored item s............................................................. 81

3.8.2 Determining the state of the s to re .....................................................82

3.8.3 The state of the store determines the next observable s ta te ...............83

3.9 Descriptions in natural language of illustrative systems.............................. 85

3.9.1 A producer........................................................................................ 85

3.9.2 An N-bounded buffer............................................................................85

3.9.3 One slot buffer................................................................................... 87

3.9.4 An unbounded buffer (FIFO queue)..................................................... 87

3.9.5 Expedited data queue...........................................................................88

3.10 Descriptions in logic of illustrative systems..................................................88

3.10.1 Stream Producers .............................................................................. 89

3.10.1.1 Set description of a producer......................................  89

3.10.1.2 Logic program for a producer............................................ 92

6



3.10.2 Buffers 94

3.10.2.1 Set description of a buffer..................................................96

3.10.2.2 Set description of a one-place buffer..................................99

3.10.2.3 Induction on buffer descriptions.......................................... 99

3.10.2.4 Logic programs for buffers ............................................... 101

3.10.2.5 A one-place buffer...............................................................105

3.10.2.6 Composing buffer specifications .........................................106

3.10.3 Queues .............................................................................................107

3.10.3.1 Set description of an unbounded buffer..............................107

3.10.3.2 Set description of an expedited data queue........................ 108

3.10.3.3 Logic programs for queues .................................................109

3.11 Summary..................................................................................................... I l l

4 The logic language SILCS 113

4.1 Introduction................................................................................................... 113

4.2 Specifications, implementations and SILCS .................................................114

4.3 SILCS as a specification language..................................................................115

4.4 Expressiveness ............................................................................................. 115

4.5 Syntax of S IL C S ...........................................................................................116

4.6 Semantics of SILCS ..................................................................................... 119

4.7 Representation of processes in SILCS............................................................ 123

4.8 Communication in S ILC S .............................................................................124

4.9 Observational equivalence.............................................................................124

7



4.10 The operation of the idealised SILCS interpreter.........................................125

4.10.1 Atomic groups and constraints......................................................... 125

4.10.2 Sequence groups................................................................................ 127

4.10.3 Reduction strategy of the SILCS interpreter...................................... 127

4.10.4 Reduction of members of an atomic group.........................................128

4.10.5 Suspension ........................................................................................ 129

4.10.6 Output of the interpreter..................................................................131

4.11 Transition rules describing the semantics of S ILC S...................................... 131

4.11.1 Axiom s..............................................................................................133

4.11.2 Rules ................................................................................................ 133

4.12 Metalevel facilities in SILCS.......................................................................... 135

4.13 SILCS programs...........................................................................................135

4.13.1 Stream producers................................................................................136

4.13.2 Bounded Buffers..........................................................  137

4.14 Equivalences ................................................................................................ 140

4.14.1 Data store buffers .............................................................................140

4.14.2 Process network buffers.................................................................... 147

4.15 Queues........................................................................................................... 152

4.16 Summary......................................................................................................154

5 Implementing SILCS programs 156

5.1 Introduction...................................................................................................156

5.2 Specifications, implementations and simulations........................................... 156

8



5.3 Programming languages for implementing concurrent systems................... 158

5.4 Why SILCS is not an implementation language for concurrent systems . . .160

5.4.1 Non-determinism and a lack of guards..............................................161

5.5 Committed choice concurrent logic programming languages...................... 162

5.5.1 The Relational Language................................................................. 162

5.5.2 Parlog................................................................................................ 164

5.5.3 Parlog86 and Guarded Definite Clauses............................................ 166

5.5.4 Pandora............................................................................................. 167

5.5.5 Concurrent Prolog.............................................................................167

5.5.6 Guarded Horn Clauses....................................................................... 169

5.5.7 Strand................................................................................................ 170

5.6 Concurrent constraint logic programming languages................................. 170

5.6.1 ALPS . ..............................................................................................170

5.6.2 c c ......................................................................................................171

5.6.3 Andorra Prolog.................................................................................. 172

5.7 Unification schemes........................................................................................173

5.8 Suspension and concurrency..........................................................................174

5.9 Implementing SILCS programs using concurrent programming languages . .176

5.10 Transforming SILCS programs into programs in a CLPL............................177

5.10.1 List notation.....................................................................................178

5.10.2 The simultaneous operator ...............................................................179

5.10.3 The sequencing operator.................................................................... 179

9



5.10.4 Synchronisation 182

5.10.5 Guards ............................................................................................. 186

5.10.6 Guarded output ............................................................................... 187

5.11 Conclusion ...................................................................................................190

6 Conformance testing 192

6.1 Introduction................................................................................................... 192

6.2 Snapshot logic interpreters.............................................................................193

6.3 Conformance................................................................................................ 195

6.4 Partial conformance.....................................................................................198

6.5 Completeness................................................................................................200

6.6 Program verification and notions of conformance........................................ 201

6.7 Equivalence...................................................................................................202

6.8 The conformance relation and message types ............................................. 204

6.9 Conformance and deadlock ..........................................................................206

6.10 Conclusion ...................................................................................................207

7 Conclusion 209

7.1 Summary..................................................................................................... 209

7.2 Related w o rk ................................................................................................212

7.2.1 Concurrent logic programming.........................................................212

7.2.2 Flat Concurrent Prolog and traces...................................................212

7.2.3 A comparison of LOTOS and SILCS.................................................. 213

10



7.2.4 CIRCAL and concurrency 214

7.3 Conclusions and future research....................................................................214

A The SILCS interpreter 219

A.l Implementation language and hardware......................................................219

A.2 Basic design.................................................................................................. 220

A.3 Design details............................................................................................... 223

A.3.1 Storing the object language code...................................................... 223

A.3.2 Implementing the operational semantics of SELCS ...........................224

A.4 Enhancements .............................................................................................226

A.5 Set solutions ............................................................................................... 229

A. 6 Prolog code for the SILCS interpreter ........................................................ 229

B Conformance testing 232

B. l Generating the predicted observations........................................................ 232

B.2 Generating the actual observations..............................................................232

B.3 Comparing the sets of observations..............................................................233

B.4 Performance.................................................................................................. 234

C A traces model of FCP computations 236

D Algebraic specification techniques 239

D .l LO TO S ....................................................................................................... 239

D.2 LO TC A L.....................................................................................................246

D.3 CIRCAL....................................................................................................... 247

11



E G lossary o f  abbreviations 251

12



List of Figures

2.1 One atomic computation ............................................................................. 24

2.2 Simultaneous atomic computations .............................................................24

2.3 Sequential atomic computations ...................................................................26

2.4 Processes and systems................................................................................... 27

2.5 Two-way communication ............................................................................. 31

2.6 Lock-step synchronisation............................................................................. 31

2.7 Three-way communication ( i ) ........................................................................32

2.8 Three-way communication (ii) ..................................................................... 32

2.9 Producer and consumer................................................................................ 32

2.10 Producer and consumer (lock-step) .............................................................33

2.11 Sequential atomic computations (value passing) ..........................................33

2.12 One-place buffer ........................................................................................... 34

3.4 One atom ic com putation ( u n if ic a t io n ) ..........................................................................62

13



3.5 Parallel unifications ......................................................................................63

3.6 Concurrent unifications ................................................................................ 64

3.7 Representation of a channel, final state V/f(p,q) ..........................................67

3.8 Representation of a channel instance, final state V/f(p,q) ............................ 73

3.9 Simple closed system ................................................................................... 77

3.10 Partially open system ...................................................................................78

4.1 Graph of bindings for a one-place buffer................................... 140

4.2 Graph of bindings for a two-place buffer......................................................144

4.3 Synchronising two one-place buffers ........................................................... 149

4.4 Graph for a two-place process buffer (with internal transitions)....................150

4.5 Portion of individual graphs of two one-place buffers.................................... 150

4.6 Portion of graph of a two-place process based buffer.................................... 151

14



List of Tables

4.1 Processes and logic programs...................................................................... 123

5.1 Language annotations for suspension .........................................................175

E.l Abbreviations ...........................................................................................252

15



C h ap ter 1

Introduction

This chapter introduces the domain of the study and recounts the motivation and objec

tives of the investigation.

1.1 A im s

The research reported in this thesis was undertaken with the aim of exploring the feasibility 

and viability of using first order predicate logic to specify and reason about concurrent 

systems. The specific aims of the research were:

(1) To develop a method for expressing specifications of concurrent systems in first order 

predicate logic.

(2) To investigate the issues involved in transforming the specifications into logic pro

grams, including testing for conformance and equivalence.

1.2 Specifying and im plem enting concurrent system s

The engineering of any system comprises three stages: specification, implementation and 

conformance testing. Ideally the methodologies used should be mutually compatible so 

that the relationship between specifications and programs can be formally described. Un

16



C H A P T E R  1. IN T R O D U C T IO N 17

fortunately this not always the case, even for simple systems. As systems increase in com

plexity so do the methodologies used for their specification and implementation, height

ening the danger of incompatible descriptions and implementations. Conformance testing 

is often seen as an attempt to bridge the gap between specifications and code.

Physical constraints dictated that early computer systems were built on the sequential 

model attributed to von Neumann. The design of such systems was relatively simple, 

and the programming languages used in their implementation were imperative in nature; 

statements in these languages consisted of direct instructions to the underlying machine.

Concurrent systems evolved in response to the requirement for an increase in processing 

power coupled with a fall in real terms in the cost of hardware. These systems are more 

complex than their sequential predecessors and there is presently a growing profusion of 

techniques used for their design and implementation, many of which have been adapted 

from those developed for sequential systems. However the design and analysis of concurrent 

systems present problems which do not exist in the construction of sequential systems. 

Imperative languages are not well suited to task of programming concurrent systems whose 

architectures do not conform to a unique model and are radically different from sequential 

systems. An increasingly popular requirement is for open distributed systems which can 

comprise components conforming to a variety of model architectures. The design and 

implementation of such systems is one of the major challenges that software engineers 

currently face.

Much effort has been devoted to both the specification and the implementation of con

current systems, but these activities have rarely been coordinated. Recent advances in 

specification techniques and the design of concurrent programming languages have not yet 

brought the two activities together within the same framework.

Methods for sp e c ify in g  concurrent systems have been devised which do not refer to any 

particular machine architecture, and some have been accepted as international standards 

for the specification of open systems. Such formal description techniques are rapidly 

gaining acceptance and software tools have been constructed to aid their use. The tech

nologies with the most coherent frameworks are those based on the algebraic approach to 

the specification of concurrency.



C H A P T E R  1. IN T R O D U C T IO N 18

Declarative languages promise to free the programmer from the association of program

ming languages with specific architectures. Many such languages are in the process of 

maturing as usable alternatives to imperative languages. There are a number of for

malisms which serve as foundations for such languages — one group, the ‘logic program

ming languages’, is based on first order logic. Recent advances in language design and 

implementation have enabled non-trivial concurrent systems to be implemented using these 

languages.

However the central problem facing the designer of distributed systems remains that of 

ensuring that a system correctly implements its specification. This task is facilitated if 

specification techniques and programming languages refer to a common model rather than 

a physical architecture. The work reported in this thesis is an attempt to close the gap 

that currently exists between specifications and implementations. We intend to use a com

mon technology, namely first order logic, for both the specification and implementation of 

concurrent systems. The perceived benefits of such a coherent approach are the mechani

sation of both the process of producing an implementation from a specification and that 

of conformance testing.

1.3 Contributions

This work makes the following contributions to the body of knowledge associated with the 

specification of concurrent systems:

Methods for

• expressing natural language specifications of concurrent systems as sentences in first 

order predicate logic which describe the observations of such systems as partially 

ordered sets,

• converting the first order logic specifications into logic programs in which the sets 

are represented by explicit data structures,

• deriving concurrent logic programs from the first order logic specifications whose 

execution results in the behaviour described by the specifications,



C H A P T E R  1. IN T R O D U C T IO N 19

• transforming certain classes of the concurrent logic programs into committed choice 

concurrent logic programs,

• generating tests for conformance between specifications and concurrent logic pro

grams.

Also developed during the research were:

© A concurrent logic programming language SILCS, characterized by concurrency, syn

chronisation, atomic unification and don’t-know non-determinism. The operational 

semantics of SILCS is given with reference to a pure Hom-clause interpreter. SILCS 

programs can be regarded as an intermediate form between descriptions in logic of 

the predicted sets of observations and programs in committed choice logic program

ming languages.

• A theory for reasoning about various equivalences between SILCS programs.

• An interpreter for SILCS, written in Prolog, enhanced with the following facilities: 

deadlock detection, spy, trace and snapshot of computations.

• A theory for the comparison of programs written in concurrent logic programming 

languages and pure Horn clause specifications of concurrent systems. The theory 

provides for dealing with conformance testing and test generation.

• A prototype conformance tester, permitting comparison between the behaviour of 

SILCS programs and that predicted by specifications written in pure Horn clauses.

1.4 Overview o f chapters

Chapter 2 introduces the class of systems within the domain of this study, defining them 

and describing their distinguishing characteristics. Examples of complete systems are 

introduced in an informal manner and mini-systems are described which illustrate the 

characteristics of concurrent systems. We examine issues relating to the specification of 

concurrent systems, and review and compare existing methodologies designed for this

purpose.



C H A P T E R 1. I N T R O D U C T I O N 20

Chapter 3 describes a method for specifying concurrent systems using first order logic. 

Communication between concurrent processes is regarded as taking place via bindings to 

shared variables. The method takes an extrinsic view of such systems and is based on 

reasoning about the sets of observations that can be made about the bindings made to 

variables. Natural language specifications of some small illustrative systems are related 

to their observational descriptions and sentences in first order predicate logic are derived 

from them. The specifications in logic are amenable to formal analysis and serve as a basis 

for the derivation of two classes of logic programs. The members of the first class lS S T ’ 

reason about data structures which represent the sets of observations while members of 

the second class Z O O ' form the basis of concurrent logic programs whose execution 

produces the behaviour predicted by the specifications.

Chapter 4 introduces the concurrent logic language SILCS. Programs in SILCS can be 

derived from programs of the class lV 7 Z O Q \ The operational semantics of SILCS is 

defined in terms of an abstract logic metainterpreter. The design decisions taken regarding 

SILCS are explained and justified and its computational model defined with reference to 

an idealised metainterpreter. Examples of specifications written in SILCS are presented. 

Equivalences axe developed for SILCS programs which permit comparison between certain 

classes of SILCS programs. The computational model of SILCS preclude it from being a 

suitable language for the implementation of concurrent systems

Chapter 5 explores the relationship between SILCS and concurrent logic programming 

languages which have been developed for implementing concurrent systems. The relation

ship between SILCS and these concurrent logic programming languages is explored in this 

chapter and rules are given for mappings between SILCS programs and such languages.

Chapter 6 discusses the relationship between logic specifications and implementations of 

concurrent systems. The relation described is one of conformance between specifications 

and implementations and the theory provides a basis for the design of a conformance 

tester.

Chapter 7 summarises the research, describes related work, draws conclusions and dis

cusses future directions that can be explored resulting from this thesis.

Appendix A describes the construction of a portable interpreter for SILCS, written in



C H A P T E R  1. IN T R O D U C T I O N 21

Prolog. The interpreter was enhanced with deadlock detection, spy, trace and snapshot of 

computations.

Appendix B reports the construction of a prototype conformance tester, permitting com

parison between the behaviour of SILCS programs and that predicted by specifications 

written in pure Horn clauses.

Appendices C and D contain technical summaries of work by other authors which is related 

to our own. We compare our work with related work in Chapter 7.

Appendix E contains a glossary of abbreviations used in the thesis.



C h ap ter 2

Concurrent systems and their 

specifications

This chapter introduces the class of systems within the domain of this study, defining 

them and describing their distinguishing characteristics. Examples of complete systems 

are introduced in an informal manner and mini-systems are described which illustrate 

the characteristics of concurrent systems. We examine issues relating to the specification 

of concurrent systems and review and compare existing methodologies designed for this 

purpose.

2.1 Fundam ental aspects o f concurrent system s

Many systems, both natural and artificial, are characterized by concurrent behaviour. 

Examples of such artificial systems include computer networks and distributed systems. 

This work takes simple concurrent systems as basic exemplars for more complex systems 

to which the methods developed herein may be applied.

The general properties of concurrent systems can be divided into two categories:

(1) dynamic properties (behaviour),

(2) static properties (e.g. the data types of objects).

22



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 23

Both of these categories are of importance, but we will concentrate on dynamic properties 

since they are characteristic of concurrent systems, whilst static properties are not. The 

dynamic properties of a concurrent system constitute its ‘behaviour’, comprising discrete 

events. In the case where the system is artificial and computation-based then its behaviour 

is the manifestation of the computations it comprises.

We take the view that events can occur se q u e n tia lly  or s im u lta n e o u s ly  — thus an observer 

of a system will be able to differentiate between those events which take place one after 

another and those which occur ‘at the same time’. We require such an observer to be able 

to distinguish between different but simultaneous events, hence being capable of making 

simultaneous observations. Different observers may have different interpretations of the 

time-slice of an observation; our ideal observer’s time slice is the minimum required to 

observe an event.

We make a fundamental distinction between c o n c u r r e n c y  and p a ra lle lism  when discussing 

systems in which events can occur simultaneously:

• Two or more events are said to occur c o n c u r r e n tly  iff they are simultaneous and 

communicate with each other.

• Two or more events are said to occur in p a ra lle l iff they are simultaneous and do 

not communicate with each other.

In practice, most systems in which events occur simultaneously exhibit a mixture of paral

lelism and concurrency in that communication may not take place between all simultaneous 

events. We shall loosely refer to such systems as ‘concurrent systems’.

2.1.1 Concurrent computation-based systems

The focus of this research is on concurrent computation-based systems. At the lowest 

level of behaviour in such systems are atomic computational steps, or atomic events. We 

abbreviate ‘atomic computational step’ to a to m ic  c o m p u ta tio n  when convenient and not 

ambiguous.



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 24

Definition 2.1 Each atomic computation is an operation on data and its execution is 

instantaneous. ■

We may represent an atomic computation diagrammatically by a rectangle and optionally 

associate a unique symbolic name with the computation. Figure 2.1 illustrates an atomic 

computation labelled with the symbol a.

a

Figure 2.1: One atomic computation

Simultaneously occurring atomic computations are categorised as occurring either in par

allel or concurrently. If two or more simultaneous atomic computations communicate with 

one another, then we say that they are c o n s tra in e d  by one another. This communication 

may be merely agreement on a common value, or may involve exchange of data between 

the computations. We represent communication between atomic computations diagram

matically by linking them with a line “—” (agreement) or an arrow “— ►” (exchange of 

data). Atomic computations occurring in parallel are not connected by any link in our 

representation. Figure 2.2 illustrates a set of three simultaneous atomic computations. 

Computations a and b communicate by an agreement on a data value and therefore occur 

concurrently. Computation c occurs in parallel to a and b.

Figure 2.2: Simultaneous atomic computations

All communication in our scheme is synchronous:



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 25

Definition 2.2 In a synchronous system every member of a set of concurrent atomic 

computations is constrained by every other member of that set and no atomic computa

tion may terminate while any computation with which it shares a constraint has not yet 

terminated. ■

We associate with each terminated computation a value drawn from a domain, hence 

permitting termination to be many-valued. One such domain contains only the values 

{SUCCESS, FAIL}, in which case we deem a terminated computation to have either 

succeeded  or fa i le d . It is this bi-valued domain of truth values that we consider in this 

research.

Definition 2.3 If any member of a set of simultaneously occurring atomic computations 

fails, then all the computations in that set fail. ■

Definition 2.4 The overall truth value associated with a set of simultaneously occurring 

computations is SUCCESS iff all the computations succeed, and FAIL iff any one of the 

computations fails. ■

Definition 2.5 A seq u e n ce  of atomic computations is a totally ordered set of computa

tions no two of which occur simultaneously. Topologically, the set is a chain with the 

bottom element J. being the first computation in the sequence and the top element T 

being the last in the sequence. The ordering relation is over time; each member of the set 

apart from one (the first) is constrained by an immediate predecessor in that it cannot be 

initiated until the predecessor has terminated. ■

In our informal portrayal we represent a sequence of atomic computations by connecting 

them with “=}>” (Figure 2.3).

We further restrict the definition of sequence by requiring that a computation in a sequence 

can be initiated iff the preceding computation in the sequence succeeds. The overall truth 

value associated with a sequence of computations is SUCCESS iff every member of the 

sequence succeeds and FAIL iff any one of the computations fails. A sequence terminates 

either when every member of the sequence has succeeded or as soon as any member fails.



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 26

Figure 2.3: Sequential atomic computations 

2.X.2 Processes sncl systems

We can, for convenience, describe a set of atomic computations as a p ro c e s s  or a s y s te m .  

Definition 2.6 A p ro c e s s  comprises the executions of one or more atomic computations.

Definition 2.7 A s y s te m  comprises one or more processes. ■

The atomic computations which constitute a process or system can be either simultane

ous or sequential or both. A process can comprise other processes but cannot comprise 

systems whereas a system can comprise other systems or processes. We will represent 

processes and systems by d a s h e d  re c ta n g le s  and, optionally, an associated symbolic name. 

Figure 2.4 depicts two processes A and B grouped together as a system C. Process A com

prises two concurrent atomic computations a2 and a2 while B comprises the sequential 

atomic computations b1? b2 and b3.

Definition 2.8 A process/system is said to c o m m u n ic a te  with another process/system iff 

communication takes place between atomic computations common to both processes/syst- 

ems. ■

Definition 2.9 A process/system c o m p le te ly  s y n c h r o n is e s  with another process/system 

iff every atomic computation in the first synchronises with one or more atomic computa

tions in the second. ■

D e f in it io n  2 .1 0  A system  is closed  if there is no communication between the computa

tions it comprises and those of any other system . ■



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 27

Figure 2.4: Processes and systems

Definition 2.11 A process terminates with SUCCESS iff every atomic computation that 

it comprises succeeds. ■

Definition 2.12 A system terminates with SUCCESS iff every process that it comprises 

terminates with SUCCESS. ■

2.1.3 Suspension, deadlock and livelock.

We recall that an atomic computation is an operation on data. The ability to perform 

such an operation may be dependent on the availability of data, subject to the definition 

of the operation. If  the data is of the incorrect type for the operation to be performed, 

then the operation fa i ls .

Definition 2.13 An atomic computation is in a su sp e n d e d  s ta te  iff there is insufficient 

data in that state for the computation to be performed. ■

Definition 2.14 An atomic computation is e x ecu ta b le  iff there is sufficient data for the 

computation to be performed. H

The rules governing the suspension of sets of atomic computations are as follows:



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 28

Definition 2.15 A set of concurrent atomic computations is suspended iff any member 

of the set is suspended. B

Since atomic computations which occur in parallel are not constrained by one another, 

then the suspension of a member of a set of parallel atomic computations does not affect 

the execution of any other members of that set.

Definition 2.16 A process is su sp e n d e d  iff all of its constituent atomic computations are 

suspended. B

Definition 2.17 A closed system is d e a d lo ck ed  iff all of its constituent processes are 

suspended. B

Definition 2.18 A closed system comprising n processes is live lo cked  iff m  of its processes 

are suspended forever where (0 < m < n), and at least one of its processes can be executed.

The following definitions are given informally. A process or system is e x e c u t in g  if at least 

one atomic computation which it comprises is executable. A n o n - te r m in a t in g  process or 

system is one which comprises one or more infinite sequences of computations. A process 

or system which has not yet terminated may either be non-terminating or comprise one 

or more computations which are suspended.

2.1.4 Communication patterns

An important aspect of any model of communication is the classes of communication 

patterns that it admits. These classes can be broadly classified as:

• communication possible only on a one-to-one basis,

• communication on a one-to-many basis,

• communication on a many-to-many basis.



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 29

The inclusion of data transfer in a model of communication implies that there are producers 

(writers) and consumers (readers) in the model. We say that a consumer receives data from 

a producer in a communication which involves data transfer. The possible communication 

patterns are:

• Pairwise: one producer to one consumer,

• Broadcast: one producer to many consumers, or many producers of identical mes

sages to one consumer,

• Multiway: N producers to M consumers, or M producers to N consumers.

2.1.5 Synchronous and asynchronous communication

‘Real’ concurrent systems may be based on totally synchronous, totally asynchronous or 

bounded asynchronous communication. We have previously defined a synchronous system 

as one in which all partners in a communication are mutually constrained (Definition 2.2). 

In a totally asynchronous system c o n s u m e r s  are constrained by communication with pro

ducers but producers are unconstrained. In a bounded asynchronous system there is some 

buffering of data between producers and consumers; producers are unconstrained by con

sumers until the buffer is full. A programming language used to implement any of the 

three systems has to employ a blocking receive to implement consumer processes. How

ever the language primitive required to implement a producer in a totally asynchronous 

system send is a non-blocking send whilst a blocking send is required to implement totally 

synchronous systems. There is a well-founded correspondence between the models of the 

three types of systems:

a asynchronous systems may be represented and implemented in totally synchronous 

systems by the interposition of unbounded buffers (queues) between producers and 

consumers,

• totally synchronous systems may be represented and implemented in asynchronous 

systems by a ‘rendez-vous’ technique, for example, using multiple channels or mul

tiplex channels,



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 30

• a bounded asynchronous system may be represented and implemented in a totally 

synchronous system by the interposition of bounded buffers between producer and 

consumer.

Concurrent systems which are totally synchronous are more amenable to specification and 

analysis than asynchronous systems. This is because communication in an asynchronous 

system is effectively via unbounded buffers (queues) which are not part of the system 

specification. In synchronous systems a ll communication can be explicitly reasoned about. 

Asynchronous communication can be represented by synchronous communication if com

municating partners are explicitly connected by queues (see above) permitting reasoning 

about the communication medium. The disadvantages of the added complexity thus in

troduced is outweighed by the advantage of being able to reason explicitly about system 

states, including any buffers between communicating partners.

2.1.6 Observational equivalence

Two or more processes are observationally equivalent iff the least quantum of their be

haviour cannot be distinguished by an ‘idealised’ observer of the processes. Different 

interpretations of the terms ‘least quantum’ and ‘distinguish’ result in proposals for differ

ent types of observational equivalence (see [92]). The notion of equivalence for concurrent 

systems is discussed in detail in Chapters 4 and 6.

2.2 Illustrative m ini-system s

In order to investigate the ways in which concurrent systems may be specified some il

lustrations of such systems are now presented. The examples are well-documented ones 

from the area of computer science and have been chosen both for their simplicity and the 

dynamic properties of concurrent systems which they illustrate. All the example systems 

axe founded on synchronous communication in order to facilitate reasoning about states 

(see Section 2.1.5).



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 31

2.2.1 Synchronous communication

The most generic example of a mini system is that of two processes which synchronise 

in some way. In the simplest case each process consists of a single atomic computational 

step (Figure 2.5). A more complex computation occurs when each process is a sequence

A B
i---------------------------1 i---------------------------1

J  L

Figure 2.5: Two-way communication

of atomic computations (Figure 2.6), the computation unfolding with both processes pro

gressing in lock-step synchronisation.

r ------------------------------------------------------------------ l

L j

Figure 2.6: Lock-step synchronisation

The example may be extended by considering more than two processes, each of which 

synchronises with all the others, for example a set of three concurrent atomic computations 

a, b and c (Figure 2.7).

Since all communication is synchronous, the system in Figure 2.7 is equivalent to that in 

Figure 2.8 in which the communication path between a and c is not represented explicitly.



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 32

Figure 2.7: Three-way communication (i)

Figure 2.8: Three-way communication (ii)

2.2.2 Concurrent value passing: producers and consumers

Perhaps a more meaningful and familiar example is that of exchange of data between the 

communicating partners. The simplest case is that of two atomic computations a and b 

where, for example, a transmits a value v  to b. In this case we identify a as the p ro d u c e r  

and b as the c o n s u m e r  in the communication, representing this by Ma b” (Figure 2.9). 

In the more complex case where both A and B are processes, each comprising a sequence 

1 ... n of atomic computations where A* transmits i>* to B* (1 < k  < n), the behaviour of 

the two processes is such that A and B are in lock-step (Figure 2.10).

Figure 2.9: Producer and consumer



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 33

r 1

i _________________________________________________ J

Figure 2.10: Producer and consumer (lock-step) 

2.2.3 Sequential value passing

If two members ajt and ajt+i of a sequence of atomic computations have access to the same 

data store T in state S  and the successful execution of A* alters T by value v to give T' in 

a new state S \  then we say that T h  f  and the execution of a^+i utilises the new state 

of the store. Effectively the value v  is passed sequentially from a* to ajt+i. We represent 

this diagrammatically by “a* a*+1” (Figure 2.11).

V
a l a 2

Figure 2.11: Sequential atomic computations (value passing)

2.2.4 Buffers and pipes

Figure 2.12 depicts a system in which atomic action a passes value v  in d ire c tly  to atomic 

action c via process B which comprises the sequence of atomic computations bj and b2. 

The effect of B is to impose a sequential ordering on the executions of a and c. If b1 and 

b2 were to be concurrent, then so would a and c. However if bj and b2 were to execute in 

parallel, then a and c would not communicate with each other.

Process B is a o n e -p la c e  b u ffe r  which receives a message from a and transmits it to c:



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 34

L ___________________________________ J

Figure 2.12: One-place buffer

• The two component computations bx and b2 are composed sequentially,

• bx receives a data value from a and on termination passes that value to b2,

• b2 transmits the data value to c.

It is our intention to demonstrate in Chapter 4 that a buffer with a capacity of greater 

than one item can be constructed either by using a data-store which can be accessed by 

both bj and b2, or by composing several one-place buffers in a linear process structure.

2.2.5 Queues

A f i r s t - in - f i r s t - o u t  (FIFO) queue is effectively a buffer of unbounded capacity. Items are 

inserted at one end and removed from the other. The actions of insertion and removal 

can be performed simultaneously or in an interleaved manner, unless the queue is empty. 

Specification techniques which assume that all communication is synchronous use queues 

to describe asynchronous communication. Communication in networks and distributed 

systems is usually asynchronous, and can be represented in this manner. A la s t- in - f ir s t-o u t  

(LIFO) queue is an unbounded stack and access to such a structure comprises in te r le a v e d  

actions to add or remove items. A d o u b le -e n d e d  q u eu e  (DEQ) permits addition and 

removal of items at either end of the queue.

2.2.6 Transformers

Transformers are a class of system s which transform data whilst attem pting to relay it.

The transformation may alter the order of transm ission of messages, corrupt them or lose

them .



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 35

Ordering Interesting mini-systems can be constructed from queues and buffers which are 

neither fully FIFO nor LIFO. Transformers, unlike buffers, are active in that they 

may alter the data that they relay from producer to consumer. An example is an 

e x p e d ite d  d a ta  qu eu e: a producer and a consumer are connected via a communication 

medium, represented by a queue. Messages are either ordinary or expedited. An 

expedited message always arrives before any ordinary messages that are still in the 

queue (i.e. not yet received) when the expedited message is sent. As a refinement 

there can be several levels of priority of expedited message.

Message content A c o r r u p tin g  tr a n s m is s io n  m e d iu m  is an example of a system which 

transmits messages in a (possibly) corrupted form.

Message Loss A lo s sy  m e d iu m  does not guarantee that all messages which enter the 

medium are transmitted. Such a system can be modeled by a variation of the buffer 

system.

F il te r s  are instances of transformers. They are required in a distributed computing en

vironment where there are servers which provide resources and clients which use these 

resources. Message protocols govern the communication between clients and servers. A 

server may have access to sensitive information, accessible only to cleared users (clients). 

Protection for the server from access by unauthorised clients can be provided by a filter. 

To be effective, a message filter must satisfy four requirements:

(1) every message between client and server must be inspected by the filter,

(2) no sensitive information is allowed to pass out through the filter from a server to an 

uncleared client,

(3) no ill-formed message is allowed to pass between a client and the server,

(4) all legitimate messages must pass unimpeded between the client and server.

The first three are access requirements, whilst the last is a service requirement. Validation

here means the inspection of a message by the filter. Filters must exhibit functional and

performance transparency.



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 36

2.3 Issues in the specification o f concurrent system s.

In this section we review and compare existing methodologies designed for the specification 

of concurrent systems.

A sp e c ific a tio n  la n g u a g e  is a notation for describing the set of observations that an idealised 

observer can make of the system specified. Different specification languages have different 

degrees of appropriateness to different specification tasks, as well as different properties 

in themselves. The terms F o r m a l S p ec ifica tio n  L a n g u a g e  (FSL) and F o r m a l D e sc r ip tio n  

T ech n iq u e  (FDT) can be considered synonymous. An FDT has a precise mathematical 

basis, and its use:

• avoids ambiguity, while leaving room for implementation freedom,

• allows complex descriptions to be written succinctly without problems of misrepre

sentation,

• provides a basis for reasoning about specifications which can be analysed and checked 

for desirable properties (e.g. freedom from deadlock).

Consistency between specifications can be verified and the equivalence of specifications 

can be determined. This is important if the technique of stepwise refinement is to be 

adopted as an implementation methodology.

A basic issue in the specification of concurrent systems is how concurrency is represented 

in the formalism. One generic approach in reasoning about sets of concurrently occurring 

events is to treat these sets as sequences of interleaved atomic events. We review below 

some of the techniques which employ this approach, along with those which attempt to 

reason about concurrency directly.

2.4 Prim itive process constructions -  M ilner’s principles

The work of Robin Milner has been very influential in the field of the specification of 

concurrent systems. In [94] he proposes nine principles which should guide the choice of a



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 37

set of primitive constructions These constructions should be sufficiently rich to form the 

basis of useful practical tools, for example calculi, specification languages and program

ming languages. He does not directly define the concepts of process and event, but prefers 

to articulate the meaning of these terms by formulation of the principles. We reproduce 

below the principles in shortened form:

(1) An in te r a c t io n  among processes consists in their participation in a single atomic 

event. This precludes communication via shared memory, buffers, or by use of 

rendez-vous. It does not limit the number of processes which may participate in an 

interaction.

(2) Every event is an interaction among processes. This implies that the observable 

behaviour of a system consists entirely in its interaction with its environment which 

may be a human observer who -  being also a process -  may only inspect or observe 

the system by interacting with it.

The following seven principles describe constructors which yield complex processes from 

simple ones.

(3) The behaviour of any process constructor depends only upon the behaviours of the 

processes which it composes.

(4) C o n ju n c t io n  is a construction needed to impose synchronisation on a designated set 

of actions between all the members of a set of processes, permitting all other actions 

to occur freely.

(5) E n c a p s u la t io n  is needed to render a designated set of actions unobservable.

(6) D is ju n c t io n  is a construction needed to force each of a number of processes to syn

chronise with any one of the others on a designated set of actions.

(7) R e n a m in g  is a construction needed in order to change the action names of a process.

(8) Constructions are needed for s e q u e n tia l  c o n tr o l, rich enough to express a wide range 

of distributed processes.

(9) S im u l ta n e i ty  -  the simultaneous occurrence of two actions is also an action.



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 38

2.5 Existing formalisms and languages

There are several categories of specification methods which are widely accepted for the 

description of concurrent systems, for example:

(1) Finite State Automata

(2) Abstract Machine Models

(3) Formal Languages

(4) Sequencing Expressions

(5) Petri Nets

(6) Buffer Histories

(7) Abstract Data Types

(8) Programs and Program Assertions

Such methods have traditionally developed from two viewpoints — programs and state 

machines. However, there is no fundamental difference between these and many specifica

tion techniques incorporate ideas from both.

The finite state machine model is motivated by the observation that protocols may be 

viewed as rules specifying the responses or outputs of a protocol ‘machine’ to each com

mand or input. A closely related set of techniques is based on finite graph representations. 

Examples include communicating finite state machines, Communicating Sequential Pro

cesses (CSP) [58], a Calculus of Communicating Systems (CCS) [92], CIRCAL [91] and 

Petri Nets [102].

The program model is based on the premise that protocols and services are a class of 

information processing procedures, and that programming languages provide a means for 

describing such procedures. Examples of such languages include SDL [7] Estelle [67] and 

LOTOS [66].

The plethora of approaches reflects the fact that many of the languages have been devel

oped for specific domains and also that there has been no consensus as to  which simple



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 39

rules in a mathematical notation are sufficient to give precise meaning to specifications of 

concurrent systems.

We now take a more detailed look at some of the specification techniques mentioned above. 

Communicating Sequential Processes - CSP

Developed by Hoare, and defined in [58], CSP is a mathematical theory of concurrency 

based on traces and refusals. A process is regarded as being a mathematical abstraction 

of the interactions between a system and its environment. General processes are described 

from this point of view, as are processes exhibiting concurrency, nondeterminism, com

munication and sequencing. All communication is treated as being synchronous in CSP, 

and explicit buffers are used if asynchronous systems need to be described. There may 

be more than two partners in any communication, and choice may be nondeterministic or 

controlled by the environment. The programming language occam [65] is based on CSP.

A Calculus of Communicating Systems - CCS

CCS was developed by Robin Milner [92], and is an algebraic technique based on the 

analysis of the interleaving of atomic events using observations and equivalences. The 

technique does not admit simultaneous events and is restrictive in ways which include 

permitting communication between two parties only. Several extensions of CCS have 

been proposed, for example ECCS [39], SCCS [93] and CHOCS [128]. Milner himself has 

proposed general behavioural laws governing concurrent systems (see [94] above) which 

can be used to extend CCS.

CIRCAL

CIRCAL, developed by George Milne [91] is a mathematical calculus designed to describe 

and analyse concurrent systems, whether hardware or software. Unlike CCS and CSP, the 

calculus permits descriptions of both asynchronous and simultaneous behaviour, including 

multiple synchronisation using abstraction to allow modeling of a system at different levels 

of behaviour. An operational semantics, called accep ta n ce  semantics, is given to CIRCAL



C H A P T E R  2 . C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 40

syntax where meaning is conferred in terms of active experimentation.

Petri Nets

Petri nets [102] permit the clear representation of concurrency without having to resort to 

interleaving. Net theory also permits the description of non-determinism, but the arbitrary 

order of occurrence of causally independent events does not count as non-determinism, 

and representation of data flow as opposed to pure synchronisation is poorly handled. 

Milner [94] suggests that petri net theory may permit the categorisation of computable 

processes as “exactly those recursively acyclic nets which obey certain natural conditions, 

for example that the in-degree and out-degree of nodes should be finite.”

Estelle

Estelle [67] is based on Pascal with extensions to describe finite state machines. Together 

with LOTOS (see below), ESTELLE is one of the two formal description techniques devel

oped under the auspices of the International Standards Organisation (ISO) for the formal 

specification of open distributed systems, and in particular those related to the the Open 

Systems Interconnection (OSI) computer network architecture. An Estelle specification 

defines a distributed system as a hierarchy of state machines which communicate by ex

changing messages through bi-directional channels connecting their communication ports. 

Messages are queued at either end of a channel. The incorporation of unbounded FIFO 

queues into the language permits the modeling of synchronous or asynchronous commu

nication.

LOTOS

The Language of Temporal Ordering Specification (LOTOS) [66] is a description technique 

based on process algebras, specifically CCS and to a lesser extent CSP. It incorporates the 

Abstract Data Type (ADT) ACT-ONE [37] for the description of data types (sorts).

Being based closely on CCS, a specification in LOTOS permits a hierarchy of process

definitions where a process is an entity capable o f performing internal and unobservable



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 41

actions as well as being able to interact with its environment, which is itself composed of 

other processes. Complex interactions between processes are built up out of elementary 

units of synchronisation, atomic events. Every event implies process synchronisation and 

may involve an exchange of data. Communication patterns may be multi-partner, not just 

one-to-one, and an event occurs at an interaction point termed a gate.

Observation, itself regarded as an interaction, is central to the LOTOS model of communi

cating systems, and thus when a process performs an observable action there is an assumed 

interaction between the process and the observer. LOTOS specifications are analysed in 

terms of equivalence theory whose foundation is inherited from CCS.

SDL

SDL [7] is based on the extended finite state machine model, with two concrete syntaxes, 

one graphical and one textual. It is supplemented by the ADT ACT-ONE. This combi

nation is supported by a well-defined formal semantics. SDL has constructs to represent 

structures, behaviours, interfaces and communication links, as well as abstraction, module 

encapsulation and refinement.

2.6 Logics for specification o f  concurrent system s

2.6.1 Standard first order logic

Kowalski and Sergot [77] have developed the e v e n t  c a lc u lu s  to reason about events and time 

within a logic programming framework based on standard logic. The intended applications 

of the event calculus are the updating of databases and narrative understanding. Its use 

avoids the frame problem inherent in the situational calculus [90] which deals with global 

states. The notion of event is taken to be more primitive than that of time and both 

are represented explicitly by means of Horn clauses augmented with negation by failure; 

however the calculus is neutral with respect to whether events have a duration or not. The 

formalism can represent events with unknown times as well as events which are partially 

ordered and simultaneous, but its use to reason about concurrent systems has yet to be



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 42

demonstrated.

Although little work has been undertaken using first order predicate logic to d e sc r ib e  

the dynamic behaviour of concurrent systems, logic languages exist which enable the 

im p le m e n ta t io n  of such systems. Examples of concurrent logic programming languages 

are Parlog [51], Concurrent Prolog [116] and Guarded Horn Clauses [131]. However we 

have shown in previous research [49] that these languages are not generally suited to the 

task of the sp e c ific a tio n  of such systems. The operational semantics of these languages 

do not permit guarded output, and lack synchronisation of producers and consumers as 

a language primitive. Recent proposals have been made by Saraswat [114] and Shapiro 

[120] for the design of concurrent logic languages which incorporate some or all of these 

desirable features, but problems with their efficient implementation have prevented their 

use.

2.6.2 Temporal Logic

Temporal logics are logics which permit reasoning about the ordering of events and their 

use in the specification of concurrent systems has been described by Gabbay [43, 44] and 

Manna and Pnueli [87]. Some work has been done on the use of algebraic ordering in 

specifications in temporal logic and Alien has explored the possibility of dealing with 

multiple agents in such specifications [2, 3]. However, standard first order logic has a 

greater flexibility of expression than the temporal logics, and there are proof procedures 

which have been developed for standard first order logic and for logic programming in 

particular. Expressive power is gained by treating time and events explicitly rather than 

implicitly through the use of natural, but weak modal operators for notions such as ‘future’, 

‘since’ and ‘while’. The advantages of modal and temporal logics over standard logic lie 

in their greater conciseness and the representation level that they offer to the user.

2.7 Summary

Processes and systems consist of sets of atomic computations; ‘concurrent systems’ com

prise atomic computations whose behaviour can occur simultaneously. A concurrent sys-



C H A P T E R  2. C O N C U R R E N T  S Y S T E M S  A N D  T H E IR  S P E C IF IC A T IO N S 43

tem can also, but not exclusively, exhibit sequential behaviour. We make a further dis

tinction between two types of simultaneous computations — those which execute indepen

dently of, i.e. in parallel to, other computations and those whose execution is dependent on, 

i.e. concurrent with, the execution of other computations. Concurrency is characterized 

by suspension as well as success or failure. The example systems described in this chapter 

exhibit synchronous communication; we elect to describe asynchronous communication as 

synchronous communication which takes place via an unbounded buffer. A number of 

formalisms developed for the description of concurrent systems have been reviewed in this 

chapter. We believe that first order logic is a suitable formalism for the specification of 

concurrent systems and that it should be possible to derive executable concurrent logic 

programs from such descriptions.



C h ap t er 3

Specifications in logic of 

concurrent systems

3.1 Introduction

This chapter describes a method for specifying concurrent systems, using first order logic. 

The method takes an extrinsic view of such systems and is based on reasoning about the 

sets of observations that can be made about a system. We assume that bindings are made 

to write-once variables during the execution of a system and that shared variables are the 

means of communication between concurrent processes. The write-once nature of these 

variables enables us to reason about them as variables within a theory of first order logic, 

treating variable assignment as an instance of unification. The structures to which the 

variables are bound are logical terms and we assume that an observer of such a system is 

capable of observing the binding states of these variables. The observations are members 

of a partially ordered set with a bottom element representing the initial unbound state of 

the observable variables.

The sets of observations can also be described as directed acyclic graphs.

Each path through the graph from the minimum vertex to a maximum vertex 

comprises the observations of one computation. The representation of the observations 

of a system as a graph facilitates reasoning which distinguishes between sequential and

44



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G I C  O F  C O N C U R R E N T  S Y S T E M S 45-53

concurrent events.

Natural language specifications of some small illustrative systems are related to descrip

tions in first order logic of the observations of the systems. The first order logic sentences 

can be transformed into Horn clauses whose execution on a logic interpreter results in the 

binding of variables in the query to data structures which represent the sets of observations 

of the specified system. Such sets can also be characterized by Horn clause descriptions 

which relate the members of the set to its maximal elements. These secondary descriptions 

form the basis of logic programs which when executed on an interpreter employing a suit

able computational rule exhibit the behaviour described by the specification from which 

they were derived. The specifications in logic are amenable to formal analysis and can be 

used to generate conformance test suites. The design of a logic programming language 

and the description of a logic interpreter for it is the subject of the next chapter.

In this chapter we refer to example systems characterized by behaviour which is reac

t iv e (responsive to an environment), c o n c u rre n t and d y n a m ic . These systems are simple 

enough to permit easy understanding on an informal basis and yet illustrate the concepts 

introduced.



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 54

3.3 First Order Logic

Our proposed method for specifying and reasoning about concurrent systems is based on 

first order logic. We refer the reader to [20, 122] for thorough treatments of symbolic 

logic. In this section we present the concepts that are required for an understanding of 

our approach to the specification of concurrent systems in logic.

There are two aspects to first order logic, syntax and semantics. We first consider syn

tax. A first-order language is a language in which the symbols and formulae are defined 

using an alphabet consisting of variables, constants, function symbols, predicate symbols, 

connectives, quantifiers and punctuation symbols. We employ the following syntax for 

representing statements in logic:

(1) variable symbols: strings starting with an u p p e rc a se  alphabetic character.

(2) constant symbols: strings starting with a lo w e rc a se  alphabetic character, or a nu

meric character.

(3) function symbols: strings starting with a lo w erca se  alphabetic character,
or the empty string (see page 55).

(4) predicate symbols: strings starting with a lo w e rc a se  alphabetic character

(5) the connectives A V

(6) the quantifiers 3 V

(7) punctuation symbols u(” “)”

Function symbols may be of various arities and may be written prefix, infix or postfix 

where appropriate. Constants are function symbols of arity zero. Predicate symbols may 

be of various arities and may similarly be written prefix, infix or postfix. We adopt the 

following precedence hierarchy to avoid the heavy use of brackets in formulae:

i  V3 

V 

A
<---- >•



C H A P T E R  3. S P E C I F I C A T I O N S  I N  L O G I C  O F  C O N C U R R E N T  S Y S T E M S  55 

We informally describe the meanings of the connectives as:

negation

A conjunction (and)

V disjunction (or)

i— implication as in “q <— p” means l i f  p th e n  q’

- implication, as in Mp —*• q” means l i f  p th e n  q’

equivalence

“3 ” is the existential quantifier so that “3 X” means ‘there exists an X’. The universal 

quantifier is “V ” so that “V X” means ‘for all X1.

Definition 3.16 T e r m s  are defined recursively as follows:

(1) a constant is a term

(2) a variable is a term

(3) If /  is an n-place function symbol, and $i,... , t n are terms, then /(< i,... , t n) is a 

term.

(4) All terms are generated by the above rules

We may for convenience represent the term / ( * i , ... ,fn) where /  is the empty string by 

the n-tuple ( t i , . . . ,  t n) .

Definition 3.17 An a to m  (atomic formula) is an expression of the form p (t i,...,tn) 

where p  is an n-place predicate symbol and t \  .. , t n are terms. ■

Definition 3.18 A l i te r a l is an atom or the negation of an atom. A p o s i t iv e  l i te ra l is an 

atom and a n e g a tiv e  l i te r a l is the negation of an atom. ■

D e f in it io n  3 .1 9  A well-formed fo rm u la , or fo rm u la  for short, is defined as follows:



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 56

(1) An atom is a formula.

(2) If F and G are formulae then so are ( -iF), (F A G), (F *— G), (F —> G), (F <-+ G).

(3) If F is a formula and X is a variable then (VX F) and (3X F) are formulae.

The scope of a quantifier occurring in a formula is the formula to which the quantifier 

applies. We may use brackets to clarify the formula in question. E.g. the scope of the 

universal quantifier in the formula (VX)(p(X) —► s(X)) is (p(X) —► s(X)). We may omit the 

brackets round quantifiers when no ambiguity would so arise.

Definition 3.20 An occurrence of a variable is b o und  iff the occurrence is within the 

scope of a quantifier employing that variable, or is the occurrence in that quantifier. An 

occurrence of a variable in a formula is fr e e  iff this occurrence of the variable is not bound.

Definition 3.21 A variable is bound in a formula if at least one occurrence of it is bound. 

A variable is free in a formula if at least one occurrence of it is free in the formula. ■

Definition 3.22 A formula is closed iff it contains no free variables. Such a formula is 

called a s e n te n c e .  m

Definition 3.23 The first order language given by an alphabet consists of the set of all 

sentences which can be constructed from the symbols of the alphabet. ■

We briefly introduce some more terminology which will be useful regarding the form of 

logic sentences.

Definition 3.24 A c la u se  is a sentence of the form

V X ,  . . . V Xn (L, V . . .  V LjJ

where Xl r .. ,Xn are all the variables occurring in the disjunction of the literals

V . . . V L m.



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 57

■

We may write a clause

VXj . . .V X n (P! V .. .V Pk V -^Qj V ...V -.Qj)

where Pj ... Pk , Qi • • • Qj are atoms as the equivalent form

V Xj ... V Xn (Pj V ... V Pk <- Qj A ... A Qj)

using the following equivalences:

( -.Qj V ... V -«Qj ) = -«(Q1 A ... A Qj)

A V ->B = A <-B

and then by convention omit the universal quantifiers:

Px V ... V Pk <- Qj A ... A Qj

Definition 3.25 A H o r n  c la u se  is a clause containing at most one positive literal. ■

The following clauses are Horn clauses:

P Qi A ... A Qj 

P «-

4-  Qj A ... A Qj

By convention we may omit the ” in the unit clause P <— .

Definition 3.26 A d e f in i te  p ro g ra m  c la u se  is a clause of the form

P Qi A ... A Qj ( j> 0 )  

where Qi , •. •, Qj are positive literals.

A d e fin ite  p ro g ra m  is a finite set of definite program clauses. ■

Definition 3.27 A definite goal is a clause of the form

Qi A ... A Qj a > i)



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 58

where Qx , . . . ,  Qj are positive literals. ■

Thus a Horn clause is either a definite program clause or a definite goal.

We further extend our definitions to permit negative literals in programs and goals:

Definition 3.28 A n o r m a l p ro g ra m  c la u se  is a clause of the form

P Qi A ... A Qj (j > 0)

where Qj , . . . ,  Qj are literals.

A n o r m a l  p ro g ra m  is a finite set of normal program clauses. ■

Definition 3.29 A normal goal is a clause of the form

*” Qi A ... A Qj (j > 1)

where Qi , • . . ,  Qj are literals. ■

Interpretations and models

We have previously defined the syntax of the first order language. In order to be able to 

discuss the truth or falsity of a formula we need to attach meanings to each of the symbols

in the formula. An in te r p r e ta t io n  specifies the meaning for each symbol in a formula and
non-empty

consists of ajtdomam of discourse over which the variables range, the assignment to each 

constant symbol an element of the domain, the assignment to each function symbol of 

a mapping on the domain and the assignment to each predicate symbol of a relation on 

the domain. An interpretation in which a formula expresses a true statement is called a 

m o d e l. The intended interpretation, which should also be a model, gives the meaning of 

the symbols in a formula.

The formulae which are true in every interpretation of each of the axioms of a theory are 

the theorems of that theory. Theorems are logical consequences of the axioms. R e s o lu t io n  

is an inference rule which can be used to demonstrate that a particular formula is a logical 

consequence of a set of axioms. We discuss resolution theorem proving with respect to



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 59

Horn clauses in Chapter 4.

3.4 Observations o f  logic programming system s

Although the demonstration of logical consequence is the goal of theorem proving, from 

the computational point of view we are more interested in the bindings made to the 

logical variables of the theorem during the construction of the proof of the validity of that 

theorem. If we regard the axioms and theorem as a logic program which is executed during 

the proof process then these bindings constitute the output of the program.

A logic programming system can be viewed as a black box for computing bindings. The 

internal workings of such a system should be invisible to an observer whose only interest in 

such system is its input-output behaviour. We have chosen to model concurrent systems as 

logic programming systems during whose execution variables are bound. Our assumption 

is that an observer can detect the in c r e m e n ta l bindings that are made to variables as the 

system executes. Communication in such a system occurs via bindings made to shared  

variables. Bindings may be made to internal variables during the execution of a system, 

but these are not detectable by the observer.

The representation of communication by incremental bindings made to shared variables 

was first suggested in a logic programming context by van Emden and de Filho [135] and 

was based on ideas first discussed by Gilles Kahn and David MacQueen [69]. Concurrent 

logic programming languages implement communication in this way.

Other models of communication

The specification techniques reviewed in Chapter 2 represent communication in a variety 

of ways. Milner [94] has proposed that ‘an interaction among processes consists of their 

participation in a single atomic event’ and claims that communication which occurs via 

shared memory, buffers or a rendez-vous does not satisfy this description. CCS [92] and

CSP [58] are both based on this abstract notion of communication, as is the formal descrip-
are

tion technique LOTOS [66] in which events^atomic in that they occur instantaneously, and

occur at an action point, or gate.  The abstract nature of events and gates, linked with the



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 60

absence of a computational model for LOTOS makes the derivation of implementations 

from specifications in LOTOS very difficult, as we have reported in previous work [48].

3.5 Unification

The approach that we take to the description of a concurrent system is to reason about the 

set of observations that can be made of the system during its execution. An observation 

is regarded as being the binding state of one or more variables. We now discuss in greater 

detail the nature of such variables, the manner in which bindings are described and the 

structure of the sets of observations.

3.5.1 The unification algorithm

We initially consider the basic atomic computation in concurrent systems to be u n if ic a tio n  

over terms. This is an instance of constraint evaluation, a more general computational 

scheme, discussed by Maher in [86] and reviewed by Clark in [25]. Our method of specifying 

systems can be extended to encompass this. Unification combines checking and non

destructive assignment in one action. The unification algorithm was proposed by Robinson 

in [105] (see Lassez [80] for a detailed discussion of unification).

We regard a unifier a  for a set {JE7i, . . . ,  E of expressions to be a m o s t  g e n e ra l u n i f ie r  iff 

for each unifier 6 for the set there is a substitution A such that 6 = a  o A. The unification 

algorithm below for finding a most general unifier for a finite set of nonempty expressions 

is adapted from that given in Chang and Lee [20]. We first define the d isa g re e m e n t s e t for 

expressions:

Definition 3.30 The disagreement set of a nonempty set W  of expressions is the set 

obtained by locating the first symbol (from the left) at which not all the expressions 

in W  have the exactly the same symbol and extracting from each member of W  the 

subexpression that begins at that position. ■

Definition 3.31 The unification algorithm is defined as follows:



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 61

Step 1 Set k  = 0, W k — W  and a k = e.

Step 2 If W k  is a singleton then stop: a k is a most general unifier for W .  Otherwise, find 

the disagreement set Dk of W k-

Step 3 If there exist elements Vk and tk in Dk  such that Vk is a variable that does not 

occur in tk then go to Step 4. Otherwise stop; W  is not unifiable.

Step 4 Let <rk+ i = <*k{Vkftk} and W k+ 1 = W k {V k/ t k }-

Step 5 Set k  = k  + 1 and go to Step 2.

■

A most general unifier is thus a set of replacements of the form {Vi/<i,.. . , V n / t n } where 

each V k is a distinct variable and t k a term which may contain variables, with the proviso 

that the replacements do not determine directly or indirectly the assignments to a variable 

of a term that strictly contains that variable (the ‘occurs check’).

In our model of concurrent systems we are interested in the b in d in g  h is to r y  of variables, 

that is the set of all those assignments generated by unification which contribute to the 

binding of terms to variables during the execution of a system.

Assumption 3.1 Unification is a to m ic  in a concurrent environment.

All calls to unification of a common (shared) variable must be treated as one atomic action 

and thus all partners in a unification to a common variable are mutually constrained.

We may write u n if ic a tio n  for a to m ic  u n if ic a tio n  for brevity. In our portrayal of concurrent 

systems using logic we use the infix predicate symbol = /2  as the name for the unification 

relation. Thus we may write t \  = £2 as an atomic computation where <1 and <2 are 

terms. Additionally we assume the existence of a relation unify/3 s.t. if unify(t1,t2 , S )  

holds then S  stands for the mgu of t \  and <2 ? and is a data structure representing the set 

{Vi / t i , . . . ,  V n / t n }  where V \ . . . V n are the variables in t \  and *2-

In order to  reason in some meta-language about the binding states of variables in some

object system , we assume that distinct system  variables are represented by distinct tuples



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 62

in the meta-language. For example the variable V in a system S will be represented by 

the tuple SfV7), written $V', where V; is a constant representing the variable V and $ is 

a unique prefix function symbol. However when no ambiguity arises we will represent a 

variable by its name alone.

3.6 Com m unication and unification

We now discuss the behaviour of concurrent systems within a framework of first order 

logic.

Assumption 3.2 Communication in a concurrent system can be represented as bindings 

made to shared logic variables.

We regard communication as taking place during u n if ic a tio n , which we hold to be atomic 

(Assumption 3.1). The effect of this is to prohibit any partner in a communication from 

‘running ahead’ of any of the other participants in the unification. If the unification 

fails, then all the participating processes fail. We extend our pictorial representation of 

atomic computations in the following manner: the bindings that are made as a result of 

an atomic computation are associated with each rectangle representing that computation 

(Figure 3.4).

a

Va/ t

Figure 3.4: One atomic computation (unification)

Simultaneous atomic computations are represented te x tu a lly  in our description by their 

composition using the “A” operator. For example if atomic actions a and b are the 

unifications Va = t a and V}, = tb respectively where V a and Vj are variables and t a and tb 

are terms, then the simultaneous occurrence of a and b is (Va = t a AVj = /&)•

D e f in it io n  3 .3 2  The variable se t  of a term /atom  is the set of distinct variables which

th e  term /atom  contains. ■



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 63

We denote the variable set of a term t by t>(t), and define this set by:

(1) if the term is a variable V ,  then v ( V )  = {V }.

(2) if the term is a constant c, then v ( c ) = 0.
k=n

(3) if the term is /( *!, . . . ,*„) ,  then v ( f ( t  i , ...,*„)) = (J
Jb=l

Jk=n

Similarly, the variable set of an atom a(<i,... ,t„) is [J u(f*), denoted by v(a(<i,... , t n )) .
k=l

The variable set of a p r o p o s i t io n  (an atom with no arguments) is the empty set.

Definition 3.33 Two unifications a and b occur in p a ra lle l iff they do not share any 

variables, i.e. v ( a )  fl v { b ) = 0

Consider the simultaneous computations Va = t a A Vb — t b. If V a and Vb are distinct 

variables and t a and t b do not have any variables in common, i.e. v ( t a ) fl v ( t b) = 0, then 

the above composition is that of two p a ra lle l atomic actions, with the resultant binding 

set: {V a/ t a ,V i, / t i ,} . (Figure 3.5).

______  f Va ?V b ______
va/ta y v(ta) n v(tb) = 0 J vb/tb

Figure 3.5: Parallel unifications

Definition 3.34 Two unifications a and b occur c o n c u rre n tly  if they share one or more 

variables, i.e. v ( a )  n o(6) ^ 0  ■

For example, V  =  t a A V  = t b are two concurrent unifications which if successful result in 

V  being bound to the mgu of t a and t b i.e. V / { m g u ( t a , t b) } . A'ariables in the terms t a and 

t b may also be bound as a result. An instance of concurrent atomic unification is:

( V  =  f ( p , Y ) A V  =  f ( X , q ) )



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 64

(illustrated in Figure 3.6) resulting in the binding set

{ V / f { p , q ) , X l p , Y / q }

V / f ( p , Y )  \  V / f ( p , q ) ,

l X / p , Y / q

V / f ( X , q )

Figure 3.6: Concurrent unifications

Assumption 3.3 The simultaneous occurrence of more than one instance of the same 

unification is indistinguishable from one occurrence of that unification. ■

Thus ( V  = t A V  =  t )  is equivalent to V  — t ,  and in general (Ai = *2 ) is equivalent to 

(<! = <2) where /\i fa = fa is the conjunctions of n identical instances of the call t \  = <2 -

The observations that can be made of a system are represented by the b in d in g s  made to 

variables as a result of unifications. In our model all communication is synchronous and is 

represented by bindings made to shared logic variables. While a process is executing incre

mental instantiations may be made to these shared logic variables until the computation 

terminates. The variables will not necessarily be ground in their final states.

We have previously defined a se q u e n c e  of atomic computations (Definition 2.5), and we 

informally introduce the operator w&” to describe sequencing of atomic computations. 

Two sequential atomic computations a and b are represented by a&b where a occurs 

before b. represents logical conjunction as does UA”. An operational semantics for 

both operators is given in Chapter 4.

3.6.1 Computations, paths and states

The e x e c u tio n  of a system or process comprises one or more computations. Graph theory 

provides a useful basis for describing these sets of computations. In this section we describe 

terminating systems (finite computations) since our reasoning is based on f in i te  graphs.

Definition 3.36a A s ta te  S  is a tuple ( G ,6 )  where G  is a goal and 9 is a substitution. 6 

is empty in the initial state of a system. ■



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 65

Definition 3.36bA computation is any derivation beginning from an initial state which 

can be generated during the execution of a system. There is only one initial state of a 

system. ■

A computation can be represented as a sequence of state changes

S q — ► Si — ► 5b — ► • • •

where So  is the initial state. A t e r m in a t in g  computation can be represented by

So  — ► S \  — ► S 2 — ► . • • — ► S n

where 5o is the initial state and S n the final state. We may also represent the terminating 

computation above as the graph G  = (X , U ) where

X  =  {Sb, Si, Sb,.

u  = {(So,Sl),(Sl,S2 ),. . . ,(S„-„Sn)}
Such a graph comprises just one path

[(50, 5 a) , ( 5 t , 5 2) , . . . 1( 5 n- 1, 5 n)]

The order relation on the graph is defined by U , since for even’ (5*, S j )  in U  we may write 

S i  ^ S j .

A system may terminate in different ways, or may reach the same state in a variety of 

ways, resulting in more than one path through the graph. Each path represents one 

computation. The graph is

directed since (5',-,5'j) € U  means that state S j  is the next state after state 5i, 

acyclic since once a state has been reached, it can never be returned to.



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 66

3.6.2 Channels

We now look more closely at the data structures to which variables can be bound during a 

computation. The bindings may occur incrementally and the binding states of a variable 

can be depicted as a directed acyclic graph. In this section we introduce the use of first 

order logic to describe such graphs.

Definition 3.37a A c h a n n e l is a collection of states of a variable that occur during one 

or more computations, i.e. the set of instantiations that can be made to that variable. ■

We will refer to such a variable as a c h a n n e l  v a r ia b le , although all variables may be 

regarded as such. The set is partially ordered by a prefix relation over the data structure 

to which the channel variable becomes bound. This relation which we shall denote by 

< is reflexive, antisymmetric and transitive. X < Y means that Y is an instance of X, 

or X is equal to Y. The instantiation of a channel variable is effected by a process, and 

thus the channel can be described as a g ra p h  ordered by < , through which there are one 

or more paths, each representing a distinct computation (see Section 3.6.1).

Variables are bound during unification to logic terms. The topology of a complex term is 

a tree . Subtrees in a data structure can be instantiated in parallel or sequentially. If a 

channel variable is bound to a complex term, an element in the channel poset can have 

more than one successor. Thus the channel {V, f(A,B), f(p,B), f(A,q), f(p,q)} describes 

the possible binding states of channel variable V with final binding state V/f(p,q). The 

channel can be more comprehensively described by the directed acylic graph G  = (A, U ) 

where



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 67

x  = { v  , f ( A , B )  , f ( p t B )  , f ( A , q )  , f f a q )  }

U  = { ( V J ( A , B ) )  , (/(A, 5)  , / ( * , * ) )  , U { A , B ) , f ( A , q ) ) ,  (f ( A , B ) J ( p , q )) ,

(/(p,£)>/(p,?)) , (/(^»?)>/(P,9)) }

The predecessor relation -< on X  is described by:

{ V -< f ( A , B )  , f ( A , B )  ■< f ( p , B )  , f ( A , B )  -< J ( A , q )  , f ( A , B )  X f ( p , q )  ,

-< f ( p , g )  , } ( A , q )  <  f { p , q )  }

Figure 3.7 is a graph diagram of the channel. The nodes are labelled with the state of the 

channel variable, and the arcs are labelled with the bindings made during the transition 

from one state to the next.

f(p.q)

Figure 3.7: Representation of a channel, final state V/f(p,q)

We define < using X using first order logic:

X < Y  « ( X  =  Y ) V ( X - < Y ) V 3 Z ( X - < Z A Z < Y )

The path between two nodes A and B in a graph G  — (A, U ) can be described as a partial 

list using the infix binary functor (lists are discussed in more detail in Section 3.6.3).

path(A,B,U,P) <-►

((A,B) G U A P=A.B) V 

3 C,P' ((A,C) G U A P=A.P' A path(C,B,U,P'))

Definition 3.37b If X  and X '  are terms each of which represents a state of a channel 

variable, then X  ■< X '  iff X '  is derived from X  either by instantiating at least one variable 

in the variable set of X  to a term f ( y i , ..., vn) where Vi ... v n are variables, or by binding 

X  to a constant. -



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 68

Since we can characterize a graph by its order relation wre

may also define a path from A to B in a graph of X by

path(A,B,P) <-*■

(A-<B A P=A.B) V

3 C,P'( A X A C P=A.P' A path(C,B,P')) 

where x /2  is defined by:

X ^ Y h ( X=$v a Y=f($A,$B) ) V ... V (X=f(p,$B) A Y=f(p,q))

Note that we use $V to represent the name of the variable V.

Any channel can be described by a directed acyclic graph.

/ The set of states described by such a graph can be partitioned using node 

ranks. The definition of a node rank set for an acyclic directed graph G  — (Y, U ) is given 

below, where r~(a;I) is the set of predecessors of node X{, N p is a set of nodes with no 

predecessors, of rank p.

r P_1
JV, = { *i € x  -  (J N k

 ̂ k= 0
where q is the smallest integer such that

x  = u  Nk ,
k-0

Our translation into first order logic of the partitioning is:

Channel (1) 

channel(X,K) <-»•

V N,X' ((nopreds(N,X) A -i(seteq(N, X)) A unionfNjX^X) A 

channel^7,«') A K=s(K')) V 

nopreds(N,X) A seteq(N,X) A K=0)

nopreds(N^X) «-♦ V A,B( (A 6 X A (B X A — B g X)) <-♦ A 6 N)

union(X,Y,Z) ^ V U ( U g Z ^ U g X V U g Y)

seteq(A, B) « V X  (X 6 A <-»X 6 B)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 69

In the above first order description X is a channel, N is a set rank K of nodes without 

predecessors (i.e. N k )> K is a structure s(s(... s(0) ...)) representing a natural number k  

by k  = sfc(0), and the final value of k  is the smallest integer q such that

X  -  U  N k = 0
k=0

In the following, we are not interested in the ranks themselves, but in the composition 

of the rank set. We rewrite the above definition of a channel, explicitly reasoning about 

the rank sets, the bottom element void of the channel and the set of final states1 of the 

channel variable.

Channel (2)

channel(Ts,X) *-*

3 X',Bs ( nopreds(Bs,X) A -i(seteq(Ts, X)) A union(Bs,X',X) A channel(Ts,X')) V 

seteq(Ts, X)

Another way of expressing the channel in logic is to relate the set of states with no 

predecessors in one node rank with the corresponding set in the next higher node rank.

Channel (3)
channel(Ts,X) channel(Ts,X,{void}) 

channel(Ts,X,Bs) +-+

3 X', Bs' ( -i(seteq(Ts, Bs)) A next-rankset(Bs, Bs')

A union(Bs,X, Ĉ) A channel(Ts,X,Bs') ) V 

(seteq(Ts, X) A seteq(Ts, Bs))

next-rankset(P,Q) *-*■

V A,B,C ( A < = P A A ^ B A - . ( A x C A C ^ B ) ~ B e Q )

1The maximum elements of the channel, i.e the set of all the data structures to which the

channel variable can be bound.



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 70

Transformation techniques for the derivation of logic programs from sentences in full first 

order form have been described by Clark [24], Hogger [59, 60] and Kowalski [75]. Us

ing appropriate definitions of E we can derive by standard transformations the recursive 

definition of union/3, seteq/2, nopreds/2 and next-rankset/2.

We define E by the following:

X e Y.Ys h X = Y V X e Ys 

X E nil ^  false

and transform union/3 into a recursive form by taking the original definition of union/3 

and treating the first occurrence of <-> as <—.

union(X,Y,Z) V U (U E Z ~  U E X V U E Y)

Substituting the definition of E :

union(X,Y,A.Z) f -V U  ((U=A V U e Z ) ~ U e X V U e Y)

and expanding

union(X,Y,A.Z) <-

A e X V A e Y A

V U ( U e Z h U e X V U e Y)

i.e.

union(X,Y,A.Z) <—

A E X A union(X,Y,Z) 

union(X,Y,A.Z) «—

A E Y A union(X,Y,Z)

The base case of the recursion is derived by taking X, Y and Z to be nil, and using

(X E Y h  false)

uni on (nil,nil,nil) <— false <-*• (false V false)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 71

Since (false (false V false)) is equivalent to true, we write the base case as

union (nil,nil,nil) true

i.e.

union (nil,nil,nil)

Finally, the Horn clause definition of £ is

x e x.Y s

X 6 Y.Ys * -X  £ Ys

Similarly we can define set equality recursively: 

seteq(X, Y) «-»■

V A(A £ X - > A £ Y ) A V B ( B £ X < - B £ Y )  

i.e.

seteq(X, Y) subset(X,Y) A subset(Y,X) 

subset(X,Y) ^ V A ( A g X - vA g Y)

and by transformations outlined in Hogger [59, 60] and Kowalski [75]. we can derive 

seteq(X,Y) <— subset(X,Y) A subset(Y,X)

subset(nil,Y)

subset(X.Xs,Ys) <— X £ Ys A subset(Xs,Ys)

Similarly we derive a recursive program for nopreds/2

nopreds(nil,nil)

nopreds(N.Ns,X)

N £ X A nopreds'(N,X)

nopreds'(X,nil)

nopreds'(N,A.X) ♦-N /  A A nopreds'(N,X)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G I C  O F C O N C U R R E N T  S Y S T E M S 72

X /  Y X=Y 

X 7* Y *-Y X

We also can derive a recursive form of next-rankset/2, but this requires the use of a 

predicate which describes the set of items to one predecessor:

next-rankset(nil,nil) 

next-rankset(B.Bs,C) <—

set-pred(B, SetX) A nopreds(Cs,SetX) A 

union(Cs,Cs/,C) A next-rankset(Bs,Cs')

This definition of set-pred requires the specific enumeration of all the immediate successors 

of all the members of a channel. Thus for the channel

{X, X=f(A,B), X=f(a,B), X=f(A,b), X=f(a,b)} 

set-pred/2 is defined by

set-pred(P,Q) <->•

(P=$X A Q={f($A,$B)}) V

(P=f($A,$B) A Q={f(a,$B), f($A,b), P=f(a,b)}) V

(P=f(a,$B) A Q={f(a,b)}) V

(P=f($A,b) A Q={f(a,b)}) V

(P=f(a,b) A Q={})

Definition 3.38 A c h a n n e l  in s ta n c e is a collection of bindings states made to a variable 

during one computation. The set of states is a path through the graph of the channel. ■

A channel instance of the channel represented in Figure 3.7 is {V, f($A,$B), X=f(a,b)} 

(Figure 3.8).

We define a channel instance C i  for a set of observations with a set of maximal elements 

T s  by:

channel-instance(Ts,Ci) channel-instance(Ts,Ci,void)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  LO G IC  O F C O N C U R R E N T  S Y S T E M S 73

t f(p.q)

!■ f(A,B)

X

Figure 3.8: Representation of a channel instance, final state V/f(p,q)

channel-instance(Ts,Ci, El) <-+

El e  Ts A Ci={El} V 

3 Ci', El' (El i  X A El ■« El' A 

channel-instance(Ts,Ci',El') A union({El}, Ci', Ci))

3.6.3 Streams

One data structure to which a channel variable can eventually become bound during a 

computation is a l i s t . In the following we denote a list by a pair prefixed with the infix 

function symbol whose first argument is any term and whose second argument is a 

list. The empty list is denoted by the constant n il. A list is thus a data structure in the 

form of a binary tree with the tree name being where data is stored at the leaves. A 

list can be c o m p le te , in c o m p le te , or p a r tia l:

Definition 3.39 A c o m p le te  l i s t is a list whose rightmost leaf is the constant n il. ■

Definition 3.40 An in c o m p le te  l i s t is a list whose rightmost leaf is a variable. ■

Definition 3.41 A p a r t ia l  l is t is a list whose rightmost leaf is not the constant value n il.

■

For example, a complete list is a.b.c.nil,  an incomplete list is a.b.c.X and a partial list 

is a.b.c. An incomplete list is also a partial list.



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 74

Definition 3.42 A s tr e a m  is a poset of instantiations of a stream variable, partially 

ordered by the prefix relation over lists. The poset is a chain and can be represented by 

a directed acyclic graph through which there is only one path from the initial unbound 

state of the stream variable to its final binding state (a list). ■

Each member of the set of bindings is a p a r t ia l  l i s t , except for the final state which m a y  

be a complete list (i.e. terminating in n il).

We assume that each binding state of a variable V can be observed (see Section 3.5), 

and choose to represent the tail variable of partial lists by the unique constant ta il to 

distinguish partial lists from complete lists. We give the type definition of l is t and p a r tia l-  

l is t below:

list(Xs) <-> (Xs=nil) V (Xs=X.Ys A list(Ys)) 

partial-list(Xs) <-+ Xs=tail V (Xs=X.Ys A partial-list(Ys))

For simplicity we assume that if a variable is incrementally instantiated to a list then

the instantiation of the leaves proceeds s e q u e n tia l ly . Thus in the list a^a^__ â  each ai

is instantiated before aj+1 (1 < i < n).

In such a set every member of the 

chain uniquely covers another element, except for the bottom element. An element X 

covers another element Y iff Y -< X. This assumption is not an undue restriction, and 

facilitates the description of systems in which communication occurs by sequential atomic 

computations. A stream S of bindings to variable V where the top element represents the 

binding to a complete list L of length N maps onto the subset of natural numbers from 

1 to N+2 inclusive; the number of elements of the chain is N+2. For example, if the top 

element is V/a.nil then the chain is {tail, a.tail, a.nil}.

Definition 3.43 We define the order relation for streams as follows, where prefix(X,Y) 

denotes X  < Y  and pred(X,Y) denotes X  -< Y :

prefix(X,Y) <->

X=Y V 3 Z (pred(X,Z) A prefix(Z,Y))



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 75

pred(X,Y) ^ 3 D  pred(X,Y,D)

pred(X,Y,D) <-►

( append(X,D.tail,Y) ) V

3 Z (append(Z,tail,X) A append(Z,nil,Y) A D=nil)

appena(w,i,£)

( (X=nil V X=tail) A Y=Z) V 

3 X',Z',A (X=A.X' A Z=A.Z' A appendfX'^Z'))

The definition of a stream is simpler than that of a channel and is related to that of a 

c h a n n e l  in s ta n c e  since there is only one path through the graph representing the set of 

observations of a stream . We describe a stream S recursively where T is the top element 

of S, i.e. the unique final binding state of the stream variable and B is bottom element of 

S i.e. the initial unbound state of the variable.

Stream (1)

stream(T,S) +■+ stream(T,S,tail)

stream(T,S,B)
3 B' S;,C ( pred(B,B0 A singleton(B,C) A union(C,S',S) A stream(T,S/,B/)) V 
3 C (T=B A singleton(T,C) A seteq(C, S))

singleton(X,Y) V U (U G Y <-» U=X)

Note that in the above definition pred/2 is a simplification of set-pred/2 for channels 

due to the chain structure of streams, and pred(X,Y) expresses X ■< Y. The relation 

singleton(X,Y) expresses Y = {X}. The sentence about singleton can be transformed into 

a Horn clause:

singleton(X , X.nil)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 76

3.6.4 Complexity of systems

Communication in concurrent systems can be represented by incremental bindings to 

shared variables. We can distinguish between systems according to the c o m p le x i ty  of the 

systems.

Definition 3.44 The c o m p le x ity  of the communication on a particular channel is a func

tion of the ordering relation on that channel poset, and is expressed as the number of 

distinct paths from ± to the maximal elements in the graph of the poset. The complexity 

of a system is the maximum of the complexities of all the channels within the system. ■

If a channel has a complexity of 1, then all communication over that channel is sequential. 

A stream has a complexity of 1 and hence imposes a sequential order on the production and 

transmission of messages. Stream based systems are chosen as examples in this chapter 

due to their low complexity.

3.T Observations

3.7.1 Observable variables

As a refinement of the model of communication presented so far we assume that some 

variables in a system are observable or public and that others are hidden or private.

Definition 3.45 An o b serv a b le  variable of a process is one which can be shared with 

other processes. Likewise a system may have observable variables, the state of which can 

be inspected by an observer of that system. A process or system which has one or more 

observable variables is o p e n . A process or system with no observable variables is closed . 

A  process or system which has both observable and hidden variables is p a r tia lly -o p e n .  

Unification is an open computation. ■

D e f in it io n  3 .4 6  A hidden  variable of a process is not accessible to any other processes.

A  hidden variable of a system  cannot be observed by an observer. ■



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 77

Remark 3.1 Two or more processes can be concurrent only if they share common observ

able variables. However the sharing of such variables does not imply that these variables 

will be used for communication between these processes, so that such sharing is only an in

dication of possible concurrent behaviour. However, if two or more simultaneous processes 

do not have any observable variables in common then they occur in parallel.

We can now annotate concurrent computations and parallel computations with reference 

to observable variables. Atomic computations are labelled by the unification relation =/2  

whose arguments contain the observable variables of that computation. Atomic compu

tations are always open (Definition 3.45) — the observable variables of an atomic com

putation (or a process) can be hidden by including that computation in a closed process. 

(Figure 3.9).

a

Figure 3.9: Simple closed system

The symbolic names of processes and systems are annotated with arguments standing 

for observable variables. For example we denote a process with name c and observable 

variables X and Y by c(X,Y). Figure 3.10 illustrates the partially open system c(V) whose 

observable variable is V and hidden variables are X and Y. Thus the only observation that 

can be made of the system c  is the binding {V/f(p,q)}.

3.7.2 Observable states

We can now formalise what we mean by the state of a system, and how states relate to 

observations.

D efinition 3.47



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 78

c(V)

{ V / f ( p , q ) }

Figure 3.10: Partially open system

(1) A s ta te  S n of a system is represented by the n-tuple { i fy , . . . ,  B y n } of the bindings 

of the n  variables in that system, where B y n represents the binding state of variable

Vn .

(2) The o b se rv a b le  s ta te  of a system is represented by the tuple of the states of the 

observable variables of the system.

Definition 3.48

(1) The in i t ia l  s ta te  So of a system is an n-tuple {Vi,. . . ,  V }̂ of the initial states of the 

n  variables of the system.

(2) The in i t ia l  o b serva b le  s ta te  of a system is the initial state of the observable variables 

of the system.

3.7.3 Observations of stream based system s

We now focus our attention on systems where all communication occurs via the incremental 

binding of shared variables to lists. We call such communication s tr e a m  b a sed , and refer 

to the shared variables as s tr e a m  va ria b les . The set of states of such a variable is called 

a stream (Definition 3.42). The members of a stream are partial lists except for the top



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 79

element which is either a partial list or a complete list. The binding of the tail variable 

to n il represents an e n d - o f- tr a n s m is s io n  message, which can occur only once on any one 

stream variable.

In Definition 3.43 we defined the order relation on streams using logic. We now also define 

the length of the list to which a stream variable is bound (i.e a state of the stream variable) 

by:

Definition 3.49

length(X,L) <-►

((X=nil V X=tail) A L=0) V 
3 Xl,Xs,L'(X=Xl.Xs A L= s(L') A length(Xs, L')

When we partition the graph of a stream into rank node sets, each set contains a single 

state since there is only one path through the graph (at most one successor and predecessor 

for each node). If the rank of node x,- is t, then we say that xt- is the ith state of the stream 

variable V, and write this as By.  The length of By  is denoted by \By\\  note that \By \ =  0. 

The binding history of a stream variable V  is the set S  : {By  |0 < i  < n }  where n  is the 

rank of the final state of V .

In a system comprising k  stream variables Vi ...Vjt, the predecessor relation, denoted by 

pred8, which relates a state S n and a state 5„+i is defined by:

preds( { 2 ? v i { B 'v l i . . . i B 'v k } )  ++ 

pred(5y!, B 'v x) V ... V pred(i?yfc, B 'y k )

where state S n comprises the tuple {i?vi,• • • , £v*} of stream variables V \ . . . V k .  For 

brevity of notation, we represent a state of variable V j by B y } , and its possible successor 

state by B y . .  A  p o ss ib le  su c c e s so r  s ta te  of a variable V j in state n is either the nth or the 

n + 1th state of the variable.

The order relation <# on a stream based system can then be defined in terms of preds

<(X ,Y )



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 80

X=Y V preds(X,Y) V 3 Z (pred8(X,Y) A < (Z,Y))

3.8 M apping natural language descriptions to  observable 

states

In this section we describe some s tre a m -b a se d  abstract concurrent systems in natural 

language and provide mappings from natural language descriptions to observable states 

for systems based on stream communication. We flag natural language specifications by 

and observable states by “o”.

Most of the systems that we describe in this section are s trea m  tr a n s fo r m e r s  which process 

an in p u t to produce an o u tp u t . We can represent such a system as a graph G  = (X, U ) 

where X is a set of pairs of states of the input /  output variables and U is a set of pairs 

of such pairs:

X  = \ 0  < j  < s  , 0 < k < i }

U  = {((b { , B q ),  ( B j ' , B g ) )  I j  <  j ' A k  <  k 'AO < j  <  sAO < /  < s A O < k <  t AO <  k' < <}

where s  and t are the ranks of the final states of I  and O  respectively.

We use the notation f a i th fu l l y  denoted by T , possibly subscripted, to indicate the relation 

between the input and the output. Possible subscripts are c (indicates corruption of items), 

/ (loss), r (repetition) and s  (input sequence preserved). An overline on a subscript letter 

denotes the opposite behaviour to that denoted by the letter alone. Thus s denotes 

a system in which every item is copied from the input to the output, with no corruption, 

loss or repetitions, and order preserved. We present below mappings from the fa i th fu ln e s s  

terminology into that of stream variable binding histories. All of the systems are assumed 

to be f a i r  for both input and output:

Definition 3.50 We say that a system processes input fa ir ly  iff it never arbitrarily refuses 

input. Likewise a system which processes output fairly never refuses to output items if 

items are available for output. B



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 81

3.8.1 Faithfulness and stored items

Observation 3.1 [Prefixes and faithfulness]

• A system faithfully X sj tf,s copies its input /  to its output 0 , i.e. without corrupting, 

losing or repeating items, and preserving their order of input.

o The system has two observable variables I  and O . In all possible states of the system 

S k  where S k  6 «S, the binding to the output variable stream O  is a prefix of the 

binding to the input variable F, or the binding to O  is the same as the binding to 

/ ,  i.e. prefix ( B o , B j )  y  B q  — B i .

Observation 3.2 [Storing items up to a maximum]

• A system faithfully j  f  a copies its input I  to its output 0, and can store a maximum 

of M a x  items s.t. M a x  > 0 . In a particular state S k , n items are in the system’s 

internal store, and they are X \ ... X n

o The system has two observable variables I and O. For all possible states S k  E S  of the 

system, the input is a prefix of the output, or the input and the output states are 

the same, i.e. prefix(i?o, B j )  V B o  = B j .

o In the particular state S k ,  the number of items in the store is indicated by the difference n 

between the length of the states of I  and O  (see Definition 3.49). i.e. n = \B j \  — \B o \-

o The number n  of items in the store can never exceed the stated maximum, i.e.

Vn : n  < M a x

o The items in the list I t e m s k  stored are those items in B j  but not in B o . Since B o  

is a prefix of I?j, then append(2?o,/femsjt, B i )  holds. (See Definition 3.43 for the 

definition of append/3).

O b ser v a tio n  3 .3  [Storing item s —  no upper limit]



C H A P T E R  3. SP E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 82

• A system faithfully FcJ,f,» copies its input I  to its output 0 , and in a particular state 

S k  has stored n  input items. There is no limit on the items that it may store. Its 

internal store contains n  items and they are X \ . . . X n

o The description of the observable states is as for Observation 3.2 but w ith o u t the re

striction that V n  : n  < M a x .

3.8.2 Determ ining the state of the store 

Observation 3.4 [An empty store]

• A system faithfully c°pies its input I  to its output 0 , and in a particular state

has no input items stored.

o The system has two observable variables /  and O . In all possible states of the system

Sk £ <S, (prefix(2?o, B i) V Bo = B i).

o In the particular state S k  when the store is empty, the number of items in the store is 

zero, i.e. n =  0, Bj =  2?q , and |f?/| =  \Bq \%

Observation 3.5 [A store neither full nor empty]

• A system faithfully copies its input I  to its output 0 , and in a particular state

its store is neither full nor empty.

o The system has two observable variables I  and O , and an associated maximum size to 

its store, M a x .  In all possible states of the system S k  € «S,

(prefix(#o, Bj) V Bo -  Bi).

o In the particular state S k  when the store is neither full nor empty, the number of items 

in the store is n, i.e. n  < M a x , and n  =  m  -  \B 0 \.

O b se r v a t io n  3 .6  [A full store]



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 83

• A system faithfully copies its input I  to its output 0, and in a particular state

its store is full.

o The system has two observable variables I  and 0, and an associated maximum size to 

its store, Max. In all possible states of the system Sk € S,

(prefix(i?o, Hi)  V Bo =  Bi).

o In the particular state S k  when the store is full, the number of items in the store is n, 

i.e. n  = Max , and n — \Bi\ — \Bq\-

3.8.3 The state of the store determines the next observable state 

Observation 3.7 [Behaviour when the store is empty]

• A system can store n  items (n > 0) and when empty can only input an item.

o A system is empty in a state S n if the length of list to which the input variable is bound 

equals the length of the list to which the output variable is bound.

o In the successor state S n+ i , the length of the list to which the input variable is bound 

exceeds by one the length of the list to which the input variable is bound in state

S n -

o The length of the list to which the output variable is bound is the same in both state 

S n +i and state S i\.

o The length of the list to which the input variable is bound in state .SVi+i exceeds by one 

the length of the list to which the output variable is bound in state S n + i-

Observation 3.8 [Behaviour when the store is full]

• A system can store a maximum of M a x  items ( M a x  > 0), and when full can only 

output an item.



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 84

o The difference between the length of the list to which the input variable is bound and 

the length of the list to which the output variable is bound cannot be more than 

M a x  in any state. \B i \  — \B o \  < M a x .

o The system is full in state S n if the length of the list to which the input variable is bound 

is equal to the length of the list to which the output variable is bound. \ B J | = \B q \.

o and in the next state 5n+i, the length of the list to which the input variable is bound 

is unchanged while the length of the list to which the output variable is bound is 

incremented by one. |jBJ+1| = |BJ| and |jB£+1| = l-®oi + 1*

Observation 3.9 [Behaviour when the store is neither full nor empty]

• A system can store a maximum of M a x  items and, when neither full nor empty, can 

only output items, or only input an item, or input and output two distinct items 

simultaneously.

o The difference between the lengths of the lists to which the input variable and the output 

variable are bound cannot be more than M a x  in any state. \B i \  — \B o \  < M a x .

o In any state 5n, if the difference between the length of the lists to which the input 

variable and the output variable are bound is less than M a x  and greater than zero, 

the system is neither full nor empty. 0 < (|i?/| — \B o \ )  < M a x .

o and in the next state jS'r+i :

inputting an item: the length of the list to which the input variable is bound is incre

mented by one while the length of the list to which the output variable is bound is 

unchanged.

outputting an item: the length of the list to which the output variable is bound is 

incremented by one while the length of the list to which the input variable is bound 

is unchanged.

inputting and outputting two different items: the lengths of the lists to which both 

the input and output variables are bound are incremented by one, and the last item 

of each list is different.



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 85

3.9 D escriptions in natural language of illustrative system s

We describe illustrative stream based systems using natural language. One example of such 

systems is a producer (or consumer) of partial lists which comprise the observations of 

the system. Other exemplars can be regarded as variants of transformers which transform 

input partial lists into output partial lists where each pair ( I n p u t ,  O u t  p u t )  describes a 

discrete state of the system. Such systems can be specified by:

(1) a statement of the relationship that is to exist between members of the pair in each 

state,

(2) a statement of the rule describing the relationship between each pair and its succes

sor.

The complete history of any given system is represented by the set of all the observations 

that can be made of the system. It is the intention of our treatment that the complete 

history can be described in first order logic.

3.9.1 A producer

A s e q u e n tia l producer produces messages in linear order on a stream variable, incremen

tally binding the variable to a list of messages. We assume that a t e r m in a t in g  producer 

flags its termination with an end-of-transmission (e o t) message, indicated by binding the 

tail of the stream variable to n il, thus making the bindings to that variable a complete 

list (see Definition 3.39).

The message stream is a strict poset of partial lists ordered by the prefix1 relation whose 

bottom element is the partial list t a i l  and top element is a complete list. There is only 

one complete list in the set.

3.9.2 An N-bounded buffer.

An N-bounded buffer inputs item s and reproduces them  faithfully T z j f  s on its output,

eventually outputting all item s, and being able to  store up to N  item s during the interim



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 86

period. In all possible states of the buffer the output is a prefix of the input (Observa

tion 3.2).

The buffer can be either full or empty or neither empty nor full. In a particular state the 

number of items in the store is indicated by the difference between the length of the states 

of the input and output variables.

(1) When full it cannot accept (input) an item, but must output an item fairly:

• the system is full in state S n if the difference between the lengths of the lists 

to which the input and output variables are bound is equal to M a x  (Observa

tion 3.6).

• in the next state 5n+ i, the length of the list to which the input variable is bound 

remains unchanged while the length of the list to which the output variable is 

bound incremented by one (Observation 3.8).

(2) When empty it cannot output an item, but must input an item fairly.

• The buffer is empty when the length of the list to which the input variable 

is bound equals the length of the list to which the output variable is bound. 

(Observation 3.4).

• In the next state length of the list to which the input variable is bound exceeds 

by one the length of the list to which the input variable is bound in the empty 

state, and the length of the list to which the output variable is bound is the 

same in both states (Observation 3.7).

(3) While it is neither empty nor full the buffer can input and output two (different) 

items simultaneously, or can input and output items fairly in some interleaved se

quence.

• The buffer is neither empty nor full when the difference between the length of 

the lists to which the input and output variables are bound is within the range 

r : 1 < r < M a x  (Observation 3.5).

From Observation 3.9 the next state is arrived at by one of the following three 

actions:



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 87

(a) only inputting an item:

the length of the list to which the input variable is bound is incremented by one 

while the length of the list to which the output variable is bound is unchanged.

(b) only outputting an item:

the length of the list to which the output variable is bound is incremented by one 

while the length of the list to which the input variable is bound is unchanged.

(c) both inputting and outputting two different items:

the lengths of the lists to which both the input and output variables are bound 

are incremented by one, and the last items are different.

3.9.3 One slot buffer

A one slot buffer is a special case of an N-buffer, in which the maximum number of items 

that can be stored is 1. It inputs items and reproduces them on its output. An item

input will be the next item output, and the store can be either full or empty, but never 

part-full. When full it cannot accept (input) an item, but must output an item fairly. 

When empty it cannot output an item, but must input an item fairly. It inputs/outputs

in an alternating sequence: in , o u t ,  in , o u t , __  Later in this chapter we show that an

N-place buffer can be constructed from N 1-place buffers.

3.9.4 An unbounded buffer (FIFO queue).

A queue is a special case of a buffer for which there is no maximum number of items that 

can be stored. It inputs items and reproduces them on its output. An item that

is input is eventually output. If the environment cannot accept an item offered by the 

buffer for output then the buffer can always accept items offered by the environment. Its 

store can be either empty or part-full — when empty it cannot output an item, but must 

input an item fairly. While it is non-empty it may input and output two (different) items 

simultaneously, or input/output items fairly in some interleaved sequence.



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 88

3.9.5 Expedited data queue.

An expedited data queue (xdq) accepts two types of items: normal and expedited. An 

xdq is faithful f°r normal items and faithful for expedited items respectively,

but is faithful T?7=  * over all items.

The xdq is unbounded like an ordinary queue, can never refuse to input an item and can 

refuse to output an item only when it is empty. When the xdq is non-empty it can accept 

and output items either simultaneously or in an interleaved manner.

If an expedited item is input, then it will be output before any normal item which has 

been input but not yet output. If  a normal item is input, it will not be output before 

an expedited item that has been previously input and not yet output. Note that if an 

expedited item is input and an item is output simultaneously, then the output item may 

be a normal item or an expedited item (but different from that simultaneously input).

3.10 D escriptions in logic of illustrative system s

In this section we describe some example systems using logic. We concentrate on stream 

based systems due to their low complexity (see Definition 3.44). We can describe each 

example system in two ways.

S E T  A Horn clause description of the set of observations that can be made of the system.

V 7 Z O Q  A  Horn clause description of the relationship between each member of the set and 

the maximal elements of the set.

S E T  and V 7 Z O Q  can be regarded as logic programs in the logic languages L s  and L-p 

respectively. A logic interpreter can be defined for each language, based on the operational 

semantics of that language.

When we execute a logic program written in language on an interpreter 1$ we are only 

interested in the final binding states of the variables in the query. Thus the operational 

semantics for L j need not embody concurrency and we can use any sequential logic pro

gramming language, for example Prolog, as the basis for I5. In fact a program S E T  can



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 89

be regarded as a Prolog program if suitable care is taken over the ordering of clauses and 

calls.

The execution of V IZ O Q  should result in the behaviour described by S E T .  Thus we are 

interested in the binding states created d u r in g  the execution of a logic program written 

in L p . The operational semantics of L p  define a logic interpreter I p  whose operation 

produces or simulates concurrent behaviour. We define the semantics of Lp  in the next 

chapter.

3.10.1 Stream Producers

The producer of a channel is a process which incrementally binds a channel variable. 

Similarly a consumer of a channel incrementally checks that a variable is bound to an 

expected data structure. Messages on a channel correspond to leaves in the data structure 

to which the channel variable is incrementally bound. In the case that the channel is 

a stream the messages correspond to the items in the list to which the stream variable 

becomes bound. Messages can be complex data structures, but the restriction that each 

member of the stream poset except for the bottom element uniquely covers its immediate 

predecessor means that messages on a stream variable are produced sequentially. The 

observations that can be made of a stream producer are just the observations that can be 

made of the stream variable which the producer incrementally instantiates.

3.10.1.1 Set description of a producer

We repeat below the definition in logic of a stream given in Section 3.6.3, page 75 and the 

definition for the predecessor relation:

stream(T,S) +->stream(T,S,tail) 

stream(T,S,B) <-+

3 B' S',C ( pred(B,B') A singleton(B,C) A union(C,S',S) A stream(T,S',B')) V 

3 C (T=B A singleton(T,C) A seteq(C, S))



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F C O N C U R R E N T  S Y S T E M S 90

singleton(X,Y) h VU (U 6 U=X) 

prefix(X,Y) «-►

X=Y V 3 Z (pred(X,Z) A prefix(Z,Y))

pred(X,Y) ~  3 D pred(X,Y,D)

pred(X,Y,D) ~

( append(X,D.tail,Y) ) V

3 Z (append(Z,tail,X) A append(Z,nil,Y) A D=nil)

append(X,Y,Z) <->•

( (X=nll V X=tail) A Y=Z) V 

3 X',Z',A (X=A.X; A Z=A.Z' A append(X'jY jZ'))

We transform the sentences into Horn clauses by:

(1) rewriting *->-by <— ,

(2) omitting existential quantifiers in the body of a clause,

(3) rewriting (a <— b V c) as the two clauses (a * -  b) and (a <— c),

(4) using a suitable data structure, for example a list, to represent a set.

The above description of a stream can thus be represented as the following Horn clauses. 

We have chosen to represent sets in Horn clauses by lists. Given the top element of 

the stream, i.e. the final binding state of the stream variable, the relation stream(Top,S) 

represents the binding states of the stream variable as S, a list of lists.

stream(T,S) <— stream(T,S,tail)

stream(T,S,B) *-pred(B,B') A union(B.nil,S/,S) A stream^S7,Br) 

stream(T,S,B) «-

(T=B A T.nil=S)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 91

union(nil,nil,nil) 

union(X,Y,A.Z) «-

A € X A union(X,Y,Z) 

union(X,Y,A.Z) <-

A G Y A union(X,Y,Z)

x g x.Ys

X G Y.Ys <—X G Ys

prefix(X,X) 

prefix(X,Y) <-*

pred(X,Z) A prefix(Z,Y)

pred(X,Y) 4- pred(X,Y,D)

pred(X,Y,D) <-

append(X,D.tail,Y) ) 

pred(X,Y,D) <-

append(Z,tail,X) A append(Z,nil,Y) A D=nil

append(nil,Y,Y) 

append(tail,Y,Y) 

append(X,Y,Z) <—

X=A.X' A Z=A.Z' A appendCX'jYjZ')

The Horn clauses above can be regarded as a logic program of type S E T  in language L5. 

The execution of a query of the form

*— stream(Top, Stream)

where Top is initially bound to a complete list on an interpreter for results in Stream 

being bound to a data structure representing the set of binding states of a stream variable. 

This data structure is a list items each of which is a list representing one binding state of



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 92

the stream variable.

3.10.1.2 Logic program for a producer

We now describe in first order logic the relationship between each of the members of 

a stream and the final state of the stream variable. A stream producer incrementally 

instantiates a stream variable to a list and the order relation on the set of bindings is 

based on list prefixes. We repeat the top level definition for prefix/2 on streams given on 

page 90:

prefix(X,Y) *-*

X=Y V 3 Z (pred(X,Z) A prefix(Z,Y))

Partially evaluating prefix/2 w.r.t. the definition of pred/2 and append/3, we write: 

prefix(X,Y) ~  3 Diff (append(X,Diff,Y))

We can describe this incremental instantiation by a predicate relating each member of the 

stream poset to the top element. Given T, the final state of the stream variable, then the 

relation approximates(X, Diff, Stream,Top) relates X, a member of the stream S, to the 

top element Top where Diff is the difference between X and Top.

approximates(X, Diff, Stream,Top) h ( X g Stream <-+ append(X,Diff,Top))

We rewrite this as a recursive relation where Diff is the difference between element X and 

the top element of the poset. X is initialized to the bottom element of the set in order to 

find the differences between the top element of the set and the other members of the set.

approximates(Diff, Top, X) <-*• 

pred(X,Top,Diff) V

3 X', D, Diff (pred(X,X',D) A Top /  X' A X < Top A Diff=D.Diff 

A approximates(Diff, Top, X')) 

pred(X,Y,D) «-*•

append(X,D.tail,Y) V

3 Z (append(Z,tail,X) A append(Z,nil,Y) A D=nil)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 93

We can replace the two arguments Top and X by the pair (Top,X) which denotes a 

difference-list. For example, if Top=a.b.c.nil and X=a.b.tail then the tuple is 

(a.b.c.nil,a.b.tail) which represents the difference-list c.nil-tail.

approximates(Diff, ListPair) «-►

(empty(ListPair) A Diff=nil) V

3 First,ListPair' (decompose(ListPair, First, ListPair') A 

Diff=Head.DifP A approximates(DifF, ListPair'))

decompose((Top,X),Head, (Top ,X ')) +-»append(X, Head.X',Top) 

empty((Top,X) ) *-* 3 Z (append(Z,nil,Top) A append(Z,tail,X))

We now replace the difference-list (Top,X) by the list L s.t. append(A,L,B) holds:

approximates(Diff, List) *->

(empty(List) A Diff=nil) V 

3 First,ListPair' (decompose(List, First, List') A 

Diff=Head.DifF A approximates(Diff, List'))

decompose(X,Y,Z) *-*■ X=Y.Z

empty(X) <-+X=nil

Partially evaluating approximates/2 w.r.t. empty/1 and decompose/3 we derive the rela

tion produces/2 where produces(X,Y) denotes that X is a stream variable incrementally 

bound to the list Y:

produces(Diff, List) «-► (List=nil A Diff=List) V

3 Z, DifF, List' (Diff=Z.DifF A List=Z.List' A produces(DifF, List'))

The above sentence can be rewritten as Horn clauses where produces(StreamVar, 

FinalState) describes the incremental binding of the stream variable StreamVar to its 

final binding state.

produces(StreamVar, List)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 94

StreamVar=nil A List=nil 

produces(StreamVar, List) <—

StreamVar = X.StreamVar/ A List=X.List' A produces(StreamVar/, List')

The definition of produces/2 can be regarded as a logic program of a general type V R O Q  in 

a language L p .  For each program P  of type V 7 Z O G  derived from a first order description 

F  of a system there is a corresponding program S  of type S E T  derived from F .  The 

execution of P  and a suitable query on an interpreter which embodies the computational 

rule of L p  results in the behaviour predicted by S .  For example, a query that can be made 

w.r.t. produces/2 is

<— produces(StreamVar, List)

where List is initially bound to a complete list. The execution of this query will incremen

tally bind StreamVar in the manner described by the S E T  program stream/2 defined in 

Section 3.10.1.1.

The computational rule employed by an interpreter for the language L p  is described in 

the next chapter and forms the basis of the definition of the operational semantics of the 

logic programming language SILCS.

3.10.2 Buffers

A buffer is a relation between two streams, Input and Output. These streams can be 

considered together as the poset of pairs (Input,Output) with (tail,tail) as the bottom 

element. A buffer should eventually copy all items input to the output, preserving their 

order. Thus the poset can be described by a directed acyclic graph

with maximal element (X,X) where X is a complete 

list. An N-bounded buffer can store up to N items and thus the ordering relation < on 

the poset is related to N, the state of the store and prefix on lists. We give below the 

definition of the predecessor XN (pred) relation and the ordering relation <N (order) for 

an N-buffer. The definition of -<N is based on the earlier descriptions of the expected 

behaviour of a bounded buffer given in Section 3.9.2.



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 95

order(N, X, Y) ~

X=Y V pred(N, X,Y) V 3 Z (pred(N,X,Z) A order(N,Z,Y)) 

pred(N, (1,0), {I', O ')) «-

3 Z(append(Z,nil,I) A append(Z,tail,0) A 1=1' A 1=0') V 

(empty(I,0) A 0 '= 0  A input(I,I')) V 

(fulI(N,I,0) A I'= I A output(I,0,0')) V 

(part-full(N,I,0) A 0 '= 0  A input(I,I')) V 

(part-full(N,I,0) A I'= I A output(I,0,0')) V 

(part-full(N, 1,0) A input(I,I') A output(I,0,0'))

empty(I,0) 1=0

fulI(N,I,0) <-► 3 LI, L2( length(I,Ll) A length(0,L2) A N=L1-L2)

part-full(N,I,0) *-*■ 3 LI, L2( length(I,Ll) A length(0,L2) A N > L1-L2)

length(X,L) *-*■

((X=tail V X=nil) A L=0) V 

3 Z,X',L' (X=Y.X' A L=s(L') A length(X',L'))

input(I,I')

3 X (append(I,X.tail,I')) V 3 Y (append(Z,tail,I) A append(Z,nil,I'))

output(I, 0, O') <-*• 3 X,Y (append(0, X.Y, I) A append(0, X.tail, 0'))

Each path through the graph represents one possible way in which the buffer behaves, i.e. 

one computation. A definition of the top level of the N-buffer, based on Channel (3) is:

n-buffer(N,Top,Set) n-buffer(N,Top,Set,{{tail,tail) })

n-buffer(N, Top, Set, Mins)

3 Set', Mins' (next-rankset(N,Mins,Mins') A union(Mins, Set', Set)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 96

A n-buffer(N, Top, Set', Mins')) V 

seteq({Top}, Mins) A seteq(Set, Mins)

The definition of next-rankset/3 is not recursive:

next-rankset(N, Mins, Mins') <-►

V A,B,C ( A G P A  pred(N,A,B) A -,(pred(N,A„C) A pred(N,C„B)) ^ B e Q )

3.10.2.1 Set description of a buffer

We transform the recursive first order logic sentences describing an N-bufFer into Horn 

clauses using the same techniques as we did for producers in Section 3.10.1.1, i.e. by:

(1) rewriting «-»by +—,

(2) omitting existential quantifiers in the body of a clause,

(3) rewriting (a «— b V c) as the two clauses (a <— b) and (a «— c),

(4) using a suitable data structure, for example a list, to represent a set.

Our initial first order description is based on that for the N*bufFer given above. 

n-buffer(N,Top,Set) <— n-buffer(N,Top,Set, (tail.tail) .nil)

n-buffer(N, Top, Set, Mins) <—

next-rankset(N,Mins,Mins') A union(Mins, Set', Set)

A n-buffer(N, Top, Set', Mins') 

n-buffer(N, Top, Poset, Mins) *—

Top.nil = Mins A Set = Mins

next-rankset(N,nil,nil) 

next-rankset(N,B.Bs,C) «—

set-pred(N,B,SetX) A nopreds(Cs,SetX) A 

union(Cs,Cs',C) A next-rankset(N,Bs,Cs')



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 97

nopreds(nil,nil) 

nopreds(N.Ns,X) <-

N G X A nopreds'(N,X)

nopreds^X^nil)

nopreds'(N,A.X) <-N /  A A nopreds'(N,X)

union(nil,nil,nil) 

union(X,Y,A.Z) <—

A G X A union(X,Y,Z) 

union(X,Y,A.Z) <-

A G Y A union(X,Y,Z)

X G X.Ys

X G Y.Ys <- X G Ys

The definition of set-pred/3 can be achieved by specific enumeration of all the possible 

successors of a state, or by the use of a set predicate. The general first order definition of 

the setof-solutions relation was given by Clark [30] as:

Setof(1)

setof-solutions(T,G,S)

VX (3 Lj, ...,Ln(G A X=T) ~X G S)

where G is a goal and S a list containing an instance of term T for each solution to G. 

Llv .. ,Ln is the list of local variables in G. Naish [99] further requires that the list S is 

sorted with respect to some arbitrary total order over terms and duplicate elements are 

removed:

Setof (2)

setof-solutions(T,G,S) «-*■

V X (3 L1? ... ,Ln(G A X=T) X G S) A sorted(S)

Given an implementation of setof-solutions/3 we can then define set-pred/3 by:



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F C O N C U R R E N T  S Y S T E M S 98

set-pred(N,B,SetX) <— setof-solutions(X, pred(N,B,X), SetX)

The Horn clause definition of pred/3 can be directly derived from the first order description 

given in the previous section, the first clause of which describes the case when the buffer 

receives an end-of-transmission (n il) on the input stream.

pred(N, (1,0), (I', O ')) <— append(Z,nil,I) A append(Z,tail,0) A 1=1' A 1=0' 

pred(N, (1,0), (I', O ')) empty(I,0) A 0 '= 0  A input(I,I7) 

pred(N, (1,0) , (I', O ')  ) <-full(N,I,0) A I'= I A output(I,0,07) 

pred(N, (1,0), (I7, O ')) *- paxt-full(N,I,0) A 0 7= 0  A input(I,I7) 

pred(N, (1,0), (I7, O7) ) *— paxt-full(N,I,0) A I7= I A output(I,0,07) 

pred(N, (1,0), (I7, O7) ) <— pait-full(N,I,0) A input(I,I7) A output(I,0,07)

empty(I,0) <—1=0

full(N,I,0) length(I,Ll) A length(0,L2) A subtract(Ll,L2,L) A N=L 

part-full(N,I,0) <—

length(I,Ll) A length(0,L2) A subtract(Ll,L2,L) A N > L 

subtract(X,0,X)

subtract(s(X),s(Y),Z) <— subtract(X,Y,Z) 

s(X) > 0

s(X) > s(Y) * -X  > Y

length(tail,0)

length(nil,0)

length(X,L) *-X =Y .X 7 A L=s(L7) A length(X7,L7)

input(I,I7) «- append(I,X.tail,I7)

input(I J7) <— append(Z,tail,I) A append(Z,nil,I7)

output(I, 0, O7) «- append(0, X.Y, I) A append(0, X.tail, O7)



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  OF C O N C U R R E N T  S Y S T E M S 99

The Horn clause description n-buffer/3 of the set of observations of an N-place buffer can 

be regarded as a program of type S E T  in the logic language L s . An N-place buffer is 

described by the call

<— n-buffer(N,Top,Set)

3.10.2.2 Set description of a one-place buffer

In order to describe a one place buffer, we can modify the description n-buffer/3 to the 

following, since a one-place buffer is either empty or full, but never part-full.

l-buffer(N,Top,Set) <— l-buffer(Top,Set, (tail.tail)) 

l-buffer(Top, Set, Min) <—

pred(Min,Min') A union(Min.nil, Set', Set) A l-buffer(Top, Set', Min') 

l-buffer(Top, Poset, Min) <—

Top = Min A Set = Min.nil

pred((I,0) , (F, O') ) <— append(Z,nil,I) A append(Z,tail,0) A I=F A 1=0' 

pred((I,0), (F, O ')) <—1=0 A 0 '= 0  A input(I,F) 

pred((I,0),(F, CF>) «-

I  5̂  0 A F=I A output(I,0,(y)

3.10.2.3 Induction on buffer descriptions

We have shown above how N-place buffers can be described as posets ordered on a relation 

< N. We can also inductively define the poset of observations for an N-place buffer by 

composing states for empty and full buffers using X0 and recursion. The descriptions of 

e m p tie s  and f u l l s  for an N-place buffer are required in this definition. The intention is 

later to relate this form of S E T  to a similar technique for the T 7 Z O G  form of the buffer 

descriptions, where we compose N 1-place buffers to form one N-place buffer.

The relation em pties(T ,Set,B ) defines Set as the set o f all the empty states of an N-place

buffer where B is the initial state, i.e. a pair (tail,tail) and T is a pair (X,X) denoting



C H A P T E R  3 . S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 101

(N=0 A empties(T,Set,B)) 

buffer(N,T,Set,B) <—

N=s(N') A buffer(N/,T,Set/,B) A fulls(N,T,F,B) A union(F,Set',Set)

union(nil,nil,nil) 

union(X,Y,A.Z) ^

A G X A union(X,Y,Z) 

union(X,Y,A.Z) <—

A G Y A union(X,Y,Z)

X G X.Ys

X G Y.Ys <- X G Ys

empties(T,E,B) *—

(B=T A E=T.nil) 

empties(T,E,B) «-

pred(0,B,B') A B' ^ T A E=B.E' A empties(T,E',B/)

fulls(N,T,F,B) 4-

(B=T A F=T.nil) 

fulls(N,T,F,B) <-

pred(0,B,B') A B ' / T A  full(N,TpC,B)

A F=X.F' A fulls(N,T,F,,B')

full(N,T,X,B) T=(T/,T/> A B=(B/,B/) A X=(T ,,B')

3.10.2.4 Logic programs for buffers

A bounded buffer incrementally copies the bindings on one stream variable to another. 

The description of a buffer as a poset of bindings forms the basis of our derivations. We 

can describe this incremental copying by a predicate relating each member of the poset to 

the top element, as we did for the producer relation (Section 3 .1 0 .1 .2 ). We use the order



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F C O N C U R R E N T  S Y S T E M S 102

relation for buffers defined on page 95. Partially evaluating order/3 w.r.t. pred/3 and 

append/3, we obtain

order(N,X,Y) <-* 3 Diff (pair-append(X,Diff,Y))

pair-append((X;,X0) ,(D,-,D0) , (Yt-,Y0) ) «-► 

append(X,-,Di,Y,) A append(Xo,D0,Y0)

We relate each member of the set of observations to the terminal state of the buffer:

approximates(X, Diff, BufferSet ,Top) <-*■

X G BufferSet —*■ pair-append(X,Diff,Top)

We rewrite this as a recursive relation where Diff is the difference pair between element 

X and the top element of the poset for one chain (computation). In order to find the 

difference between the top element of the set and all the other elements of the set, we 

initialise X to the bottom element of the set (tail,tail).

approximates(Diff, Top, X, N) <-►

(pred(N, X, Top) A Diff=(nil,nil) )V 

3 X', Diff (pred(N,X,X') A Top ^ X'

A X < Top A convert(Diff, X, X', Diff) A approximates(Diff, Top, X', N))

convert( (1,0), (Xt-,XD) , (XJ,X'0) , (I',O ')) <-

3 A(X0=X; A diff(X,-,X;.,A) A update(I,A,I') A 0 '= 0 ) V 

3 B(X,=X; A diff(X0,X',B) A 1=1' A update(0,B,0')) V 

3 A,B(diff(X,-,Xj,A) A diff(X0,X;,B) A update(I,A,I') A update(0,B,0'))

diff(X,Y,D) ^

append(X,D.tail,Y) V

3 Z(append(Z,tail,X) A append(Z,nil,Y) A D=nil) 

update(A,B,C) <-*• (B=nil A A=nil) V (B ^ nil A A=B.C)

We dispense with the arguments Top and X, replacing them with an argument representing 

the state of the buffer’s store. This argument is a pair (Input,Output) where Input and



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S  103

Output are the states of the input and output stream variables in a particular state. The 

store is then represented as a list derived from the difference of the input and output 

bindings. For example, if in one state the input-output pair is (a.b.c.tail, a.b.tail), then 

the store can be represented by (c.tail,tail). This representation simplifies the definition 

of pred/3 which can be rewritten without altering its logical meaning:

approximates(Diff, Store, N) «-►

3 X,Y,Z (Store=(X,Y) A append(Z,nil,X) A append(Z,tail,Y) A Diff=(nil,nil)) V 

3 X', DifF (pred(N,Store, Store7) A convert(Diff, Store, Store7, DifF) A 

approximates(DifF, Store7, N))

pred(N, (I,tail), (I7, tail))

(empty(I,tail) A input(I,I7)) V 

(full(N,I,tail) A output(I,I7)) V 

(part-full(N,I,tail) A input(I,I7)) V 

(part-full(N,I,tail) A output(I,I7)) V 

(part-full(N,I,tail) A input(I,I7) A output(I,I7))

empty(I,tail) <-+ I=tail

full(N,I,tail) ~ 3  Ll( length(I,Ll) A N=L1)

part-full(N,I,tail) 3 Ll( length(I,Ll) A N > LI)

length(X,L) «-► ((X=tail V X=nil) A L=0) V

3 Z,X7,L7 (X=Y.X7 A L=s(L7) A length(X7,L7))

input(I,I7) <-*•

3 X (append(I,X.tail,I7)) V 3 Y (append(Z,tail,I) A append(Z,nil,I7)) 

output(I, X.I)

The definition of convert/4 is simplified:

convert( (1,0), (X jX .) , (X',X'0) , (I',O')) «



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 104

3 A( append(X(-,A.tail,X,) A update(I,A,I') A 0 '= 0  ) V 

3 B( X, = B.XJ A update(0,B,0') A 1=1' )V 
3 A,B,Tmp ( X, = B.Tmp A append(X(, A.tail, Tmp) A 

A update(I,A,I') A update(0,B,0'))

We now combine pred/3 and convert/4:

approximates(DifF, Store, N) <-+

3 X,Y,Z (Store=(nil,tail) A DifF=(nil,nil)) V 

3 X', DifF (pred(N,Store, Store',Diff,DifF)

A approximates(DifF, Store', N))

pred(N, Store, Store', DifF, DifF) <-*

3 X (empty(Store) A input (DifF,DifF,X) A add(X,Store,Store')) V 

3 Y (full(N,Store) A output (DifF,DifF ,Y) A remove(Y,Store,Store')) V 

3 X (part-full(N,Store) A input(DifF,DifF,X) A add(X,Store,Store')) V 

3 Y (part-full(N,Store) A output(DifF,DifF,Y) A remove(Y,Store,Store')) V 
3 X,Y, TmpD, TmpS (part-full(N,Store) A input(DifF,TmpD,X) A 

output(TmpD,DifF,Y) A add(X,Store,TmpS) A remove(Y,TmpS,Store'))

input((X.I,0), (1,0), X)

output((I,Y.O), (1,0), Y)

add(X, (A,tail), (B,tail)) «-► append(A, X.tail, B)

remove(Y, (Y.A,tail), (A,tail))

The description of the N-bufFer can be rewritten as Horn clauses, replacing the argument 

representing the pair of input and output streams by two separate arguments. Again, we 

note that this form can be regarded as a logic program of the type V 7 Z O Q  in language L-p.

bufFerN(nil,nil,Store,N) <— 

empty (Store)



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 105

bufferN(In.Ins, Outs, Store, N) «—

empty(Store) A add(In,Store,Store7) A bufferN(Ins, Outs, Store', N)

bufferN(Ins, Out.Outs, Store, N) <—

full(N,Store) A remove(Out,Store,Store') A bufferN(Ins, Outs, Store', N) 

bufferN(In.Ins,Outs,Store,N) *—

part-full(N,Store) A add(In,Store,Store') A bufferN(Ins, Outs, Store', N) 

bufferN(Ins, Out.Outs, Store, N) <—

part-full(N,Store) A remove(Out,Store,Store') A bufferN(Ins, Outs, Store', N)

bufferN(In.Ins, Out.Outs, Store, N) <— 

part-full( N ,S tore)

A add(In,Store,Tmp) A remove(Out,Tmp,Store') A bufferN(Ins, Outs, Store', N) 

input((X.I,0), (1,0), X)

output((I,Y.O), (1,0), Y)

add(X, (A,tail), (B,tail)) «— append(A, X.tail, B) 

remove(Y, (Y.A,tail), (A,tail))

3.10.2.5 A one-place buffer

A one-place buffer is an instance of bounded buffers and is a special case since the buffer 

store can only be full or empty, never part-full. Thus we can rewrite the Horn clause 

description for a one-place buffer:

bufferl(nil,nil,(nil,tail)) (i)

(»)bufferl(In.Ins, Outs, Store)



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 106

empty(Store) A add(In,Store,Store') A buffersl(Ins, Outs, Store')

bufferl(Ins, Out.Outs, Store) <— (iii)

full(s(0),Store) A remove(Out,Store,Store') A bufferl(Ins,Outs,Store')

Rewriting the above, since a full store is (X.tail,tail) and an empty store is (tail,tail)

bufferi(nil,nil) (i)

bufferl(In.Ins, Outs) <— (ii)

bufferl'(Ins, Outs, In)

bufferl'(Ins, Out.Outs, In) <— (iii)

Out=In A bufferl(Ins,Outs)

Partially evaluating (ii) and (iii), and normalizing, we derive:

bufferl(Ins,Outs) <— (i)

Ins = nil A Outs=nil

bufferl(Ins, Outs) *— (ii)

Ins = In.Ins' A Outs=In.Outs' A bufferl(Ins',Outs')

3.10.2.6 Composing buffer specifications

We showed in Section 3.10.2.4 how an N-place buffer ‘program’ could be derived from the 

set description of an N-place buffer. This ‘program’ uses a data structure (a difference-list 

in fact) to represent the stored items. In this section we propose that an N-place buffer 

can be described by the composition of N 1-place buffers. We claim that with a su ita b le  

c o m p u ta t io n  ru le  the following goal behaves as an N-place buffer:

<— bufferl(Ins, Midsj) A buffer^Midsj, Mids2) A ... A buffer^Midsjyj.jjOuts)

The structure described is s ta tic  in the sense that we require the N 1-place buffers to be

composed at the initialization o f  the N-place buffer. A computation rule which enables



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 107

such a composition to behave in the desired way is discussed in the next chapter.

A two-place buffer can be described as follows:

buffer2(Ins, Mids, Outs) * -

buffer 1 (Ins,Mids) A bufferl(Mids,Outs)

In the above description the shared variable Mids is a public variable of the two-place 

buffer. This is not what is required, since another process composed with the two-place 

buffer could communicate with the two one place buffers via the variable Mids. The two- 

place buffer is better described as follows, where the variable Mids is hidden by being 

made local to the body of the clause for buffer2:

buffer2(Ins, Outs) <—

bufferl(Ins,Mids) A bufferl(Mids,Outs)

In general, an N-place buffer can be described by:

bufferN(N,Ins,Outs) «—

N=0 A Ins=Outs 

bufferN(N,Ins,Outs) <—

N=s(N') A bufferl(Ins,Mids) A bufferN(N', Mids, Outs)

3.10.3 Queues

3.10.3.1 Set description of an unbounded buffer

An unbounded buffer (LIFO queue) can be described as a buffer which is never full: 

queue(Top,Set) <— queue(Top,Set, (tail.tail) .nil)

queue( Top, Set, Mins) <—

next-rankset(Mins,Mins') A union(Mins, Set', Set)

A queue(Top, Set', Mins') 

queue(Top, Poset, Mins) <—

Top.nil = Mins A Set = Mins



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F C O N C U R R E N T  S Y S T E M S 108

next-rankset(nil,nil) 

next-rankset(B.Bs,C) <—

set-pred(B,SetX) A nopreds(Cs,SetX) A 

union(Cs,Cs',C) A next-rankset(Bs,Cs')

set-pred(B,SetX) ♦— setof-solutions(X, pred(B,X), SetX)

pred((I,0), (I', O ')) <-

append(Z,nil,I) A append(Z,tail,0) A 1=1' A 1=0'

pred((I,0), (I', O ')) <-

1=0 A 0 '= 0  A input(I,I')

pred((I,0), {I', O')) <-

I / O A  0 '= 0  A input(I,I')

pred((I,0), (I', O ' ) )  * -

I ^  0  A I'= I A output(I,0,0')

pred((I,0), (I', O ')) «—

I /  0 A input(I,I') A output(I,0,0')

3.10.3.2 Set description of an expedited data queue

An expedited data queue is similar to a normal queue, except that items queued can be 

either n o r m a l or ex p ed ited . The ordering of normal items is always preserved as is that of 

expedited items, but an expedited item in the store is always output before a normal item 

in the store. The definition of pred/2 and output/3 used in the ordinary queue definition 

must therefore be altered:

pred((I,0), <I', 0 ') )< -

samelength(l,0) A 0 '= 0  A input(I,I')



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 109

pred((I,0), (I', O')) <-

not-samelength(l,0) A 0 '= 0  A input(I,I')

pred((I,0>, (I', O')) «-

not-samelength(I,0) A I'= I A output(I,0,0/)

pred((I,0), (!', O')) <-

not-samelength(l,0) A input(I,I') A output(I,0,0') 

samelength(l,0) <— length(I,L) A length(0,L) 

not-samelength(l,0) <— length (I,LI) A length(0,L2) A LI ^ L2 

output(I,0,0/) <—

sortx(I,Ixs) A sortx(0,0xs) A Ixs /  Oxs A 

append(Ixs', Ix.tail,Ixs) A append(Os,Ix.tail,0/)

output(I,0,0') «—

sortx(I,Xs,Ins) A sortx(0,Xs,Ons) A 

append(0, X.Y, I) A append(0, X.tail, O')

sortx(Y,Xs) <—

partition(Y,X,N) A sort(X,Xs)

with suitable definitions for partition/3 (partitions a list of items into expedited and normal 

items), and sort/2.

3.10.3.3 Logic programs for queues

A queue is effectively an unbounded buffer. We propose that queues can be represented 

in logic programs of type V R O Q  in two ways:

(1) As ‘data structure’ queues, based on the program derived in Section 3.10.2.4



C H A P T E R  3 . S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 110

(2) As ‘process network’ queues, based on the ideas developed in Section 3.10.2.6.

Data structure queues

We can adapt the definition of an N-place buffer given on page 104 of Section 3.10.2.4 to 

define a queue using an unbounded list to represent the store of data items. Note that the 

routine to remove an item from the store fails if the store is empty.

queue(nil,nil,Store) <— 

empty (Store)

queue(In.Ins, Outs, Store) <—

add(In,Store,Store7) A queue(Ins, Outs, Store7)

queue(Ins, Out.Outs, Store) <—

remove(Out,Store,Store7) A queue(Ins, Outs, Store7)

queue(In.Ins, Out.Outs, Store) <—

add(In,Store,Tmp) A remove(Out,Tmp,Store7) A queue(Ins, Outs, Store7)

Process network queues

In Section 3.10.2.4 we suggested that buffers programs written in language Lp can be 

composed, and in Chapter 4 we will show that this is the case for programs in SILCS, a 

language of type Lp. In this section we explore the way in which a queue can be built 

from composed buffer programs.

The method described above for buffers builds an N-place buffer from the composition of 

N 1-place buffers. However, we cannot define a queue using this method since the following 

Horn clause does not describe the output of items from the queue.

queue(Ins,Outs) <— bufferl(Ins,Mids) A queue(Mids,Outs)

What is required is a chain of one place buffers which can grow dynamically in size as



C H A P T E R  3. S P E C IF IC A T IO N S  I N  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 111

inputs are made, but permitting output at any time. In this version of the queue program, 

the number of 1-place buffers is incremented every time a message is received on the input, 

but removal of an item from the queue does not decrement the number of buffers:

queue(Ins,Outs) <—

Ins=I.Ins' A queue(Ins',Mids) A bufferl'(Mids,Outs,I)

bufferl/(Ins, Out.Outs, In) <—

Out=In A bufferl(Ins,Outs)

bufferl(In.Ins, Outs) «—

bufferl^Ins, Outs, In)

In the next chapter we will show that such a program does behave as an unbounded buffer 

given a suitable computational rule for the language Lp.

3.11 Summary

In this chapter we have described concurrent systems by observations which can be made 

of the public variables of the system. We consider these variables to be logic v a r ia b le s  

which have a write-once property. The set of observations of a concurrent system are 

partially ordered by a relation which defines that system.

The sets can be

described as directed acyclic graphs comprising pairs of observations linked by the im

mediate predecessor relation. Descriptions of these sets in first order logic can be made 

based on the order relation and the predecessor pairs. Two types of Horn clauses, S E T  

and V H O Q , can be derived from the first order descriptions. These forms can be regarded 

as logic programs in the logic languages and Lp  respectively. The successful execution 

of S E T  on a suitable logic interpreter results in a variable in the query being bound to 

a data structure which represents the set of observations that can be made of the system 

described. The operational semantics of do not have to incorporate concurrency and 

Prolog is a suitable model of such a language. The b e h a v io u r  of V 1Z O Q  when executed



C H A P T E R  3. S P E C IF IC A T IO N S  IN  L O G IC  O F  C O N C U R R E N T  S Y S T E M S 112

on a suitable interpreter is that described by S E T  and the operational semantics of L p  

must include rules governing the concurrent execution of V R O Q .  In the next chapter 

we describe SILCS, a concurrent logic language of the type Up and define its operational 

semantics.



C h ap ter  4

The logic language SILCS

4.1 Introduction

In the previous chapter we have shown how concurrent systems can be specified in full first 

order logic by sentences describing the graphs of the partially ordered sets of observations 

that can be of such systems. The two Horn clause forms S E T  and V 'R .O Q  which can be 

derived from these sentences can be regarded as logic programs in logic languages L s  and 

L p  respectively. The S E T  form explicitly describes sets of observations while the V 7 Z O Q  

form relates each observation to a final system state. The semantics required of is 

indifferent with respect to concurrency; however, the definition of the semantics of L p  

must incorporate concurrency.

This chapter proposes an operational semantics for L p  and describes the logic language 

SILCS as an example of such a language. The operational semantics of SILCS describes 

concurrent, parallel and sequential processes and employs all-solutions nondeterminism. 

Unification is an atomic action in SILCS. The design decisions taken regarding SILCS are 

explained and justified, and its computational model defined with reference to an idealised 

metainterpreter. Examples of specifications written in SILCS are presented.

SILCS is based on the Horn clause subset of first order predicate logic, with constraint 

evaluation. We describe in this thesis that subset of SILCS, which we will call SILCSy, 

for which the only constraint permitted is equality, i.e. unification over terms. When no

113



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 114

ambiguity arises, we refer to SILCSy as SILCS.

4.2 Specifications, im plem entations and SILCS

The process that we have described so far in this thesis for the design and construction of 

concurrent systems comprises the following stages:

(1) formulating initial specifications in a restricted form of natural language,

(2) describing the systems in first order logic using the natural language specifications 

as a guide,

(3) deriving executable Horn clause descriptions in a language L5 of the sets of obser

vations from the first order logic sentences,

(4) deriving Horn clause ‘programs’ in a language L p  from the first order logic sentences, 

whose b e h a v io u r  is that described by the first order descriptions.

We now propose that the following stages will be required to achieve the implementation 

of the systems:

(5) deriving SILCS programs from the ‘programs’ of (4),

(6) deriving programs in committed choice concurrent logic programming languages 

from the SILCS programs.

We have sketched a methodology in Chapter 3 for relating the sentences produced by the 

activity in (2) to those in (1), and have shown how standard transformations can be used 

to derive the Horn clauses of (3) and (4) from (2).

In this chapter we propose a methodology for stage (5), the derivation of SILCS programs 

from the Horn clause programs in L p . However we do not regard SILCS as a language 

suitable for the im p le m e n ta t io n  of concurrent systems due to

• the overheads associated with implementing synchronous communication,



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 115

• the all-solutions non-determinism of the language,

and instead we outline a method for stage (6) in Chapter 5. Neither do we propose that 

SILCS is used for the purpose of initially specifying systems in logic since full first order 

descriptions are often more concise and in some ways more expressive than Horn clause 

programs [59]. SILCS is a bridge between the first order descriptions of the behaviours of 

systems as posets of observations and programs written in committed choice concurrent 

logic programming languages.

Finally, there are testing stages which we have omitted from the above list. The method- 

ology proposed in Chapter 6 forms the basis of conformance tests relating set descriptions

(3), SILCS programs (5) and implementations (6).

4.3 SILCS as a specification language

SILCS can be regarded as a c o n s tr u c t iv e  specification language since it permits speci

fications to be constructed which can be interpreted mechanically. In this respect it is 

similar to algebraic languages like CCS [92], CSP [58] and LOTOS [66]. Its design has 

been influenced by the following general requirements:

• The specification technique should be capable of adequate expressibility for the prob

lem domain.

• The technique should possess clearly defined semantics.

• Specifications made in the technique should be amenable to formal analysis.

• There should be clearly defined rules for transforming specifications into implemen

tations in one or more target languages.

4.4  Expressiveness

The characteristics o f the system s to  be described dictate to a large extent the expressive

ness o f the description technique. T he concurrent system s wre have in mind are process-



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 116

based and characterized by the following dynamic behaviours:

• Creation (initiation)

• Termination

• Indeterminism1 (nondeterminism) and choice.

• Synchronisation and communication

• Suspension

• Deadlock

• Livelock

• Dependence

• Progression

Such process based systems may be constructed from networks of processes. We view 

these networks as Jrees, or more properly g ra p h s  which may or may not be cyclic — such 

topologies may not necessarily admit the use of ‘hierarchies’ as a descriptive term. The 

specification technique should provide for the encapsulation of dynamic behaviour and 

allow for the determination of the possible observational equivalence of given systems.

4.5 Syntax o f SILCS

The alphabet of SILCS consists of:

(1) variables, denoted by strings whose initial character is an uppercase letter,

(2) constants, denoted by strings whose initial character is a lower case letter,

(3) function symbols denoted by strings,

indeterminism has been equated with commit ted-choice nondeterminism and don’t-care non- 
determinism by Shapiro [119]. In [103] Ringwood distinguishes between indeterminism as a choice 
of one of several possible alternatives, and nondeterminism as a choice of all possible alternatives 
in the context of an automaton faced with a possibly branching computation.



C H A P T E R  4. TH E  L O G IC  L A N G U A G E  S IL C S 117

(4) predicate symbols denoted by strings,

(5) the three connectives A & *—

(6) punctuation symbols M(” “)”

Predicate and functor names are strings whose initial character is a lower case letter. 

Predicates and functors are distinguished by context, in that a functor may appear only 

as an argument to a predicate, and predicates may not be arguments to predicates.

We repeat in a concise form some of the definitions of the syntax of first order logic which 

were given in Section 3.3.

• An a to m  (atomic formula) is an expression of the form p(ti,... ,tn) where p  is an 

n-place predicate symbol and t \ . . .  t n are terms.

• T e r m s  are variables, constants or expressions of the form /(< i,... ,fn), where /  is 

an n-place function symbol and t \ . . .  t n are terms.

• A l i t e r a l  is an atom or the negation of an atom (respectively a positive literal or 

negative literal).

The syntax of SILCS is that of d e f in i te  c la u s e s  and d e f in i te  g oa ls, i.e. Horn clauses. There 

is no negation in SILCS, but we assume the existence of the inequality check There are 

two conjunction operators in SILCS, “A” and which respectively flag simultaneous or 

sequential evaluation. A SILCS clause is an expression of the form

P  «— C i  < a n d - o p >  . . .  < a n d - o p >  C n

and a goal is an expression of the form

«— C i  < a n d - o p >  . . .  < a n d - o p >  C»

where P  and C \ . . . C n are positive literals. P  is termed the h e a d  of the clause, and 

C \  < a n d - o p >  . . .  < a n d ~ o p >  C n the b o d y  comprising the conditions C \ . . . C n . Each 

< a n d - o p >  is either WA” or There are no guard or cut constructs in SILCS.

Clauses are assumed to be universally quantified and quantifiers are om itted. C i . . .  C n

are the joint conditions and P  the conclusion o f such a conditional clause. Informally we



C H A P T E R  4. T H E  LO G IC  L A N G U A G E  S IL C S 118

can say that ‘for each assignment of each variable, if C \ ... Cn are all true, then P  is true’. 

Brackets may be used to group conditions in the clause body to avoid ambiguity. A unit 

clause is a clause of the form

P

standing for “P  «- ” and is an unconditional clause for which we informally say ‘for each 

assignment of each variable, P  is true’.

Operators are permitted, and are functor symbols, being either pre-, post- or infix. There 

is one predefined operator, <‘.”/2, which is infix and used to construct lists. The constant 

n il represents an empty list. Thus a .b .c .n il represents the complete list with three 

elements a, b and c.

The basic types allowed in SILCSjj in which the basic unit of computation is unification, 

are logic terms which represent data structures. Term unification is an atomic computation 

and is represented by the predicate = /2 written infix. In full SILCS we take c o n s tr a in t  

evaluation over reals, integers, strings, etc. as the basic unit of computation and the 

mechanism of communication rather than term unification.

Clauses of a system description in SILCS can be regarded as specifications of behaviour.

Definition 4.1 A p ro c e ss  sp e c ific a tio n  for P is the set of SILCS clauses with the same 

predicate symbol P. ■

Definition 4.2 A s y s te m  s p e c ific a tio n  is a finite set of process specifications, one of which 

is about the initial system state. ■

We adopt the convention that the initial process state is defined by a process specification 

comprising just o n e  clause in normalised form. The predicate name of this process spec

ification is in it  and each argument represents an o b serva b le  variab le  (see Section 3.7.1). 

The execution of a system is initiated by the SILCS goal

<— in i t



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 119

where in i t  is an atom of the form in it (Vi, V2 , . . . ,  V*,. . . ,  Vn), 0 < n, each Vjt being an 

observable variable of the system. If n = 0 then the system is c lo s e d .

A note on explicit simultaneous and sequential operators

There are explicit simultaneous and sequential AND operators in SILCS, but only one OR 

operator (parallel-OR). Explicit simultaneous and sequential AND operators are required 

in a language designed for the description of concurrent systems (see Milner [94]). Some 

concurrent logic programming languages do not have an explicit sequential AND operator, 

but rely on suspension to achieve the ordering of operations. For this reason, we regard 

these languages as being insufficiently expressive for specification purposes. Examples of 

such languages are Concurrent Prolog [116] and Guarded Horn Clauses [131].

Some committed choice logic programming languages have an explicit sequential OR op

erator, for example the of Parlog [51] and the “otherwise” of Concurrent Prolog. 

However, these constructs are useful for p r o g r a m m e r s  who wish to implement default 

cases with the minimum of coding. The same result can be achieved in SILCS (in a more 

verbose manner) by the use of the inequality relation

4.6 Sem antics o f SILCS

The semantics of SILCS can be described by the three kinds of semantics for logic programs 

first proposed by van Emden and Kowalski [136]. The m o d e l- th e o r e t ic  s e m a n t i c s  of SILCS 

is that of the standard minimal model semantics of definite clauses, and the fixpoint 

semantics of the language is a special case of this in that the latter only deals with sets 

of ground atomic formulae which are procedure declarations. The o p e r a t io n a l  s e m a n t ic s  

of SILCS are given with reference to an idealised logic metainterpreter which employs the 

SLD-resolution2 rule described by Kowalski [72], a refinement of the original procedure of

Resolution is an inference rule which can be used to prove indirectly that a formula F  is a 
logical consequence of a specification S . The negation of F  is added to the axioms in S , and if 
a contradiction (the empty clause □) is derived, then S  f= F , and the derivation is successful. 
Non-successful derivations may be failed or infinite. The standard propositional rule modus tollens



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 120

Robinson [105]. In this section we describe in detail the operational semantics of SILCS, 

since it forms the basis for the construction of an interpreter for the language.

The operation of an idealised logic interpreter has been discussed by Kowalski [74], and 

more recently by Hill and Lloyd [56]. Given any two languages, it may be possible to 

simulate the proof procedure of one language L \  within the other L 2 . This is accomplished 

by defining a binary relationship P r  in L 2 which holds when a conclusion can be derived 

from assumptions in L \ .  We then refer to L 2 as the meta-language M C  for the object 

language O C  L \ .  In general, a simple problem solver can behave like a more sophisticated 

one by acting as the meta-language for a more sophisticated object language.

In the following we assume that the object language (L \ ) is SILCS , and the meta-language 

(I-2 ) is Pure Definite Clauses (PDC). Programs in PDC are Horn clauses and no com

putational strategy is defined for the language. Clauses in SILCS are named by terms 

in PDC. The binary relationship Pr defined in PDC takes a list of terms representing 

SILCS goals and attempts to demonstrate their provability with respect to a given SILCS 

program represented by a term in PDC.

Definition 4.3 [adapted from Kowalski [74]]. Given a representation of clauses by means 

of terms, a definition Pr in PDC correctly represents the provability relation, named 

‘demonstrate’, of SILCS iff whenever X  and Y  are clauses of SILCS named by terms X '  

and F 'o f PDC respectively, conclusion Y  can be derived from assumption X  in SILCS iff 

conclusion d e m o n s t r a t e ( X ',F ')  can be derived from assumptions Pr in PDC. ■

If the relation Pr, expressed in the M C  , correctly represents the provability relation of 

the O C  , then the direct execution of the O C  and its simulation in the M C  are equivalent 

and interchangeable. This equivalence is identical to the re flec tio n  p r in c ip le  investigated 

by Weyhrauch [140].

We outline below the rules that define the top level of demonstratq/ 2: they are based on 

the standard interpreter presented in Kowalski’s book [74].

demonstrate(Program, Goals) *—

is effectively employed in SLD-resolution. See [85] for a detailed discussion of SLD-resolution.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 121

empty(Goals)

demonstrate(Program, Goals) <—

select(Goals, Goal, RestGoals) A 

member(Procedure,Program) A 

renamevars(Procedure, Goals, Procedure') A 

parts(Procedure', Head, Body) A 

match(Goal, Head, Substitutions) A 

add(Body, RestGoals, TempGoals) A 

apply(Substitution, TempGoals, NewGoals) A 

demonstrate(Program, NewGoals)

The M C  program interprets goals of the O C  named by Goals above with respect to a 

program of the O C  named by Program. Both Goals and Program refer to M .C  data 

structures, for example lists. The relations select/3, member/2 and add/3 are operations 

on these data structures. The initial goal is

<— demonstrate(Program,Goals)

and the computation terminates with success when Goals is bound to a term standing for 

an empty list of O C  goals. This binding represents the e m p ty  c la u se  which has an empty 

head and empty body; it is denoted by □ and is interpreted as a contradiction.

We adapt the interpreter to accord with our intended semantics of SILCSû

(1) The atomic unit of computation is term unification.

(2) Atomic computational steps occur s im u l ta n e o u s ly  iff they are conjoined by the “A” 

operator, in which case:

(a) Computations which do not share variables (and are thus not constrained by 

one another) may proceed independently, i.e. in parallel.

(b) Computations which share variables are constrained by one another and must 

proceed concurrently. The communication of constraints (bindings to variables) 

synchronises all computations which share those variables.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 122

(3) Atomic computational steps proceed s e q u e n t ia l ly  iff they are conjoined by the “ &” 

operator.

(4) A computation s u s p e n d s  iff

(a) either there is not enough data for it to execute,

(b) or it is constrained by a member of another sequence group (see Section 4.10.5).

(5) An atomic computation A  =  B  s u c c e e d s  iff A  and B  can be unified, otherwise it 

f a i l s .

SILCS primitives are defined whose execution suspends until their arguments are suffi

ciently instantiated for execution to occur. Included in the set of SILCSy primitives are 

arithmetic evaluation and comparison predicates is/2, >/2 and </2.

The initial goal to be proved by the interpreter about any system is the initial system state 

in it , and the set of process specifications about system S  constitute the SILCS program.

Clauses in SILCS are represented in the interpreter in n o r m a lis e d  f o r m .

Definition 4.4 A clause is in n o r m a l i s e d  f o r m  iff every there is a distinct variable in each 

argument place of the head. ■

A clause is converted to this form by replacing each non-variable (or non-distinct variable) 

argument in the head by a new variable not yet used in the clause and by the addition to 

the body of the clause of a call which unifies the old and new arguments. The new call is 

conjoined to the body with the “A” operator. Thus the normalised form of:

p(X,a,X) <— Cj A ... A Cn

is

p(X,Y,Z) <— Ct A ... A Cn A Y=a A Z=X

W e assume the existence of a predefined binary unification relation “= ” written infix,

whose operation is that defined by Robinson in [106], and incorporates the occurs check.

We also assume the existence o f a predefined binary inequality relation written infix.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 123

Success, failure and suspension

Algebraic specification techniques such as CCS and LOTOS do not have the notion of 

failure with respect to communication: an attempted communication can either succeed, 

or not yet happen (suspends). Standard proof procedures in first order logic have the 

notions of success or failure, or neither (ie infinite computation). Suspension can be 

described in terms of infinite (and useless) computations at the metalevel. We permit the 

specification of suspension using SILCS primitives, and hence the specification of deadlock.

4.7 R epresentation  of processes in SILCS

We follow Shapiro [120] in the representation of process structures in the logic program

ming paradigm (Table 4.1). Additionally we represent atomic actions by unifications. In 

this interpretation each goal atom g(7i,... ,Tn) is regarded as a process whose name is 

the atom name g / n  and whose state is represented by the n arguments to the atom. An 

entire goal is viewed as a network (possibly acyclic) of processes where interconnection 

patterns are specified by shared logical variables. Communication is by instantiation of 

these variables, the atomic action of a system being represented by a call to unification.

Process model Horn clause form

atomic action unification
process goal

process network resolvent (conjunctive goal)

process action goal reduction

instruction for process action clause

communication channel shared logical variable

communication instantiation of shared logical variables

Table 4.1: Processes and logic programs



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 124

4.8 Com m unication in SILCS

Communication in SILCS is represented by the bindings made to shared variables which 

can be instantiated to rich data structures. Such a variable is called a c h a n n e l variable, 

or a s tr e a m  variable in the case that its final state is a list (see Definition 3.37 on page 66, 

and Definition 3.42 on page 73). In the case of stream variables, messages correspond 

to the terms to which the leaves of the list are bound. The operational semantics of the 

interpreter which incorporates atomic unification ensures that the communication specified 

in SILCS is synchronous and that shared variables cannot act as unbounded buffers.

There is no primitive assignment operation in SILCS and neither are there data-flow 

annotations in SILCS programs. Hence there is no distinction between in p u t and o u tp u t  

in the program text; the functions of each are subsumed by unification. Channel names 

may be passed between processes as messages on other channels in order to permit dynamic 

reconfiguration of process networks.

4.9 O bservational equivalence

A scheme for observational equivalence is a central part of any specification scheme based 

on observations: the behaviour of a process is categorised by how it appears to an external 

observer. Two processes are equivalent if no observations can distinguish between them, 

and two subprograms are congruent if the result of placing each of them in any program 

context yields two equivalent programs (see Hennessy [55]).

We define observational equivalence on processes to be a relation between their histories, 

represented by bindings made to variables, ordered by the type of the data structure to 

which the variables become bound. Thus channel histories are observations in SILCS. We 

ignore unobservable or ‘hidden’ actions, i.e. those which bind variables local to a clause. 

A variable is local to a clause iff that variable occurs in the body of a clause but does not 

occur in the head of that clause. Even though the execution mechanism for such programs 

might in reality substitute these calls into one run queue, from the observer’s point of view 

they are invisible.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 125

4.10 The operation o f the idealised SILCS interpreter

In this section we detail the operation of the idealised PDC interpreter for SILCS a simpli

fied version of which was outlined in Section 4.6. The interpreter is more complex due to 

the way in which concurrency and sequentiality are represented operationally. The SILCS 

interpreter repeatedly collects individual calls into a to m ic  or se q u e n c e  groups and pro

cesses them according to the rules which define the operational semantics of concurrency 

and sequentiality.

Definition 4.5 A SILCS goa l is a negative clause of the form

«— Ga A ... A Gn (n > 0)

where each of Glv .. ,Gn is either a call or a sequence group. ■

Definition 4.6 A c a ll is an atomic formula (atom). ■

Definition 4.7 A seq u e n ce  g ro u p  is of the form A&B where A and B are goals. The h e a d  

of the sequence group is A and the ta i l of the group is B. ■

4.10.1 Atomic groups and constraints

Atomic groups are treated as the unit of atomic reduction in the interpreter — no results 

of reductions of the members of an atomic group are made available until all of its members 

have been reduced successfully. The reduction of an atomic group suspends iff at least one 

member of the atomic group suspends. Distinct atomic groups are reduced in parallel by 

the interpreter.

Definition 4.8 An atomic group comprises calls and sequence groups which are con

strained by one or more variables. ■

Constraint in general can be direct or indirect. Membership of an atom ic group in the

idealised SILCS interpreter is determined on the basis of indirect constraint.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 126

Definition 4.9 Two or more calls are d irec tly  c o n s tr a in e d  iff they share the same variable.

For example the atomic computations (X=Y A X=Z ) share the variable X on which they 

are directly constrained and are members of the same atomic group. The same is true 

of the calls (p(X) A q(X,Y)). However the evaluation of non-atomic calls which do not 

directly share may still result in constraints being generated; consider the following goal 

and SILCS program:

«- a(X) A b(X,Y) A c(Y) 

a(X)
b(X,Y) «- X=Y  

b(X,Y) 

c(Y)

The result of the call to b/2 for 

to unify the variables X and Y; 

for that computation. However 

b/2 is selected.

Definition 4.10 Two or more calls are in d ire c tly  c o n s tra in e d  during a computation iff 

during the course of the computation one or more variables in the arguments of one are 

unified with variables in arguments of the other. ■

Since membership of atomic groups in SILCS is determined on the basis of indirect con

straint, the same calls may be grouped differently for different computations. We assume 

that static analysis of a SILCS specification is employed to determine the possible in

direct constraints for each computation. In the worst case this analysis is equivalent in 

computational complexity to interpreting the specification.

An alternative strategy for the determination of membership of atomic groups is d y n a m ic  

analysis during the operation of the interpreter, involving the analysis and possible re

grouping of all calls in the goals queue after each atomic group has been reduced. This

one computation when selecting the first clause of b/2 is 

hence the calls a(X) and c(Y) are in d ir e c t ly  constrained 

X and Y are not constrained when the second clause of



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 127

method inhibits possible parallel execution of the interpreter.

A computationally less expensive (but less accurate) method is to determine membership 

on the basis of p o ss ib le  c o n s tr a in ts . For example the calls a(X) and c(Y) are possibly con

strained in the goal (a(X) A b(X,Y) A c(Y)) since during the computation the evaluation 

of b(X,Y) may unify its arguments.

Definition 4.11 Two calls axe p o ss ib ly  c o n s tra in e d  iff each one shares one or more vari

ables with another common call. ■

This method of analysis is employed in the implementation of the SILCS interpreter (Ap

pendix A).

4.10.2 Sequence groups

Sequence groups have been defined in Definition 4.7. A sequence group is included in 

an atomic group if any of the calls that constitute sequence group contains a variable on 

which the atomic group is founded. Since the h e a d  of a sequence group consists of the 

goal (or goals) in that group which form the first argument to the first & operator in the 

group, the head can comprise one or more sequence groups. For example, the following 

calls constitute one sequence group: (aAb)ft(cAd). The head of the group is (aAb).

Only the head of the sequence group is reduced during in the processing of an atomic 

group; the sequence group is then returned to the goals queue with the head replaced by 

its reduction (see below). This requires the dynamic analysis of goals in the atomic group 

and the possible regrouping of them into new atomic groups.

4.10.3 Reduction strategy of the SILCS interpreter

The SILCS interpreter reduces calls by grouping them into atomic groups and then re

ducing each atomic group as a unit. The following strategy is used for interpreting SILCS 

programs:

(1) Initialise the suspension queue to empty and e x i t s ta tu s  to the empty string * *.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 128

(2) Group the calls in the goal into distinct atomic groups to form the run queue.

(3) While the run queue is not empty do

select an atomic group for reduction and attempt to reduce it according to the 

strategy for reduction of atomic groups

• if the result is success, then add the reduced form (one or more atomic groups) 

to the run queue

• if the result is failure then set e x i t s ta tu s  to fa i l  and exit.

• if the result is suspension, then add the atomic group to the suspension queue.

end-while.

(4) If e x its ta tu s  ^ fa i l  then

• if the suspension queue is empty then set e x its ta tu s  to success

• else if the suspension queue is not empty then set e x i ts ta tu s  to deadlock.

(5) exit with e x i ts ta tu s .

4.10.4 Reduction of members of an atomic group

(1) Initialise lo c a l-e x its ta tu s  to the empty string * *.

(2) Divide the members of the atomic group into suspended goals and runnable goals 

according to the rules of suspension (see below).

(3) Initialise the local suspension queue to the suspended goals.

(4) Initialise the local run queue to the runnable goals.

(5) Initialise the local reduced queue to empty.

(6) While the local run queue is not empty do 

select a goal for reduction

• if the goal is a call C then



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 129

(a) find a clause C'«— B such that C and C' can be unified (if no such clause 

exists then exit with e x its ta tu s  set to fa i l )

(b) rename the variables in the clause so that they are distinct from the vari

ables in the call

(c) unify C and C' goal with substitution S

(d) add the body B of the clause to the local reduced queue

(e) apply the substitutions to the local run queue, local reduced queue and the 

local suspension queue.

• if the goal is a sequence group A&B then attempt to reduce A using the reduc

tion strategy for atomic groups

-  if the reduction suspends then add the sequence group to the local suspen

sion queue

-  if the reduction fails then exit with e x i ts ta tu s  set to f a i l

-  if the reduction succeeds, returning A' (the set of calls representing the 

reduced form of A) then

* if A' is empty then add B to the local reduced queue

* else add A'&B to the local reduced queue

end-while.

(7) (a) If e x i t s ta tu s = fa i l  then return e x i ts ta tu s  else

(b) if the local reduced queue is empty and the local suspension queue is not empty 

then e x i t s ta tu s :=suspension and return (e x i ts ta tu s  , suspension queue)

(c) else regroup the local reduced queue and the local suspension queues as one or 

more atomic groups, set e x its ta tu s  to success and return

( e x i ts ta tu s  , new atomic group(s)) .

4.10.5 Suspension

Suspension within an atomic group is determined as follows:

Definition 4.12 A goal G  is suspended on a sequence group S G  iff



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 130

(1) G  is a call and shares one or more variables with the tail of S G  but does not share 

variables with the head of S G .

(2) G  is a sequence group and a call in its head shares one or more variables with the 

tail of S G  but does not share variables with the head of S G .

Note that an atomic group can be suspended on a sequence group which is itself suspended. 

Examples

(1) Given the atomic group {f(A), (g(B)&f(A))}, the call f(A) is suspended on the 

variable A which it shares with the call fi(A) in the second position in the sequence 

group (g(B)&fi(A)).

(2) Given the atomic group {f(A), (g(B)&f (A)), (h(C)&g'(B))}, the call f(A) is 

suspended on the variable A shared with the call ff(A) in the sequence group 

(g(B)&f(A)), and the sequence group (g(B)&f(A)) is suspended on the variable B 

shared with the call g/(B) in the sequence group (h(C)feg/(B))

(3) Given the atomic group {f(A), ((g(B)A (h(C)&ff(A)))&j(D))}, the call f(A) is 

suspended on the variable A which it shares with f  (A) in the sequence group 

(h(C)&f(A)).

Definition 4.13 An atomic group is suspended iff no calls are runnable and there are 

suspended calls. ■

Definition 4.14 A goal is deadlocked iff all the atomic groups which it comprises are 

suspended. ■

For example the following goal is deadlocked:

-  (g(B)&f(A)) A (f(A)&g'(B))

since the goal comprises one atom ic group {(g(B )& ff(A )), (f(A )& g'(B))} with two members

which are m utually suspended:



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 131

(1) (g(B)&f(A)) is suspended on the variable B in the sequence group (f(A)&g'(B))

(2) (f(A)&g/(B)) is suspended on the variable A in the sequence group (g(B)&f(A))

4.10.6 Output of the interpreter

The interpreter halts with s u c c e s s  iff the goals list is empty, with f a i l  iff any goal fails or 

with a d e a d lo c k  indication iff the attempted reduction of each atomic group in the goals 

list is suspended.

The output of the interpreter consists of the bindings made to the variables of the initial 

goal state. These bindings are made available to an observer and constitute the c o m p le te  

t r a c e s  of the specification. Each c o m p le te  tr a c e  represents one path through the graph of 

the poset of observations. The set of all of these these traces thus comprises all the paths 

through the graph.

The observer is permitted to observe bindings made simultaneously to different variables. 

Computations which do not produce bindings on a variable visible to the observer are 

invisible or in te r n a l  computations.

4.11 Transition rules describing th e sem antics o f SILCS

In this section we present the semantics of SILCS as a labelled transition system, as 

discussed in [70].

Definition 4.15 A la b e l le d  t r a n s i t io n  s y s t e m  T S  is a tuple T S  =< 5, Act,T, so > where:

•  S  is a n o n - e m p ty  set of s t a t e s ,

• Act is a n o n - e m p ty  set of a to m ic  a c t i o n s ,

• T  = {—p  —>C S  X S  | p C A c t} is a set of t r a n s i t io n  r e la t io n s ,

• sq  E S  is the in i t i a l  s t a t e .



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 132

We only study labelled transition systems with a countable set of states, since we describe 

finite (terminating) systems in our descriptions.

A s ta t e  comprises a goal G  (i.e. a process or system) and a substitution 0, denoted by 

the pair < G, 9 >. The initial state is the initial goal about a system and the empty 

substitution e . The empty goal (success) is represented by □. Failure is represented by ■.

An atomic action is a unification X  = Y  where X  and Y  are terms. We represent the most 

general unifier associated with an atomic action by the set of bindings {V i/t i, . . .  ,V n / t n} 

where V \ ... Vn are the variables in X  and Y  which are bound to the terms t \ ... t n .

Given a state < S n ,9  >, a labelled transition is of the form

< S n ,0  >  — < S n + u 9 o n '  >

indicating that S n performs the action set /i and transforms into ^n+i where

(i) <  S n i 9  >  is the initial state in the transition,

(ii) S n moves to S n+ i by action set /i,

(iii) < Sn+i,0 o f i ' > is the final state in the transition,

(iv) 9  o / /  denotes the substitution whose application has the effect of applying 0  and 

then applying the most general unifier / /  of the action set /i.

The use of a labelled transition on its own in a definition is an a x io m .

Note that we denote the v a r ia b le  s e t  of a term or set of terms /j by v ( / i )  (see Definition 3.32, 

page 62).

A ru le  is expressed by:

B —x-^ B'
--------------------  ( C o n d i t i o n )

Bj —x—► B /

where B —x—*> B' is a precondition, Bx composes B with other goals, and Bj —x-» Bx; 

if all the conditions in the set C o n d i t io n  are true.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 133

4.11.1 Axioms

The axioms in our system are:

< /i, 9 >  —i i —*■ < □, 9 o y !  > iff TRUE(/x)

< /z ,0 > — ► < ■ , # >  iff FALSE(/z)

< □ A B , 9  > — ► < B , 0  >

< A  >\ A , 0 >

4.11.2 Rules

The rules of sequential composition are:

< A,9a > —/z—► < A', 9a o n' >

< A&B, 9 > —ii-> <  A 'kB , 9 o / /  >

< A ,  9a > —i i - *  <  □, 9a o y !  >

< A & B ,  9 > —y —► < B , 9  o y '  >

<  A , 9 a > — ► < ■,#0 >

< A h B , 9  > — ► < «,0 >

The rules of parallel composition are:

<  A,9a > — ►< u,9a >

< A A B,9 > — ► <  « ,0  >

<  B ,e h >—►< ■,9b >
< A AB ,9  > — ► <  u,9 >



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 134

<  A ,  0 a >  ~ f i a -+  <  A \  Og o f i fa >

< A  A B ,  6 > —f ig —► < A ’ A B ,  9 o fi'a >
r x  v  ■ 'j
 ̂ u(/za) D v ( B )  = 0 J

< B, 9h >  —/Zj,-* < 0bofib >

< A  A  B , 0  >  —f i b-+ < A  A B \  6 o ft'b >

5 '

n v(A) = 0

< A,0O > —f ig —► < A \ 9 g  o fi'g > and

<  B, 9b >  —//[>-► < 5 ', Obofi'b >

<  A  A B,0  > —/za U /i&—► < A' A B' ,9 o fira o fib >

 ̂ A' ^ B, B '  ±  ^

u(/za) n u (£ ) =  0 
 ̂ u(//6) n u(A) = 0 ^

< A,0a > —/za—► < A ' , 9 a o fi'a >  and

<  B,Bh> —fib-»■ <  B',Obofi'b >

< A  A B , 0  >  —/zQ U //fc—► < A' A -0',0 °  V g O  fJ>b >

f A ! ±  B , 5 '  ^  B 

 ̂ v(/za) = u(/zfc)

< A,9a > —^ai U fta?—* < A 6 a o fi'a >  and

<  B , 9 b >  — f ibl U f i j>2-> < >

< A A B , 0  >  — f i ai U /i6l U fig2 U /z&2 -► < A' A 5 ',0  o /z'ai o /z'2 o /z'6i o fi[2 >

'  A' ^  B , B' £ fl  ̂

v(fiai) n v ( B )  =  0 

u(/ifcl)n t;(A ) = 0

 ̂ V ( » a 7 )  =  V ( f l b2)  )

where

(1) v ( X )  is the set of observable variables of X

(2) if X  and Y  are substitution sets, then m g u ( X , Y )  is the most general unifier of these 

substitutions.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 135

Note that a deadlock situation arises for the following composition:

 ̂ A! f  a , B ' ^  H ^

< A ,  0a > — //0-> < A ',O a o fi 'a > and n(//a) n u(/q>) = 0

< B , 0 b >  < B \  9h o n'b > v ( n a) C v ( B )

{ v(V b) Q v ( A )  }

4.12 M etalevei facilities in SILCS

SILCS has a construct call/1  similar to the ‘call’ in Prolog. The argument of call/1  

is a term representing a single SILCS goal, or a conjunction of such goals. If the term is 

insufficiently instantiated then the invocation of c a ll /1 suspends. For example the goal

call(X) U  X= (0 < s(0))

deadlocks (suspends forever) but

<- call(X) A X= (0 < s(0))

succeeds with {X/(0 < s(0))}.

The metalevel facilities of SILCS permit the writing of specification interpreters in SILCS 

itself and the construction of tools to aid the specifiers. The basic SILCS-in-SILCS in

terpreter has an operational semanticŝ  based on the algorithm given in Section 4.10.3. 

Processes can be treated as first class objects by the use of the metacall since process 

names can be passed in messages.

4.13 SILCS programs

In this section we illustrate the derivation of SILCS programs from Horn clause specifica

tions for the producers and buffers, and show that such programs can be compared using 

an equivalence relation.

SILCS has sequential and simultaneous AND-conjunction operators, and “A” respec

tively. Any translation scheme from the Horn clause form of descriptions into SILCS



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 136

programs has to take into account the mapping of the logical A operator into SILCS 

AND-conjunction operators.

4.13.1 Stream producers

We take as an example the translation of the produces/2 description into a SILCS program. 

The Horn clause description given in Section 3.10.1.2 on page 93 is reproduced below:

produces(StreamVar, List) <—

StreamVar=nil A List=nil 

produces(StreamVar, List) ♦—

StreamVar = X-StreamVar7 A List=X.List7 A produces(StreamVar7, List7)

The semantics of SILCS regarding the composition and reduction of atomic groups means 

that all the goals within each clause (clauses being considered separately) belong to one 

atomic group and are reduced together. As an example, consider the following goal w.r.t. 

the above program.

<—produces(V, a.b.c.nil)

We rewrite the goal by unfolding:

-  V=a.V7 A V7=b.V77 A V77=c.V777 A V777=nil

The goal comprises one atomic group of concurrent unifications:

{V=a.V7 , V7=b.V77 , V"=c.V"' , V'"=nil }

The operational semantics dictate that the unifications in the atomic group are performed 

concurrently so that the variable V is unified with the list a .b .c .n il in one atomic 

reduction. The effect of this is that messages a, b and c are produced simultaneously. The 

poset of bindings to the stream variable V is {tail, a.b.c.nil} where t a i l  stands for the 

initial state of the stream variable.

In order to force the sequential production of messages the Horn clause description has to 

be transformed into SILCS with sequential AND operators between the unification on the 

stream variable and the recursive call to the produces relation:



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 137

produces(StreamVar, List) «— (i)

StreamVar=List k  List=nil

produces(StreamVar, List) *- (ii)

(Stream Var=X.Stream Var' A List=X.Listr ) k  produces(StreamVax/, List')

The unfolding of the call 

<— produces(V, a.b.c.nil) 

now becomes

<- V=a.V' k  V^b.V" k  V"=c.V"' k  V"'=nil

The goal thus comprises o n e  atomic group containing one member, a sequence group of 

four elements each of which is a unification:

{(V=a.V' k  V/=b.V// k  V"=c.V"' k  V"'=nil)}

The operational semantics of SILCS dictate that the elements of the sequence group are 

reduced sequentially. This causes the unifications to be performed on the stream variable 

sequentially and the messages are produced in the sequence a ; b ; c. The poset of 

instantiations of the stream variable V is { tail, a.tail, a.b.tail, a.b.c.tail, a.b.c.nil } where 

t a i l  stands both for the initial state of the stream variable and for the tail variable of 

each of the incomplete lists in the set.

4.13.2 Bounded Buffers

The Horn clause description of bounded buffers needs to be translated into SILCS with 

care. We take as our first example the one-place buffer described in Section 3.10.2.5 on 

page 106:

bufferl(Ins,Outs)

Ins = nil A Outs=nil

bufferl(Ins, Outs)



C H A P T E R  4. T H E  LO G IC  L A N G U A G E  S IL C S 138

Ins = In.Ins' A Outs=In.Outs' A bufferl(Ins',Outs')

Consider the above program and the pure Horn clause form of the stream producer 

(page 136) together with the following goal

produces(V, a.b.c.nil) A bufferl(V,0)

This query unfolds to:

V=a.V' A V=X.V'1 A 0=X.O' A 

V'=b.V" A V'=Y.Vi' A 0'=Y .0" A 

V"=c.V'" A V''=Z.Vf A 0"=X.O'" A 

V"'=nil A V i" = Z l  A 0"'=Z1

As in the case of the stream producer the calls in the query comprise one atomic group of 

concurrent unifications, and the effect is that no buffering takes place — the variables V, 

0 and List are unified in one atomic reduction. The poset of instantiation states of the 

buffer variable pair (V,0) is { (tail,tail), (a.b.c.nil,a.b.c.nil) } where t a i l  stands for the 

initial state of the stream variables V  and 0 .

Using the version of producers/2 with the sequential operators (page 137) results in the 

following unfolding of the query:

+- (V=a.V' k  V'=b.V" k  V"=c.V"' k  V"'=nil)

A 0=X.O' A 0'=Y.0" A 0"=Z.O'" A 0"'=Z1

a  v = x .v ;  a v i= Y .v i ' a v i'= z .v ;"  a v ;" = z i

The atomic group is

{ (V=a.V' k  V'=b.V" k  V"=c.V'" k  V'"=nil), 0=X .0 ' , 0'=Y.0" , 0"=Z.O'" ,

o " '= z i , v ^ x .v ; , V i =y .Vj , v ;'=z .v i" , v ;" = z i}

All the unifications on the variables V and 0  are performed concurrently with the first 

element in the sequence group of computations associated with the producer. Thus even 

though the producer is sequenced, the variables V and 0 are bound to the list a.Y.Z.Zl 

on the first reduction. The messages a,b,c are not buffered, but merely transmitted in the 

sequence a ; b ; c. The message slots represented by the variables Y and Z are created



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  SILC S 139

eagerly by bindings to 0 at the start of the computation. In the following representation 

of the poset of bindings we denote variables (other than the tail of a list) by prefixing the 

variable name with “$” (see Section 3.5).

{ (tail,tail), (a.$Y.$Z.tail,a.$Y.$Z.tail), (a.b.$Z.tail,a.b.$Z.tail), (a.b.c.tail,a.b.c.tail), 

(a.b.c.nil,a.b.c.nil) }

In order to overcome the problem of ‘eager output’ from the buffer and to make it buffer 

the items correctly, we introduce sequencing into the buffer:

bufferl(Ins,Outs) <—

Ins = nil k  Outs=nil

bufferl(Ins, Outs) *—

Ins = In.Ins' & Outs=In.Outs' k  bufferl(Ins',Outs')

The unfolded query now is:

(V=a.V' k  V'=b.V" k  V"=c.V'" k  V'"=nil) A 

(V=x.v; A 0=X.O' A Vi=Y.Vi' A 0'=Y.0" A 
V''=Z.V'" A 0"=Z.O'" V f= Z l A 0"'=Z1 )

which forms an atomic group comprising two members each of which is a sequence group.

Sequencing is enforced on the instantiations of the variables V and 0  by the semantics 

of SILCS. The first reduction performed is the pair of atomic computations (V=a.V' 

A V=X.Vi) resulting in the binding set {X/a, V'/V'j}. The poset of observations of the 

buffer is:

{(tail,tail), (a.tail,tail), (a.tail,a.tail), (a.b.tail,a.tail), (a.b.tail,a.b.tail), 

(a.b.c.tail,a.b.tail), (a.b.c.tail,a.b.c.tail), (a.b.c.nil,a.b.c.tail), (a.b.c.nil,a.b.c.nil) }

and is a path through the graph of the poset, the items strictly ordered by pred(s(0),X,Y), 

depicted in Figure 4.1.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 140

• (a.b.c.nil,a.b.c.nil)

(a.b.c.nil,a.b.c.tail)

(a.b.c.tail,a.b.c.tail)

y (a.b.c.tail,a.b.tail) 

y (a.b.tail,a.b.tail)

*• (a.b.tail,a.tail)

V (a.tail,a.tail) 

y (a.tail,tail)

* (tail,tail)

Figure 4.1: Graph of bindings for a one-place buffer

4.14 Equivalences

The characterization of processes through the description of the poset of bindings to 

their observable variables permits the comparison of programs which implement these 

descriptions. Using N-place buffers as an example we show how process descriptions 

can be derived by induction and relate process-network and data-store buffers to these 

descriptions.

4.14.1 Data store buffers

SILCS programs for N-place buffers using a list to store the buffered items can be derived 

directly from the poset descriptions of N-place buffers. We base the SILCS program on 

the Horn clause definition of the bufferN relation derived previously in Section 3.10.2.4, 

page 104. Note that t a i l  is a constant in the SILCS program, and that we write (A,B) 

for the tuple (A,B).

bufferN(nil,nil,Store,N) *— 

empty (Store)

bufferN(In.Ins, Outs, Store, N) *—

empty(Store) A add(In,Store,Store') A bufferN(Ins, Outs, Store', N)



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 141

bufferN(Ins, Out.Outs, Store, N) ♦—

full(N,Store) A remove(Out,Store,Store') A bufferN(Ins, Outs, Store', N) 

bufferN(In.Ins,Outs,Store,N) «—

part-full(N,Store) A add(In,Store,Store') A bufferN(Ins, Outs, Store', N)

bufferN(Ins, Out.Outs, Store, N) <—

part-full(N,Store) A remove(Out,Store,Store') A bufFerN(Ins, Outs, Store', N)

bufferN(In.Ins, Out.Outs, Store, N) ♦—

part-full(N,Store) A add(In,Store,Tmp) A remove(Out,Tmp,Store') A 

bufferN(Ins, Outs, Store', N)

add(X, (A,tail), (B,tail)) <— append(A, X.tail, B)

remove(Y, (Y.A,tail), (A,tail))

empty(I,tail) <— I=tail

full(N,I,tail) <-length(I,Ll) A N=L1

part-full(N,I,tail) ♦— length(I,Ll) A N > LI

length(tail,0)

length(X.Y,s(L)) <- length(Y,L)

We can represent the store as a difference-list with a variable replacing the constant 

n il. Thus the store (a.b.c.tail,tail) will now be represented as (a.b.c.X,X). This means 

that addition to the store can now be performed in constant time and that addition and 

removal of items can be concurrent. Checking the state of the store requires the use of 

== /2 , which does not bind its arguments, to avoid incorrect bindings to the tail variable 

of the difference-list, for example:



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 142

empty(X,Y) «- X == Y

A neater solution, proposed below, is to add to the buffers program an extra argument 

representing the number of items in the store, and to use it to reason about the state of 

the store. The value of the argument is initialized to 0 when the buffer is invoked.

bufferN(nil,nil,Store,N,Size) *— 

empty(Size)

bufferN(In.Ins, Outs, Store, Size) «—

empty(Size) A add(In,Store,Store') A bufferN(Ins, Outs, Store', N, s(0))

bufferN(Ins, Out.Outs, Store, N, Size) <—

full(N,Size) A remove(Out,Store,Store') A bufferN(Ins, Outs, Store', N)

bufferN(In.Ins,Outs,Store,N, Size) <—

part-full(N,Size) A add(In,Store,Store') A bufferN(Ins, Outs, Store', N, s(Size))

bufferN(Ins, Out.Outs, Store, N, Size) <—

part-full(N,Size) A remove(Out,Store,Store') A 

Size=s(Size') A bufferN(Ins, Outs, Store', N, Size')

bufferN(In.Ins, Out.Outs, Store, N, Size) <—

part-full(N, Size) A add-remove(In,Out,Store,Store') A 

bufferN(Ins, Outs, Store', N, Size)

add(X, (A,X.Tail), (A,Tail)) 

remove(Y, (Y.A,Tail), (A,Tail))

add-remove(X,Y, (Y.A,X.Tail), (A,Tail))

empty(O)

full(N,Size) <— Size=N



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 143

part-full(N,Size) *- Size > 0 A N > Size 

s(X) > 0

s(X) > s(Y) * - X  > Y

The behaviour of the above SILCS program does not conform to that predicted by the 

poset description of a bounded buffer due to the semantics of unification in SILCS. As an 

example, we consider a two-place buffer as an instance of N-place buffers. We compose 

the buffer with the sequenced stream producer described earlier:

<— bufferN(Ins,Outs, (X,X), s(s(0)), 0) A producer(Ins, a.b.c.nil)

The expected poset of the observations of (Ins,Outs) for this goal is:

{(tail,tail), (a.tail,tail), (a.b.tail,tail), (a.tail,a.tail), (a.b.tail,a.tail), (a.b.tail,a.b.tail), 

(a.b.c.tail,a.tail), (a.b.c.tail,a.b.tail), (a.b.c.tail,a.b.c.tail), (a.b.c.nil,a.b.tail),

(a.b.c.nil,a.b.c.tail), (a.b.c.nil,a.b.c.nil) }

We represent this poset diagrammatically in Fig 4.2. The diagram has been annotated 

with indications of the transitions of the buffer in terms of inputs and outputs. Thus I a 

denotes the input of item a, Ob denotes the output of item b and + O a denotes the 

simultaneous input and output respectively of the two items a and b. We denote the end 

of transmission ( e o t)  by the binding of the tail of the list to nil.

In order to analyse this goal we first normalize the SILCS buffer program, make the 

maximum store size 2 and represent the store by a term, either a constant empty, a pair 

fu ll(A ,B ) or a singleton p a rt-fu ll (A).

buffer2(Ins,Outs,Store) <—

Store=empty A Ins=nil A Outs=nil 

buffer2(Ins, Outs, Store) <—

Store=empty A Ins=In.Ins' A buffer2(Ins', Outs, part-full(In)) 

buffer2(Ins, Outs, Store) +—

Store=full(Out,X) A Outs=Out.Outs' A buffer2(Ins, Outs', part-full(X))



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 144

Figure 4.2: Graph of bindings for a two-place buffer 

buffer2(Ins,Outs,Store) «—

Store=part-full(X) A Ins=In.Ins' A buffer2(Ins, Outs, full(X,Ins)) 

buffer2(Ins, Outs, Store) <—

Store=part-full(Out) A Outs=Out.Outs' A buffer2(Ins, Outs', empty) 

buffer2(Ins, Outs, Store) <—

Store=part-full(Out) A Ins=In.Ins' A Outs=Out.Outs' A
buffer2(Ins, Outs, part-full(In))

One unfolding of the goal

<— buffer2(Ins,Outs,empty) A producers(Ins,a.b.c.nil) 

where producers/2 is the non-sequenced producer is:



C H A P T E R  4. TH E  L O G IC  L A N G U A G E  S IL C S 145

♦— Ins=X.Ins' A Ins'=Y.Ins" A Outs=X.Outs' A

Ins"=Z.Ins'" A Outs'=Y.Outs" A Outs"=Z.Outs'" A 

In s'"= nil A 0"'=nil A

Ins=a.Ins' A Ins'=b.Ins" A Ins"=c.Ins'" A Ins'"=nil

All the unifications form one atomic group and are executed concurrently. This is the case 

whatever clause selection method is employed by the SILCS interpreter. The poset of all 

the possible observations of the buffer comprises two members, ± and T, i.e. {(tail,tail), 

(a.b.c.nil,a.b.c.nil)}. There is only one path through the graph, and hence only one 

possible computation.

If the producer is sequenced then the goal unfolds to:

«— Ins=X.Ins' A Ins'=Y.Ins" A Outs=X.Outs' A

Ins"=Z.Ins"' A Outs'=Y.Outs" A Outs"=Z.Outs'" A 

In s'"= nil A 0"'=nil A

(Ins=a.Ins' & Ins'=b.Ins" & Lns"=c.Ins'" & Ins'"=nil)

The result is identical to that for the one-place buffer discussed above. All the unifications 

on the variables Ins and Outs are performed concurrently with the first element in the 

sequence group of computations associated with the producer. The messages a, b and c 

are thus not buffered, but transmitted in the sequence a ; b ; c. The message slots, 

represented by the variables X,Y,Z are created eagerly by binding Ins and Outs to the list 

a.Y.Z.Zl at the start of the computation. As before, we represent the unbound tail of the 

incomplete list to which a stream variable is bound by ta il. The poset of states of the 

buffer variable pair (Ins,Outs) for the computation described above is thus:

{ (tail,tail), (a.$Y.$Z.tail,a.$Y.$Z.tail) , (a.b.$Z.tail,a.b.$Z.tail), (a.b.c.tail,a.b.c.tail), 

(a.b.c.nil,a.b.c.nil)}

The SILCS program whose execution will result in the predicted behaviour m u s t  sequence 

the recursive calls to the buffer:

buffer2(Ins,Outs,Store) <—

(Store=empty A Ins=nil) & Outs=nil



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 146

buffer2(Ins, Outs, Store) <—

(Store=empty A Ins=In.Ins') & buffer2(Ins', Outs, part-full(In)) 

buffer2(Ins, Outs, Store) <—

(Store=full(Out,X) A Outs=Out.Outs') & buffer2(Ins, Outs', part-full(X)) 

buffer2(Ins,Outs,Store) <—

(Store=part-full(X) A Ins=In.Ins') & buffer2(Ins, Outs, full(X,Ins)) 

buffer2(Ins, Outs, Store) <—

(Store=part-full(Out) A Outs=Out.Outs') h  buffer2(Ins, Outs', empty) 

buffer2(Ins, Outs, Store) +—

(Store=part-full(Out) A Ins=In.Ins' A Outs=Out.Outs') &

buffer2(Ins, Outs, part-full(In))

There are then several possible unfoldings of the goal each one corresponding to a different 

path through the graph of the observations of the buffer. For example, one

unfolding is:

*— (Ins=X.Ins' & Ins'=Y.Ins" & (Outs=X.Outs' A Ins"=Z.Ins'" ) &

(Outs'=Y.Outs" A Ins'"=nil) & Outs"=Z.Outs'" & 0"'=nil)

A (Ins=a.Ins' & Ins'=b.Ins" & Ins"=c.Ins'" & Ins'"=nil)

These goals form one atomic group with two members, each of which is a sequence group. 

The set of observations for one possible computation is:

{(tail,tail), (a.tail,tail), (a.b.tail,tail), (a.b.c.tail,a.tail), (a.b.c.nil,a.b.tail), 

(a.b.c.nil,a.b.c.tail), (a.b.c.nil,a.b.c.nil) }

The set of the observations of all the possible computations form the poset is that required 

by the definition of the buffer.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  SILC S 147

The general form of a SILCS program for data store N- place buffer is described by the 

relation bufferN(Ins,Outs,Store,N,Size) where Ins and Outs are the input and output vari

able respectively, Store is a difference-list holding the stored items, N is the maximum 

number of items that can be stored and Size is the number of items in the store. The 

SILCS program is:

bufferN(Ins,Outs,Store,Size,N) <—

(Size=0 A Ins=nil) & Outs=nil

bufferN(Ins, Outs, Store, Size,N) *—

(Size > 0 A Size < N A Ins=In.Ins' A Store=X/Y) & 

bufferN(Ins', Outs, In.X/Y, s(Size), N )

bufferN(Ins, Outs, Store, Size, N) <—

(Size < N A Size > 0 A Outs=Out.Outs' A Store=X/Out.Y) &

Size=s(Size') A bufferN(Ins, Outs', X/Y,Size',N )

bufferN(Ins, Outs, Store, Size, N) *—

(Size < N A Size > 0 A Outs=Out.Outs' A Ins=In.Ins' A Store=X/Out.Y) & 

bufferN(Ins, Outs', In.X/Y,Size, N )

4.14.2 Process network buffers

In Section 3.10.2.6 we introduced the idea that the composition of N 1-place buffers as 

a linear network would when executed on a suitable interpreter behave as an N-place 

buffer. In this section we show that the operational semantics of SILCS defines such an 

interpreter.

The general form of such an N-place buffer is 

buffer(N,Ins,Outs) *-

bufferl(Ins,Mid^ A bufferl(Mid1,Mid2) A ...A bufferl(MidN,Outs)



C H A P T E R  4. T H E  LO G IC  L A N G U A G E  S IL C S 148

We take as our example a two-place buffer comprising two one-place buffers (see page 107). 

buffer2(Ins,Outs) <— bufferl(Ins,Mid) A bufferl(Mid,Outs)

and use the definition of bufferl/2 from Section 4.13.2, page 139

bufferl(Ins,Outs) *-

Ins = nil & Outs=nil 

bufferl(Ins, Outs) <—

Ins = In.Ins' & Outs=In.Outs' & bufferl(Ins',Outs')

The goal

<— buffer2(Ins,Outs) A producers(Ins,a.b.c.nil) 

can be rewritten as:

<— bufferl(Ins,Mids) A bufferl(Mids,Outs) A producers(Ins,a.b.c.nil)

The computation of each one-place buffer considered alone can be represented by a graph 

which comprises just one chain (Fig 4.1). We represent the synchronised composition 

of the two buffers in Fig 4.3 below by abuse of the diagrammatic representation of a
X

graph. The synchronisation of the two processes is indicated by “A»------------ ► •B” where

the processes A and B are forced to synchronise and the value x  is passed from A to B 

during the synchronisation. In the example process A is bufferl(Ins,Mids) and process B 

is bufferl(Mids,Outs). The annotation I a denotes the input of item a on bufferl(Ins,Mids) 

and O a denotes the output of item a from bufferl(Mids,Outs).

The graph for the two-place buffer process network buffer is depicted in Fig 4.4 below. 

Internal transitions have been added in the form of M x which denotes the acceptance by 

bufferl(Mids,Outs) of item x  from buffer(Ins,Mids) on the channel variable Mids.

We can derive the graph depicted in Fig 4.4 from Fig 4.3 by combining the paths for the 

computations of each one-place buffer. The input of b on Ins, denoted by /&, and the 

output of a on Outs, denoted by Oa, occur in p a ra lle l. The semantics of SILCS describes 

the independent occurrence of a and b as being equivalent to a  th e n  b or b th e n  a  or 

a  s im u l ta n e o u s  b. We replace the parallel lines for input on Ins and output on Outs



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  SIL C S 149

bufferl(Ins,Mids)

(a.b.c.nil,a.b.c.nil) < M „ J'
(a.b.c.nil,a.b.c.tail) * 

(a.b.c.tail,a.b.c.tail) <

'
Inil

f M c
o c

V.

(a.b.c.tail,a.b.tail) i 

(a.b.tail,a.b.tail) \
Ic
1 M b

V.
o b

(a.b.tail,a.tail) | 

(a.tail,a.tail) j

i
h
* M a

V
o a

V
-  ->

(a.tail,tail) p

bufferl(Mids,Outs)
• (a.b.c.nil,a.b.c.nil)

O nil

V (a.b.c.tail,a.b.c.tail)

V (a.b.c.tail,a.b.tail)
►

j: (a.b.tail,a.b.tail)

< (a.b.tail,a.tail)
►

V (a.tail,a.tail)

(tail,tail)

(tail,tail)

Figure 4.3: Synchronising two one-place buffers 

(Fig 4.5) by the structure in Fig 4.6 indicating these alternative computations.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 150

(a.b.c.nil, a.b.tail)

(a.b.c.tail, a.tail)

{a.b.tail, tail)

(tail, tail)

Figure 4.4: Graph for a two-place process buffer (with internal transitions)

(a.b.tail,a.b.tail) 

{a.b.tail,a.tail) 

(a.tail,a. tail) 

(a.tail,tail)

t

V.
h

V,

Mb

Ma

1’
>

Oa
•>

(a.b.tail,a.tail) 

(a.tail,a.tail) 

(a.tail,tail) 

(tail,tail)

Figure 4.5: Portion of individual graphs of two one-place buffers



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 151

(a.b.tail, (a.tail, a.tail)

Figure 4.6: Portion of graph of a two-place process based buffer



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 152

4.15 Queues

The descriptions of queues developed in Section 3.10.3 can be transformed into SILCS 

programs by the addition of the sequencing operator. For example, the data structure 

queue from Section 3.10.3.3 on page 110 forms the basis for the following SILCS program:

queue(Ins,Outs,Store,Size) <—

(Size=0 A Ins=nil) & Outs=nil

queue(Ins, Outs, Store,Size) «—

(Size > 0 A Ins=In.Ins' A Store=X/Y) & 

queue(Ins', Outs, In.X/Y, s(Size) )

queue(Ins, Outs, Store,Size) <—

(Size > 0 A Outs=Out.Outs/ A Store=X/Out.Y) &

(Size=s(Size') A queue(Ins, Outs', X/Y,Size' ))

queue(Ins, Outs, Store, Size) <—

(Size > 0 A Outs=Out.Outs' A Ins=In.Ins' A Store=X/Out.Y) & 

queue(Ins, Outs', In.X/Y,Size )

The process-network queue described on page 111 forms the basis of the following SILCS 

program:

queue(Ins,Outs) «—

Ins=I.Ins' & (queue(Ins',Mids) A bufferl'(Mids,Outs,I))

bufferl'(Ins, Outs, In) «—

Outs=In.Outs' & bufferl(Ins,Outs')

bufferl(Ins, Outs) ♦—

Ins=In.Ins' h  bufferl'(Ins', Outs, In)



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 153

In turn, this can be used as the basis of the following SILCS description of an expedited 

data queue. We assume that an expedited data item I  is a tuple of the form x ( I )  and 

that a normal data item I  is a tuple of the form n ( I ) .

xdq(Ins,Outs) <—

Ins=Item.Ins' k  (xdq(Ins,Mids) A celi(Mids, Item, Outs) ) 

cell(Ins, Item, Outs) <—

Item=x(I) k  Outs = (x(I),n(I/)).Outs' k  cell(Ins,n(I/),Outs') 

cell(Ins, Item, Outs) *—

Item=x(I) k  Outs = x(I).Outs' k  cell(Ins,Outs') 

cell(Ins, Item, Outs) <—

Item=n(I) k  Ins = n(I').Ins' k  Outs=n(I).Outs' k  cell(Ins,n(I'),Outs') 

cell(Ins, Item, Outs) «—

Item=n(I) k  Ins = (x(I'),n(I)).Ins' k  cell(Inspc(I'),Outs') 

cell(Ins,Outs) <—

Ins=Item.Ins' k  cell(Ins', Item, Outs)

A more efficient form of the queue is one which can grow and shrink in size: 

queue(Ins,Outs) <—

Ins=In.Ins' k  (queue(Ins,Mids) A queue-cell(Mids,In,Outs)) 

queue-cell(Ins,In,Outs) «—

Ins=In'.Ins' k  (queue-cell(Ins',In',Mids) A queue-cell(Mids,In,Outs)) 

queue-cell(Ins,In,Outs) <—

Outs=In.Outs' k  Ins= Outs'

We can then describe an expedited data queue which also can grow and shrink in size:

xdq(Ins,O uts) *—

Ins=Item .Ins' k  (xdq(Ins,M ids) A cell(M ids, Item , Outs) )



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 154

cell(Ins, Item, Outs) <—

Item=x(I) & Ins=Item.Ins' & (cell(Ins/,Item,Mids) A cell(Mids,x(I),Outs)) 

cell(Ins, Item, Outs) «—

Item=n(I) & Ins=n(I').Ins' & (cell(Ins/,n(I,),Mids) A cell(Mids,n(I),Outs)) 

cell(Ins, Item, Outs) ♦—

Item=n(I) & Ins=x(I').Ins' h  (celi(Ins',n(I),Mids) A ce!I(Mids,x(r'),Outs)) 

cell(Ins, Item, Outs) +—

Outs=Item.Outs' & Ins=Outs'

4.16 Sum mary

Descriptions in first order of the set of observations of a concurrent system form the 

basis of a Horn clause program in language Lv  whose execution results in concurrent 

behaviour conforming to a description in language L .̂ This chapter has described the 

syntax and semantics of the logic programming language SILCS which is an instance of 

L p .  The operational semantics of SILCS are defined by an abstract logic interpreter for the 

language. Programs in SILCS have been derived from the examples developed in Chapter 3 

and their computations depicted as graphs, Equivalences have been developed for SILCS 

programs which permit the comparison of data-structure and process-structure systems. 

However, SILCS has not been designed for the im p le m e n ta t io n  of concurrent systems — 

its semantics dictate expensive computational mechanisms, for example atomic unification 

and synchronous communication. The ‘all-solutions’ model of non-determinism employed 

by SILCS also makes it unsuitable for the implementation of systems exhibit c o m m itte d -  

c h o ic e  behaviour.

This chapter has raised the following issues which are investigated in the remainder of the 

thesis:

(1) How programs in concurrent languages designed for the im p le m e n ta t io n  of concur

rent systems can be derived from SILCS programs.

(2) The definition of the conformance relation between specifications and programs.



C H A P T E R  4. T H E  L O G IC  L A N G U A G E  S IL C S 155

(3) The construction of an interpreter for SILCS and its use in the investigation of 

conformance between SILCS and the set descriptions of systems



C h ap ter  5

Implementing SILCS programs

5.1 Introduction

The logic programming language SILCS which was described in Chapter 4 is not a can

didate for the implementation of concurrent systems. Its computational model based on 

synchronous communication and atomic unification hinders the efficient construction of 

such systems using the language, and the all-solutions form of non-determinism employed 

by SILCS make the language unsuitable for constructing systems which admit only one 

computational path. Logic programming languages which are more suited for the task 

of implementing concurrent systems have been designed by other researchers, and we 

propose that SILCS programs are used as the basis for the development of programs in 

such languages. The relationship between SILCS and other concurrent logic program

ming languages, and mappings from SILCS programs into programs in these languages 

are described in this chapter.

5.2 Specifications, im plem entations and sim ulations

We distinguish between a s p e c ific a tio n  and an im p le m e n ta t io n  of a system in that a speci

fication is a description of the set of observations that can be made of the system, whereas 

an implementation of a specification is machine code which when executed results in be

156



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 157

haviour predicted by the specification. The term ‘machine code’ denotes instructions for 

a machine which may be realised in hardware or software. In the latter case, we refer to 

such a software realisation as an emulator for an abstract machine, i.e. an implementation 

of a specification for the abstract machine. It should be noted that the distinction be

tween ‘hardware’ and ‘software’ is blurred by the practice of micro-coding instructions in 

processors, and that abstract machines may be implemented by special-purpose hardware 

rather than by software emulation.

Similarly a sp e c ific a tio n  la n g u a g e  is a notation for describing the set of observations that it 

is possible to make of the system specified, whereas a p ro g ra m m in g  la n guage is a notation 

for the construction of computer programs. However the distinction between specification 

languages and implementation languages is blurred by the possibility of building in te r 

p r e te r s  for languages, as opposed to c o m p ile r s .

Definition 5.1 An in te r p r e te r  is a computer program written in a meta language which 

translates symbols in an object language into machine code instructions, and executes them 

during the live operation of the interpreter. The machine code instructions produced by 

the interpreter are not usually stored in non-volatile memory. ■

Definition 5.2 A c o m p ile r  is a computer program which translates symbols written in 

a source language into machine code instructions1 which can be later directly executed 

without reference to the source. ■

Programming languages may be either interpreted or compiled. Compiled programs usu

ally execute more rapidly than interpreted programs, although the compiled object code 

may be larger in size than the source code.

Specification languages are not usually compiled due to the complex nature of the systems 

which they describe, but they may be interpreted. A c o n s tru c tiv e  specification language is 

one which permits specifications to be constructed which can be interpreted mechanically. 

The instructions generated during the operation of the interpreter can be regarded as an 

implementation of the specification, but they are not usually stored in long-term memory.

!The machine code instructions produced by a compiler from the source code are termed object 

code, not to be confused with the ‘object language’ of Definition 5.1.



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 158

N o n -c o n s tr u c t iv e  specification languages do not give an explicit model of the system being 

specified but instead describe invariant properties of the system. A specification in such 

a language usually has no mechanically-derivable implementation.

A s im u la t io n  of a system is a representation of the desired behaviour of the system. For 

example, parallel behaviour may be simulated by interleaving. A simulation is a p a r t ia l  

im p le m e n ta t io n  of a system if under certain circumstances the simulation truly implements 

the system. As an illustration, if a simulation is run on m  processors and the system 

simulated comprises n  processes, n  varying dynamically, then if there is always at least 

one processor available to run each process the simulation is a complete implementation 

of the system. However if during the execution of the simulation some processes have to 

share processors then the simulation is a p a r t ia l  im p le m e n ta tio n  of the system.

5.3 Program m ing languages for im plem enting concurrent 

system s

The design of programming languages used for system construction is dictated primarily 

by the characteristics exhibited by the target system, and also to some extent by the 

hardware on which the system is to be implemented. In the case of c o n c u r r e n t systems, 

the behaviour of the desired system, including communication and synchronisation, is 

a paramount influence on the programming language and the ideal target hardware is 

unlikely to be based on the traditional von Neumann model. While it is true that con

current systems have been implemented on that traditional sequential model, for example 

the construction of multi-user operating systems running on mono-processors by the use 

of time-sharing, the trend in hardware design is now towards both multi-processors and 

distributed systems.

Early programming languages were oriented towards the control of the von Neumann ma

chine and were im p e ra tiv e  — programs in such languages possess an operational semantics 

which can only be understood with reference to their effect on the state of the machine. 

Languages developed for programming these sequential machines are not suited to the 

control of parallel systems unless these systems are just a conservative extension of the



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 159

von Neumann model. Thus in a shared-memory parallel computer the basic von Neumann 

instruction set can be preserved, extending the semantics of the instructions, for exam

ple concurrent read and writes, or adding new instructions. However, communication and 

synchronisation between processes which reside on different processors in a loosely coupled 

system are not readily expressed in this extended instruction set.

A d ec la ra tive  programming language is based on an abstract formalism, and statements 

in such a language do not contain features which make sense in machine-level terms, such 

a5  side-effects. The lambda calculus [21] forms the basis for functional programming lan

guages, the first of which was LISP [89]. Logic programming is based on first-order pred

icate logic, in practice on the Horn clause subset, the procedural interpretation of which 

was given by Kowalski [72]. Prolog, the first logic programming language, was designed 

and implemented by Colmerauer and his team at Marseilles in 1972 [107]. More recent 

logic programming languages include those based on constraint evaluation, for example 

Prolog III [33], CLP(7£) [68], cc [114] and those based on parallel evaluation strategies 

[120].

A central tenet of this thesis is that declarative languages are suitable as programming 

languages for the construction of concurrent systems. These languages axe independent of 

machine architecture and are based on formalisms which make them amenable to rigorous 

analysis. A programming language based on first order logic is potentially well suited to 

this role since its computational rule can include concurrent evaluation. The technology 

of concurrent logic programming has matured to the point that languages in this family 

have been used to implement practical systems, for example the work reported by Foster 

[40, 41] using Parlog, and the use of Concurrent Prolog to construct the Logix system 

[57, 123]. Also there are robust implementations of several of these languages on a variety 

of multiprocessor configurations systems, for example Parlog [34], Strand [42], KL1 [101] 

and Flat Concurrent Prolog [127].



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 160

5.4 W hy SILCS is not an im plem entation language for 

concurrent system s

SILCS is a ‘half-way house’ between a logic specification language and a concurrent logic 

programming language. Clauses written in SILCS may be understood as procedures in 

the manner described by Kowalski [72], with a control strategy defined by the operational 

semantics of SILCS. Thus SILCS specifications are log ic a lg o r ith m s  (see Kowalski [73] 

or Hogger [62]), i.e. triples (G,L,C), where G is the goal «- in it  (1 ^ ,..., Vn ) ,  L the 

set of clauses or p ro ce ss  sp e c ific a tio n s , and C the c o n tro l embodied in the rules of the 

SILCS interpreter. However, the concurrent systems that are the targets of SILCS de

scriptions are characterized by c o m m itte d -c h o ic e  n o n - d e te r m in is m , i.e. if at some point in 

the computation there is a non-deterministic choice between several goals the system will 

arbitrarily commit to one of the alternatives. For example, consider an implementation 

of the producer-bounded-buffer-consumer system. If the buffer is neither full nor empty, 

the producer is prepared to offer an item and the consumer is prepared to accept an item 

then the buffer will perform only one of the following possible actions:

(1) accept an input item

(2) offer an item for output

(3) accept an input item, and offer a different item for output

The semantics of choice in SILCS is that of all-solutions non-determinism, and all alter

natives in a choice are explored in parallel by an idealised SILCS interpreter. Committed 

choice concurrent logic programming languages are well suited for implementing the sys

tems which are described by SILCS programs, but are ill suited for the task of sp e c ify in g  

concurrent systems, a topic discussed by Gilbert in [49]. In the following sections we take a 

closer look at the characteristics of these languages and describe ways in which committed 

choice concurrent logic programs can be derived from SILCS programs.



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 161

5.4.1 Non-determinism and a lack of guards

The most general kind of non-determinism is ‘don’t know’ non-determinism: ‘don’t care’ 

non-determinism is just a restricted case of this. Schemes are possible where the number 

of choices made by the system axe less than the maximum presented to it, but more than 

one. In general, given a choice of N possibilities, the system may choose to explore M 

paths where 1< M <  N .

Committed choice (don’t care) non-determinism is suitable for the im p le m e n ta t io n  of 

concurrent systems, but not for the sp e c ific a tio n  of such systems since in general we wish to 

reason about all the possible behaviours that a system may exhibit. Given a specification 

formalism incorporating don’t-know non-determinism, the specifier can ensure that the 

system makes only one choice by the use of appropriate predicates in the body of the 

relevant clause in the specification. From the implementor’s point of view, a refinement of a 

specification that eliminates redundant choices will be part of the implementation process. 

For the purpose of verification, don’t-know non-determinism is required in the verifier 

to provide generate and test facilities. This does n o t preclude a parallel or concurrent 

language for the construction of a verifier.

Don’t know non-determinism is required if automated systems are to be constructed which 

attempt to compare implementations by deriving common specifications from them. This 

non-determinism might however be required in transformational and analytical tools rather 

than in the ‘language’ itself — but it is always a good test of a technique if tools for ma

nipulating formulae written in it can be constructed using the same language, an approach 

taken by van Eijk [132].

The use of guards enables the choice of clause commitment, or se le c tio n  if we regard guards 

as being part of the clause selection process, to be made more deterministic. The question 

as to whether there should be more than one part to a guard is open and recent proposals 

by Saraswat [113] have been for distinct input and output (‘Ask’ and ‘Tell’) components 

of a guard.

The characteristics required of a choice operator for algebraic specification languages have 

been discussed by Milner [95] and Hoare [58]. Choice in these formalisms is c o m m it te d ,



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 162

and does not directly correspond with the semantics of the logical choice operator. From 

the point of view of expressibility, a choice operator which can respond to its environment 

is desirable. This implies that for a language with guards, output can be made in the 

guard, and that some testing evaluation be performed in the system when choice occurs. 

This sort of choice mechanism is used with effect in LOTOS specification of buffers and 

expedited data queues described by Brinksma [11]. CCLPs do not have this mechanism, 

but there exist techniques to program around this, for example mode reversal and the 

use of external monitor processes. We have shown in [49] that the former technique does 

not permit composition of system components; in [48] we have demonstrated that external 

monitor processes are clumsy and awkward to program, difficult to reason about and result 

in inefficient execution.

5.5 C om m itted choice concurrent logic program m ing lan

guages

Concurrent logic programming languages are characterized by an evaluation strategy in

cluding and-parallelism, committed-choice non-determinism and some form of synchro

nisation. The reader is referred to [120, 114, 126] for detailed introductions to these 

languages. The evaluation of constraints has been explored as an alternative to term uni

fication in parallel logic languages and is described in [114, 25, 86]. We present here a 

short summary of concurrent languages which employ unification — implementations of 

concurrent constraint logic languages have yet to be made available to system builders.

5.5.1 The Relational Language

Stream-processing in a logic programming context was initially discussed by van Em- 

den and de Lucena [135], while an early version of Prolog which employed co-routining 

to achieve stream-parallelism was IC-Prolog [30]. However, the first logic programming 

language having an operational model which permitted concurrency was the Relational 

Language [26], designed by Clark and Gregory. A full interpreter for this language was 

never implemented, but its design was very influential on Concurrent Prolog, Guarded



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 163

Horn Clauses and Parlog (see below).

The Relational Language (RL) introduced committed choice non-determinism into logic 

programming by the use of guards, a construct borrowed from Dijkstra’s Guarded Com

mands [36]. The model of synchronisation employed by the RL for a producer of data 

is that of unbounded buffer communication, similar to that proposed by Kahn and Mac- 

Queen [69]. Shared logic variables indicated the communication channels and a producer 

is never affected by its inability to send data down a channel. A consumer of data is 

lazy in the model, since its evaluation path is affected by the availability of data on an 

input channel. The RL model permits the size of the buffer between producer and con

sumers) to be specified. In the special case that the size was is, completely synchronous 

communication can be achieved as in CCS [92, 95] and CSP [58].

Explicit sequential and parallel AND and OR operators are part of the RL. The mode 

annotations “?” and “ j ” are employed to indicate the input and output modes respectively 

of arguments to relations. Modes are s tr ic t in that all the arguments to a data structure in 

the head of a clause take the same mode as the argument of the relation in which that data 

structure is located. Suspension is effected by the satisfaction of the read-only constraint 

that no variables in an input position in a call can be bound by unification with the head 

of a candidate clause during a reduction.

The RL was very influential on the development of many concurrent logic programming 

languages which are currently in use. We present below a summary of the differences 

between these offspring and their common ancestor; a more detailed comparison may be 

found in [120]. These languages can be defined to have a common base syntax; programs 

are a finite set of guarded clauses of the form:

H * - Gj, . . . ,  Gn | Bl5 . . . ,  Bm. n,m > 0

“|” is the c o m m it  operator2 and Gj . ..G n, Ba ...B m are atoms. The guard c o m p r ise s  

Gi, . . . ,  Gn and the body comprises B1? .. . ,  Bm. The u,” operator is the parallel-AND 

connective. H is the head of the clause. A goal statement is a conjunction of goals of the 

form:

2The commit operator in Parlog is



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 164

n > 0

A note on guards

One issue in the design of these languages which has been motivated by reasons of efficiency 

is that of f l a t  g u a rd s . A flat guard contains only calls to system predicates and a language 

which permits only flat guards is called a f i a t  la n g u a g e . Current implementations of 

concurrent logic programming languages often impose such a restriction for efficiency 

reasons, thus prohibiting calls to user defined relations which may be recursively. We do 

not discuss flat languages further in this thesis, since there are algorithms for translating 

between flat and deep guarded programs [97].

However there has been a debate in the concurrent logic programming community re

garding atomic input and output. The first flat language to combine input matching and 

atomic test unification was Saraswat’s CP[i,|,&] [109, 112]. This idea was first generalised 

by Saraswat in [113] where Ask and Tell parts of clauses were proposed which gave rise 

to the language cc(J.,|) described in his thesis [114] which contains a detailed discussion 

of this question in the context of a concurrent constraint programming paradigm. Similar 

ideas for programming languages have been proposed by Ringwood [104] and Shapiro [120] 

(see below).

5.5.2 Parlog

The design of Parlog by Clark and Gregory, first reported in [27] and developed by Gregory 

in [51] was a direct outcome of their work on the RL. Major differences between the two 

languages are that Parlog does not retain the annotations about the capacity of channel 

variables capacity, and modes are allowed to be ‘weak’. The effect of the former is that 

shared variables act as unbounded buffers so that communication is synchronous only 

regarding the consumer and thus producers are completely asynchronous (‘eager’). Weak 

modes free relations from the restriction of being either input or output (but not both) 

on any particular argument, effectively negating the usefulness of mode annotations as 

indicators of desired behaviour. Unification in Parlog is not atomic.



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 165

Parlog retains the RL’s explicit sequential and parallel operators, and introduces two 

unification relations in addition to standard unification (=/2), none of which employ the 

occurs-check. Test unification, = = /2 , has mode (?,?) and tests the syntactic identity of 

two terms up to variable names; it suspends if it could proceed only by binding a variable 

in one its arguments. One-way unification, ^=/2, likewise has mode (?,?) but the left 

argument is w eak] the call t \  «£= t 2 unifies and t 2 by binding variables in t 1 to make t x 

and t 2 syntactically identical. If  it could proceed only by binding variables in i>2 the call 

suspends.

No output is possible in a guard, and a guard which can (directly or indirectly) unify 

variables in input positions is u n s a fe . A Parlog compiler should enforce the guard safety 

check.

There is a k e r n e l , or standard form for Parlog, and programs written in the moded form 

can be translated into the kernel form. The algorithm employed replaces head arguments 

by distinct variables and introduces a call to •$= in the guard for each variable in an input 

position — identical variables in input positions are replaced by distinct variables in the 

guard and are compared using test unification. Output variables are unified with data 

structures in the body of the clause by calls to full unification3. For example, the Parlog 

clause

mode merge(?,?,f).

merge([X|Xs],Ys,[X|Zs]) <— merge(Xs,Ys,Zs). 

would be represented in Kernel Parlog as:

merge(Xs,Ys,Zs) <- [X|Xs'] <i= Xs | Zs = [X|Zs'] , mergers', Ys, Z').

Parlog also has metalevel processing facilities: ca ll/1  with mode (?), which acts like 

Prolog’s primitive of the same name, and ca ll/3 . This latter call has the mode pat

tern ca ll(G o a l? , S t a t u s C o n t r o l ?), where C o n tro l is a stream of commands of the form 

{suspend, continue, fa il} , and S ta tu s  a stream of messages of the form {suspended, 

continued, succeeded, fa iled }. This primitive, introduced in [51], permits the con-

3In Gregory’s thesis [51] output was achieved by assignment. This mechanism was subsequently
changed to unification in [28] and [52].



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 166

struction of fail-safe processes. Work by Foster [40] has explored in detail the use of 

augmented metacalls to implement an operating system in Parlog.

Negation is implemented as n e g a tio n -a s - fa ilu re  [22], and is subject to the same restrictions 

as negation in Prolog [99]. An interface is provided to an all-solutions (don’t-know non- 

deterministic) language via the set/3 and subset/3 primitives. The former has the mode 

declaration s e t fS o lu t io n s ] ,T e r m ? ,C o n ju n c t io n ? ) , and corresponds to the Prolog primitive 

bagof/3. The mode declaration s u b s e t (S o lu t io n s ? ,T e r m ? ,C o n ju n c tio n ? )  ensures that 

subset/3 is lazy and only returns solutions for those variable-slots in the list S o lu t io n s  

which have been provided by a producer. The semantics of the all-solutions language 

invoked by calls to set/3 and subset/3 is ill-defined.

5.5.3 Parlog86 and Guarded Definite Clauses

A syntactic variant of Parlog has been proposed by Ringwood [103] and is called Parlog86. 

Guard declarations are omitted and all modes default to input as in GHC (see below). 

Output is achieved by calls to unification in the body of a clause. For example, the 

Parlog86 version of the Parlog clause about merge/3 is:

merge([X|Xs],Ys,Zs) *-Zs = [X|Zs'] , mergers', Ys, Z').

In [104] the same author has proposed an extension of Parlog86 called Guarded Definite 

Clauses (GDC). The unifiability test in the guard and the unifiability output in the body 

are an atomic step. For a clause to be a candidate for committal the guard must not 

only ascertain that the bindings prescribed by the unifiability primitive are possible but 

also obtain exclusive access to those variables which would be bound if the unification 

were to be performed. Hence output is atomic and guarded, providing a blocking send in 

addition to the blocking receive of Parlog. These proposals are similar to those made by 

Saraswat [113] for Ask-and-Tell concurrent logic programming languages. Since atomic 

guarded output is difficult to implement, a variant of GDC is proposed by Ringwood in 

which all guarded unification is replaced by guarded assignment.



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 167

5.5.4 Pandora

An extension of Parlog, called Pandora, has been proposed by Bahgat and Gregory [5] 

based on original ideas put forward by Clark and Gregory in [29]. Stream-and paral

lelism is combined with don’t-know non-determinism in a unified logic programming lan

guage. Pandora extends Parlog with a deadlock handling mechanism and a simple non- 

deterministic fork primitive. The operational semantics of Pandora is a generalisation 

of Warren’s Andorra model [53] and provides a programming paradigm of don’t know 

non-deterministic concurrent communicating processes.

There are two basic kinds of relation in a Pandora program: a n d -p a ra lle l relations and 

d e a d lo c k  relations. An and-parallel relation is defined by a normal Parlog procedure while 

a deadlock relation is defined by both an and-parallel procedure and a deadlock procedure. 

Both kinds of relations may call each other freely, except that a deadlock relation may 

not be called from a guard. A “don’t-know” relation is a further type of relation whose 

definition can be compiled into a committed-choice and-parallel procedure and a deadlock 

procedure.

The non-deterministic fork is of the form { c o n ^ ;... ;con;n} where each co n jx is a Parlog 

conjunction. This fork may only appear as the sole member of a body of a clause of a 

deadlock relation. On execution, n computations are spawned where the tth or-branch of 

the fork goal is replaced by co n jx.

A  Pandora query may contain goals for both committed choice relations and don’t-know 

relations. The computation starts in the and-parallel phase during which committed- 

choice goals are reduced according to the semantics of Parlog. Don’t-know goals are 

also reduced if they are deterministic. If a computation deadlocks and the deadlocked 

resolvent contains at least one goal for a deadlock relation, one such goal is reduced using 

its deadlock procedure instead of its and-parallel procedure.

5.5.5 Concurrent Prolog

Shapiro’s in itial proposal for Concurrent Prolog (C P ) [116], was strongly influenced by

the design of the Relational Language. However, there are significant differences between



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 168

CP and the RL. Concurrent Prolog employs the read-only variable rather than mode 

declarations as its synchronisation mechanism. The read-only annotation is indicated 

by “?” which can be attached to any variable, restricting it to read mode only. Any 

attempt to instantiate a read-only annotated unbound variable X? to a non-variable term 

is forced to suspend until the corresponding writable variable X is instantiated. Saraswat 

[110] has demonstrated that the original definition of the read-only mechanism presented 

problems, and the language has undergone several revisions, described in [119, 120]. CP 

can perform general unification, including both input matching and output assignment 

prior to commitment, and unification is a to m ic , so that safe algorithms can be written for 

multiple writers onto one stream [130], or efficient stream merges [111].

There is no sequential-AND connective in CP due to the desire to keep the number of 

language constructs to a minimum and the wish to encourage programmers to use dataflow 

synchronisation. Also the implementation of the sequential-AND construct on a parallel 

machine requires solving the problem of distributed termination detection. To run A&B, 

if & is the sequential-AND construct, the run-time system has to detect that A and all 

child processes that it has spawned have terminated before initiating B. The o th e r w is e  

declaration in CP implements a default case similar to that which can be achieved using 

Parlog’s sequential-OR operator.

CP does not have the three-argument meta-call construct of Parlog. Fail-safe systems 

in CP are constructed using extra control arguments to relations which are executed in 

enhanced meta-interpreters, as reported by Safra [108]. In [57] Hirsch has shown that 

partial evaluation can be employed to eliminate the overhead of meta-interpreters.

Shapiro [120] has proposed several variants of the original CP model. One of these is 

FCP(|), a simple concurrent logic programming language closely related to Flat GHC. 

Guards comprise guard test predicates, one of which can be a specia l atomic test unification 

predicate. An extension of this language is FCP(:) in which a ll unification attempted is 

atomic. An FCP(:) clause has the form

H 4- Ask : Tell | Body .

where Ask and Tell are possibly em pty conjunctions of atoms. Ask atoms have guard

test predicates and Tell contains only equality atoms. On clause try the goal/head input



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 169

matching and guard checking are performed. If they fail or suspend then the clause try 

fails or suspends respectively. If they succeed then the unification specified by the Tell is 

performed, which can either succeed or fail, but not suspend. If it succeeds the rest of the 

clause try is the substitution combining the ask and the tell substitutions. FCP(:) can be 

extended to FCP(:,?) by the addition of read-only variables.

5.5.6 Guarded Horn Clauses

Guarded Horn Clauses, proposed by Ueda [131], possesses the simplest syntax and se

mantics of all the languages derived from the RL. It does not have mode declarations, 

read-only variables, or sequential operators (although the o th e rw ise  construct is part of 

the language). Its semantics incorporates committed-choice non-determinism, with the 

synchronisation rule that a computation invoked by the head or guard of a clause cannot 

bind variables in a call to that clause. Variable bindings are performed by the unification 

process “=” in the body of the clause, and as in Parlog unification is not atomic.

An implementation of GHC requires the run-time checking of guard safety, as opposed 

to Parlog’s static (compile-time) guard safety check. A subset of the language, known as 

s a fe  GHC, has been identified which guarantees that for any goal the evaluation of head 

unification and the guard part never instantiates a variable appearing in the goal to a 

non-variable term.

KL1 [71] is a stream AND-parallel logic programming language based on Flat GHC. It 

possesses a meta-call facility named shoen, similar to Parlog’s c a l l /3 , permitting the con

struction of operating systems in the language The shoen is a meta-logical unit with a 

pair of streams, named the c o n tr o l  s tre a m  and the report s trea m . The control stream is 

used to start, stop or abort the goals from outside the shoen. Termination of all goals 

or events that occurred inside a shoen, such as failure or exception, are reported on the 

report stream inside the shoen. Shoen can be nested to form a shoen tree whose leaves 

are KL1 goals [101].



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 170

5.5.7 Strand

Strand [42] is a flat concurrent logic programming language combining features from Par- 

log, GHC and CP. The guard contains a se q u e n c e  of predefined guard kernel predicates, 

and the body contains a collection of user defined procedures, assignment operations 

and/or body kernel predicates. A clause head defines match operations which may bind 

clause variables, and its guard defines test operations which may not. Mode declarations 

axe optional, and are are identical in form to those of Parlog — if omitted, all arguments 

are assumed to be input. However, output in Strand is achieved by a s s ig n m e n t , not by 

unification. Other features of Strand, such as modules and remote procedure calls are not 

relevant to the subject of this thesis.

5.6 Concurrent constraint logic programming languages

Influential work in the area of constraints and concurrency has been done by Maher [86] 

whose has described the ALPS class of logic programming languages, and Saraswat [114] 

whose research has defined cc, a family of concurrent constraint logic programming lan

guages. Both these groups of languages use constraint propagation as a basis for commu

nication. Saraswat also discusses the notion of atomic constraint operations within the 

context of guarded input and guarded output.

5.6.1 ALPS

Maher investigated a class of flat committed-choice languages called ALPS which are 

algorithmic and declarative. The members of the class vary in their domain of computation 

and the expressiveness allowed to appear in their guards. The commit laws of ALPS differ 

from Parlog, CP and GHC, but are closest to GHC — no annotations or modes are used. 

An ALPS programs is a finite collection of rules of the form

H +-G Q B

where H is an atom, G a conjunction of constraints (the guard) and B a conjunction of 

atoms and constraints (the body). The “Q” symbol is the commit operator. A goal is



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 171

a multiset of atoms and constraints. ALPS can be seen as subsuming pure Prolog since 

the latter is a degenerate case with no allowed constraints. Constraints in ALPS are not 

solved, but globally propagated. A successful derivation of an initial goal consisting of a 

set of atoms and a set of constraints consists of an empty set of atoms and a final set of 

constraints which may be simplified into a more concise form. Maher extends this scheme 

to permit parallel evaluation of goals and incorporates the notion of committed choice and 

concept of suspension. A goal consists of four sets, A :  and Z{ containing atoms and C{ 

and W i containing constraints. A,- and C i are atoms and constraints respectively which 

can write to global memory, and similarly Z{ and can only read from global memory. 

The commit law of ALPS states that an atom A in the presence of a set of constraints 

C commits to a rule if the rule is validated, or it is the only one satisfied. Validation 

corresponds to an input of constraints and bindings from the global store into the guard 

part of the rule and satisfaction corresponds to propagating constraints and bindings to 

the global store from the guard part of the rule. Maher uses an elaborate scheme for 

publication of constraints, but Saraswat [114] claims that it does not matter whether 

publication is atomic or eventual.

5.6.2 cc

Saraswat’s scheme [113, 114] is essentially very similar to that of ALPS in that the cc 

languages have an ask and tell component in their guard. He proposes a framework which 

encompasses the main features of the flat concurrent programming languages. Saraswat 

proposes that clauses are guarded by two sets of constraints, Ask and Tell constraints 

which may communicate with the set of constraints imposed so far in a computation. Ask 

constraints are blocking in that commitment cannot be made to a clause until the store 

has enough information to satisfy the constraint. Tell operations may be Eventual or 

Atomic — the first kind denotes a system which guarantees only that the constraints will 

be communicated to the store eventually, whilst the second kind denotes a system which 

guarantees that constraints will be communicated to the store atomically. A cc(i, J) clause 

is of the form

H *-Cj : C2 | B



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 172

where is a set of Ask constraints and C2 a set of Tell constraints. A goal may commit to 

such a clause only if it is possible to ask the constraint ((A=H) A C )̂ from the store and 

to Atomically Tell the constraint ((A=H) A Cj A C2) to the store. The variant, ccQ, |e) 

indicates the eventual nature of publication of the constraints by replacing the “|” operator 

by “|e”. Saraswat claims in [114] that there is a very close relationship between ALPS 

programs and cc(j, |) 4 programs and that the former can be embedded in the latter.

5.6.3 Andorra Prolog

Another concurrent logic programming language, based on a different evaluation model 

to those languages descended from RL, is Andorra Prolog [53, 54]; its origins are both in 

traditional Prolog and P-Prolog which was developed by Yang [141]. The model does not 

require any special annotation to control parallelism, and does not restrict the language 

by requiring procedures to generate only one solution. Determinancy is used as the key 

to control and-parallelism, giving the model many of the characteristics of variants of 

traditional Prolog, for example Nu-Prolog.[100] and Prologll [32].

In the pure Andorra model a program is a set of definite clauses each clause being of the 

form:

H Gt , Gb.

H is the head of the clause, and the body is a list of atoms that can be partitioned into the 

prefix list Gt -  the g u a r d , and a suffix list -  the body. G t is a list of simple constraints, 

for example test equality and arithmetic comparison; Cq, is a list of atoms.

Andorra Prolog incorporates features intended to provide for user-directed control which 

axe lacking in the pure model. These include a c o m m it operator “|” so that an Andorra 

Prolog clause can be of the form

H Gt , | , Gt.

where commit is part of the guard and always terminates it. Any constraints occurring

4Sarawsat has developed a complex notation for the cc family of languages, and actually uses 
cc(l,—+) at this point in his thesis.



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 173

after the commit are part of the body.

A clause is c a n d id a te -c o m m it-e n a b le d  of an atom A if A unifies with the head H in a 

binding environment B, and the guard Gt is solvable in the context of BU BAH, where 

BAh are bindings resulting from unifying A and H. Commitment only takes place if 

the goals in Gt can be solved uniquely. A goal (A,C) where C is the list of candidate 

clauses of A w.r.t. some binding list B is c o m m it- e n a b le d  if there is at least one commit- 

enabled clause in C. A goal is reduc ib le  if it is either determinate or commit-enabled; a 

single arbitrary commit-enabled clause is chosen for reduction.

One difference between Andorra Prolog and committed choice logic languages is that 

Andorra computations avoid potential deadlock by or-forking (o r -p a ra lle l e x te n s io n ) . An

dorra Prolog permits the delaying of a goal until it is reducible (i.e. determinate or 

commit-enabled) by the use of the control declaration : - delay p/n for a predicate with 

functor p of arity n. Computations with delay declarations may deadlock.

Andorra Prolog systems allow the programmer to annotate programs with information pro

viding the compiler with directives about clause selection in the case of non-deterministic 

programs. Other strategies proposed to avoid the necessity of run-time analysis include 

static compile-time analysis of programs to detect non-determinism.

5.7 Unification schem es

Unification over terms is the ‘traditional’ means of expressing the unit of computation in 

many logic programming schemes and is an instance of equality reasoning. The unification 

algorithm was proposed by Robinson in [105], and has been defined in Section 3.5.1 of this 

thesis. In this section we summarize the unification schemes employed by concurrent 

logic programming languages and compare them with that of SILCS. Communication and 

synchronisation are expressed by this simple yet powerful mechanism in logic programming 

languages.

Full term unification with the occurs check is employed in an idealised logic programming 

language based on.pure Horn clauses, but implementations of most logic programming 

languages omit this check for efficiency reasons. An exception is Prolog II  [32, 137] which



C H A P T E R  5. IM P L E M E N T IN G  S IL C S  P R O G R A M S 174

removes the occur check from unification in order to utilise an equality theory over infinite 

rational trees. Synchronisation is employed in the unification mechanism of variants of 

Prolog which permit parallel evaluation, often as part of an explicit delay mechanism for 

example MU-Prolog [99], NU-Prolog [100] and Prolog II. The delay mechanism forms part 

of a resolution scheme proposed by Naish in [98]. This is a primitive co-routining scheme 

in that the assumption of any particular computational rule is overridden if data is not 

currently available in a call, but may be made available later from another call.

Concurrent Prolog (CP) and its flat form FCP [116, 118] employ read-only variables and 

unification in an analogue of the freeze mechanism employed by Prologll, although recent 

developments have downgraded the role of the read-only variable [120]. An alternative 

to variable annotation is the use of mode declarations employed in Parlog [51] to effect 

suspension and control the input of values into a clause. This scheme is similar to that of 

MU-Prolog. GHC [131] also employs a similar scheme in which all modes are assumed to 

be input, and output is achieved by unification in the body of the clause. STRAND [42] 

has combined a s s ig n m e n t with a data test used for suspension and input of values into a 

clause.

Supersets of term unification

Unification can be viewed as a special case of a more general process of checking whether 

or not a set of equations has a solution for some other equality theory [25]. Checking 

the satisfiability of constraint formulae forms the basis of constraint logic programming, 

discussed by Catherine Lassez in [78], and in more technical detail by Jean-Louis Lassez 

in [81, 79]. The CLP(7£) [68] and the cc family of concurrent constraint languages [114] 

are based on the evaluation of constraints.

5.8 Suspension and concurrency

Concurrency involves communication and synchronisation. Communication in SILCS is

to ta lly  synchronous and occurs through bindings m ade to shared variables; the atomic

unit o f com putation in SILCS is unification which is an atomic process. In this section



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 175

we compare the suspension mechanism of SILCS with those of the concurrent logic pro

gramming languages discussed above. For the purposes of the following discussion we will 

denote a language by the letter L  followed by symbols denoting basic concepts employed 

in the language definition which express suspension. The possible subscripts are listed in 

Table 5.1.

Symbol Meaning

= atomic unification

<= one-way unification

A simultaneous conjunction

& sequential conjunction

V suspension on choice

Table 5.1: Language annotations for suspension

In a language L ( = ,  A) concurrent unifications occur atomically. In an im p le m e n ta t io n  of 

this scheme, members of a concurrent group of unifications suspend until all the members 

of the group have successfully executed, but an observer will not be able to detect this. 

This scheme does not permit the explicit description of suspension in a concurrent system.

£(<=, A) describes the class of concurrent logic programming languages which combine a 

data check and unification within a context local to one clause to force the suspension 

of computations. We include Parlog [51], Concurrent Prolog [116] and GHC [131] in this 

class even though their suspension mechanisms are ostensibly different. The mechanisms 

employed by Parlog and GHC are more or less the same and are based on suspending 

one-way unification, while Concurrent Prolog (in some of its definitions) uses annotated 

read-only variables. Both of these methods can be implemented by a suspending data- 

check. However this scheme alone is not sufficient to prevent a producer from running 

ahead of a consumer in a communication unless explicit back communication techniques 

are employed (see below).

P-Prolog [141] and Andorra Prolog [53] belong to the L(V) class of languages. Suspension 

occurs when a non-deterministic choice is to be made, until bindings cause the choice to 

become deterministic. Both P-Prolog and Andorra use program annotations to restrict 

the circumstances when such suspension occurs. Pandora [5] employs both suspension



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 176

on bindings to variables in a clause and suspension on choice, and can be described by

J(*sv).

A language L(=, A,&) involves the use of sequencing to define suspension when combined 

with unification and the simultaneous operator. Thus a call

«- (X=a) A (Y=b k  X=a)

causes both calls X=a to synchronise if the operational semantics of the language are 

appropriately defined. SILCS is a language of the L(=, A,&) class. The definition of the 

sequential operator of Parlog does not involve concept of suspension in a combination with 

the parallel operator. For example, in the Parlog goal

<— (X<$=a) , (Y=b k  X=a)

the call (X^=a) suspends until the second call to X=a is executed in the sequence (Y=b 

k  X=a). However in the goal

<— (X=a) , (Y=b k  X<=a)

the two calls involving the variable X are not synchronised. The use of one-way unification 

alone will not enable the synchronisation to take place.

5.9 Im plem enting SILCS programs using concurrent pro

gram m ing languages

We have previously introduced the concepts of interpretation, compilation and simulation 

(Sections 5.2 and 5.2). SILCS programs could be implemented, as opposed to simulated, 

by either interpretation in a meta-language or transformation into a target language. 

Both such a meta-language and a target language would have to be able to support 

concurrent execution. The most likely candidates for these languages are concurrent logic 

programming languages since their syntax and semantics are close to that of SILCS. An 

interpreted program is likely to execute less efficiently than a transformed program, since 

transformation in this case can be regarded as the compilation of a SILCS program into 

a target language.



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 177

Interpretation

Interpretation requires the construction of an interpreter in meta-language with parallel 

programming constructs, which will treat SILCS programs as the object language. The 

operational semantics of SILCS dictates the construction of such a program which will be 

based on the idealised Horn clause interpreter for SILCS — hence the choice of a logic 

programming language as the meta-language. The best candidates for the meta-language 

axe those whose semantics include atomic unification for both input and output, otherwise 

interpretation will be very inefficient due to the need to directly implement such unification 

algorithms in the interpreter itself.

If the meta language chosen is a committed-choice language then problems arise in the 

representation of the don’t-know non-deterministic behaviour of SILCS. Those concurrent 

logic programming languages which can compute all-solutions are Pandora and Andorra. 

However neither of these languages has inbuilt atomic output unification, leading to the 

inefficiencies described in the previous paragraph. Implementations of these languages 

were not available at the time that this research was performed.

Transformation

Transformation of SILCS into a concurrent programming language is a form of compila

tion which treats a SILCS program as the source code and the concurrent programming 

language as the object code. It is inevitable that heuristics will be required to effect such 

transformations due to the differences between SILCS and possible target languages. We 

explore the possible transformation techniques in the next section.

5.10 Transforming SILCS program s into programs in a 

CLPL

In this section we assume that SILCS programs will be mechanically transformed into 

programs in concurrent logic programming languages, aided by human guidance in some 

cases. The mechanical translator can be written in any programming language, but a logic 

programming language is preferable due to the term reader and syntactic analyser which



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 178

is part of such a language.

Mapping SILCS into a committed choice concurrent logic programming language requires

(1) Syntactic transformations.

(2) Preserving the semantics of SILCS programs regarding synchronisation and atomic 

unification.

(3) Converting the don’t know non-determinism of SILCS into the don’t-care non

determinism of the target language, which may involve deciding where to place 

guards in the transformed program.

The rules governing the transformation from SILCS into the target language are deter

mined by the semantics of that target language. The range of parallel logic programming 

languages available for the construction of concurrent systems is still increasing. Advances 

in the technology of implementing runtime systems for these languages on a variety of hard

ware configurations make the selection of just one target language undesirable. Thus we 

present below a general framework for such a transformation and modify it for some of 

the currently available target languages.

The ‘purest’ concurrent logic programming language discussed above is G u a rd e d  H o rn  

C la u se s  since it does not have mode declarations, one-way unification, read-only variables 

or assignment. There are however several differences between GHC and SILCS, most 

notably the former’s lack of the sequential operator. In the following sections we outline 

a methodology for deriving programs in GHC from system descriptions in SILCS.

The syntax of SILCS is a little different from that of all the target languages and a pre

processor is required to make the appropriate translations for each target language. Most 

of the target languages have a common syntax based on that described in Section 5.5.1 

and we base our transformations on that target syntax.

5.10.1 List notation

The usual logic programming list notation is “|” for the list constructor, “[ ]” for the 

empty list, and “[”, “] ” for list delimiters. SILCS employs ./2  as the list constructor



CHAPTER 5. IMPLEMENTING SILCS PROGRAMS 179

and represents the empty list by n il. A simple addition to the term reader of a logic 

programming language suffices to effect this translation as SILCS programs are read in to 

the system. Alternatively . /2  can be declared as an operator of the appropriate precedence 

and type and the SILCS list structures read in then explicitly translated by the transformer 

program. We give such a Prolog program below:

op(200,xfy,’.’).

convert ..list (nil, [] ) . 
convert_list(X.Xs, [X|Ys]):- 

convert_list(Xs,Ys).

5.10.2 The simultaneous operator

The “A” connective of SILCS maps onto the connective in the CCL languages which 

all interpret as the parallel operator. However, the suspension mechanism of SILCS 

involves an interaction between the “A” and operators, and a direct mapping of the 

former onto is not sufficient (see below).

5.10.3 The sequencing operator

Parlog and its derivatives (Pandora, GDC) possess a sequential-and operator, the syntax 

and semantics of which is identical to that of SILCS when considered in isolation to the “A” 

connective. Representing sequentiality in CCL’s which do not possess the u&” connective 

requires the use of a variant on the short circuit technique first attributed to Takeuchi 

[125] and later extended by Weinbaum et al [139] and Saraswat et al [115].

The following transformation has to be applied to SILCS programs containing the se

quencing operator when they are translated into languages which lack such a construct. 

We take the target language to be GHC in this instance.

• Add two extra arguments to all the relations in sequence Cj & .. .  & cn of calls, except 

for the first and last to which only one argument is added. Call these arguments Ij.



C H A P T E R  5. IM P L E M E N T IN G  SILC S P R O G R A M S 180

and Ofc for each c k , 1 < k <  n . The single arguments added to Cj and cn are Oj and 

In respectively.

• Each call c k shares I fc with c* _ l and shares O k with c* + v  I.e. 0^=1^ + : for all calls 

c k , 1 <  k  < n .

• Add code which causes the variable 0* representing a synchronisation flag to be 

bound in the body of call c* and code causing the suspension of cjt+i on that variable 

(i.e. on I t + 1).

• Replace all occurrences of the operator in the sequence by the operator.

• The definition of every sub-process that can be invoked by the sequence (poten

tially all the processes in the system specification) is transformed to take one extra 

argument in the form of the tuple X-Y.

p(.. .) *— true | true, 

is transformed to 

p(...,X) <—X=L-R | <- L=R.

?( •■■) -

transformed to

P ( . . . X ) -

X = L-R I
P j(... ,L-Xj), p2( . .. ,X1-X2), . . . ,  pn( . .. jXq.j-R)

Note that a call <— p(... X̂) will suspend until the variable X is bound to a tuple 

of the form X-Y. For clarity we have written the transformed clause in normalised 

form; we could have written the first of the above clauses as:

p(... ,L-R) «— true | 4-  L=R.

• If  the underlying program contains a call T 1 = T 2  then it must be replaced by a 

call ( L e f t , T  1) = (R ig h t, T 2 ) in the transformed program.



C H A P T E R  5 . IM P L E M E N T IN G  S IL C S  P R O G R A M S 181

For example, the SILCS sequence

« -x (X l )& y (Y l )& z (Z l )  

would be translated into the GHC.

<-x(Xl,Sl) , y(Sl,Yl,S2) , z(S2 ,Zl)

The code of x/1, y/ 1  and z/ 1  would be augmented as follows. If the code were of the 

form

x(Xl) « - . . . | x 1(.. .)  .. .xk(.. .)

y(Yl)

z(Zl) Zl(. . . )  ...zn(.. .)

then the outline transformed code would be

x(Xl,L-R) — ... |  . . .xk(.. . ,MJt_ r R )

y(P-P,Yl,L-R) y,(... ,P-M,) ... yk(. .. ,M k -  )

z(P-P,Zl) | Z j ( . . .) .. .z„(...)

Note that a call p(L-Rv..) to a relation with head p(X-X,...) will suspend until L and 

R can be unified.

An alternative method is to use call/3 of Parlog or the shoen metacall in GHC to introduce 

sequentiality in the manner described by Gregory [52]. For example, a Parlog call

<— a & b

can be rewritten as

«— call(a,S,C) , call-b(S,b)

since call(a,S,C) will bind S to succeeded when a has terminated. We define call-b/ 2  by

mode call-b(?,?). 

call-b(succeeded,b) <- call(b).



C H A P T E R  5. IM P L E M E N T IN G  S IL C S  P R O G R A M S 182

5.10.4 Synchronisation

The basic SILCS communication scenario which we wish to map into a concurrent logic 

programming language is that of l : n  synchronous stream communication:

<— producer(Msgs) A consumer1(Msgs) A ... A consumern(Msgs) 

producer(Msg.Msgs) <— producer(Msgs) 

consumerk(Msg.Msgs) consumerk(Msgs)

None of the implementations of the target concurrent logic programming languages is 

totally synchronous — their semantics in this respect is that of eager producers and 

lazy consumers. Full synchronisation can be achieved by the use of in c o m p le te  m e ss a g e s  

described by both Clark [28] and Shapiro [116], the basis of which is that a producer is 

constrained to wait (suspend) until a consumer has instantiated a variable to a non-variable 

term. This technique relies on constructs in the language which invoke suspension until 

an argument is instantiated. Such suspension may be effected by a call to unification in 

the guard of a GHC program, or in a Parlog program by test-unification = = / 2  or one-way 

unification <=/2. We use GHC as the target language in the following examples.

Two variants of the incomplete message technique exist: b a c k -c o m m u n ic a tio n  and m e ssa g e -  

tu p le s .

Back-communication

Each channel variable shared between a producer and a consumer is split into two, one for 

the message item and the other for the synchronisation reply variable. These variables are 

a r g u m e n ts  to the procedures; each consumer in the communication has one extra argument 

for the reply variable, and the producer has one extra argument for each of the consumers 

participating in the communication:

«- producer(Msg,Reply1, . . . ,  ReplyJ ,

consumerj(Msg,Replyj), . . . ,  consumern(Msg,Replyn).



C H A P T E R  5. I M P L E M E N T IN G  SIL C S  P R O G R A M S 183

producer(Msg, Replyl5 . . . ,  ReplyJ «-

true | Msg=m , check(Reply1, . . . ,  Replyn).

check(Reply!, . . . ,  Replyn) <—

Reply x = ok , . . . ,  Replyn = ok | true.

consumerk(Msg, Replyk) <—

true | consume(Msg) , Replyk = ok.

This technique requires adding an additional argument to a producer for each consumer 

participating in the communication, but each consumer is ‘unaware’ of the other consumer 

partners. In the case that a sequence of messages is to be sent synchronously, the R e p ly  

arguments must also be sequences:

producer(Msgs, Replies  ̂ . . . ,  Repliesn) <—

Msgs=[m| Msgs'] , check(Msgs/, Replies!, . . . ,  Repliesn).

check(Msgs, [RjlRepliesJ, . . . ,  [RJRepliesj) *—

Rj = ok , . . . ,  Rjj = ok | producer(Msgs, Repliesl5 . . . ,  Repliesn).

consumerk([Msg|Msgs], Repliesj *—

true | consume(Msg) , Repliesk=[ok|Replies'k] , consumerk(Msgs, Replies'J. 

Request-reply tuples

A message sent by a producer is wrapped up in an n-tuple whose arity is one more than the 

number of consumers in the communication. Each of the arguments other than the message 

item is a distinct variable, and the producer suspends until each of these variables has 

been ground by a consumer. The consumer of a message grounds the appropriate variable 

on receipt of the message. Thus a goal and the associated procedures representing I : n  

communication are:

producer(Tuple) ,



C H A P T E R  5. IM P L E M E N T I N G  SILC S P R O G R A M S 184

consumerj(Tuple) , . . . ,  consumerk(Tuple) , , consumern(Tuple).

producer(Tuple) <—

Tuple=tuple(msg,Reply!, . . . ,  Replyn), check(Replyi, . ,  Replyn).

check (Replyj, . . . ,  ReplyJ

Replyj = ok , . . . ,  Replyn = ok | true.

consumerk(tuple(Msg, Replyj , . . . ,  Replyk , . . . ,  Replyn)) <— 

true | consume(Msg) , Replyk = ok.

This technique requires care by the programmer to avoid the construction of code in which 

a consumer grounds the R e p ly  variable of another consumer. The number of arguments 

to the producer and consumers is the same as in the SILCS program, but a new data 

structure has to be introduced in the form of the message tuple. Stream communication 

is achieved by the recursive production and consumption of message tuples.

producer(Tuples) <—

true | Tuples=[tuple(msg,Replyi, . . . ,  Replyn)|Tuples], 

check(Replyj, . . . ,  Replyn,Tuples).

check(Replyj, . . . ,  Replyn,Tuples) <—

Replya = ok , . . . ,  Replyn = ok | producer(Tuples).

consumerk([tuple(Msg, Reply! , . . . ,  Replyk , . . . ,  Replyn)|Tuples]) <— 

true | consume(Msg) , Replyk = ok , consumerk(Tuples).

A restricted form of synchronous communication (which in Parlog relies of the property 

of weak modes), can be achieved for stream-based computations using ro le -re v e r sa l. The 

‘consumer’ originates a stream comprising variables which are instantiated to messages by 

the producer. In the example below, all messages consist of the constant ‘message’:

4— producer(Items) , consumer(Items).



C H A P T E R  5. IM P L E M E N T I N G  S IL C S  P R O G R A M S 185

producer([Item|Items]) <—

true | Item=message , producer(Items).

consumer(Items) <—

true | Items = [Item | Items7] , check(Item,Items7).

check(Item,Items7) <—

Item = message | consumer(Items').

This technique can be used only for 1 : 1 communication because the consumer instantiates 

the stream variable to a list pattern. In a situation involving one producer and more than 

one consumers, one consumer could run ahead of all the other consumers and instantiate 

the stream variable. The other consumers would then be ch eck ing  the list pattern of the 

stream instead of producing it — the technique is too simple to ensure synchronisation 

among producers of an identical list pattern.

Static analysis and code transformers

Whatever method is chosen to enforce complete synchronistion on the derived programs, 

SILCS source will have to be analysed statically to determine the communication patterns, 

and the code transformed accordingly. The easiest method to implement of enforcing 

synchronisation is that of message tuples. The algorithm requires:

(1) Transforming the SILCS code into guarded code (see below).

(2) Determining which atoms are producers and which are consumers for each communi

cation, and totaling the number of each. A producer of a communication is identified 

by having a call in its body to unify the shared variable. A consumer has a call to 

unify a shared variable in its guard.

(3) Transforming each message on a shared variable into a synchronisation tuple whose 

arity is n + 1 where n  is the number of consumers involved.

(4) Adding calls to check the status of each reply variable in the body of the producer.



C H A P T E R  5. I M P L E M E N T I N G  S1LCS P R O G R A M S 186

(5) Adding calls to instantiate the appropriate synchronistion variable in the body of 

each consumer.

5.10.5 Guards

SILCS programs contain neither guards nor cuts; all the programming languages which 

are targets for transformations from SILCS employ these constructs. Some heuristics will 

have to be employed in the translation from a guarded to an unguarded form, but the 

basic rule is to produce a clause very similar to Andorra Prolog’s guarded form:

H Gt | Gb.

where Gt represents a conjunction of all the constraints in the source clause.

Problems arise due to the bi-directional nature of SILCS programs as opposed to the uni

directional nature of the RL-like languages. In some cases SILCS programs may be altered 

to indicate an intended direction of use. Thus there is no essential difference between a 

m e rg e r  and a s p l i t t e r  definition in SILCS:

merge-split (As, Bs, Cs) <—

( As=A.As' A Cs=A.Cs' ) & merge-split(As',Bs,Cs/) 

merge-split (As, Bs, Cs) <—

( Bs=B.Bs' A Cs=B.Cs' ) &  merge-split(As,Bs',Cs') 

merge-split (As, Bs, Cs) «—

As=nil A Bs=Cs 

merge-split(As, Bs, Cs) <—

Bs=nil A As=Cs

GHC code can be derived from the SILCS code by placing the input unification within 

a guard. In order to achieve the bidirectionality inherent in the source program, each 

SILCS clause must be transformed into two clauses in GHC with the appropriate guard. 

For example, the first clause of the SILCS merge-split/3 program given above would be 

transformed into the following two GHC clauses:



C H A P T E R  5. IM P L E M E N T IN G  S IL C S  P R O G R A M S 187

merge-split (As, Bs, Cs) <~

As=[A|As'] | Cs=[A|Cs'] , merge-splitfAs'jBsjCs'). 

merge-split (As, Bs, Cs) «—

Cs=[A|Cs7] | As=[A|As/] , merge-splitfAs^Bs^s').

The suspension rules for GHC coupled with the lack of the sequencing operator and 

asynchronous output mean that the GHC program will behave differently to the SILCS 

description. A more complete translation would involve sequencing the calls in the body 

of each GHC clause, as described in Section 5.10.3

5.10.6 Guarded output

The concurrent logic programming languages derived from the Relational Language do 

not in general permit guarded output. The very limited form of atomic output unification 

in CP is still not powerful enough to permit the direct representation of many of the more 

interesting concurrent scenarios explored in previous chapters. Coupled with don’t care 

non-determinism this causes concurrent logic programming languages to be less expressive 

than SILCS for describing buffer based systems.

An example of a SILCS program whose translation into a committed choice logic program

ming language does n o t involve guarded output is one in which the output of a producer 

is dependent on the state of the consumer with which it communicates. The atomic uni

fication of SILCS can be explicitly represented in an asynchronous language by the use of 

request-reply tuples as described in Section 5.10.4.

However the correct implementation in a committed choice language of a system in which 

there is a c h o ic e  between input and output is more problematic. For example, consider 

the following SILCS program and associated goal for a simplified unbounded buffer with 

no concurrent input and output goal:

4- producer(X) A buffer(X,A/B,Y) A consumer(Y)

producer(X) <— X=item.Xs & producer(Xs)



C H A P T E R  5. IM P L E M E N T IN G  S IL C S  P R O G R A M S 188

buffer(X,Store,Y) <—

(X=nil A Store=A/A ) & Y=nil

buffer(X,Store,Y) <—

(X=Item.Xs A add(Item,Store,NewStore)) & buffer(Xs,NewStore,Y) 

butter(X,Store,Y) «—

(Y=Item.Ys A remove(Item,Store,NewStore)) & buffer(X,NewStore,Ys) 

receive(Y) <— Y=Item.Ys & receive(Ys) 

add(Item,X/Y, Item.X/Y) 

remove(Item,X/Item.Y, X/Y)

A translation into GHC could be:

<— producer(X) , bufFer(X,A/B,Y) , consumer(Y)

producer(X) <—true | X=[msg(item,R)|Xs] , checkprod(R,Xs). 

checkprod(R,Xs) <— R=ok | producer(Xs). 

buffer(X,Store,Y) «—

X=Q , Store=A/A | Y=[].

buffer(X,Store,Y) <—

X=[msg(Item,R)|Xs] , add(Item,Store,NewStore) |

R=ok , buffer(Xs,NewStore,Y). 

buffer(X,Store,Y) <—

remove(Item,Store,NewStore) | [Y=msg(Item,R)|Ys] , checkbuff(X,R,NewStore,Ys).

checkbuff(X,R,Store,Y) <— R=ok | buff(X,Store,Y).



C H A P T E R  5. IM P L E M E N T IN G  SILC S P R O G R A M S 189

receive(Y) <— Y=[msg(Item,R)|Ys] | R=ok , receive(Ys). 

add(Item,X/Y, NewStore) <— true | NewStore = [Item|X]/Y. 

remove(Item, X/[Item|Y], NewStore) <— true | NewStore = X/Y.

There is a danger that the system will non-deterministically commit to the third clause 

for buffer/3 and attempt to output an item when the consumer is not ‘ready’. If the 

consumer is deadlocked for some reason then the system will deadlock instead of permitting 

unbounded addition to the buffer store. One solution is to make the buffer have input 

modes on both stream variables, and the consumer to output the list pattern:

producer(X) <— true | X=[msg(item,R)|Xs] , checkprod(R,Xs). 

checkprod(R,Xs) <— R=ok | producer(Xs). 

buffer(X,Store,Y) «—

X=Q , Store=A/A | Y=Q-

buffer(X,Store,Y) «—

X=[msg(Item,R)|Xs] , add(Item,Store,NewStore) |

R=ok , buffer(Xs,NewStore,Y). 

buffer(X,Store,Y) <—

remove(Item,Store,NewStore) , [Y=msg(Iteml,R)|Ys] |

Item = Iteml , R=ok, buffer(X,NewStore,Ys).

receive(Y) *- Y=[msg(Item,R)|Ys] , checkreceive( R , Ys).

checkreceive(R,Ys) <— R=ok | receive(Ys).

However, this representation does not permit buffer programs to be composed, since both 

modes axe input on the buffer stream variables. An explicit monitor process has to be 

placed in between each such buffer:

buffer(X,X!) , monitorfXj, X2), buffer(X2, X3).



C H A P T E R  5. IM P L E M E N T IN G  SILCS P R O G R A M S 190

monitor(X,Y) +-

true | X=[msg(I,R)|Xs] , monitor^Xs^RjY). 

monitor/(X,I,R,Y) <—

R=ok | Y=[msg(I,Rl) | Ys] , monitor'^XjRljYs).

monitor//(X,R,Y) *—

R=ok | monitor(X,Y).

p r o d u c e r  ----- req u est-sta te— ► c o n s u m e r

p r o d u c e r  <— my-state------  c o n s u m e r

p r o d u c e r  ----- message— ► c o n s u m e r

Recent proposals for concurrent logic languages which have the ability to perform guarded 

output have been made by Saraswat [113] and others, but these have been rejected as 

being too expensive to implement. At present, until the efficiency problem connected with 

this construct has been solved, guarded output will have to be represented by complex 

protocols in the target language.

There are times when we do want to specify that a process generates all possibilities, and 

that the environment responds to that. In the design of Pandora [5] an attempt has been 

made to solve the problem of responding to the environment. A (backtracking) Prolog 

computation can be run concurrently with Parlog processes. Andorra Prolog [53] permits 

backtracking in some circumstances, but behaves in a committed choice manner in others. 

These languages are most suited as targets for the transformation of SILCS programs 

which involve generate and test situations.

5.11 Conclusion

The transformations required to obtain programs in committed choice logic programming 

languages from SILCS programs vary according to the syntax and semantics of the target 

language. Most of the programs that are derived are complex and inefficient due to the



C H A P T E R  5. IM P L E M E N T IN G  SILC S P R O G R A M S 191

code required to explicitly implement the semantics of atomic synchronous communication. 

In cases where asynchronous behaviour can be tolerated this extra code can be dispensed 

with in the interests of efficiency. The transformation process is unlikely to be completely 

mechanisable in the case that the target language is guarded. Some form of heuristics is 

required to aid the decision as to where to place the guards.

An alternative to transformation is the interpretation of SILCS programs. The most 

suitable candidate for the meta language is a concurrent logic programming language 

whose computational model is close to that of SILCS. Andorra Prolog may be suited for 

this task when an acceptable implementation of the language becomes available.

The issues discussed in this chapter raise the question of the need for conformance testing. 

Some kind of mechanisable tool is required to facilitate the comparison of source programs 

with target programs and the comparison of programs with specifications. We define the 

conformance relation and its variants in the next chapter.



C h ap ter 6

Conformance testing

6.1 Introduction

In previous chapters we have proposed the use of first order logic to describe the obser

vations of concurrent systems and shown how programs in the logic language SILCS can 

be derived from the first order descriptions. SILCS programs can be used as a starting 

point for the derivation of executable code in a variety of concurrent logic programming 

languages. We have defined a specification to be a description of the set of observations 

that can be made of a system, and an implementation to be the machine code instructions 

whose execution results in the behaviour described by the specification. In this chapter 

we describe a theory of conformance which uses first order logic to describe the relation

ship between specifications and implementations. This theory provides guidelines for the 

construction of conformance testers.

Conformance testing is an important stage in the design and construction of concurrent 

systems and indicates if a given system correctly implements its specification. The need for 

conformance testing arises from a variety of reasons. Complete automation of the process 

of deriving implementations from specifications is not yet possible and human guidance 

is required for some of the stages; this may introduce errors if the systems specified are 

highly complex.

192



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 193

6.2 Snapshot logic interpreters

We assume that each target logic implementation language has an operational semantics 

which is defined with reference to a Horn clause logic interpreter, possibly augmented with 

negation as failure. The semantics of SILCS is similarly defined and the Horn clause form 

of the descriptions of the sets of observations can also be executed on such an interpreter. 

This common mechanism provides the basis for the definition of the conformance relation 

and the conformance tester itself.

We recall that an observation of a concurrent system is represented by an n-tuple of the 

bindings made to each of the observable variables of that system. A specification of a 

system is the partially ordered set, or directed acyclic graph, of the observations of all the 

computations that the system can perform. A computation is one path in the graph from 

the initial state to a final state. For s tre a m -b a se d  systems the ordering relation on the set 

is based on the predecessor relation over lists.

In order to compare an implementation with a specification we require that the imple

mentation is executed on an interpreter augmented with the facility to produce s n a p s h o ts  

of the progress of the computation. These snapshots are records of bindings made to 

the observable variables of the system. The interpreter must conform to the operational 

semantics of the language in question and the snapshot mechanism must not alter this 

semantics.

The simplest form of a snapshot interpreter is based on the definition of the interpreter for 

a pure Horn clause language outlined by Kowalski [74], augmented with mechanisms to 

record bindings made to variables during a computation. The definition of the augmented 

Horn clause interpreter is:

demo(Prog, Goals, nil) <— 

empty(Goals)

demo(Prog, Goals, State.States) «— 

select(Goal, Goals, Rest) A 

member(Clause, Prog) ,



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 194

renamevars(Clause, Goals, Clause') A 

parts(Clause, Head, Body) A 

match(Goal, Head, Sub) A 

copyvars(Goals, GoalVars) A 

add(Body, Rest, InterGoals) A 

apply(InterGoals, Sub, NewGoals) A 

apply (GoalVars, Sub, State) A 

demo(Prog, NewGoals, States)

Goals and Prog are bound to data structure representing respectively the object level goals 

to be solved and the object level program used to solve the goals. The variable States is a 

data structure representing the set of observations that can be made of one computation 

and is a list of lists of variable bindings. The state of each variable binding is represented 

by a tuple V/t where V is an identifier standing for the name of the original variable and t  

is the data structure to which the variable is bound. The call copyvars(Goals,GoalVars) 

ensures that variables in each state of the history are unique and hence are not instantiated 

by unifications occurring in subsequent states.

The call to this relation is

«- demo(Prog,Goals,States)

States is a structure representing the observations that can be made of one computation 

with respect to the triple {Prog,Goals,Control) and Control is the control strategy embed

ded in the interpreter. We extend demo/3 by adding an extra argument representing the 

control strategy to be used when evaluating ( P r o g r a m , G o a t ) ; the top-level call to demo/4 

is

demo(Program,Goal,Control,States)

The control strategy dictates the computational rule (call selection) and the search rule 

(clause selection). The former is encoded in select and add while the latter is encoded 

in member. The call to this relation is

demo(Prog,Goals,States)



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 195

States is a structure representing the observations that can be made of one computa

tion with respect to the triple (Prog,Goals,Control) and Control is the control strategy 

embedded in the interpreter.

In the following sections we assume that the snapshot interpreter returns a structure 

representing the bindings made to the observable variables of the system interpreted for 

successful computations only.

6.3 Conform ance

We define the conformance relation between two systems X and Y each comprising the 

triple (P,I,C), where I is the initial state of the process definitions P to be evaluated under 

control strategy C:

Conf 6.1

conforms((Xp,Xi,Xc) ,(Yp,Yi,Yc)) *-+

V Obs (demo(Xp,Xi,Xc,Obs) <-* demo(Yp,Yi,Yc,Obs))

Obs is a data structure that represents one tra ce  of a system. An implementation X con

forms to a specification Y iff all the observations that can be made of the implementation 

can be made of the specification and vice-versa. For two traces A and B to match, every 

edge in A must be identical to a corresponding edge in B and vice-versa.

The above sentence Conf 6.1 permits conformance of two systems which both fail, since 

(false false) is equivalent to true. The relation between the tuple (Xp,Xi,Xc) and its 

observations (binding history) Xo is d e m o ( X p }X i ,X c ,X o )  such that each instance of Xo is 

one chain in the poset of all possible observations of (Xp,Xi) under Xc.

We derive a clause in n o r m a l f o r m  from Conf 6.1 using the following equivalences:

X - * Y  =  -iXV Y

-.XV Y  = -.(AT A -.F)

V Z - i ( X A - Y )  = -.3 Z ( X A -.Y)



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 196

and omitting the existential quantifier when weakening the form to the normal clause 

form. Normal program clauses were defined in Definition 3.28 on page 58.

Conf 6.2

conforms((Xp,Xi,Xc) ,(Yp,Yi,Yc)) <—

-i(demo(Xp,Xi,Xc,Obs1) A ->demo(Yp,Yi,Yc,Obs1)) A 

-i( -idemo(Xp,Xi,Xc,Obs2) A demo(Yp,Yi,Yc,Obs2))

The above normal clause cannot be used to g e n e r a te  observations of the negated cases if 

it is interpreted on a logic programming system which implements negation as negation 

by failure (see [22]) since negative information cannot be deduced from negative literals. 

Care has to be taken in the ordering of the calls in such a clause to avoid calls to negated 

atoms which contain variables at the time of call.

In order to arrive at definite program clauses which are Horn clauses (see Definition 3.26 

on page 57) we need to define the conformance relation using a s e t o f  relation. We extend 

the demo/4 relation to s e t-d e m o (P r o c e d u r e s ,G o a l ,C o n tr o l ,S e tO fO b s )  in which the fourth 

argument is a structure representing the poset of all the possible observations that can 

be made of (Procedures,Goal,Control) under the evaluation strategy of set-demo/4. We 

define set-demo/4 by:

set-demo(Procs,Goal,Control,SetOfObs) *-*■

setof-solutions(Obs, demo(Procs,Goal,Control,Obs), SetOfObs)

The setof-solutions relation has been discussed previously in Chapter 3, Section 3.10.2.1. 

We assume here that set-demo/4 produces a sorted set of observations with no duplicates, 

using Naish’s description [99].

The definition of conforms/2 using the set of solutions of the demonstrate relation given 

in Conf 6.3 is similar to that of Conf 6.1.

Conf 6.3

conformss((Xp,Xi,Xc) ,(Yp,Yi,Xc)) «-►

V Obs (set-demo(Xp,Xi,Xc,Obsx) «-*• set-demo(Yp,Yi,Yc,Obsy) A sameset(X,Y))



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 197

Note that since set-demo/4 produces an ordered set of observations, a definition of 

sameset/2 is

sameset(X,Y) X=Y

and we simplify 6.3 as follows:

Conf 6.4

conformss((Xp,Xi,Xc) ,(Yp,Yi,Xc) ) <-*-

V Obs (set-demo(Xp,XiyXc,Obs) <-*• set-demo(Yp,Yi,Yc,Obs))

The definition Conf 6.3 may be rewritten with existential quantification over Obs since 

set-demo/4 only ever produces one solution:

Conf 6.5

conformss((Xp,Xi,Xc) ,(Yp,Yi,Xc)) «-►

3 Obs (set-demo(Xp,Xi,Xc,Obs) <-► set-demo(Yp,Yi,Yc,Obs) )

We rewrite conf orms/2 as Conf 6.6 using conjunction and assume that set-demo/4 never 

falls. This assumption is valid under the intended interpretation since we are not interested 

in determining conformance between terminating systems whose executions never succeed1

Conf 6.6

conforms/s((Xp,Xi,Xc) ,{Yp,Yi,Yc)) <-»■

3 Obs (set-demo(Xp,Xi,Xc,Obs) A set-demo(Yp,Yi,Yc,Obs))

The definite (Horn) clause form of Conf 6.6 is

Conf 6.7

conforms's((Xp,Xi,Xc) ,(Yp,Yi,Yc)) <—

set-demo(Xp,Xi,Xc,Obs) A set-demo(Yp,Yi,Yc,Obs)

1Note that we are using the following implication

((X  ♦-+ Y ) A t r u e ( X ) A t r u e ( Y ) ) —► X  A Y



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 198

and can be executed on a suitable logic interpreter without encountering problems con

nected with negation by failure.

6.4 Partial conform ance

We say that an implementation X p a r t i a l l y  c o n f o r m s  to a specification Y iff all the obser

vations that can be made of the implementation can be made of the specification, i.e.

C onf 6.8

partially-conforms({Xp,Xi,Xc) ,{Yp,Yi,Yc)) <-►

V Obs (demo(Xp,Xi,Xc,Obs) —► demo(Yp,Yi,Yc,Obs))

We derive the following n o r m a l  c la u s e  form of Conf 6.8 by the same transformations 

described for Conf 6.1 above.

C onf 6.9

partially-conforms((Xp,Xi,Xc) ,(Yp,Yi,Yc)) <—

-i(demo(Xp,Xi,Xc,Obs) A -idemo(Yp,Yi,Yc,Obs))

However, this normal clause form suffers from the same problem of negated calls with 

variables as does Conf 6.9. Again, we can avoid this problem by deriving a clause about 

partial conformance from the Conf 6.10 which uses set-demo/4 to reason over the sets of 

observations. Informally, if a system X partially conforms to a specification Y then the 

observations of X are a subset of those predicted by Y. We describe this formally by:

C onf 6.10

partially-conformss((Xp,Xi,Xc) ,(Yp,Yi,Xc)) *-*>

V Obsx , ObsY ((set-demo(Xp,Xi,Xc,Obsx) <-* set-demo(Yp,Yi,Yc,ObsY))

A subset(Obsx , ObsY))

subset(X,Y) <-+ V Obs ( Obs £ X —*• Obs 6 Y )

together with an appropriate definition of £ . Since only one instance each of Obsx and 

Obsy are implied by the use of set-demo/4 then



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 199

Conf 6.11

partially-conformss((Xp,Xi,Xc) ,(Yp,Yi,Xc)) <-►

3 Obsx , Obsy ((set-demo(Xp,Xi,Xc,Obsx) set-demo(Yp,Yi,Yc,Obsy)) 

A subset(Obsx , Obsy ))

We define E using a list structure to represent a set

X E nil *-* false 

X E Y.Ys «-> X=Y V X E Ys

and derive a Horn clause form of the subset relation by standard transformations:

(i) by writing «— for 

X E Y . Y s < - X = Y v X E Y s

subset(X,Y) V Obs (Obs E X —* Obs E Y)

(ii) by substituting the definition for E in subset 

subset(X.Xs,Ys) « -V Obs ((Obs=X V Obs E Xs) —► Obs E Ys)

(iii) by expansion 

subset(X.Xs, Ys) *—

V Obsl(Obsl=X Obsl E Ys) A V 0bs2(0bs E Xs Obs E Ys)

(iv) i.e. the recursive case 

subset(X.Xs, Ys) *—

X E Ys A subset(Xs,Ys)

(v) using subset(nil,Y) and (X E nil false) 

subset(nil,Y) *— V Obs (Obs E nil —*• Obs E Ys)



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 200

(vi) since false —► true 

subset(nil,Y) <—

and then by standard transformations 

Conf 6.12
partially-conformss((Xp,Xi,Xc) ,(Yp,Yi,Xc)) <—

set-demo(Xp,Xi,Xc,Obsx) A set-demo(Yp,Yi,Yc,ObsY) 

A subset(Obsx , Obsy)

subset(nil,Y)

subset(X.Xs,Y) *— member(X,Y) A subset(Xs,Y) 

member(X,X.Ys)

member(X,Y.Ys) <— member(X,Y)

6.5 C om pleteness

We say that an implementation X  is com plete  w.r.t. a specification Y  iff all the observa

tions that can be made of the specification can be made of the implementation. This is 

expressed in the definition of the relation partially-conform s/2 below:

Conf 6.13

partially-conforms((Xp,Xi,Xc) ,(Yp,Yi,Yc)) *-+

V Obs (demo(Xp,Xi,Xc,Obs) *— demo(Yp,Yi,Yc,Obs))

or using the set-demo/4 relation:

Conf 6.14

partiaUy-conformss((Xp,Xi,Xc) ,(Yp,Yi,Xc)) ++

V Obsx , ObsY ((set-demo(Xp,Xi,Xc,Obsx) <-»■ set-demo(Yp,Yi,Yc,ObsY))



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 201

A subset(ObsY, Obsx))

As with partial conformance we may derive the following normal program: 

Conf 6.15

partially-conforms({Xp,Xi,Xc) ,(Yp,Yi,Yc)) +—

-i( -idemo(Xp,Xi,Xc,Obs) A demo(Yp,Yi,Yc,Obs))

and also:

Conf 6.16

partially-conformss((Xp,Xi,Xc) ,{Yp,Yi,Xc)) «—

set-demo(Xp,Xi,Xc,Obsx ) A set-demo(Yp,Yi,Yc,Obsy)

A subset(Obsy, Obsx )

6.6 Program verification and notions o f conform ance

The concepts of conformance, partial conformance and completeness discussed above are 

very similar to those of total correctness, partial completeness and correctness in terms 

of verification for logic programs and logic algorithms. Clark and Tarnlund [31] first 

formulated verification criteria and this theory was elaborated in Clark’s thesis [23] where 

it is described as the ‘theory of the program computed relation’. This relation, denoted 

by R  is defined by

R  = {T' | P  f= R ( T ) }

where P is the procedure set, T' is a solution to a goal R(T). R  is the set of all solutions 

computable from P, covering all possible choices of the goal n-tuple T, and is independent 

of the goal. Clark regards the set of procedures P as the program and a goal G as a ‘use’ 

of P.

In our treatment we follow the approach of Hogger [62] who denotes a program by the 

tuple (P,G) and an algorithm by (P,G,C) where P is a set of procedures, G is a goal and 

C is a control strategy. In our case, G is always a negated atom in i t  whose arguments 

are the observable variables of the system in question. Hogger’s definitions of partial 

correctness, completeness and total correctness reason about 0 , the substitutions made to



C H A P T E R  6. C O N F O R M A N C E  T E S T I N G 202

the variables in a goal R(T) to give a substitution instance T0. The definitions employ 

propositions of the form

A h B

to express that B is provable from A using resolution controlled by the strategy C. The 

definitions axe given w.r.t a specification S;

Partial correctness of (P,G,C) w.r.t. S

V 0 , ( S  |= P (T 0)) <- (P  ̂R ( T Q ) )

Com pleteness of (P,G,C) w.r.t. S

V 0 , ( S  |= R ( T O ) )  (P  h R ( T O ) )

Total correctness of (P,G,C) w.r.t. S

V 0 , ( 5 | =  R ( T O ) )  (P h R ( T 0 ) )

6.7 Equivalence

The interpreter outlined above in Section 6.2 produces one or more binding histories each 

of which is associated with one successful computation. Each instance of the structure to 

which S t a t e s  is bound represents the bindings that are made to the variables of all the 

goals and subgoals during one computation. These bindings permit reasoning about strong 

bisimulation, discussed by Milner in [95], which we adapt to our logic-based formalism as 

follows:

Definition 6.1 A binary relation S  C V  x V  over systems is a s trx m g  b is im u la t io n  if 

(P,<2) 6 S  implies for all /x G Act,

(i) Whenever P  —( i—* P '  then, for some Q', Q  —/x-» Q 1 and (P', Q [ )  G S

(ii) Whenever Q  — Q '  then, for some P', P  — P '  and (P', Q ')  G S



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 203

If we restrict the bindings recorded to just the o b s e r v a b le  variables of a system, i.e. the 

variables in the initial goal, then we can only reason about w eak b is im u la t io n . We first 

extend our notion of labelled transition systems introduced in Section 4.11. A c t  is a non

empty set of atomic actions and O b s  is a non-empty set of o b s e r v a b le  actions. We let 

A c t*  be a non-empty set of s e q u e n c e s  of atomic actions and O b s*  be a non-empty set 

of sequences of o b s e r v a b le  atomic actions. Each member of O b s*  is called a tr a c e  and 

corresponds to a path through graph of the observations of a system. The trace of a 

computation is the path starting from the initial state or minimum node to a final state 

or maximal node in the graph.

Definition 6.2 If < £ A c t* ,  then i  £ O b s*  is the sequence gained by deleting all non- 

observable actions from t. ■

Definition 6.3 If t  — p i . . .  E A ct* , then we write S  =t=> S' if 

S  —//1—► . . . fLn—► S f .

■

We now define a new labelled transition system T S  = <  S ,O b s* ,T ,S o  > where:

• S  is a n o n -em p ty  set of s ta te s ,

• O bs* is a non-empty set of sequences of observab le  atomic actions.

• T  = { =  t  =>C S  x S  \ t  £  Obs*} is a set of tra n sitio n  rela tions,

• so E S  is the in itia l s ta te .

We can now define a weak bisimulation:

Definition 6.4 A binary relation S  C V  x V  over systems is a (weak) bisimulation if 
( P , Q )  £ S  implies for all /x £ Act,

(i) Whenever P  —/z—► P '  then, for some Q r, Q  Q ’ and (P r,Q ') G S

(ii) Whenever Q  —p —► Q ' then, for some P f, P  P ’ and ( P ' ,Q ')  £ S



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 204

We can now define observation equivalence, or bisimilarity:

Definition 6.5 Systems P  and Q  are observa tion  equ iva len t, or weakly bisimilar, written 

P  «  Q , if (P,Q) £  S  for some weak bisimulation S .  That is

— 1J{5 : 5 is a bisimulation}

The definition of conformance (Definition 6.1) is the same as observation equivalence for 

complete computations.

The inclusion of bindings made on finite failure branches of the execution tree permits 

reasoning about fa ilu res equivalence, described by Hoare in [58]. We adapt the definition 

of failures to our formalism as follows:

Definition 6.6 A fa ilure is a pair (s,T) where s £  O b s* and L C O bs. The failure (s, L) 

is said to belong to a state S  if there exists S' such that

(i) S  = s = >  ■, or

(ii) S  =s=> S ' and S ' ^ □ and there is no state S " such that S ' —p —► S " (i.e. S' is 

deadlocked)

D efinition 6.7 Two systems P  and Q  are said to be fa ilures-equ iva len t if their initial 

states possess exactly the same failures. ■

6.8 T he conform ance relation and message typ es

In a specification the types o f m essages may not be defined, being left as variables in the

specification tex t, while an im plem entation may produce messages which are instances



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 205

of specific types or sub-types. For example the specifier of a buffer may not wish to be 

concerned with the actual messages that are transmitted, other than that there should 

be an end-of-transmission (eot) in the case of a terminating system. This specification 

may be used to derive an implementation which can accept typed or untyped messages. 

The logical variables representing the specification (or implementation) messages stand 

for the universal type. Since first order logic is untyped any typing of messages must be 

represented by explicit type predicates in the specification.

The definition of A ct as u n ifica tion  over terms permits bindings made to the variables 

of the specification during the evaluation of equivalence to be recorded. These bindings 

represent the types of the messages of the implementation. We require that the syn

tactic names of the variables in the specification are preserved, and bindings made to 

them during equivalence checking are returned as an argument, denoted by a subscript 

B to the equivalence relation. Thus X  « B Y  denotes the observation equivalence rela

tion between specification X  and implementation Y  where B is the set (possibly empty) 

{Xi/*xi, . . . , Xi/<xm, Ti/tyi, . . . ,  F i /W ,  n >  0,m > 0 of bindings made to the variables 

of both X  and Y . V j t  represents the binding of variable V  to term t  of type r. If the 

specification has not described the types of the messages then n = 0 and the set consists 

of any bindings made to the m  messages. The possibilities are:

(1) [m = n] the implementation messages completely type-conform to those of the spec

ification

(2) [m > n] the implementation messages are a sub-type of the specification (partial 

conformance)

(3) [m < n] the implementation messages axe a more general type compared with the 

specification messages (completeness)

The second case is an instance of under-specification  and the third case an instance of 

over-specifica tion .

A  type d er iva tio n  algorithm is required to ascertain the union of the types of messages on 

any one stream, using for example that proposed by Shapiro [121] or Zobel [143]. For a



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 206

stream of m  messages, the type union T is defined by
m

T  = (J Tk (0 < k  <  m )
o

where m  is the number of messages, A; is a message and Tk the type of the message k .

6.9 Conform ance and deadlock

Deadlock detection is part of the conformance problem. Deadlock occurs when no more 

progress can be made in a system, and neither success nor failure has occurred. The 

interpreter for the language under consideration must be able to indicate that no more 

computations can be performed. The operational semantics of some languages may also 

permit the static analysis of programs to detect deadlock, but in general this is computa

tionally equivalent to interpreting the program.

The indication of deadlock in a set of observations of a terminating stream-based system 

is that one or more chains of observations of stream variables are not terminated with an 

eot message and yet no more observations can be made. Given a set of observations of 

one or more computations of a system, an initial state and an order relation < , we can 

detect the presence of deadlock by:

deadlocked(Obs) <-*■

3 X (X £ Obs A V Y (Y G Obs -  (Y < X)) A non-terminated(X)) 

non-terminated(X) *-*■

X=tail V 3 Y,Z (X=Y.Z A non-terminated(Z))

The use of the existential quantifier in the above definition does not require that every 

computation in Obs is deadlocked, but that at least one computation is.

An implementation may terminate early w.r.t. its specification, indicated by premature 

termination of one or more traces. We say that the implementation is equivalent to the 

specification up to premature termination, and describe this by the equivalence relation 

» p. We write X « p Y where X are the observations of a computation which terminates 

early w.r.t. the observations Y of a specification:



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 207

X « p Y «-X C Y

We can write X » D Y if X are the observations of a deadlocked computation and Y is not 

deadlocked:

X * d Y ~

X C Y A non-terminated(X) A terminated(Y) 

terminated(Y) <-*

X=nil V B Y,Z (X=Y.Z A terminated(Z))

6.10 Conclusion

In this chapter we have described notions of conformance and equivalence based on an 

extrinsic, observation-based view of systems. We have shown how a logic programming sys

tem, demo(Program,Goal,Control) can be enhanced to demo(Program,Goal,Control,Obs) 

where Obs is bound to a data structure representing the binding states of the observable 

variables during a computation. Conformance and equivalence axe relations on observa

tions.

Notions of implementation and conformance are closely related. We categorize notions of 

implementation below, adapting the scheme described by Brinksma in [16].

(1 ) ‘implementation’ as a synonym for the real or physical system that is the subject of 

conformance requirements and conformance testing.

(2 ) ‘implementation’ as a

(a) d e te r m in is t ic  r e d u c tio n  of a given specification. For example, an implementa

tion can be derived from a specification by resolving choices that were left open 

in the specification.

(b) n o n - d e te r m in is t ic  re d u c tio n  of a given specification. In this case, all-solutions 

choice in a specification is implemented by committed-choice in an implemen

tation.



C H A P T E R  6. C O N F O R M A N C E  T E S T IN G 208

In this context specification and implementation are relative notions in a hierarchy 

of system descriptions.

(3) ‘implementation’ as an e x te n s io n  of a given specification, where context specification 

and implementation are again relative notions in a hierarchy of system descriptions. 

In this case an implementation adds information that is consistent with the original 

specification.

(4) ‘implementation’ as a r e f in e m e n t of a given specification. In this case the implemen

tation provides more detail on the subdivision of the specification itself into smaller 

components. The implementation and specification are extensionally equivalent in 

that their observable behaviour cannot be distinguished.

We do not consider an implementations as necessarily being a physical system since we 

describe logic programming systems which may not map directly onto a physical archi

tecture. We have preferred to discuss reduction and extension implementation , notions 

which are related to partial conformance and completeness respectively. The notion of 

refinement is not dealt with directly since our conformance relation is on sets of observa

tions. However, an implementation which completely conforms to a specification may be 

a refinement of the specification.



C h ap ter 7

Conclusion

This chapter summarises the work presented in this thesis, briefly describes some related 

areas of research and suggests future directions for research.

7.1 Summary

The central tenet of this thesis is that there can be advantages in relating the descrip

tion and implementation of concurrent systems by a common and coherent underlying 

formalism, namely first order logic.

The essential characteristics of concurrent systems are introduced in Chapter 2 and the 

use of logic to describe these systems is set out in Chapter 3. Communication in a system 

is regarded as taking place via shared write-once (logic) variables which are incrementally 

bound to data structures during the execution of that system. The observations that 

can be made of these bindings comprise sets which are partially ordered by relations 

determined by the topologies of the structures to which the shared variables are bound. 

First order logic is a suitable formalism for the description of these sets since they are 

characterized by an associated order relation.

Two types of Horn clauses, S E T  and V H O Q , can be derived from the first order descrip

tions. These forms can be regarded as logic programs in the logic languages L5  and Lv  

respectively. The successful execution of S E T  on a suitable logic interpreter results in a

209



C H A P T E R  7. C O N C LU SIO N 210

variable in the query being bound to a data structure which represents the set of observa

tions that can be made of the system described. The operational semantics of L5  do not 

have to incorporate concurrency and Prolog is a suitable model of such a language. The 

b eh a v io u r  of V IZ O Q  when executed on a suitable interpreter is that described by S E T  

and hence the operational semantics of L-p must include rules governing the concurrent 

execution of V IZ O Q .

Chapter 4  introduces the concurrent logic programming language SILCS, a logic language 

of the type L p .  Programs in SILCS are Horn clauses with the sole syntactic addition of 

a sequencing operator whose logical meaning is AND-conjunction. Synchronisation and 

suspension are not indicated by textual annotations in SILCS programs, but instead axe 

are defined as a part of the reduction strategy of calls in atomic and sequence groups. 

There are no guards in SILCS programs, and all-solutions non-determinancy is a part 

of the operational semantics of the language. SILCS therefore spans the gap between 

descriptions in logic of the expected behaviour of concurrent systems and programs in 

mainstream concurrent logic programming languages. The problem of deriving programs 

whose execution conforms to the descriptions predicted by the poset descriptions is exam

ined this chapter. Equivalences between programs are investigated, in particular between 

stores based on data structures and process networks.

Chapter 5 describes the ways in which SILCS programs can be used to guide the con

struction of concurrent systems. SILCS has not been designed for the im p le m e n ta t io n  

of concurrent systems — its semantics dictate expensive computational mechanisms, for 

example atomic unification and synchronous communication. The ‘all-solutions’ model

of non-determinism employed by SILCS also makes it unsuitable for the implementation
which

of systems ̂ exhibit c o m m itte d -c h o ic e  behaviour. Don’t-care non-determinism rather than 

don’t-know non-determinism is a characteristic of many such systems — only one possible 

successor state to any given state is permitted for efficiency reasons. Committed choice 

concurrent logic programming languages are well suited to implementing such systems. 

SILCS programs could be interpreted in these languages, but this results in less efficient 

systems than transformation techniques, the solution explored in this chapter. The range 

of concurrent logic programming languages available as real implementations is increasing, 

and general guidelines are given rather than targeting specific languages. The transfer-



C H A P T E R  7. C O N C L U S IO N 211

mations required to obtain programs in committed choice logic programming languages 

from SILCS programs vary according to the syntax and semantics of the target language. 

The transformation process is unlikely to be completely mechanisable in the case that the 

target language is guarded. Some form of heuristics is required to aid the decision as to 

where to place the guards.

One problem that concerns the designers of concurrent systems is that of testing the confor

mance between an implementation and its specification. Conformance testing essentially 

describes the relationship between two behaviours (actual and predicted) — Chapter 6 

discusses such relations using first order logic to reason about equivalent behaviours. The 

methodology presented is based on the comparison of the output of snapshot interpreters. 

Interpreters for logic programming languages can be enhanced with the facility to produce 

snapshots of bindings during a computation and snapshots collected into data structures 

representing the sets of observations that can be made of the computation. The confor

mance of programs to specifications is expressed in terms of the comparison of the set 

of bindings from the interpretation of the program with those predicted by the specifi

cation. The specifications in our methodology are Horn clauses which can themselves be 

interpreted (with respect to suitable goals) producing the set of predicted bindings.

During the course of the research reported in this thesis software tools were developed 

which served as test benches for the ideas and theories that were being investigated. 

These tools were prototypes, not fully fledged releasable systems.

The construction of a portable interpreter for SILCS written in sequential Prolog is re

ported in Appendix B. The implementation was developed in AAIS Prolog [1] on an Apple 

Macintosh microcomputer and was subsequently ported to a range of machines running a 

variety of implementations of Prolog, including SICStus Prolog [18] on a Sun 3 worksta

tion. The compiled version of the interpreter was an effective platform for investigating the 

behaviour of the SILCS programs presented in Chapter 4. The interpreter was enhanced 

with trace, spy and snapshot facilities.

Appendix B reports the construction o f a prototype conformance tester, developed to

investigate the conformance between SILCS programs and their Horn clause specifica

tions. The specifications were interpreted in Prolog and the sets o f predicted observations



CHAPTER 7. CONCLUSION 212

compared with those produced by the snapshot interpreter.

7.2 R elated  work

Work related to this research can be roughly divided into two areas: concurrent logic 

programming languages and specification techniques for concurrency.

7.2.1 Concurrent logic programming

Logic programming has developed into a rich research field since its beginning in the early 

1970’s (see [76] for an account of the early development of logic programming). During 

the last two decades significant advances have been made both in the theory and practice 

of logic programming, and the original logic programming language, Prolog, is available 

on a wide variety of machines and operating systems. The idea of using predicate logic as 

a language for parallel programming was investigated by van Emden and Filho [135] and 

Hogger [61]. IC-Prolog [30] was an early attempt to design a concurrent logic programming 

language, but the Relational Language described by by Clark and Gregory [26] was the 

stimulus for several concurrent logic programming languages including Concurrent Prolog 

[116], Guarded Horn Clauses [131] and Parlog [27]. These languages have been discussed 

earlier in Chapter 5 and we discuss here aspects of research using these languages which 

is pertinent to the aims of this thesis.

Some attempts have been made to give concurrent logic programming languages a seman

tics similar to that of algebraic techniques. Early work by Beckman [6 ], Ellis [38] and 

Hussey [64] attempted to identify the semantics of some CLPL’s with that of CCS. How

ever, the proposed translations of concurrent logic programs into a CCS-like formalism 

was inelegant and complex.

7.2.2 Flat Concurrent Prolog and traces

The work of Lichtenstein et al. which is summarised in Appendix C is related to our own

in that the authors analyse bindings to variables made during the execution of concurrent



C H A P T E R  7. C O N C L U SIO N 213

logic programs. The model of concurrency used by Lichtenstein et al. is that of in te r 

le a v in g , which enables them to propose a hierarchy of abstractions {traces, behaviours, 

labeled goals, goals} where traces capture more details of a computation than behaviours, 

behaviours than labeled goals and labeled goals than goals. Given a trace and a goal it is pos

sible to uniquely reconstruct the computation from which the trace was abstracted, but 

interleaving semantics means that behaviours ignore some details of a computation. True 

concurrency coupled with atomic unification as proposed proposed in our thesis makes 

these distinctions unnecessary. In our view, FCP is r e s tr ic te d  as a description language 

for concurrent systems due to its lack of an explicit sequential operator.

Further work by the same group and Gerth [46] develops a denotational semantics for 

FCP. The theory is complex due to the read-only variable in the version of FCP described 

and the attempt to cast the semantics within the trace framework of CSP.

7.2.3 A comparison of LOTOS and SILCS.

LOTOS [1 0 ] has adopted the algebraic framework of CCS [92] and CSP [58] and has a 

very different semantics to that of logic programming languages. In particular LOTOS has 

no notion of fa i lu r e , only success and suspension, while pure logic programming admits 

only success and failure as permissible outcomes of computations. However SILCS in 

common with the concurrent logic programming languages can describe suspension as 

well as success and failure and there is some common ground between LOTOS and this 

group of languages.

Although the synchronisation mechanism of LOTOS appears to be very different from 

that of a concurrent logic programming language, it possesses many similarities with uni

fication and constraint evaluation. Communication in LOTOS — participation in atomic 

events — is via named event gates which have an associated alphabet and the messages 

that are passed are typed expressions. Concurrent logic programming languages express 

communication by the instantiation of shared logical variables. Communication in LOTOS 

is completely synchronous, unlike that of most CCLPs.

T he sim ultaneous operator of SILCS is associative, unlike the parallel constructors o f many

algebraic theories including LOTOS (see A ppendix D).



C H A P T E R  7. C O N C LU SIO N 214

7.2.4 CIRCAL and concurrency

Circal, an algebraic description technique for concurrent systems developed by Milne [91] 

permits the modeling of parallel and concurrent behaviour. The semantics of CIRCAL 

relevant to this thesis are discussed in Appendix D.3. The dot operator of CIRCAL has 

similar semantics to that of the simultaneous operator of SELCS. Parallel events can be 

represented as simultaneous events in both formalisms. Moreover, suspension is effectively 

expressed by the same mechanism in both CIRCAL and SILCS. For example in CIRCAL, 

if P  •$= a (3 P '  and Q  <$= f t a Q 1 then their simultaneous composition results in deadlock: 

P  •  Q  <$= A. Similarly, the following SILCS process will deadlock:

<— (A=x & B=y) A (B=y & A=x)

However the choice operators and “®” of CIRCAL permits only e x c lu s iv e  choice, and 

it is unlikely that a direct mapping can be made between SILCS programs and CIRCAL 

descriptions.

7.3 Conclusions and future research

The research reported in this thesis has demonstrated that the specification of concurrent 

systems is fe a s ib le  using first order logic. Our basic assumption in this research has been 

that communication in a concurrent system occurs through bindings made by atomic 

unification to shared logic variables. Using this model we can describe the behaviour of 

a concurrent system by observations comprising the binding histories of the observable 

variables of that system.

Our research has described the use of first order logic to:

( 1 ) describe the observations that can be made of a concurrent system as partially 

ordered sets,

(2) derive Horn clause programs which reason about data structures representing the 

sets in (1 ),



C H A P T E R  7. C O N C L U S IO N 215

(3 ) derive programs in a concurrent logic programming language whose execution pro

duces the behaviour described by the programs in (2 ),

(4) describe the operational semantics of the concurrent logic programming language 

referred to in (3),

(5 ) describe the conformance relation between specifications and programs, for example 

between (2) and (3).

Our research has lead to the design of the logic programming language SILCS whose 

operational semantics encapsulates the behaviour of the concurrent systems which are the 

subject of this study. The nature of the complex mechanisms required to fully implement 

an interpreter for the language mean that it is not feasible to implement a concurrent 

system using SILCS. The difficulties are associated with the implementation of atomic 

unification and the suspension mechanism of SILCS in a distributed system. Modification 

of the semantics of SILCS to facilitate the task of implementation would effectively result in 

the design of a new concurrent logic programming language, a subject for future research. 

A more plausible route to implementation is the derivation of code in committed choice 

logic programming languages from SILCS programs. Although SILCS differs from these 

languages regarding aspects of both syntax and semantics, we have outlined methods for 

such derivations in Chapter 5. Due to the differences between SILCS and CCLP languages 

these methods are only partially formalised.

The research undertaken has demonstrated the usefulness of first order logic as a formal

ism underlying the specification of concurrent systems in logic. Advantages of such an 

approach over algebraic techniques for the specification of concurrency include the more 

natural description simultaneous actions and the ease of building interpreters for logic 

languages.

The work reported in this thesis has not attempted to completely exhaust the topic of 

using first order logic to specify and reason about concurrent systems. There are several 

potential paths that future research could investigate, and we sketch a few of these below.

Automatic derivation of SILCS programs

Automating the derivation of SILCS programs from descriptions in first order logic is likely



C H A P T E R  7. C O N C LU SIO N 216

to be a fruitful area of future research. The present research has described the transforma

tions as being achieved by a mixture of heuristics and formal rules. Further work would 

probably lead to a better understanding of the general relationship between descriptions 

of observations as partially ordered sets and the view of executions as approximations to 

a final state. This would facilitate the formulation of rules for deriving SILCS programs 

from specifications.

Design of a new concurrent logic programming language

The mismatch between the semantics of SILCS and those of existing concurrent logic 

programming languages means that the transformation of SILCS programs into programs 

in those languages is non straightforward. As an alternative the design of a new concurrent 

logic programming language could be investigated which could be implemented efficiently 

and whose semantics are closely related to those of SILCS.

Interpreters for SILCS in concurrent languages

The SILCS interpreter described in this thesis was implemented in sequential Prolog. 

Other logic programming languages can be used to build concurrent interpreters for the 

language. One of the strongest contenders for this task is Andorra Prolog, whose basic 

model is still in the process of being defined. It appears that this language will be very 

suitable for the construction of a SILCS interpreter since the Andorra Prolog is not a 

committed choice language, but can express concurrency and incorporates constraints 

[54].

Types

SILCS is an untyped language and goals which fail because they are ‘ill-typed’ are not 

considered to be distinct from those which fail because the program did not contain clauses 

about them. The incorporation of a theory of types in the definition of SILCS would make 

the language more robust as a specification formalism. There has been an interest in type 

theory for logic programs [96, 121, 142] which could provide a starting point for such a 

line of investigation. Type derivation and static error checking can be based based on 

syntactic typing. However the inferred typing information is only partial and the addition 

of type declarations would extend the ability of a typing algorithm to detect errors.



C H A P T E R  7. C O N C LU SIO N 217

Constraints

The development of a type theory would also enable work to be done on the incorporation 

of constraints into SILCS. The range of problems that can be specified using SILCS with 

constraints needs to be explored, and sample specifications constructed. An interpreter for 

this constraints form of SILCS should then be built. A formal comparison between the use 

of constraints in LOTOS and SILCS might lead to the development of a constraint-oriented 

specification style in SILCS and the development of a methodology for the comparison of 

constraint and unification oriented programs in SILCS.

Equivalences

The present research has not produced a detailed theory of equivalences for logic-based 

specifications of concurrent systems. The development of a theory of equivalences which 

would encompass both the descriptions of the sets of observations and SILCS programs 

would significantly improve the usefulness of our approach. We would expect equivalences 

to be defined which would enable comparisons to be made between various classes of 

concurrent systems including those which are data oriented and those which are process 

oriented. Equivalence relations are an established component of algebraic theories, forming 

the basis of transformational techniques and enabling the construction of tools to aid the 

development of specifications and programs. We envisage similar benefits to arise from 

the formulation of an equivalence theory for logic specifications.

Conformance Testing

The definition of conformance given in this thesis is a relationship between triples of the 

form (Program,Goal,Control). One interesting avenue of research would be to investigate 

the feasibility of g e n e ra tin g  control strategies for conforming systems, given a particular 

program and goal. Related to this would be the possibility of deriving specifications from 

programs and hence permitting comparisons to be made between logic programs.

The development of conformance test software for a variety of concurrent logic program

ming languages is a natural area of research that leads on from the work described in this 

thesis defining the conformance relation. Such software would facilitate the comparison of 

programs written in different logic programming languages as well as comparing programs



C H A P T E R  7. C O N C L U S I O N

and specifications.



A p p en d ix  A

The SILCS interpreter

An interpreter for SILCS was implemented in Prolog with the aim of providing a plat

form for the development of the SILCS language and as a test bed for investigating the 

behaviour of programs written in SILCS. The requirements were for fast development, 

ease of maintenance and portability of the interpreter; these factors influenced the design 

decisions which were taken regarding the construction of the interpreter. The operational 

semantics of SILCS are defined with reference to an idealized Horn clause interpreter and 

form the basis for the construction of an interpreter for the language. The method of 

interpretation chosen in this research follows closely that described by Kowalski [74] and 

discussed in Section 4.6 of this thesis on page 120. Appendix A .6  contains listings for the 

top level Prolog code of the SILCS interpreter.

A .l  Im plem entation language and hardware

The use of a logic programming language to implement the interpreter facilitated the 

construction of the system since SILCS is a logic programming language. Some of the un

derlying mechanisms of the implementation language such as the representation of terms, 

unification and clause access were used directly in the interpreter and did not have to be 

reimplemented. The task of maintaining the interpreter was also made easier since logic 

programming languages have a semantics which can be defined in logic.

219



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 220

Sequential Prolog was chosen as the implementation language since at the time that the 

interpreter was built there was no readily available implementation of a concurrent all

solutions logic programming language. Parallel evaluation of atomic groups and the con

current reduction of calls within an atomic group was simulated by the use of run queues. 

The production of a concurrent SILCS interpreter was not an aim of the research reported 

in this thesis.

The Prolog implementations chosen for the construction of the interpreter conformed as 

closely as possible to the ‘Edinburgh’ syntax due to the portability requirement for the 

interpreter. The machine on which the interpreter was initially developed was the Apple 

Macintosh micro-computer since this machine offered a WIMPS environment; the Prolog 

implementation chosen was AAIS Prolog [1]. An IBM-PC compatible was also used for 

some initial system development, using Arity Prolog [4]. The SILCS interpreter was 

subsequently ported to SICStus Prolog [18] running on a Sun 3/260 computer under the 

Unix operating system.

A .2 Basic design

The design of an interpreter implemented in a logic programming language can be based on 

the demonstrate/2 relation outlined in Kowalski’s book [74], or a unary-argument variant 

commonly referred to as solve/1 described by Shapiro in [124]. We first describe the outline 

of demonstrate/2 , and then show how a solve/ 1  interpreter can be derived from it.

(i) dem onstrate/2

This relation relies on none of the built-in facilities of the meta language, for example 

clause access or variable renaming. It is invoked as d e m o n s tra te  (P ro g ra m , G o a ls ) where 

G o a ls  is a data structure representing the object language goals to be solved and P ro g ra m  

is a data structure representing the object language program. The top level definition of 

demonstrate/ 2  is:

demonstrate(Program, Goals)



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 221

empty(Goals)

demonstrate(Program, Goals) <— 

select(Goal,Goals,Rest) A 

member(Clause,Program) , 

renamevars(Clause,Goals,Clause') A 

parts(Clause,Head,Body) A 

match(Goal,Head,Substitution) A 
add(Body,Rest,InterGoals) A 

apply(InterGoals,Substitution,NewGoals) A 

demonstrate(Program,NewGoals)

The co n tro l s tra te g y  of a logic language consists of a c o m p u ta tio n  ru le  determining the 

order in which goals are reduced, and a se le c tio n  ru le  determining the order in which 

clauses axe chosen for matching with a goal. No control strategy is defined for a ‘pure’ 

logic programming language. The computation rule of the object language is determined 

by the definition of the relations s e le c t /3  and a d d / 3 .  Access to clauses of the object 

language (the selection rule) is determined by the definition of m e m b e r /2 .  These relations 

are operations on recursively defined data structures and the order of call selection and 

clause search depends on the way in which the data structures are traversed. The object 

language G oals are commonly represented as a list, and P rog  as either a list or a tree.

(ii) solve/1

An interpreter implemented using demonstrate/ 2  is inefficient due to

( 1 ) storing the entire object language program as an argument to one clause of the 

metalevel program and

(2 ) explicit procedures in the meta language required for access clauses, renaming of 

variables apart, matching and application of substitutions.

These limitations may make such an interpreter impracticable but can be overcome by 

using some of the inbuilt mechanisms of the meta language. This is achieved by partially



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 222

evaluating the interpreter of the meta language itself with the demonstrate/ 2  program. 

The general outline of an interpreter built using this technique is:

solve(Goals) <—

empty(Goals)

solve (Goals) <—

select(Goal,Goals,Rest) , 

clause(Head,Body) , 

unify (Goal,Head) , 

add(Body,Rest,NewGoals) , 

solve( New Goals)

We represent logical conjunction by w,” in the above program to emphasise the meta lan

guage is an implemented logic programming language with its own control strategy. Each 

clause H e a d  *— B o d y  of the object language program is stored as one meta language clause 

in the form of c la u s e ( H e a d ,B o d y ) . The clause access mechanism of the meta language 

ensures that the object language variables in each object language clause are renamed 

apart from the object language variables of the Goal(s) during matching. Unification of 

the current G o a l with the H e a d  of the selected object language clause ensures that the 

substitutions generated are applied to the variables in the Goals. An interpreter con

structed using this method is more efficient than demonstrate/ 2  since the clause access 

and variable renaming mechanisms of the meta language are made directly available to 

the interpreter. Larger object level programs can be interpreted using solve/2 compared 

with demonstrate/ 2  since there is generally a limit to the size of one clause in the meta 

language; there is one meta level clause for each clause in the object language.

The order computation rule encoded in solve/ 1 is determined by the definition of the 

relations s e le c t /3  and a d d / 3 .  A  restriction of the technique is that clause selection is 

effected using the selection rule of the meta language. A different selection rule can be 

implemented if a setof predicate is used to gather selected object level clauses into a data- 

structure from which they can be explicitly chosen according to the selection rule of the 

object language.



A P P E N D I X  A . T H E  SIL C S I N T E R P R E T E R 223

Choice of interpreter design

An interpreter built according to the solve/1 design is more efficient than one employing 

demonstrate/2 if the clause access, variable renaming and substitution mechanisms of the 

implementation of the meta language are more efficient than those achievable by explicit 

coding. In an initial pilot study the performance was recorded of an interpreter of Prolog 

implemented. The performance of the solve/1 design was approximately 5 to 15 times 

as fast as that of the demonstrate/2 design for the naive reverse program. Computa

tions involving deeper recursions could be explored with the former design compared with 

the latter before memory limitations of the meta language implementation were reached. 

Therefore it was decided to base the SILCS interpreter on the solve/1 design.

A .3 D esign  details

A .3.1 Storing the object language code

The SILCS program to be interpreted is stored as a series of facts asserted into in the 

Prolog data base. SILCS code can be read in from disc or entered directly by the user. 

Each SILCS clause is stored twice, firstly with all variables replaced by constants so that 

the variable names of the object level code are preserved for listing purposes, and secondly 

with new meta language variables replacing the object language variables of the program 

text. Each fact has two arguments, the first being a tuple representing the head of the 

SILCS clause and the second being a list of tuples representing the calls in the body of 

the SILCS clause. If the SILCS clause is a fact, then the second argument to the Prolog 

fact is the empty list.

Each clause in the second form is n o r m a l i s e d . All arguments in the head are replaced by 

unique variables and explicit calls to these variables with the original terms in the head 

are introduced into the body of the clause. Normalization of object level clauses facilitates 

the collection of calls into atomic groups since the unifications of arguments of a call with 

arguments in the head of a clause are candidates for inclusion in atomic groups together 

with calls in the body of the clause. For example, the SILCS clause



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 224

merge( X.Xs, Ys, X.Zs) merge(Xs, Ys, Zs) 

is converted into the following normalised form: 

merge(A, Ys, C) <— A=X.Xs A C=X.Zs A merge(Xs, Ys, Zs) 

and stored as the Prolog facts

clause(merge(’A \ ’Ys’, ’C’) ,[merge(’Xs\ ’Ys’, ’Zs’)]). 

normalised(merge(A, Ys, C) , [A=[X | Xs], X=[X | Zs], merge(Xs,Ys,Zs)]).

A .3.2 Implementing the operational semantics of SILCS

Parallelism and concurrency

The SILCS interpreter does not simulate OR-parallelism, but implements choice by back

tracking. AND-parallelism is implemented by interleaving; concurrency is implemented 

according to the rules defining the reduction of atomic groups.

Membership of atomic groups

An idealised interpreter for SILCS collects calls using the definitions of d ire c t and in d ir e c t  

constraints (Definitions 4.9 and 4.10 respectively). The operation of the idealised inter

preter assumes that either s ta t ic  a n a ly s is  of a SILCS specification or d y n a m ic  a n a ly s is  of 

goals is employed to determine indirect constraints. Both methods are computationally 

expensive. The Prolog implementation of the interpreter employs the computationally 

less expensive method of determining membership of atomic groups according to possible 

constraints (Definition 4.11). Two calls are deemed to be members of the same atomic 

group if they share one or more variables with a third call, which is also deemed to be 

a member of that atomic group. Categorisation of membership by possible constraint is 

more conservative than by indirect constraint, but is acceptable for the task of building 

an efficient interpreter.



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 225

Sequence groups

The interpreter fully implements the semantics of SILCS w.r.t. sequence groups. A se

quence group is defined to be those calls linked by the sequential operator (Definition 4.7, 

page 125) and is included in an atomic group if any of the calls that constitute the se

quence group depends on any existing calls in the atomic group. Sequence groups are 

represented by lists of calls connected with the k / 2  operator. Thus the SILCS sequence 

group (a,b)ft(c,d) is represented as the term [a,b]&[c,d].

Reduction of calls in a query

The reduction of calls in a query is performed according to the strategy described in 

Section 4.10.3. This simple algorithm does not return an indication of which calls in a 

query suspend. The SILCS interpreter is enhanced so that all suspended calls are collected 

and their states displayed to the user when no more atomic groups can be reduced. The 

variables in an initial query are collected in a list as variable-variable_name pairs so 

that bindings can be displayed at the end of a computation.

The reductions of atomic groups are co-routined to give the effect of and-parallel opera

tion. The interpreter employs an overall loop to reduce atomic groups and regroup the 

calls resulting from reductions. An atomic group whose attempted reduction suspends is 

allocated to a suspension queue and a deadlocked computation is detected by an empty 

run queue and a non-empty suspension queue.

Reduction of calls within atomic groups

Atomic groups axe treated as the unit of atomic reduction in the SILCS interpreter. No 

reductions are made available from an atomic group until all of its members are reduced 

successfully. The interpreter implements the operational semantics described in Chapter 4  

(Section 4.10.4). Calls within an atomic group are processed using a local run queue. A 

separate suspension queue is maintained for each group instead of using a marker to detect 

suspension of the attempted reduction of an atomic group. The result of an attempted 

reduction of an atomic group is either to return success and a list of the reduced calls,



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 226

or suspended and the original atomic group.

SILCS system  calls

Various SILCS system calls are implemented in the interpreter; the names of these are 

held in a table along with the definitions of their behaviours. There are three possible 

results for a call to a SILCS primitive — s u c c e s s , su s p e n s io n  or fa i lu r e . Only the first two 

are returned to the calling routine; failure in a call to a system primitive results in overall 

failure of the computation unless tracing of the computation is enabled (see below). If a 

call to a primitive suspends then the variables on which it is suspended are returned along 

with the suspension flag.

Some SILCS system calls make use of calls to the underlying Prolog system, but with 

checks on their arguments before they are invoked. For example the Prolog </2 is used 

as the basis of the SILCS primitive of the same name. However if both arguments are not 

ground then the SILCS call suspends without invoking the Prolog primitive. The following 

is the entry in the system call table for < / 2  where contains_vars/2 returns as its second 

argument the variables in its first argument, and all_data/l checks that there are no 

variables in its argument. Such checks reduce the speed of execution of the interpreter.

sys_call(A<B, suspend(Vars))contains_vars(A<B, Vars). 

sys_call(A<B, success):- all_data(A<B) , A<B.

SILCS system calls which are not calls to Prolog system calls are similarly defined:

sys.call(data(X), suspend(X)) : -  var(X). 

sys_call(data(X), success):- nonvar(X).

A .4 Enhancem ents

The interpreter has been enhanced with respect to the basic model outlined above by the 

addition of



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 227

( 1 ) reporting of variable bindings on success,

(2 ) deadlock detection and reporting of variable bindings in that state,

(3) user spy and trace,

(4) snapshot of current variable bindings,

(5) set solutions to queries.

The snapshot facilities have been used to form the basis of a conformance tester (see 

below).

Report of variable bindings on success

The SILCS interpreter reports the state of variable bindings for successful queries. This 

requires the use of the predicate read/ 2  to read in the initial query — the term read and 

a list of variable=symbolicmams pairs are returned. For example, if the Prolog goal

?- read(Term, Table).

is executed and the user inputs the term foo(A,B»t(A)) then Term will be bound to 

fo o („ l,-2 ,t (_ l) )  and Table will be bound to [_1 = ’ A * , J2 -  ’B’]. The technique 

is similar to that employed by traditional Prolog interpreters, for example SICStus Prolog 

[18].

The bindings to the variables in the query represent the final observable state of a successful 

computation about a system.

Snapshots of variable bindings

A snapshot facility is incorporated into the interpreter permitting display of binding states 

of the variables in the initial query at each reduction cycle for atomic groups, each snapshot 

corresponds to an observable state of the system being interpreted.



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 228

Deadlock detection

Deadlock detection has been added as an enhancement to that described in the basic SILCS 

interpreter. This implementation of the SILCS interpreter employs the possible constraints 

rule (Definition 4.11) and is thus over-conservative in the strategy used to form atomic 

groups. As a result, no queue of suspended atomic groups is required to detect deadlock. 

However the implementation of the interpreter does employ a suspension queue to permit 

deadlock detection and reporting of the deadlocked goals and the instantiation states of 

their variables. In this respect the behaviour of the interpreter is similar to that of success 

reporting, except that all deadlocked goals are reported, not just those in the initial query. 

The deadlocked queries are those queries in the suspension queue when the run queue is 

empty.

User spy and trace

The user spy and trace facilities incorporated into the SILCS interpreter are similar to 

those in conventional logic interpreters. Users can denote a set of predicates for which 

spy or trace is to be activated or deactivated and may turn on spying or tracing. This 

information is kept as asserted facts which the interpreter checks when reductions are 

attempted. The use of spy and trace slows down the operation of the interpreter due to 

the extra processing time required for performing the checks and displaying spy or trace 

information.

The interleaving operation of the interpreter facilitates display of spy and trace messages, 

which are performed as side-effects in the main reduction engine for calls. A parallel im

plementation would require more sophisticated display techniques, for example the output 

of information for each marked predicate to a separate file or window.

Although algorithmic debugging techniques have been proposed for Prolog by Shapiro 

[117], by Lichtenstein [83] for FCP and by Huntbach [63], these have not been incorporated 

into the present design of the SILCS interpreter.



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 229

A .5 Set solutions

The snapshot facility forms the basis of the implementation of the set-demo program (see 

Section 6.3). The setof/3 relation of the Prolog implementation can be used to provide 

a set-demo predicate if memory limitations permit. In practice it was found necessary 

to directly implement a set-demo relation using assert and retract/ 1  due to efficiency 

reasons.

The demo program augmented with the snapshots of observable variables is used to provide 

demo/3 whose top level call is demo(Prog,Goals,States) where States is the set of states of 

one complete computation. The states of the observable variables of the initial query are 

asserted as facts in the Prolog database, and backtracking performed without user control 

by use of a fail loop at the top level of the interpreter to provide information about the 

states of all the computations.

States are stored in the Prolog database using assert/1 . On termination of a query a 

marker is asserted at the end of the states facts. The states stored as facts are gathered up 

into one data structure by a fail loop using abolish/ 1 which terminates on encountering 

the marker. The data structure representing the states is sorted and duplicates removed.

A .6 Prolog code for the SILCS interpreter

solve(Calls, Result, Snaps)

create_variable_t able (Calls, Variable) , 

create_atomic_groups(Cadis,Groups),

SuspendedQ = □ ,

solve(Variable, Groups, SuspendedQ, Result, Snaps).

5C no more groups in l is t  -  success

solve(Variable, □ , □ , success(Variable), □  ) .

'/, deadlock detected



A P P E N D IX  A . T H E  S IL C S  IN T E R P R E T E R 230

solve(_, □ ,Susps,deadlock(Susps), □ ) : - 

Susps \== n .

'/, there are atomic groups in the runQ to be reduced - process one & loop 

solve(Vars,Groups,Susp,Result,Snaps) :- 

Groups \== □ , 

select1(Groups,Group,Rest), 

reduce_atomic(Group,Red,AtResult),

solve_check(Vars,Rest, Group,Red, Susp, AtResult,Result, Snaps) .

'/, Check on the result of an attempt to process an atomic group in the runQ

'/, ( i )  The result was successful -

V, add the reduction to the runQ and continue

solve_check(Vs,Groups,Group,Red,Susp,succeeded,Result, [Snap|Snaps]) : -  

copyvars(Vs,Snap), 

insert(Groups,Red,NewGroups), 

solve(Vs,NewGroups,Susp,Result,Snaps).

'/, ( i i )  The attempt suspended -

*/♦ add the l is t  of suspended Groups l is t  to the suspension l is t

solve_check(Vs,Grps,_,_, Suspended, suspended (Susps) ,Result, Snaps)

NewSusps s [SuspsI Suspended], 

solve(Vs,Grps,NewSusps.Result.Snaps).

% simple le f t - f ir s t  selection of atomic group to reduce 

select1([Group|Groups].Group,Groups).



A P P E N D IX  A . T H E  SIL C S IN T E R P R E T E R 231

*/, reschedule the result of the reduction onto the end of the runQ 

insert(Groups,Red,NewGroups)

append(Groups, Red, NewGroups).



A p p en d ix  B

Conformance testing

A basic conformance tester has been constructed in order to investigate the conformance 

techniques outlined in Chapter 6  with reference to SILCS programs.

B .l  G enerating the predicted observations

The specifications against which SILCS programs were tested were derived from first order 

descriptions by transformation into recursive form (Chapter 3). This form can be used to 

generate test sets of predicted observations, or test that a given observations set is valid 

(predicted by the specification). Execution of the definite programs of the form S E T  de

rived directly from the specifications produce the complete poset of predicted observations 

without use of the s e t -d e m o  relation since the specification describes that complete set. It 

was not necessary in practice to interpret the specifications using a specialised interpreter, 

and the execution mechanism of the Prolog interpreter was sufficient.

B .2 G enerating th e actual observations

M odifications were made to the snapshot version o f the SILCS interpreter to  provide an

all-solutions set-dem o  relation. Given as input a  system  description (a  set o f SILCS

procedures) P and a  query Q about the initial state the execution o f the query ? -

232



A P P E N D IX  B . C O N F O R M A N C E  T E S T IN G 233

set-demo(P,Q,Obs) binds Obs to a data structure representing the bindings that have 

been made to the variables in the query by the computations. This data structure is a list 

of lists, each of which represents the bindings made during one computation.

B.3 Comparing the sets o f observations

The data structures representing the predicted and actual observations are compared as

follows (note that lists are used to represent sets):

(1) The data structure representing the actual observations is flattened into one list and 

duplicates are removed. An ordered tree insert algorithm is used to flatten the list.

(2) Each items in the predicted set is checked for membership in the actual set and 

vice-versa. Those items from each set which axe not present in the other set are 

flagged accordingly

compare(Predicted, Actual, Result)

flatten(Actual, ActualList) , 

check(Predicted, ActualList, ExcessPredicted), 

check(ActualList, Predicted, ExcessActual), 

generate_result(ExcessPredicted, ExcessActual, Result).

flatten(X,Y) flatten(X, □  ,Y ).

f la tte n (D ,Tree,List)

flatten_tree(Tree,List, □ ) .

flatten([0b|0bs], Store, L is t):- 

flatten_l(Ob,Store,Temp), 

flatten(Obs,Temp,List).

flatten_tree( □ ,L is t,L is t) .

flatten_tree(t(L,Obs,R), L is t,Temp) 

flatten_tree(R,Rl,Temp),



A P P E N D IX  B . C O N F O R M A N C E  T E S T IN G 234

fla tte n .tree (L ,L l.L is t, [Ob|Rl]) .

f la tte n _ l([] , List, L is t), 

flatten.1([Ob|Obs], Store, L is t):-

insert(Ob,Store,Temp), fla tten .l(O bs,Temp,List) .

insert (Ob, □ ,t (D  ,0b, [ ] ) )  . 

insert (Ob, t  (L, Ob, R) , t  (L, Ob, R) ) . 

insert(0b, t(L , Obl,R), t(L l,0b l,R ))

Ob <0< Obi, insert (Ob,L,LI) . 

insert(Ob, t(L , Obl,R), t(L,O bl,R l))

Ob ®> Obi, insert(Ob,R,Rl).

check([] ,Y, □ ) .

check( [XIXs],Y, [XI Excess]) : -

not(member(X,Y)), check(Xs,Y,Excess) . 

check([XIXs],Y,Excess)

member(X,Y), check(Xs,Y,Excess).

member(X,[X|_]).

member(X,[_ |Ys])m em ber(X,Ys).

generate_result(D, [] ,totally_conforms). 

generate.result(Q,[_ (_ ] .complete). 

generate.result( [ . ! . ] , □  .partially.conforms) . 

generate.result( [P|Ps], [A IAs],mismatch([PIPs], [A|As])) .

B .4  Perform ance

Lim itations were experienced with the Prolog system  and the hardware that were used —

execution o f the conformance test took a long tim e, and the memory lim it o f the system



A P P E N D IX  B . C O N F O R M A N C E  T E S T IN G 235

was often exceeded. The choice of relations to be tested was limited to simple examples 

due to these restrictions, and the conformance testing system requires improvement if it 

is to be used “in anger”.



A p p e n d ix  C

A  traces model of FCP  

computations

This appendix summarises work by Lichtenstein et al. reported in [84] which attempted to 

use some ideas from the traces model of CSP as a basis for the description of computations 

in FCP. A comparison between this approach for FCP and that of our own for SILCS is 

presented in Section 7.2.2 of this thesis.

The state of a computation is denoted by the pair (72,6) where R  is a resolvent or one of the 

special symbols f a i l  or d e a d lo c k ; 0  is a substitution. A communication is a substitution an

notated as input or output, or f a i l  or d ea d lo ck . An event is a triple (r ,c ,c o m m ) where r and 

c  are integers specifying respectively the goal and clause used, and c o m m  is a communica

tion. States are transformed by the application of transition rules, the application of which 

produces events. Thus S n S n+ i denotes the transformation of state S n to state ‘S'n+l 

via event en. A computation is either a finite sequence C  = 1 (G ) ^  S i  ^  S n ^  S

or C  — 1 ( G )  Q  S i  5 2  . .. where G is a goal, e,- events, S{ states and S  a terminal state.

The authors propose two abstractions — traces and behaviours. A tra ce  is the sequence 

of labels (events) of a computation and a behaviour is the sequence of communications of 

a trace. Thus the trace of a computation C  = 1 ( G )  Q  S \  ^  S 2 ^  ... is the sequence 

T r ( C )  = co,ei,e2 , .... The set of all traces of a goal G  and a program P  is denoted by 

T R p [ G ] .  A b e h a v io u r  is a series of communications, where the function b h v  transforming

236



A P P E N D IX  C. A  T R A C E S  M O D E L  O F F C P  C O M P U T A T IO N S 237

events to relations is defined as: bhv((r,c,comm)) = comm. Thus the behaviour of a 

computation C  with the trace eo,ei,e2 , ... is the series • • • such that &* = b h v (e { )

for all t.

The authors also present an alternative approach which requires the use of time-stamping 

members of a Labeled Herbrand Universe to represent the states of terms during computa

tions. Members of this universe are labeled constants and labeled function symbols. A la

beled constant is a triple ( c , t , io )  where c is the constant, t its time and to its input/output 

label. A labeled function symbol is a triple (J ,t ,io ) where /  is the function symbol, t its 

time and to its input/output label. Variables, predicates, connectives, quantifiers and 

punctuation symbols have the usual form. Time labels are integers and the to elements 

indicate whether the instantiation was performed in an input or output transition. States 

axe now triples ( R , 0 , t )  where R  is a resolvent, 6 a substitution over the labeled Herbrand 

Universe and t an integer representing time. Communications (as defined previously) are 

ignored, and transition rules determine state transformations denoted by S \  —► 5 2 . A 

labeled computation is either a finite sequence C  — 1 (G )  —►Si 5„ —► S or

C  = 1 ( G )  —* S i  —► S2 ... where G is a goal, S , states and S  a terminal state.

The model of concurrency used by Lichtenstein et al. is that of in te r le a v in g , which enables 

them to propose a hierarchy of abstractions {traces, behaviours, labeled goals, goals} 

where traces captures more details of a computation than traces, traces than labeled goals 

and labeled goals than goals. Given a trace and a goal it is possible to uniquely reconstruct 

the computation from which the trace was abstracted, but interleaving semantics means 

that behaviours ignore some details of a computation. The example quoted is the program

P(X) <— q(X) , r(X).

q(a).

r(a).

with respect to the goal «— p(X). Interleaving means that q(X) may be reduced before 

r(X) or vice-versa, a fact recorded in the traces, but not the behaviour of the computation. 

Labeled goals ignore variable to variable substitutions, so that the goal p(X,Y) w.r.t. 

the program

P (X ,Y )«-q (X ,Y ),r(X ,Y ).



A P P E N D IX  C. A  T R A C E S  M O D E L  O F  FC P C O M P U T A T IO N S 238

q(a,a).

r(X,X).

gives the behaviour that either X and Y are unified before both are bound to a, or that 

X is bound to a and then Y is bound to a. The set of labeled goals ignores this, since an 

argument is only labeled when it is bound to a non-variable, and the set of labeled goals 

for both the query <— p ( X ,  Y )  and the query «— p ( X , X )  are identical.

The authors describe the relation between goals and labeled goals in terms of abstraction 

and concretisation functions of abstract interpretation (a and 7 ). Goals are an abstraction 

of labeled goals, or alternatively labeled goals are a concretisation of goals. Informally 

a ( { l t e r m } )  removes the labels of I t e r m  to give a term, and ~ f ( { t e r m } )  is the set of all 

possible labeled terms that can be constructed from t e r m .

An interpreter for traces is achieved by associating a unique identifier with each clause and 

interpreting the goal sequentially, recording at each stage which goal was removed from 

the resolvent and which clause was used to reduce it. For behaviours the goal and clause 

numbers are ignored and only substitutions recorded. For labelled interpretation each FCP 

program is transformed into a labeled program where each constant and function symbol 

is transformed into the triple containing the symbol and new time ans I/O  variables. The 

interpreter executes in an interleaving manner using time-stamped read-only unification.



A p p en d ix  D

Algebraic specification techniques

A considerable amount of research has been undertaken by workers in the field of algebraic 

specification techniques for concurrent systems. Chapter 2 briefly reviews the theories of 

CCS [92], CSP [58], LOTOS [6 6 ] and CIRCAL [91]. In this appendix we look in more detail 

at LOTOS and describe Brinksma’s proposal for LOTCAL [14], a small set of operators 

that suffices for the formal interpretation of LOTOS. We also review Milne’s work on 

CIRCAL [91].

D .l  LOTOS

The most successful work has centered around the development of LOTOS which has been 

adopted by the International Standards Organisation (ISO) as one of the formal descrip

tion techniques for the specification of the Open Systems Interconnection (OSI) computer 

network architecture [6 6 ]. LOTOS was developed during the ESPRIT Software Technol

ogy project ST410 “SEDOS” (Software Environment for the design of Open distributed 

Systems) [35, 138]. LOTOS has its roots in both CCS and CSP but also developed in 

response to the needs of the user community. For example, although strongly influenced 

by CCS regarding the specification of communication, LOTOS permits the description of 

multiway communication and also incorporates the notion of constraints in communica

tion. These two additions permit the use of a constraint oriented style of specification, 

allowing improvements in the quality, conciseness and ease of verification of specifica

239



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  TE C H N IQ U E S 240

tions. Problems associated with the implemention of systems specified using LOTOS in a 

constraint-oriented style are discussed by van Eijk [134], Gilbert [50] and Leon [82].

Much effort has been put into the development of tools to support the task of s p e c ify in g  

systems in LOTOS — a review of these is to be found in [8 8 ]. The Hippo LOTOS simulator 

[133, 129] is the most widely available LOTOS tool and was based on work reported by 

van Eijk in his PhD thesis [132]. It is an interactive tool that symbolically executes LOTOS 

specifications. The simulator builds a communication tree from a given specification and 

permits the user to interactively step through the specification, selecting from a menu of 

possible events in eath stage. Deadlock properties of the specification can be investigated, 

test sequences analysed and dynamic behaviour explored. Hippo incorporates both the 

abstract data type part of LOTOS (ACT-ONE) and the dynamic part.

The task of verification is closely connected with theories of conformance and test deriva

tion and these have been discussed by Brinksma with respect to LOTOS in [16,17, 1 2 , 13]. 

Such research has encouraged the construction of tools to support the activity of verifica

tion [15].

Communication in LOTOS

Basic LOTOS is a simplified version of the language employing a finite alphabet of observ

able actions which can occur at named gates. The symbol i denote the unobservable action 

(the r  in CCS). A basic LOTOS specification comprises a behaviour expression which is 

built by applying an operator to other behaviour expressions or processes. The basic op

erators of LOTOS are sequencing, choice, synchronisation, hiding and disruption. The 

basic process of LOTOS is stop which indicates inaction. More complex processes can be 

defined by associating a symbolic name and a list of gate names (interaction points) with 

a behaviour expression; process definitions can be nested. E.g. the sequencing operator 

in LOTOS is which permits the definition of the following process:

process bufferl [a,b,c] := 

a ; b ; stop 

endproc



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  TE C H N IQ U E S 241

The operational semantics of LOTOS is given by labelled transitions: given a behaviour 

expression B, a labelled transition is of the form B —x—► B' indicating that B performs 

the action x and transforms into B'. The use of a labelled transition on its own in a 

definition is an axiom, while a ru le is expressed by:

B — x-+ B'
--------------------  ( C o n d i t io n )

Bj —x—► B /

where B —x—> B' is a precondtion, Bj composes B with other behaviour expressions, and 

Bj —x—► B / if C o n d itio n  is true.

In the following we denote:

G the set of user-definable gates

6 ? g lv  ?Sn range over G

i the unobservable action

Act the set G U {i} of user-definable actions

P range over Act

Additionally LOTOS describes the occurrence of successful termination (thus permitting 

the enabling of a subsequent process) by the special action 6 which is n o t  user definable.

Thus we denote:

6 the successful termination action

G+ the set G U {6 } of observable actions

g+ range over G+

Act+ the set Act U {£} of actions

/z+ range over Act+

The S action is equivalent to the use of n il to indicate end of transmission in SILCS.

The semantics of the a c t io n  p r e f ix  behaviour expression is defined by the axiom:

p ;  B —/z—► B

and that of c h o ice  by the axioms



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  T E C H N IQ U E S 242

B! —/J+-* B,'
Bi 0 B2 -/*+- Bj'

and

B2 — ► B2'
Bi Q B2 -/i+ - Bj'

Parallelism is defined in terms of interleaving for independent actions and simultaneity for 

dependent (concurrent) actions. If S is the set of gates [glr  .. g j, then:

1$! —u—> B,'
------------— -— 5-----------  0* iBj |S| Bj — B,' |S| B2

B2 —t*—* B2'

Bj |S| B2 - / z-> Bx |S| B2' O i  s)

Bj —g+-> Bj' and B2 —g+-> B2'---------------------------  (g+ 6 S U
Bj |S| B, - g + -  Bj' |S| B2'

Note that if (Bj —g+j—► B j') and (B2 —g+2—► B2')  and (g+j ^ g+2) and (g+j E S) and 

(g+ 2 E S) then neither process can proceed and the behaviour expression is deadlocked, 

i.e. it is equivalent to stop.

LOTOS has the following syntactic variants of the parallel operator. I n te r le a v in g , “|||” is 

equivalent to “|[]|” (the set S is empty), while the g e n e r a l parallel operator “||” indicates 

that S is the set of all gates common to the two composed behaviour expressions which 

are thus forced to proceed synchronously.

The general parallel operator in LOTOS has to be used carefully. For example, the 

behaviour expression { ( a \b ; s to p ) \ \ ( a \b \ s to p ) )  is a shorthand for

((a;6 ;stop)|[o]|(a;6 ;s/op)). The rules for parallel composition mean that the expression 

is equivalent to a; ((6 ;stop)|[a]|(6 ;s/op)), not a;((h;s<op)||(6 ;s<op)), since the latter form 

is a short hand for a;((6 ;stop)|[h]|(h;stop)).



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  T E C H N IQ U E S 243

Hiding causes those actions which are hidden to introduce an unobservable action into the 

environment in place of the hidden action:

B —//+-* B'

hide gl v .. ,gn in B —/x+-+ B'
(f i+ i  glv .. ,gn)

B —/!+-► B'

hide glv .. ,gn in B —i-*> B'
(/*+ € giv . . ,gn)

An example of the use of hiding is in the composition of buffer processes:

process buffer2 [ins,outs] := 

hide mids in 

bufferl |[mids]| bufferl 

endproc

Disabling is a construct which permits the specification of one process being disrupted by 

another and is required for the description of disconnection or abortion:

Bj —/i—► B^

B i [> B2 * B i; [> B2

Bj - 6- +  B /

Bj [> B2 — S —► B̂

B2 -/!+-»> B2;
B 1 [> B 2 B2'

A note on the associativity of the parallel operator

The parallel operator is associative in the case that the set of gate does not vary during 

its application, i.e. 2?i|5|i?2|*S'| • • • |*S'|#n- However, Brinksma [14, p66] remarks that the 

parallel operator is n o t  in general associative since 2?i |5i |(2?2|S2|2?3) *s not equivalent



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  T E C H N IQ U E S 244

to (jBi |Si |)J?2 |<S2 |2?3 if S \  ^ S 2 and its associativity is ill-defined if S i  D S 2 7̂  0 and 

(Si U52 ) - ( 5 in 5 2 )^ 0 . The problem of associativity of parallel operators for algebraic 

languages has been described by Milner in [94].

The repeated application of the general parallel operator M||” to a list of processes implies 

that the synchronisation type varies during the application. Thus the behaviour expression 

6 [i,m i]||6 [mi,m 2 ]||6 [m2 ,o] is equivalent to 6 [z,mi]|[mi]|(6 [mi,m2 ]|[m2]|6 [m2 ,o]). In his 

thesis Brinksma claims that this form of parallel composition still has the associative 

property ‘by happy coincidence’ [14, p48], but this is refuted by the statement on page 6 6  

of the same work1 where he states that ‘the associative law for |[a]| does n o t generalise to 

the case B 1 |[A1]|(B2 |[i42 ]|53) = ( B 1\[A 1] \) B 2 \[A 2] \B 3 when A x ±  A 2\

Exchange of data on synchronisation

Full LOTOS permits the exchange of data on synchronisation. Gates are postfixed by 

value offers and optionally constraints. Offers are expressions of values in a type defined 

in the ADT part of full LOTOS. An observable action prefix expression is of the form

a c t io n  d e n o ta t io n  ; b e h a v io u r  e x p re s s io n

where the action denotation is of the general form g ai a 2 . . . a n where g is a gate name 

and the a ’s represent a finite list of attributes (value offers). Attributes can be value 

declarations or variable declarations.

V a lu e  o ffe r s  are of the form \E  where E  is a value expression, e.g. !(2 + 7) or \ T R U E .  

V a ria b le  d e c la r a tio n s  are of the form ?x: t where x  is the name of a variable and t  is its 

sort identifier (indicating the domain of values over which x  ranges), e.g. I x i i n t e g e r , 

l y i b o o le a n .  Selection predicates can optionally be associated with variable declarations. 

These have the effect of restricting the range of the sort associated with the declaration, 

e.g. l x :  i n t e g e r  [x < 5]. Synchronisation occurs in full LOTOS only when gate names 

match and their associated attributes are compatible according to the rules below:

Value matching is the basic form of communication in LOTOS, where the value and type 

of the expressions involved must agree. For example given the sorts boolean, string and

*In his thesis Brinksma uses the notation |a for |[A]|.



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  T E C H N IQ U E S 245

integer with the usual associated operations then the expressions

g \{2  +  7 ) \T  R U  E l y e s

and

g \(2  + 7 ) \ T R U  E l y e s

match. The transition rule for value matching is 

g !E; B —g<value(E)>—* B

Value passing from ‘producer’ to ‘consumer’ is best regarded as ‘offers within a range’. 

The ‘consumer(s)’ offer a range of values within a type or sort, the range being optionally 

restricted by selection predicates associated with the offer. The ‘producer(s)’ agree on one 

value from this set. The sort of the offers made by the consumer(s) must agree with the 

sort of the offer made by the producer(s). For example a consumer may offer a range of 

values from the sort integer: M in  <  O ffe r  < M a x  to synchronise with one integer value 

offered by a producer, as in

($f!(2 + 3);.. Olbllte’ * 1 in t e g e r  [5 < x  < 10];...)

No synchronisation occurs in this case.

Value generation occurs when two processes both offer to synchronise on a range of data 

values from one sort, and as with value passing, one value is selected. In the behaviour 

expression ( g tx :  i n t e g e r ;.. i n t e g e r ; ...)  the two processes involved synchronise

with x  = y  = z , z  £ I N T .  The ranges of the sort may be constrained by selection predicates. 

For example in the behaviour expression

( g l x :  i n t e g e r  [x < 10];.. Olfollfaty: in te g e r  [y > 5];...)

the two processes involved synchronise with x  = y  = 2 ,5 < z  < 1 0 . LOTOS permits 

multi-way communication, with the added complexity of the propagation of constraints 

until all offers have been made and successfully negotiated. The implementation of such a 

scheme is problematic and goes against the idea of a completely distributable system and 

requires one a c tiv e  global observer to determine final values in a negotiation.

T he mechanisms involved in the latter two types o f communication are thus akin to the

evaluation of constraints in concurrent constraint logic programming, except that only



A P P E N D IX  D . A L G E B R A IC  S P E C IF IC A T IO N  TE C H N IQ U E S 246

one final value is generated, rather than a collection of constraints being propagated. This 

reflects the difference in the semantics of the choice operators in each formalism: the choice 

operator in LOTOS is ‘committed’ (only one branch is ever chosen), whilst in concurrent 

constraint logic programming languages2 choice operator is all-solutions (logical choice).

However, there are interesting concepts in the LOTOS framework which may be applicable 

in a logic specification scheme. Such a scheme which incorporates more than term unifica

tion may be of use in specifying communicating systems, but the basic formalism should 

be applicable to unification over terms. In LOTOS the difference between ‘producer’ and 

‘consumer’ is that the latter can leave a successful communication with one of a range of 

values, whilst the former can only wait until expression matching, and continues with the 

same offer.

D .2 LOTCAL

Brinksma [14] has identified a small set of operators called LOTCAL which suffices for the 

formal interpretation of LOTOS and has proposed a design for extended LOTOS based 

on these operators. The work is an attempt to rationalise the design of LOTOS and 

proposals are made for a number of modifications to the original model adopted as the 

international standard by ISO. The potential language enhancements proposed include 

the use of list operators and improvements in the definitions of functionality, successful 

termination and parallel composition. Brinksma outlines the potential for the addition of 

timing in the language and argues for the addition of indexed synchronisation labels. A 

form of modularisation is also proposed and a more flexible interface between the data

type and behaviour-oriented part of the language in the form of explicitly defined data 

environments along with a more uniform syntax for both.

The problems connected with multi-way synchronisation and associativity of the parallel 

operator have led Brinksma to propose a new semantics for this operator in his calculus 

LOTCAL [14, Chapter 4], in line with those outlined by Milner in [94]. These are expressed 

in the following rules for “|”

2Except for cc(—*■) which has a committed choice operator



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  TE C H N IQ U E S 247

Bg — /x-> B /

®i | B2 y —* Bj; | B2

b2 - y - >  b27
Bg | B2 y —* Bg | B2'

Bg —y i~ +  Bg; and B2 —/j2—► B2'

Bg | B2 — y i A y i - ^  Bg' | B2'

where y \ A ^ 2 =<*/ ( y i  U ^2 ) -  (y i  H //2) (symmetric difference).

This new definition of the parallel operator is coupled with the introduction of a re s tr ic 

t io n  operator “\ ” which removes all behaviour from a process that starts with an action 

containing an event that is restricted over:

B — y - *  B'

B\A - y - +  B '  ( y  D A  = 0)

Brinksma’s thesis [14, Chapter 4] contains proofs of the equivalence of the LOTOS parallel 

operator with a combination of the parallel and restriction operators of LOTCAL.

D .3 CIRCAL

CIRCAL, proposed by Milne [91], permits the modeling of asynchronous and simultaneous 

behaviour using an acceptance semantics. It was designed with for the description and 

analysis of concurrent systems, either in hardware or software. The parallel operator 

is similar in behaviour to that of “J|” in CSP but permits several simultaneous ‘particu

late’ actions, similar to the idea presented by Milner in [94] and permits the modeling of 

concurrency without recourse to interleaving. Milne has claimed with some justification 

that he was the first to propose such behaviour in the algebraic context. CIRCAL does not 

require that all components in a system are totally synchronous, but permits the modeling 

of a spectrum between actions occurring one at a time and the complete simultaneity of



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  TEC H N IQ U ES 248

all component interaction.

We use Milne’s notation from [91] to illustrate the semantics of those operators of CIRCAL 

which are relevant to a comparison with SILCS. An action in CIRCAL can consists either 

of one event or a number of simultaneous events. Each event is represented by a label and 

an action is represented by a non-empty set of labels written using ( ) rather than { }. 

For example, a typical label set is ( a f t i )  representing the simultaneous occurrence of the 

actions a ,  /3 and 7 . A singleton label set can be written without parenthesis. Any sort 

L  is a subset of A the set of all labels. The set PROG*, is the set of all terms of sort L .  

The semantics of CIRCAL is based on the idea of a system responding to a stimulus, and 

is described in terms of labelled transition systems. For terms T ,  T '  € PROGj, and the 

label-set m  C L  then T —m—* T '  denotes the the term T  accepting m  and evolving to 

T ' .  If T  rejects m  then we write T —m —► * where * is a special symbol.

G u a r d in g , as in (a /3 )P  where (a(5) C L  and P  6  PROGl , contributes sequentiality to 

CIRCAL. The transitions describing guarding axe:

m P  —m—► P  where term m P  accepts the stimulus given by label-set m and

evolves to P.

m P  —n—* * where m  /  n .

C h o ic e 3 is indicated by P  +  Q . The environment, other interacting terms, resolve the 

choice as to whether an action in P or Q  occurs next. The rules are:

3CIRCAL possesses a nondeterministic choice operator “®” which is not relevant to this

discussion.



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  TE C H N IQ U E S 249

P — m-> P'

P  +  Q  — m-> P'

Q  —m-» Q'

P + Q  —m-> q '

P —m—* * and Q —m—► *

P + Q —m—► *

T e r m in a t io n  is represented by A and is described by 

A —ra—* *

The d e f in i t io n  operator “<=” is used to name terms as in P  <= Q .

A derived operator is s u m m a t io n  over the choice operator for label-sets m \ , . . . ,  m„, defined

by
^ 2  rn iP i <= mi Pi + m2 P2 + ... + mnPn

i=l,n

The guarding and choice operators are used to define the composition operator 

D e fin i t io n . For A  <= A,-Ai of sort P and B  «$= Y l P j E j  °f sort Af, then

A .B < =  Y .  - M A -  •  B] + Y  •  Bj]
A,-nM=0 n} nL=Q

+ {Xi U n j ) [ A i * B j ]
(AinM)=(/1>nL)

If

VA,-, n j \ i  n Af ^ f i j  n L ,  Xi n m  ^ 0, n j  n L  ±  0

then

A *  B  <= A

A • B  has sort L n  M



A P P E N D IX  D. A L G E B R A IC  S P E C IF IC A T IO N  T E C H N IQ U E S 250

The first clause contributes to A  • B  those guards belonging to A  whose labels do not 

intersect with M, the sort of B .  Such guards appear independently of B .  Similarly the 

second clause describes the independent appearance of guards from B .

The third clause contributes to A  • B  those guards formed by a synchronisation of guards 

from A  and B .  This clause can be replaced by the following clause:

E  ( A , - U W ) M i  • ! » , • ] +  E  ( A ,  U  N ) M i  .  B:]
(AjnM)=(/i^nL)=0 (A^nAf )=(njC\L)£Q

The first clause describes the independent but simultaneous events represented by At- and 

Hj while the second clause describes those guards which result from a synchronisation of 

at least some of the labels comprising a guard in A  with some of the labels of a guard in 

B .  The two label sets (A,- D M )  and ( f i j  fl L ) are identical and A  and B  intersect.

If there is no A,- G A  and f i j  G B  such that A,- n M  = 0, //j fl L  = 0 or (A,- fl M )  = ( n j  D L ), 

then A  • B  <£= A. If both A  and B  are not themselves A, this corresponds to d e a d lo c k .  

This may be illustrated by the two terms P  and Q  with sort {a,/?}. If P  <= a (3 P ' and 

Q  <= f i a Q ',  then A,- = {a}, f i j  = {/?}, L  = M  = {a,/3}, A,- D M  = {a:}, f i j  n L  = {/?}. 

Hence (At- fl M )  £  ( f i j  n L ) and P  •  Q  <= A.

The semantics of the dot operator of CIRCAL are similar to those of the simultaneous 

operator of SILCS in that parallel events can be represented as simultaneous actions, and 

deadlock (suspension) is effectively expressed by the same mechanism.



A p p en d ix  E

Glossary of abbreviations

251



A P P E N D IX  E. G L O S S A R Y  O F  A B B R E V IA T IO N S 252

ADT Abstract Data Type

cc Concurrent Constraint Language (Saraswat)

CCS Calculus of Communicating Systems

CLP Concurrent Logic Programming

CCPL Concurrent Constraint Programming Language

CLPL Concurrent Logic Programming Language

CSP Communicating Sequential Processes

(F)CP (Flat) Concurrent Prolog

(F)GHC (Flat) Guarded Horn Clauses

FOPL First Order Predicate Logic

HCL Horn Clause Logic

ISO International Standards Organisation

LOTOS Language of Temporal Ordering Specification

LP Logic Programming

LPL Logic Programming Language

M E Meta-language

O C Object-language

OSI Open Systems Interconnection

PDC Pure Definite Clauses

PHC Pure Horn Clauses

RL Relational language

SILCS Specification In Logic of Concurrent Systems

Table E.l: Abbreviations



Bibliography

[1 ] Advanced A. I. Systems Inc., Mountain View, California. A d v a n c e d  A .  I. S y s t e m s ’ 

P ro lo g  R e fe re n c e  M a n u a l  V e rs io n  M - 1 .1 5 , 1987.

[2] J. F. Allen. An Interval-Based Representation of Temporal Knowledge. Technical 

report, Department of Computer Science, University of Rochester, Rochester, NY, 

1982.

[3] J. F. Allen. Maintaining Knowledge about Temporal Intervals. C o m m u n ic a t io n s  o f  

th e  A C M , 26(ll):832-843, November 1983.

[4] Arity Corporation, Concord, Massachussetts. T h e  A r i ty  P ro lo g  P r o g r a m m in g  la n 

g u a g e , 1986.

[5] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Programming. 

In G. Levi and M. Martelli, editors, P ro c e e d in g s  6 th  I n te r n a t io n a l  C o n fe re n c e  o n  

L o g ic  p r o g r a m m in g , pages 471-486, Lisbon, Portugal, June 1989. M IT Press.

[6 ] L. Beckman. Towards a formal semantics for concurrent logic programming lan

guages. In E. Shapiro, editor, T h ird  I n t e r n a t io n a l  C o n fe ren ce  o n  L o g ic  P ro g ra m 

m in g , 1 9 8 6 , pages 335-349, London, UK, 1986. Springer-Verlag.

[7] F. Belina and D. Hogrefe. Introduction to SDL. In F O R T E 8 8  — F o r m a l  D e s c r ip tio n  

T e c h n iq u e s  1 9 8 8 , Stirling, Scotland, September 1988. (Invited paper).

[8 ] C. Berge. T h e  T h e o r y  o f  G ra p h s  a n d  i t s  A p p l ic a t io n s . Methuen, London, 1962.

[9] G. Birkhoff. L a tt ic e  T h e o r y , volume 25 of C o llo q iu m  P u b lic a tio n s . American Math

ematical Society, Providence, Rhode Island, 1940.

253



B IB L IO G R A P H Y 254

[10] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language 

LOTOS. C o m p u te r  N e tw o r k s  a n d  I S D N  S y s te m s , 14(l):25-59, 1987.

[11] E. Brinksma. An Introduction to LOTOS. Technical report, University of Twente, 

Enschede, Netherlands, 1987.

[1 2 ] E. Brinksma. On the existence of Canonical Testers. Technical Report Memorandum 

INF-87-5, Department of Informatics, University of Twente, Enschede, Netherlands, 

January 1987.

[13] E. Brinksma. A Theory for the Derivation of Tests. In I F I P  P r o to c o l S p e c if ic a tio n ,  

T e s tin g  a n d  V e r ific a tio n  V I I I , Atlantic City, June 7-10, 1988. IFIP.

[14] E. Brinksma. O n  th e  D e s ig n  o f  E x te n d e d  L O T O S ;  a S p e c ific a tio n  L a n g u a g e  f o r  O p e n  

D is tr ib u te d  S y s te m s . PhD thesis, Department of Informatics, University of Twente, 

Enschede, Netherlands, 1988.

[15] E. Brinksma. LOTOS Verification Aspects — Report of the SEDOS C2  Task. In 

P. van Eijk, C. Vissers, and M.Diaz, editors, T h e  F o rm a l D e s c r ip t io n  T e c h n iq u e  

L O T O S , pages 229-234. North-Holland, 1989.

[16] E. Brinksma and G. Scollo. Formal notions of Implementation and Conformance 

in LOTOS. Technical Report Memorandum INF-86-13, Department of Informatics, 

University of Twente, Enschede, Netherlands, December 1986.

[17] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their implemen

tations and their tests. In P ro c . 6 th  W o r k sh o p  o n  P ro to co l T e s t in g  a n d  V e r ific a tio n ,  

pages 349-360, Montreal, June 1986. Noth-Holland.

[18] M. Carlsson and J. Widen. S I C S tu s  P ro lo g  U s e r ’s  M a n u a l V e r s io n  0 .6 . Swedish 

Institute of Computer Science, Kista, Sweden, 1988.

[19] B. Carre. G ra p h s  a n d  n e tw o r k s . Clarendon Press, Oxford, 1979.

[20] C. L. Chang and R. C. T. Lee. S y m b o lic  L o g ic  a n d  M e c h a n ic a l T h e o r e m  P ro v in g . 

Academic Press, 1973.

[2 1 ] A. Church. The calculi of lambda conversion. A n n a ls  o f  M a th e m a t ic s  S tu d ie s , 6 ,

1941.



B IB L IO G R A P H Y 255

[22] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, L o g ic  a n d  

D a ta b a se s , pages 293-322. Plenum Press, New York, 1978.

[23] K. L. Clark. Predicate Logic as a Computational Formalism. Technical Report 

Research Monograph 79/59 TOC, Department of Computing, Imperial College, De

cember 1979.

[24] K. L. Clark. The Synthesis and Verification of Logic Programs. Technical Report 

DOC 81/36, Department of Computing, Imperial College, September 1981.

[25] K. L. Clark. Logic Programming Schemes. In P ro c  F G C S 8 8 , Tokyo, Japan, Novem

ber 1988. ICOT.

[26] K. L. Clark and S. Gregory. A relational language for parallel programming. In 

P ro ce ed in g s  o f  th e  1981  A C M  C o n fe re n c e  o n  F u n c tio n a l P r o g r a m m in g  L a n g u a g e s  

a n d  C o m p u te r  A r c h i te c tu r e s , pages 171-178, Portsmouth, NH, 1981. ACM.

[27] K. L. Clark and S. Gregory. PARLOG: A parallel logic programming language. 

Technical Report IC Research report DOC 83/5, Department of Computing, Impe

rial College, London, UK, 1983.

[28] K. L. Clark and S. Gregory. PARLOG: Parallel programming in Logic. A C M  

T r a n s a c tio n s  o n  P r o g r a m m in g  L a n g u a g e s  a n d  S y s te m s , 8(l):l-49, 1986.

[29] K. L. Clark and S. Gregory. Parlog and Prolog United. In J.-L. Lassez, editor, 

P ro ceed in g s  o f  th e  4 th  I n te r n a t io n a l  C o n fe re n c e  o n  L ogic P r o g r a m m in g , pages 927- 

961. MIT, 1987.

[30] K. L. Clark, F. G. McCabe, and S. Gregory. IC-Prolog language features. In K. L. 

Clark and S. A. Tarnlund, editors, L o g ic  P ro g ra m m in g . Academic Press, 1982.

[31] K. L. Clark and S. A. Tarnlund. A First Order Theory of Data and Programs. In 

B. Gilchrist, editor, I F I P  I n fo r m a t io n  P ro c e ss in g  77. North-Holland, 1977.

[32] A. Colmerauer. P ro lo g  I I :  M a n u e l  de re fe re n c e  e t  m o d e le  th e o re tiq u e . University of 

Aix-Marseille, 1982.



B IB L IO G R A P H Y 256

[33] A. Colmerauer. Introduction to Prolog III. Technical Report Project No. 1106, 

Group Intelligence Artificielle, Faculte des Sciences de Luminy, Marseilles, France, 

1987.

[34] J. Crammond. I m p le m e n ta t io n  o f  C o m m it te d  C h o ice  L og ic  L a n g u a g e s  o n  S h a re d  

M e m o r y  M u ltip ro c e s so r s . PhD thesis, Department of Computer Science, Heriot- 

Watt University, Edinburgh, UK, 1988.

[35] M. Diaz, C. A. Vissers, and J.-P. Ansart. SEDOS Software Environment for the 

Design of Open distributed Systems. In P. van Eijk, C. Vissers, and M.Diaz, editors, 

T h e  F o r m a l  D e s c r ip t io n  T e c h n iq u e  L O T O S , pages 3-14. North-Holland, 1989.

[36] E. W. Dijkstra. Guarded Commands, non-determinancy and formal derivation of 

programs. C o m m u n ic a t io n s  A C M , 18(8):453-457, Aug 1975.

[37] H. Ehrig, W. Frey, and H. Hansen. ACT ONE: An algebraic specification language 

with two levels of semantics. Technical Report Bericht Nr 83-03, Techische Univer- 

sitaet, Berlin, 1983.

[38] M. R. Ellis. A Relational Language into ECCS. Master’s thesis, Department of 

Computing, Imperial College, London. UK, September 1986.

[39] U. Engberg and M. Nielsen. A Calculus of Communicating Systems with Label 

Passing. Technical report, Mathematic Institute, Aarhus University, Denmark, 1986.

[40] I. Foster. P a r lo g  a s  a S y s te m s  P ro g ra m m in g  L a n g u a g e . PhD thesis, Department of 

Computing, Imperial College, 1988. (Also Research Report PAR 88/5).

[41] I. Foster. S y s t e m s  P ro g r a m m in g  in  P a ra lle l  L o g ic  L anguages. Prentice Hall, 1990.

[42] I. Foster and S. Taylor. S tra n d :  N e w  C o n c e p ts  in  P a ra lle l P r o g ra m m in g . Prentice 

Hall, Englewood Cliffs, New Jersey, 1989.

[43] D. Gabbay. Temporal Logic and Computer Science. Technical report, Department 

of Computing, Imperial College, London, UK, May 1985.

[44] D. Gabbay. Executable Temporal Logic for Interactive Systems. Technical report, 

Department of Computing, Imperial College, London, UK, March 1987.



B IB L IO G R A P H Y 257

[45] H. Gericke. L a tt ic e  T h e o ry . George Harrap & Co, 1966.

[46] R. Gerth, M. Codish, Y. Lichtenstein, and E. Shapiro. A Fully Abstract Denata- 

tional Semantics for Flat Concurrent Prolog. Technical report, Weizmann Institute 

of Science, Rehovot Israel, March 1988.

[47] G. Gierz, K. H. Hofman, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. A  

C o m p e n d iu m  o f  C o n tin u o u s  L a ttic e s . Springer-Verlag, 1980.

[48] D. R. Gilbert. Executable LOTOS: Using PARLOG to implement an FDT. In 

P ro ce ed in g s  o f  I F I P  P ro to c o l S p e c ific a tio n , T e s t in g  a n d  V e r ific a tio n : V II ,  Z u r ic h ,  

S w itz e r la n d , 5 -8  M a y  1 9 8 7, Amsterdam, Netherlands, 1987. Elsevier Science, North- 

Holi and.

[49] D. R. Gilbert. Specification and implementation of concurrent systems using PAR- 

LOG. In W o rk sh o p  o n  S p e c ific a tio n  a n d  V e r if ic a tio n  o f  C o n c u r r e n t S y s t e m s , Stirling 

UK, July 1988. BCS-FACS.

[50] D. R. Gilbert. A LOTOS to PARLOG translator. In K. J. Turner, editor, F O R T E 8 8  

— F o rm a l D e s c r ip tio n  T e c h n iq u e s  1 9 8 8 , pages 31-44. North-Holland, 1989.

[51] S. Gregory. D e sig n , A p p l ic a t io n  a n d  I m p le m e n ta t io n  o f  a P a r a lle l  P o g ic  P ro g ra m 

m in g  L a n g u a g e . PhD thesis, Department of Computing, Imperial College, London, 

UK, 1985.

[52] S. Gregory. P a ra lle l L o g ic  P r o g r a m m in g  in  P A R L O G :  T h e  L a n g u a g e  a n d  i t s  Im p le 

m e n ta t io n . Addison-Wesleŷ  London, UK, 1987.

[53] S. Haridi and P. Brand. Andorra Prolog; an integration of Prolog and committed 

choice languages. In F G C S  1 9 8 8 , pages 745-754, Tokyo, Japan, 1988. ICOT.

[54] S. Haridi and S. Janson. Kernel Andorra Prolog and its Computational Model. 

Technical Report SICS/R-90/R9002, Swedish Insitute of Computer Science, January 

1990.

[55] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency. 

J o u r n a l  o f  th e  A C M , 32(1): 137-161, January 1985.



B IB L IO G R A P H Y 258

[56] P. M. Hill and J. W. Lloyd. Analysis of Meta-programs. Technical Report CS-88-08, 

Department of Computer Science, University of Bristol, Bristol, UK, June 1988.

[5 7 ] M. Hirsch, W. Silverman, and E. Shapiro. Layers of protection and control in the 

Logix system. Technical Report Technical Report CS86-19, Department of Computer 

Science, Weizmann Institute of Science, Rehovot, Israel, 1986.

[58] C. A. R. Hoare. C o m m u n ic a t in g  S e q u e n tia l  P ro cesses . Prentice Hall, UK, 1985.

[59] C. J. Hogger. Program Synthesis in Predicate Logic. In Proc C o n fe r e n c e  o n  A r t i f i c ia l  

In te llig e n c e  A I S B / G I - 7 8 .  University of Hamburg, July 18-20 1978.

[60] C. J. Hogger. Derivation of Logic Programs. J o u r n a l  o f  th e  A s s o c ia t io n  f o r  C o m 

p u tin g  M a c h in e r y , 28(2):372-392, 1981.

[61] C. J. Hogger. Concurrent Logic Programming. In K. L. Clark and S. A. Tarnlund, 

editors, L og ic  P r o g r a m m in g , pages 199-211. Academic Press, London, 1982.

[62] C. J. Hogger. I n tr o d u c t io n  to  L o g ic  P ro g ra m m in g . Academic Press, 1984.

[63] M. Huntbach. Algorithmic PARLOG Debugging. In S. Haridi, editor, P ro ce ed in g s  

1 9 8 7  S y m p o s iu m  o n  L o g ic  P r o g r a m m in g , pages 288-297, Washington, DC, USA, 

September 1987. IEEE.

[64] C. Hussey. Interpreting PARLOG Programs as CCS agents. Master’s thesis, De

partment of Computing, Imperial College, London, September 1987.

[65] Inmos Ltd. o cc a m  P r o g r a m m in g  M a n u a l. Prentice-Hall International, 1984.

[6 6 ] ISO. I S O  I S  8 8 0 7  I n fo r m a t io n  P ro c e s s in g  S y s te m s , O pen S y s te m s  In te r c o n n e c t io n ,  

L O T O S , A  F o r m a l D e s c r ip t io n  T e c h n iq u e  B a se d  o n  the T e m p o ra l O rd e r in g  o f  O b

s e r v a tio n a l  B e h a v io u r , 1989.

[67] ISO. I S O  I S  9 0 7 4  I n fo r m a t io n  P r o c e s s in g  S y s te m s , O pen S y s te m s  In te r c o n n e c t io n ,  

E S T E L L E ,  A  F o r m a l  D e s c r ip t io n  T e c h n iq u e  B a se d  o n  an E x te n d e d  S ta te  T r a n s i t io n  

M odel. ISO, 1989.

[6 8 ] J. Jaffar, S. Michaylov, P. J. Stuckey, and P. H. C. Yap. The CLP(R) Language and 

System. Technical report, IBM, Yorktown Heights, NY, USA, April 19, 1988.



B IB L IO G R A P H Y 259

[69] G. Kahn and D. B. MacQueen. Coroutines and Networks of Parallel Processes. In 

B. Gilchrist, editor, In fo r m a t io n  P ro ce ss in g  77, pages 993-998. IFIP, North Holland, 

1977.

[70] R. M. Keller. Formal verification of parallel programs. C o m m u n ic a t io n s  o f  th e  

A G C M , 19:371-384, 1976.

[71] Y. Kimura and T. Chikayama. An abstract KL1 machine and its instruction set. In 

P ro ce ed in g s  I E E E  S y m p o s iu m  o n  L ogic P r o g r a m m in g , pages 468-477. IEEE, Septem

ber 1987.

[72] R. A. Kowalski. Predicate Logic as a programming language. In P roceed ings o f  the  

I F I P  C o n g re ss  1 9 7 4 , pages 569-574. IEEE, 1974.

[73] R. A. Kowalski. Algorithm = Logic + Control. C o m m u n ic a t io n s  o f  the  A C M , 

22(7):424-436, 1979.

[74] R. A. Kowalski. L o g ic  f o r  p ro b le m  so lv in g . North Holland, 1979.

[75] R. A. Kowalski. The relation between logic programming and logic specification. 

P h il. T ra n s . R .  S o c . L o n d . A  /, 312:345-361, 1984.

[76] R. A. Kowalski. The early development of Logic Programming. Technical report, 

Department of Computing, Imperial College, London, UK, November 1986.

[77] R. A. Kowalski and M. Sergot. A Logic-based Calculus of Events. N e w  G e n e ra tio n  

C o m p u t in g , 4:67-95, 1986.

[78] C. Lassez. Constraint Logic Programming. B Y T E , pages 171-176, August 1987.

[79] J.-L. Lassez. Parametric queries, linear constraints and variable elimination. Tech

nical report, IBM T.J. Watson Research Center, Yorktown Heights, NY, 1990.

[80] J.-L. Lassez, M. J. Maher, and K. Mariott. Unification Revisited. In J. Minker, 

editor, F o u n d a tio n s  o f  D e d u c tiv e  D a ta b a se s  a n d  L og ic  P r o g r a m m in g , pages 587-625. 

Morgan Kaufman, Los Altos, California, 1987.

[81] J.-L. Lassez and K. McAloon. A Constraint Sequent Calculus. Technical report, 

IBM T.J. Watson Research Center, Yorktown Heights, NY, 1990.



B IB L IO G R A P H Y 260

[82] G. Leon, C. Delgado, G. Gonzaleza, and M. Ruz. ASDE: Design of a LOTOS 

Transformational Environment for LOTOS. In S. T. Vuong, editor, F O R T E  ’89, 

P ro ceed in g s  o f  th e  S e c o n d  In te r n a t io n a l  C o n fe re n c e  o n  F O R M A L  D E S C R I P T I O N  

T E C H N I Q U E S  f o r  D is tr ib u te d  S y s te m s  a n d  C o m m u n ic a t io n  P ro to c o ls , pages 643- 

657, Vancouver, Canada, December 5-8, 1989.

[83] Y. Lichtenstein. Algorithmic Debugging of Flat Concurrent Prolog. Master’s thesis, 

Feinberg Graduate School, Weizmann Institute of Science, Rehovot, Israel, August

1987.

[84] Y. Lichtenstein, M. Codish, and E. Shapiro. Representation and Enumeration of 

Flat Cconcurrent Prolog Computations. In E. Shapiro, editor, C o n c u r r e n t P ro lo g , 

volume 2, pages 197-210. MIT Press, 1987.

[85] J. W. Lloyd. F o u n d a tio n s  o f  L o g ic  P r o g ra m m in g . Spinger-Verlag, Berlin, second 

edition, 1987.

[8 6 ] M. J. Maher. Logic Semantics for a class of Committed-Choice Programs. In J.-L. 

Lassez, editor, L o g ic  P ro g ra m m in g , P ro ce ed in g s  o f  the  F o u rth  I n te r n a t io n a l  C o n fe r 

e n c e , volume 2, pages 858-876, Cambridge, Mass, USA, 1987. MIT.

[87] Z. Manna and A. Pnueli. Verification of concurrent programs: the temporal frame

work. In R. S. Boyer and J. S. Moore, editors, T h e  C o rrec tn ess  P ro b le m  in  C o m p u te r  

S c ie n c e , pages 215-273. Academic Press, 1981.

[8 8 ] A. K. Marshall. Introduction to LOTOS Tools. In P. van Eijk, C. Vissers, and 

M.Diaz, editors, T h e  F o r m a l  D e s c r ip tio n  T e c h n iq u e  L O T O S , pages 339-350. North- 

Holland, 1989.

[89] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin. L I S P

1 .5  P r o g r a m m e r s ’ M a n u a l. M IT Press, Cambridge, Mass, USA, 1965.

[90] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of 

artificial intelligence. M a c h in e  In te l l ig e n c e , 4, 1969.

[91] G. J. Milne. CIRCAL and the Representation of Communication, Concurrency and 

Time. A C M  T O P L A S , 7(2):270-298, April 1985.



B IB L IO G R A P H Y 261

[92] R. Milner. A  C a lcu lu s  o f  C o m m u n ic a t in g  S y s t e m s , volume 92 of L e c tu re  N o te s  in  

C o m p u te r  S c ien c e . Springer-Verlag, Berlin, 1980.

[93] R. Milner. Calculi for Synchrony and Asynchrony. J o u rn a l o f  T h e o re tic a l C o m p u te r  

S c ie n c e , 25:267-310, 1983.

[94] R. Milner. Process Constructors and Interpretations. P ro ceed in g s  o f  I F I P  1 0 th  

In te r n a t io n a l  W o r ld  C o m p u te r  C o n g re ss , 10:507-514, September 1-5, 1986.

[95] R. Milner. C o m m u n ic a t io n  a n d  C o n c u rre n c y . Prentice Hall, 1989.

[96] P. Mishra. Towards a theory of types in Prolog. In P roc. I E E E  I n te r n a t io n a l  

S y m p o s iu m  Logic P ro g r a m m in g , Atlanta City, USA, 1984. IEEE.

[9 7 ] A. Mistry. A PARLOG to Flat PARLOG Compiler. Master’s thesis, Department of 

Computing, Imperial CoUege, London, September 1987.

[98] L. Naish. Heterogeneous SLD Resolution. J o u r n a l  o f  Logic P ro g ra m m in g , 1(4), 1984.

[99] L. Naish. N e g a tio n  a n d  C o n tr o l  in  P ro log . Springer-Verlag, 1986.

[100] L. Naish. Parallelising Nu-Prolog. In R. A. Kowalski and K. A. Bowen, editors, 

L o g ic  P ro g ra m m in g , P ro ce ed in g s  o f  th e  F i f th  C o n fe re n c e  a n d  S y m p o s iu m , volume 2, 

pages 1546-1564, Cambridge, Mass, USA, 1988. MIT Press.

[101] K. Nakajima, Y. Inamaura, N. Ichioshi, K. Rokusawa, and T. Chikayama. Dis

tributed Implementation of KL1 on the Multi-PSI/V2. In G. Levi and M. Martelli, 

editors, Logic P ro g ra m m in g , P ro ceed in g  o f  th e  S ix th  In te r n a tio n a l  C o n fe r e n c e , pages 

436-451. MIT Press, June 1989.

[1 0 2 ] C. A. Petri. Kommunication mit Automaten (English translation). Technical Report 

RADC-TR-65-377, Applied Data Research, Princetown, NJ, 1966. Vol 1 Suppl 1, 

Contract AF 30 (602)-3324.

[103] G. A. Ringwood. PARLOG8 6  and the Dining Logicians. C o m m u n ic a t io n s  o f  th e  

A C M , 31(1):10—25, January 1988.

[104] G. A. Ringwood. A Comparative Exploration of Concurrent Logic Languages. Tech

nical report, PARLOG Group, Department of Computing, Imperial College, London, 

UK, January 1989.



B IB L IO G R A P H Y 262

[105] J. A. Robinson. A machine-orientated logic based on the resolution principle. J o u r n a l  

o f  th e  A C M , 12(1):23 -  49, Jan 1965.

[106] J. A. Robinson. Computational Logic: The Unification Computation. M a c h in e  

In te l l ig e n c e , 6:63-72, 1971.

[107] P. Roussel. P R O L O G :  M a n u e l  de  re fe re n ce  e t  d ’u tilisa tio n . Groupe d’Intelligence 

Artificielle, U.E.R. de Luminy, Universite Aix, Marseille, France, 1975.

[108] S. Safra and E. Shapiro. Meta-interpreters for real. In I n fo r m a t io n  P ro c e s in g  8 6 , 

pages 271-278. North-Holland, 1986.

[109] V. A. Saraswat. Partial correctness semantics for CP[j,|,&]. In F if th  F S T  -f T C S  

C o n fe re n c e , 1985 . Springer-Verlag, December 1985.

[110] V. A. Saraswat. Problems with Concurrent Prolog. Technical Report Technical 

report 86-100, Carnagie-Mellon University, 1986.

[111] V. A. Saraswat. Merging many streams efficiently: The importance of atomic com

mitment. In E. Shapiro, editor, C o n c u r r e n t P ro lo g , volume 1, pages 421-445. MIT 

Press, 1987.

[1 1 2 ] V. A. Saraswat. The concurrent logic programming language CP: Definition and 

Operational Semantics. In P O P L  1987 , pages 49-63. ACM, 1987.

[113] V. A. Saraswat. A somewhat logical formulation of CLP synchronisation primitives. 

In R. A. Kowalski and K. A. Bowen, editors, L og ic  P ro g ra m m in g , P ro ce ed in g s  o f  the  

F ifth  C o n fe r e n c e  a n d  S y m p o s iu m , volume 2, pages 1298-1314, Cambridge, Mass, 

USA, 1988. M IT Press.

[114] V. A. Saraswat. C o n c u r r e n t  C o n s tr a in t  P ro g ra m m in g  L a n g u a g es . PhD thesis, Com

puter Science Department, Carnagie-Mellon University, January 1989.

[115] V. A. Saraswat, D. Weinbaum, K. Kahn, and E. Shapiro. Detecting stable proper

ties of networks in concurrent logic programming languages. In P ro ce ed in g s  A C M  

C o n fe re n c e  o n  D is tr ib u te d  C o m p u t in g , 1988.

[116] E. Shapiro. A Subset of Concurrent PROLOG and Its Interpreter. Technical Report 

TR-003, ICOT, Tokyo, 1983.



B IB L IO G R A P H Y 263

[117] E. Shapiro. A lg o r i th m ic  P ro g ra m  D e b u g g in g . MIT Press, 1983.

[118] E. Shapiro. A Subset of Concurrent PROLOG and Its Interpreter. In E. Shapiro, 

editor, C o n c u r r e n t  P ro log , volume 1, pages 27-83. MIT Press, 1987.

[119] E. Shapiro. Concurrent Prolog: A Progress report. In E. Shapiro, editor, C o n c u r r e n t  

P ro log , volume 1, pages 157-187. MIT Press, 1987.

[120] E. Shapiro. The Family of Concurrent Logic Programming Languages. Technical 

Report CS89-08, Weizmann Institute of Science, Rehovot, Israel, May 1989.

[121] E. Shapiro and E. Yardeni. A Type System for Logic Programs. Technical report, 

Dept of Computer Science, Weizmann Institute of Science, Rehovot, Israel, 1987.

[122] J. R. Shoenfield. M a th e m a tic a l  L o g ic . Addison-Weseley, 1967.

[123] W. Silverman, M. Hirsch, A. Houri, and E. Shapiro. The logix system user manual, 

version 1.21. In E. Shapiro, editor, C o n c u r r e n t  P ro log , V o lu m e  2, chapter 21, pages 

46-77. MIT Press, 1987.

[124] L. Sterling and E. Shapiro. T h e  A r t  o f  P ro lo g  : A d v a n c e d  P ro g ra m m in g  T e c h n iq u e s .  

M IT Press Series in Logic Programming. M IT Press, Cambridge, Mass USA ; London 

UK, 1986.

[125] A. Takeuchi. How to solve it in Concurrent Prolog. (Unpublished note), 1983.

[126] A. Takeuchi and K. Furukawa. Parallel Logic Programming Languages. In 

E. Shapiro, editor, C o n c u r r e n t P ro log , volume 1, pages 188-201. MIT Press, 1987.

[127] S. Taylor, S. Safra, and E. Shapiro. A parallel implementation of Flat Concurrent 

Prolog. J o u r n a l  o f  P a ra lle l P r o g ra m m in g , 15(3):245-275, 1987.

[128] B. Thompson. A Calculus of Higher Order Communicating Systems. In P O P L  1 989 , 

Austin, Texas, January 1989.

[129] J. Tretmans. HIPPO: A LOTOS Simulator. In P. van Eijk, C. Vissers, and M.Diaz, 

editors, T h e  F o r m a l  D e sc r ip tio n  T e c h n iq u e  L O T O S , pages 391-396. North-Holland, 

1989.



B IB L IO G R A P H Y 264

[130] E. D. Tribble, M. S. Miller, K. Kahn, D. G. Bobrow, and C. Abbott. Channels: A 

Generalization of Streams. In J.-L. Lassez, editor, Logic P ro g ra m m in g , P ro ceed in g s  

o f  th e  F o u rth  I n te r n a t io n a l  C o n fe re n c e , volume 2 , pages 839-857, Cambridge, Mass, 

USA, 1987. MIT.

[131] K. Ueda. G u a rd ed  H o r n  C la u ses . PhD thesis, University of Tokyo, 1986.

[132] P. van Eijk. S o ftw a r e  too ls f o r  th e  s p e c ific a tio n  language L O T O S . PhD thesis, 

Department of Informatics, University of Twente, Enschede, Netherlands, January

1988.

[133] P. van Eijk. The Design of a Simulator Tool. In P. van Eijk, C. Vissers, and M.Diaz, 

editors, T h e  F o r m a l D e s c r ip tio n  T e c h n iq u e  L O T O S , pages 351-390. North-Holland,

1989.

[134] P. van Eijk. Tools for LOTOS Specification Style Transformation. In S. T. Vuong, 

editor, F O R T E  ’89, P ro ceed in g s  o f  th e  S e c o n d  In te r n a t io n a l  C o n fe re n c e  o n  F O R 

M A L  D E S C R I P T I O N  T E C H N I Q U E S  f o r  D is tr ib u te d  S y s te m s  a n d  C o m m u n ic a t io n  

P ro to c o ls , pages 54-62, Vancouver, Canada, December 5-8, 1989.

[135] M. H. van Emden and G. J. de Lucena Filho. Predicate Logic as a Language for Par

allel Programming. In K. L. Clark and S. A. Tarnlund, editors, L o g ic  P ro g r a m m in g , 

pages 189-198. Academic Press, London, UK, 1982.

[136] M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Logic as a 

Programming Language. J o u r n a l  o f  th e  A C M , 23(4):733-742, 1976.

[137] M. H. van Emden and J. W. Lloyd. A logical reconstruction of Prolog II. In 

S. A. Tarnlund, editor, L og ic  P ro g ra m m in g , S e c o n d  I n te r n a t io n a l  L o g ic  P ro g ra m 

m in g  C o n fe re n c e , pages 35-40, Uppsala, Sweden, July 2-6, 1984.

[138] C. A. Vissers. LOTOS backgrounds. In P. van Eijk, C. Vissers, and M.Diaz, editors, 

T h e  F o r m a l D e s c r ip tio n  T e c h n iq u e  L O T O S , pages 15-22. North-Holland, 1989.

[139] D. Weiribaum and E. Shapiro. Hardware description and simulation using Concur

rent Prolog. In P ro ce ed in g s  C H D L  ’8 7 , pages 9-27. Elsevier Science Publishing, 

1987.



B IB L IO G R A P H Y 265

[140] E. Weyhrauch. Prolegomena to a theory of formal reasoning. Technical Report 

AIM-315, Computer Science Department, Stanford University, 1978.

[141] R. Yang. P -P ro log: A  P a r a lle l  logic P r o g r a m m in g  L a n g u a g e  a n d  i ts  I m p le m e n ta t io n .  

PhD thesis, Keio University, 1986.

[142] J. Zobel. Derivation of Polymorphic Types for Prolog Programs. Technical Re

port 86/19, Department of Computer Science, University of Melbourne, Melbourne, 

Australia, 1986.

[143] J. Zobel. Derivation of Polymorphic Types for Prolog Programs. In J.-L. Lassez, 

editor, L ogic  P ro g ra m m in g , P ro ce ed in g s  o f  th e  F o u r th  I n te r n a t io n a l  C o n fe r e n c e , vol

ume 2, pages 817-838, Cambridge, Mass, USA, 1987. MIT.


