
J. LOGIC PROGRAMMING 1990:X:121-144 121

LOGIC PROGRAMMING FOR REAL-TIME CONTROL OF
TELECOMMUNICATION SWITCHING SYSTEMS

NABIEL A. ELSHIEWY

D An experiment using logic programming in the specification and implemen-
tation of a telecommunication switching system is reported, and one of the
main modules in the system, a telephone-line controller, is described in
detail as an illustrative example. The system is described in terms of
transition relations in a labeled transition system. The programming lan-
guage used is a variant of the parallel logic language PARLOG augmented
with annotations to express timing constraints. The operational model of
PARLOG is modified to handle time by allowing each goal-reduction process
in a query to maintain its own logical clock, which can be read and set by
the goal-reduction process itself. A metainterpreter is given to describe the
operational behavior and an implementation scheme for the language. a

1. INTRODUCTION

A telecommunication switching system is a typical example of an embedded
real-time computing system. It is embedded because the computing system is a part
of a larger system and is in charge of controlling and monitoring physical processes
and devices external to it. A real-time computing system often performs a number
of parallel tasks under specified timing constraints interacting with its environment
(subscribers, operators, and other exchanges). This interaction does not intentionally
terminate as long as the system is in use. The system changes status according to
input stimuli, producing output responses within finite and specifiable delays.

The conventional approach to describe such systems is based on finite-state
transition-machine concepts. The system is first specified in terms of a state-transi-
tion-machine description. This description is then translated into explicit hand-coded
programs, which undergo many optimizations for run-time processing. A state-
machine description, although producing efficient programs, is hard to design and to

Address correspondence to Nabiel A. Elshiewy, Computer Science Laboratory, Ellemtel, S-125 25
&vsjii, Sweden,

Received May 1987; accepted May 1988.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1990
655 Avenue of the Americas, New York, NY 10010 0743-1066/90/$3.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81176631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

122 NARIELA.ELSHIEW?

maintain, and modifying the description demands substantial effort. Algebraic
models, e.g., CCS and CSP, provide sophisticated tools for the specification and
analysis of such systems. They cannot, however, be used for producing efficient
programs.

Kowalski’s thesis “algorithm = logic + control” makes logic programming an
attractive alternative for the specification and implementation of real-time control
systems. The use of logic programming promises to allow us not only to describe,
but also to code and possibly optimize, the implementations of a system in the same
framework. One starts with an executable specification which can be transformed
using automatic logical validation techniques into programs having the required
run-time efficiency.

Logic programming is based on the concept of using predicate logic as a
programming language [8] with the resolution principle [ll] as the basic computa-
tional model. PROLOG was the first language to realize, in practice, the concept of
logic programming. An excellent introduction to logic programming and PROLOG
can be found in [13].

PROLOG has proved useful in a variety of computing applications, e.g., natural-
language processing, deductive information retrieval, compiler writing, and knowl-
edge-based systems. In recent years a great deal of research activity has been
concentrated on investigating more efficient implementations of PROLOG and the
design of special architectures which exploit the inherent parallelism in logic
programs; see for example [18] for a survey.

Other investigations concern the extension of logic programming to express
explicit parallel and communicating processes and to provide synchronization
mechanisms between such processes. The most widely known family of these
languages consists of those based on committed choice and stream AND parallelism.
Concurrent PROLOG [14], GHC (Guarded Horn clauses) [17], and PARLOG [2] are
members of that family. An excellent overview of it can be found in [15].

At the Ericsson Telecom Computer Science Laboratory, interest in logic pro-
gramming started in 1982, when a working implementation of the logic-program-
ming language LPL [7] was released. A program written in LPL has been used to
control a local telephone switching system (PABX). The interface with the hardware
was defined with built-in predicates compiled in the LPL system. The experience
gained from this experiment is reported in [3].

More experimental studies have been conducted since, in which we used both
PROLOG and PARLOG on a larger scale than in the LPL experiment [l]. The
conclusion was that the computational model of PARLOG (i.e., committed-choice
stream AND parallelism) is more suitable for use in our application domain and that
we needed to introduce explicit mechanisms to express timing constraints as well as
the handling of erroneous and exceptional cases. It is also important to develop an
environment and tools to support modular organization of programming telecom-
munication applications in the large.

The notion of explicit time is fundamental to distributed computations in general
and to real-time computations in particular. An appropriate concept of time for
distributed computing systems is that time is local for each process in the system
and can be synchronized with the time on other processes.

The notions of time and event are closely related to each other. The conventional
definition of an event is that it represents an action which can change the state of a

REAL-TIME CONTROLOFSWITCHINGSYSTEMS 123

program. Considering the operational view of logic programming, we may intu-
itively assume that a transition from a reduction step in a goal-reduction process to
the next reduction step represents an event and that a single goal-reduction process
is defined as a set of events with a total ordering.

Real-time constraints are often tailored to efficiency and system performance
requirements. Timing constraints may, however, be imposed on the behavior of both
the system and its environment, making demands not only on the rate of system
outputs (responses) but also on the rate of inputs (stimuli) coming from the
environment. It is therefore necessary to be able to express maximum and/or
minimum time limits on interprocess communications, that is, the allowed (maxi-
mum or minimum) time period between the occurrence of two inputs (stimuli) from
the environment or between an output (response) from the system and the next
input (stimulus) from the environment. It is also required to be able to delay an
action for a given period of time or to wait until some specified time is reached.

This paper reports, through a real-world application, an experiment to introduce
the explicit expression of time and timing constraints into the logic-programming
framework. The computational model is based on the process interpretation model
with nondeterministic committed-choice and stream AND parallelism in which each
goal-reduction process in the computational network maintains its own logical clock
which can be read and set by the goal-reduction process itself. The programming
language is a variant of PARLOG augmented with operations to express timing
information.

The rest of the paper is organized as follows: The programming language
PARLOG-RT (Real-rime PARLOG) and its computational model are reviewed, followed
by an overview of the labeled transition system model used to develop our real-time

logic programs. An informal description of a simple telephone switching exchange is
given. Timing primitives are introduced at their place of use during the process of
describing a telephone-line controller, which is one of the main modules in a
switching system. The module is described, using PARLOG-RT notation, in terms of
transition relations in a labeled transition system. A metainterpreter for PARLOG-RT

is then given to describe the operational behavior and an implementation scheme
for the language.

2. THE LANGUAGE PARLOG-RT: AN OVERVIEW

As in PARLOG [2], a program definition is a set of guarded clauses. Using a syntax
similar to that of DEC-10 PROLOG (in which a variable symbol begins with an
uppercase letter and any other symbol begins with a lower case letter) a guarded
clause has the general form:

Head : - Guard_Goals : Body-Goals

where : is the commit operator and the Goals are conjunctions of predicate calls. In
a guarded clause, a conjunction of calls (Cl, C2) will be reduced (evaluated) in
parallel. In cases where it is important to control the order of evaluation (reduction),
the sequential conjunction operator & may be used. In a conjunction of calls (Cl &
C2), Cl must successfully terminate before the evaluation (reduction) of Cl starts.
Shared variables in goals act as communication streams.

124 NABIELA.ELSHIEWY

Only one guarded clause, among the alternative clauses which define a program,
is chosen as a candidate to solve (reduce) a goal. Alternative guarded clauses in a
program definition are separated by either a parallel search operator . or a
sequential search operator ;. The last _ acts as a program definition terminator. A
set of . -separated clauses are searched in parallel to select a candidate clause. If two
alternative clauses are separated by ;, the second clause will not be tried unless the
first one has failed to be candidate. For example, suppose alternative clauses of a
predicate are defined as follows:

Clause_One .

Clause_Two;

Clause-Three.

Then Clause-One and Clause_Two are first searched in parallel for a candidate
clause. Clause-Three is tried for candidacy only if both fail.

For a program clause to be a candidate for selection, both unification of the
clause head with the goal and reduction of all guard goals must succeed. Any
communicated data between conjunctive goals are made visible to the receiving goal
if and only if the reduction of the sending goal results in a commitment (selecting a
goal clause).

Each program definition is accompanied by a mode declaration which defines for
each argument in a clause head an access mode to that argument. A mode
declaration has the form

mode P(M,....,M,).

where P is the predicate name and each Mi (1 I i I k) is either the symbol ?, which
means that the access to a variable appearing in the corresponding position is
restricted to input, or the symbol -, which indicates that access to the variable is
restricted to output.

Using mode declarations, each clause is compiled to a simpler kernel (standard)
form. Input matching and output unification are performed by explicit primitive
calls which are added to the guard and body respectively. This is done as a
compilation phase in which guards are checked for safety. A safe guard is a guard
that cannot bind variables which appear in input arguments.

In addition to asynchronous communication, the back-communication mechanism
is provided to allow for synchronized communication, which is necessary for
resource allocaticn and demand-driven input/output operations. The synchroniza-
tion is provided by allowing an input message to be defined as a structure which
contains an unbound variable among its components with the intention that the
receiving goal process will instantiate this variable to a value. The value is then
made accessible to the sending goal process.

What makes PARLOG-RT is the introduction of time into the computational model
of PARLOG: Each goal-reduction process maintains its own local logical clock. A
logical clock C is maintained by each goal-reduction process G and is represented
by a perpetual successor function over natural numbers. The successor-function
process is running in parallel with the goal-reduction process. The value of the clock
C will change between reductions of the clock reduction process C itself, and
changing C’s value does not itself constitute an explicit event in the goal process G

REAL-TIME CONTROL OF SWITCHING SYSTEMS 125

to which the clock C is attached. During goal reduction, each goal-reduction process
can read its own clock through a display stream. To allow the handling of timing
constraints, each logical clock is supplied with an alarm function which can be set
and read by the owner goal-reduction process through the attached display stream
during goal reduction.

A real-time computing system is modeled as a network of goal-reduction pro-
cesses joined by communication links (shared variables). Each goal-reduction pro-
cess executes an event-driven reduction algorithm where an event is abstracted
either to the arrival of a message or to the attainment of a certain value by the clock
maintained by the goal-reduction process. It is assumed that the different clocks,
maintained by a conjunction of different goal-reduction processes, are running at
the same rate and are synchronized to keep the same absolute time.

To read the current time of the clock during a goal reduction, the primitive
c t i me is introduced. It has the declaration

mode ctime(-I.

Evaluating the goal c t i me(T) succeeds with T instantiated to the value of current
time read from the logical clock maintained by the goal reduction process. The goal
c t i me (T 1 can be called anywhere in a guard or a body part of a clause.

The time value of a logical clock, represented as a perpetual counter, is depen-
dent on the type and speed of the processors used. Assuming that millisecond units
are chosen to represent clock readings, a set of six different postfix operators are
provided, for example, to express timing values in higher units: set, mi n, h r, day,
week, and year. For example, the goal

Fortnight is 2 week

is equivalent to the goal

Fortnight is (2*7*24*60*60*1000>.

Two time guard primitives, to be used only in the guard part of a program clause,
are provided to express timing constraints on input (stimuli). They are described in
their place of use in the description of the main module of our telecommunication
switching system. Other primitives to express timing constraints on the output
(responses) of the system are described later, with examples showing their use in the
timing of tasks in the switching system.

3. PROGRAMS AS LABELED TRANSITION PREDICATES

A promising approach to program development is to start with a rigorous specifica-
tion of a system to be developed, in terms of executable descriptions of the system
behavior. The specification is then subjected to a sequence of transformations to
yield an efficient implementation of the system.

The approach used here to develop our programs is conceptually based on the
structural approach to operational semantics [16]. The structural approach was
originally developed to provide a simple formal framework in which programming-
language semantics are specified in a way that reflects our intuitive understanding of
the program execution. Only interesting execution steps are considered in such
specifications, which are presented in the form of axioms and inference rules guided

126 NABIELA.ELSHIEWY

by the structure of the language. The approach is based to a great extent on
predicate logic and makes intensive use of pattern matching and unification, which
makes logic-programming systems a natural tool for the development, execution,
and validation of structural operational specifications.

In the structural operational approach, a system is described in terms of a labeled
transition system. The behavior of a system (over discrete time intervals) is a
sequence of configurations identified by a transition relation among configurations.
The transition relation shows that when the system is in a configuration C, it can
make a transition (a reduction step) to a configuration C’. The transition is normally
caused by an action which gives information about what went on in the configura-
tion during the transition (internal action) and/or about the interaction between the
system and its environment (external action).

A composite system is specified in terms of the transitions of its components. The
behavior of the individual components is considered to be a part of the system
behavior. Parallelism is modeled in terms of nondeterministic interleaving. Transi-
tions of several components can be combined into one system transition. Some
transitions of an individual component are considered to be caused by communica-
tion actions with other components in the system. Actions related to communica-
tions between nodes in a distributed system are called labels. Nonterminating
systems can simply be described in terms of recursive structures.

In the notation of PARLOG-RT a configuration is represented by a goal which
comprises the state of the system and the relevant data at a particular instance of
time. A transition relation is defined in terms of a predicate (program) in which the
head of a clause represents the configuration before transition and the body
represents the new configuration to which the system is supposed to make a
transition. Alternative program clauses in a predicate definition represents the
different possible transitions related to specific internal and/or external actions at
any particular time. External actions are represented by pattern matching and
unification of the arguments of a goal. Internal actions are guards and other local
computations not observed by the environment. A composite system is defined in

terms of a conjunction of goals.

4. A SIMPLE TELECOMMUNICATION SWITCHING SYSTEM

A telephone switching system is a network of telephone exchanges connected
together in a variety of topological structures. The main task of a telephone
exchange is to provide a subscriber to its services the ability to ring up any other
subscriber connected to any of the exchanges (nodes) of the network by establishing
direct connections between the subscriber terminals. Each subscriber terminal is
connected to one of the (nearest) telephone exchanges by a pair of wires, referred to
as the subscriber line. In addition to carrying speech signals, the subscriber line also
conveys other signalling information to and from the subscriber terminal. The lines
connecting exchanges to each other in the telephone network are referred to as
trunk lines.

A simple model for a telephone exchange with distributed control is shown in
Figure 1. A subscriber-line controller SC is provided for each subscriber terminal in
the exchange. The subscriber-line controller responds to signals from the terminal

REAL-TIME CONTROL OF SWITCHING SYSTEMS

X
Routing Network

/D

F?A
Resource Allocal

1
(

I ! to

0 IC

u oc

FIGURE 1. Structure of a simple telephone exchange.

INCOMING

CALLS

OUTGOING

CALLS

To/From
Other Exchanges

and performs functions required, e.g., to set up and disconnect calls to and from the
associated subscriber terminal. Two trunk-line controllers are also provided: The
controller IC handles incoming call requests from other exchanges, while the
controller OC handles outgoing call requests to other exchanges in the network.

To reduce the cost of establishing connections between lines, the exchange is
equipped with a limited set of resources. There is, for example, a limited set of digit
decoders, of which one is connected to a subscriber line to decode the signals
coming from the terminal while the subscriber is dialing a number. The exchange
also possesses a routing network to establish, on demand, direct speech-path
connections between subscriber or trunk lines. To allocate one of these resources,
subscriber-line controllers communicate their requests to the resource allocator RA.
The resource allocator also keeps a record of information which is of global interest
for the task of connecting subscribers: the local line numbers, the state of subscriber
lines, charging information, etc.

5. THE SUBSCRIBER-LINE CONTROLLER

Each subscriber line has an identity, which corresponds to the telephone number,
and the controller uses input/output streams to communicate with the subscriber
terminal and the resource allocator respectively. This is specified as follows:

mode subscriber_controller(Line-Identity?,

From_Subscriber_Terminal?,

From_Resource_Allocator?,

To_Subscriber_Terminal-,

To_Resource_ALLocator-).

128 NARIEL A.ELSHIEWY

Once a controller is created, it makes a silent transition to its initial configuration
i de 1. which refers to the current state of the subscriber terminal:

subscriber_Controller(Ident, FromTerm, FromResA, ToTerm, ToResAl :-

true : idle(Ident, FromTerm, FromResA, ToTerm, ToResAl.

There are two ways to initiate a call from the idle state:

The subscriber terminal sends an OFFHOOK signal to the controller (generated
when the subscriber lifts the telephone handset). The request is validated first
(the telephone bill may be overdue), and if accepted, the controller requests
the connection of a digit decoder to the subscriber line. The line is referred to
as an A party line.

A SEIZE signal is sent by the resource allocator (another subscriber requests
communication). A ring current is sent to the subscriber terminal, at which the
bell starts ringing to announce that communication is requested by another
line. In that case, the subscriber line is referred to as a B party line:

mode idle(Ident?, FromTerm?, FromResA?, ToTerm-, ToResA').

idle(Ident, Coffhook(FromTerm1, FromResA, ToTerm, ToResAl :-

may_callCType), var(FromResA):

ToResA = CgetDigDCIdent, Type)lToResAll,

a_partyCIdent, FromTerm, FromResA, ToTerm, ToResAl).

idle(Ident, FromTerm, CseizelFromResAl, ToTerm, ToResAl :-

true : ToTerm = CringcurrentlToTermll,

b_partyCIdent, FromTerm, FromResA, ToTerml, ToResAl.

The goal vat-(F romResA1 in the first clause above expresses an explicit priority
constraint imposed on the selection of a clause if both clauses are candidates at the
same time. This means that completing a call connection in progress is favored over
starting a new one.

6. THE CALLING A-PARTY-LINE CONFIGURATION

If the controller is in an A-party-line configuration and the connection of a
digit-decoding resource is positively acknowledged by the resource allocator, the
terminal receives a dial tone. If no digit decoder is available at the time of request,
the subscriber is informed by a busy signal and is expected to replace the telephone
handset, ending the service. The subscriber may also replace the handset sponta-
neously, which results in sending an ONHOOK signal from the subscriber terminal
indicating that service is no longer needed. In that case, the controller releases any
allocated resources, marks the subscriber line free, and makes a transition back to
the i d le configuration, waiting there for new requests to come. Note that the
ONHOOK signal (replacing the handset) can be sent at any time during the call setup

REAL-TIME CONTROL OF SWITCHING SYSTEMS 129

procedure:

mode a_party(Ident?, FromTerm?, FromResA?, ToTerm-, ToResA-1.

a_party(Ident, FromTerm, CdonelFromResAl, ToTerm, ToResAl :-

true : ToTerm = CdialtonelToTermll,

first_digit(Ident, FromTerm, FromResA, ToTerml, ToResA,

Register).

a_party(Ident, FromTerm, CunablelFromResAl, ToTerm, ToResAl :-

true : ToTerm = CcongestiontonelToTermll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl.

a_party(Ident, ConhookJFromTerml, FromResA, ToTerm, ToResA) :-

true : ToResA = Cfree(Ident)lToResAll,

idle(Ident, FromTerm, FromResA, ToTerm, ToResAl).

The reader may notice that there is no need to impose any priority constraints on
the choice of a candidate clause here. If one of the first two clauses is a candidate
clause and the third clause is also a candidate, it doesn’t matter which one is chosen.
The call service will be terminated in any case.

6. I. Signals Must Arrive in Time

The expected response from the subscriber terminal is to enter the first of the
sequence of digits referring to the called-subscriber (the B-party-line) number. The
digit is stored in a register, and its value is sent to the resource allocator for analysis.
Because the controller has allocated a shared resource (the digit decoder), waiting
for the subscriber to start dialing is limited to (say) 45 seconds. If the time limit
elapses with no action detected from the subscriber side, the service is aborted and
allocated resources are released. It can be also that the subscriber is provided a
hot-line service, which means that if the subscriber hasn’t started dialing a number
within (say) 5 seconds, the controller will automatically request connecting the
subscriber line to a predefined B-party line.

To express timeouts (maximum time limits) on input arguments of a clause, the
a f te r annotation is introduced, to be used only in the guard part of a clause:

mode after(?).

The appearance of a time-guard annotation after (T 1 in the guard part of a
program clause will cause the resolving (candidate-clause selection) process to

consider timing. T is instantiated to an integer value representing a time limit. The
alarm function of the attached clock is set to signal an alarm when the time-limit
period has elapsed.

Input matching and evaluation of other guard goals (if any) in the time-guarded
clause are performed, in parallel, according to normal evaluation rules. If the clock
signalled timeout while the input matching is suspended, the time-guarded clause is
a candidate clause. In the presence of other guard goals in the clause, they must
either succeed or suspend but not fail for the clause to be a candidate. If input
matching succeeds first, the clause is a noncandidate clause.

130 NABIEL A. ELSHIEWY

We left our subscriber line controller in the state of waiting for the first digit to
be dialed. The controller is provided with a register for storing the decoded number
as dialed:

mode first_digit(Ident?, FromTerm?, FromResA?, ToTerm-,

ToResA^, Register?).

If the subscriber has started dialing, the dial tone is stopped, and after storing the
dialed digit in the number register, the resource allocator receives the new value
stored in the register for analysis. The controller then moves to the nex t_di gi t
state configuration. The subscriber may also replace the handset, terminating the
service. The dial tone is stopped and the resource allocator is requested to release
any allocated resources and mark the subscriber line free. The controller moves back
to the i d 1 e configuration, ready for new call requests:

first_digit(Ident, Cdigit(D)JFromTerml, FromResA, ToTerm, ToResA,

Register) :-

true : ToTerm = CstoptonelToTermll,

store_digit(D, Register, Registerl),

ToResA = CanalyseCIdent, Registerl)lToResAll,

next_digit(Ident, FromTerm, FromResA, ToTerml, ToResAl,

RegisterI).

first_digit(Ident, ConhooklFromTerml, FromResA, ToTerm, ToResA,

Register) :-

true : ToTerm = EstoptonelToTermll,

ToResA = Cfree(Ident)lToResAll,

idle(Ident, FromTerm, FromResA, ToTerml, ToResAl).

Two timeouts are watched: one for a hot-line connection if such service is provided,
and one for the maximum time given to the subscriber to start dialing a number:

first_digit(Ident, FromTerm, FromResA, ToTerm, ToResA, Register) :-

Hot-Limit is 5 set, after(Hot_Limit), hot_line(B_party_No):

ToTerm = CstoptonelToTermll,

ToResA = CanalyseCIdent, B_party_No)(ToResAll,

next_digit(Ident, FromTerm, FromResA, ToTerml, ToResAl,

B-party-No).

first_digit(Ident, FromTerm, FromResA, ToTerm, ToResA, Register) :-

Dial-Limit is 45 set, after(Dial_Limit):

ToTerm = Ctimeout_tonelToTermll,

ToResA = Crelease(Ident)lToResAll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl).

If the subscriber is provided a hot-line service and no dialing takes place during 5
seconds, the dial tone is stopped and the predefined B-party-line number is sent to

REAL-TIME CONTROL OF SWITCHING SYSTEMS 131

the resource allocator to be analyzed and seized, if possible, for connection. If
hot-line connection service is not available and 45 seconds have elapsed without
dialing, the subscriber receives a timeout tone message and a request is sent to the
resource allocator to release any allocated resources. The controller moves then to
the configuration te rmi na te, where the expected action is that the subscriber
replaces the handset (an ONHOOK signal is received by the controller).

6.2. Digit Reception and Number Analysis

As shown above, the service can only proceed if a digit is received by the controller
or the subscriber has requested a hot-line connection. The controller makes a
transition to the nex t_di gi t reception configuration, in which it watches for the
result of the number analysis and reacts accordingly.

The resource allocator receives the value of the number register, the number is
analyzed, and the result of the analysis is sent to the subscriber controller. The
possible results are: the subscriber has dialed a number which is not in use, the
number is correct but the B-party line is engaged in another call, or the resource
allocator is unable to find a free speech path connection in the routing network. In
any of the three cases the controller responds with the appropriate message and
makes a transition to the terminate configuration, waiting there for the subscriber to
replace the handset:

mode next_digit(?, ?, ?, ^, ^, ?I.

next_digit(Ident, FromTerm, Cunused(FromResA1, ToTerm, ToResA,

Register) :-

true : ToTerm = Crecorded_message(unused_number)lToTermll,

ToResA q Crelease(Ident)lToResAll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl).

next_digit(Ident,FromTerm,CengagedlFromResAl, ToTerm, ToResA,

true :

Register) :-

ToTerm q CbusytonejToTermll,

ToResA = Crelease(Ident)lToResAll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl).

Next_digit(Ident, FromTerm, CunablelFromResAl, ToTerm, ToResA,

Register) :-

true : ToTerm q CcongestiontonelToTermll,

ToResA q Crelease(Ident)lToResAll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl).

There are two other possible results of number analysis. The first is that the
B-party-line number received is correct, the line is free, and the allocator succeeds in
allocating a speech-path connection between the lines. Then the controller sends a
ring tone to the associated subscriber terminal and makes a transition to the
connect i ng configuration where the connection can be established. The second

132 NABIELA.ELSHIEWY

possible result is requesting more digits to complete a B-party-line number:

next_digit(Ident, FromTerm, CavailablejFromResAl, ToTerm, ToResA,

Register) :-

true : ToTerm = CringtonelToTermll,

connecting(Ident, FromTerm, From ResA, ToTerml, ToResAl).

next_digit(Ident, FromTerm, CmorelFromResAl, ToTerm, ToResA,

Register) :-

true : next_digit(Ident, FromTerm, FromResA, ToTerml, ToResAl).

If more digits are required to complete the number or if the subscriber replaces the
handset to terminate the call request, two clauses are defined similar to the first two
clauses of f i r s t _d i g i t above. The only difference is that there is no need to send
a s toptone message to the subscriber terminal.

To enable releasing the allocated resources if the subscriber gives up the service
request without replacing the handset, a time limit is imposed on waiting for the
next digit to arrive, say, 20 seconds:

next_digit(Ident, FromTerm, FromResA, ToTerm, ToResA, Register) :-

Dial-Limit is 20 set, after(Dial_Limit):

ToTerm = Ctimeout_tone(ToTermll,

ToResA = Crelease(Ident)lToResAll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl).

If the time period has elapsed, the controller informs the subscriber terminal and
requests the release of allocated resources, making a transition to the te rmi na te
configuration.

4.3. Connecting the Two Lines

The ring tone received at the A-party terminal informs the subscriber that it is
ringing at the B-party line. It is expected that the called B-party will lift the handset
to answer the call. In that case the A-party line controller receives an ONLINE signal
from the resource allocator and then puts the line in a speech-condition state. The
controller makes a transition to the a-speech configuration, in which the termina-
tion of service is watched for:

mode connectingt?, ?, ?, ^, '1.

connecting(Ident, FromTerm, ConlinelFromResAl, ToTerm, ToResA) :-

true : ToTerm = Cspeech_condition(ToTermll,

a_speech(Ident, FromTerm, FromResA, ToTerml, ToResAl.

If the called party didn’t answer (e.g., nobody is home), it is not economic to leave
the telephone ringing forever even if the A-party wants to. Therefore, a maximum
time limit (say 5 minutes) is imposed on the ringing session so that resources can be
released if call connection hasn’t happened. The A-party line subscriber may also
give up the request and replace the handset, in which case the call is terminated and

REAL-TIME CONTROL OF SWITCHING SYSTEMS 133

the controller makes a transition to the initial i d le configuration:

connecting(Ident, ConhooklFromTerml, FromResA, ToTerm, ToResA) :-

true : ToTerm q CstoptonelToTermll,

ToResA A = Cfree(Ident)lToResAll,

idle(Ident, FromTerm, FromResA, ToTerml, ToResAl).

connecting(Ident, FromTerm, FromResA, ToTerm, ToResA,

Register) :-

Ring-Limit is 5 min, after(Ring_Limit):

ToTerm = Ctimeout_tonelToTermll,

ToResA = Crelease(Ident)lToResAll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl).

While the two lines are connected, the controller is in the a-speech configura-
tion, expecting to receive an ONHOOK signal terminating the call and causing the
controller to make a transition to the initial configuration idle and to inform the
resource allocator to mark the line free:

mode a_speech(Ident?, FromTerm?, FromResA?, ToTerm-, ToResA").

a_speech(Ident, ConhooklFromTerml, FromResA, ToTerm, ToResAl :-

true : ToResA = Cfree(Ident)lToResAll,

idle(Ident, FromTerm, FromResA, ToTerm, ToResAl).

a_speech(Ident, FromTerm, CoffLinelFromResAl, ToTerm, ToResA) :-

true : watch a speech(Ident, _- FromTerm, FromResA, ToTerm, ToResAl.

In many telephone systems, the B-party is allowed to replace the handset during
a call without causing disconnection (termination) of the call. The B-party can lift
the handset again and still be able to continue the ongoing call (e.g., the B-party
may move to another room, using a different telephone set connected to the same
line). In that case the A-party line controller receives an OFFLINE-signal and makes a
transition to a watch a speech configuration: _ -

mode uatch_a_speech(?,?,?.^,^).

watch_a_speech(Ident, FromTerm, ConLinelFromResAl, ToTerm, ToResAl :-

true : a_speech(Ident, FromTerm, FromResA, ToTerm, ToResA).

watch_a_speech(Ident, Conhookl(FromTerm1, FromResA, ToTerm, ToResA) :-

true : ToResA = Cfree(Ident)lToResAll,

idle(Ident, FromTerm, FromResA, ToTerm, ToResAl).

watch_a_speech(Ident, FromTerm, FromResA, ToTerm, ToResA) :-

Watch-Limit is 90 set, after(Watch_Limit):

ToTerm = Ctimeouttone(ToTerml1,

ToResA = CreLease(Ident)lToResAll,

terminate(Ident, FromTerm, FromResA, ToTerml, ToResAl).

134 NAHIELA.ELSHIEWY

The A-line controller may receive an ONLINE signal announcing that the B-party is
back with the headset in hand, leading to a transition back to the a-speech

configuration. The B-party may also intentionally terminate the call by replacing the
hand-set first. The A-party is then expected to replace the handset also. If for some
reason the A-party didn’t replace the hand-set and a time period of say 90 seconds
has elapsed, then the allocated resources are released and the A-party is requested to
terminate the call, that is, replace the handset.

7. THE CALLED B-PARTY-LINE CONFIGURATION

The subscriber line controller makes a transition from its i d Le configuration into a
B-party-line configuration, caused by receiving a SEIZE signal from the resource
allocator. The signal is sent if the resource allocator has found that the line is free
and that a speech path could be reserved in the routing network. The B-party-line
controller reacts by sending a ring current to the associated subscriber terminal. The
B-party is expected to answer by lifting the handset (OFFHOOK signal), whereupon
the ring current is switched off and the resource allocator receives an acknowledge-
ment that the subscriber has answered. The new configuration means that the
B-party is in a speech condition. It is also possible that the A-party replaces the
handset, giving up the connection request and resulting in a disconnect command
from the resource allocator. Then the ring current is switched off and the B-party-line
controller makes a transition back to an id Le configuration:

mode b_party(Ident?, FromTerm?, FromResA?, ToTerm-, ToResA-I.

b_party(Ident, CoffhooklFromTerml, FromResA, ToTerm, ToResAl :-

true : ToTerm = CstopringlToTermll,

ToResA = Canswered(Ident)lToResAll,

b_speech(Ident, FromTerm, FromResA, ToTerml, ToResAl).

b_party(Ident, FromTerm, CdisconnectJFromResAl, ToTerm, ToResAl :-

true : ToTerm = LstopringlToTermll,

idle(Ident, FromTerm, FromResA, ToTerml, ToResAI.

Being in a speech condition, the B-party may interrupt (or terminate) the call by
replacing the telephone handset (ONHOOK signalled to the controller). A possible
reconnection of the call (the B-party lifts the handset again) is awaited for a limited
period of time (say 90 seconds):

mode b speech(?,?,?,^,-).

b_speech(Ident, ConhooklFromTerml, FromResA, ToTerm, ToResA) :-

true : ToResA = Cinterrupt(Ident)lToResAll,

watch_b_speech(Ident, FromTerm, FromResA, ToTerm, ToResAl).

b_speech(Ident, FromTerm, CdisconnectlFromResAl, ToTerm, ToResAl :-

true : terminate(Ident, ,FromTerm, FromResA, ToTerm, ToResA).

REAL-TIMECONTROLOFSWITCHINGSYSTEMS 135

To express minimum time limits on the interprocess communication, the time-

guard annotation before is introduced:

mode before(?).

It is used only in the guard part of a program clause. A program clause which has a
before (T > time-guard annotation in its guard part is searched for candidacy as
follows: T is instantiated to an integer value representing a time limit. The alarm
function is set to the given time-limit value. If input matching succeeds, the
time-guarded clause is a candidate clause. Note that if there are other guard goals in
the candidate clause, they must also succeed. If an alarm is signaled while input
matching is still suspended, the time-guarded clause fails to be a candidate.

If the B-party lifts the handset (OFFHOOK) before the watching time limit has
expired, the call can be reconnected again:

mode watch_b_speech(?,?,'?.',^).

watch_b_speech(Ident, CoffhookJFromTerml, FromResA, ToTerm, ToResA) :-

MaxTime is 90 set, before(MaxTime), var(FromResA):

ToResA = Canswered(Ident)(ToResAll,

b_speech(Ident, FromTerm, FromResA, ToTerm, ToResAl).

atch b speech(Ident, __ FromTerm, CdisconnectlFromResAl, ToTerm, ToResA) :-

true : ToResA = Cfree(Ident)lToResAll,

idle(Ident, FromTerm, FromResA, ToTerm, ToResAl).

The B-party may proceed to terminate the call by replacing the handset first. In
that case the subscriber lines are disconnected either when the A-party replaces the
handset or when the resource allocator discovers the intentions of the B-party (by
watching the time from the reception of the INTERRUPT signal from the B-party until
Ma xT i me has elapsed).

During this procedure, the B-party may lift the handset (OFFHOOK) with the
intention to request a new call connection (identified in this case as an A-party). The
OFFHOOK signal has, therefore, two different interpretations, depending on when it
arrives. If the OFFHOOK signal arrives before timeout, it is interpreted as a request to
reconnect a call in progress, If it arrives after timeout or call disconnection, it means
a new call connection request. Note that if the OFFHOOK signal arrives after the time
limit for watching has elapsed, it may be detected when the controller is back in the
idle configuration. This motivates the introduction of the before time guard and
the preference for its use instead of an a f te r time guard.

We end up the description of our subscriber-line controller by showing the
transition relation between a t ermi na te configuration and an i d 1 e configuration.
The expected actions are that the subscriber replaces the telephone handset and that
the resource allocator will mark the subscriber line free:

terminatecldent, ConhooklFromTerml, FromResA, ToTerm, ToResA) :-

true : ToResA = Cfree(Ident)lToResAll,

idle(Ident, FromTerm, FromResA, ToTerm, ToResA).

136 NABIEL A. ELSHIEWY

There are many other features and services which may be offered by a
subscriber-line controller and which are not mentioned here, e.g., call forwarding to
another number, automatic callback to busy numbers, multiparty (conference) calls
in which more than two subscribers are engaged in the call, charging and billing
functions, etc.

8. MORE TIMING CONSTRAINTS

It can be necessary to delay an action for a given period of time or to wait until
some specified time is reached. This usually affects the evaluation of goals in the
body part of a program clause, that is, timing constraints on outputs (system
responses).

If it is required to delay the evaluation of a goal for a given period of time
relative to current time, the de lay metapredicate is introduced:

mode delay(Period?, Goal?).

It takes as its first argument the delay-time value, and as its second argument a goal
to be evaluated when the delay time is expired.

The de 1 ay metapredicate can be defined in terms of a time-guarded clause with
an a f t e r time guard as follows:

delay(Period, Goal) :-

aftertperiod) : call(GoaL).

The use of the delay metapredicate in our exchange is shown in the following
example: Assume that subscribers are charged for telephone services four times a
year. A recursively defined process, which handles collecting charging data and
making the invoice in due time, may have the following conjunction of goals in the
body of one of its program clauses:

Quarter is 13 week, deLay(Quarter, mk_invoice(Line_Ident))

The first time the de 1 ay metagoal is reduced, it will wait for 13 weeks before the
goal m k_ i nvo i c e is evaluated (reduced). A further recursive call will cause another

13-weeks delay, causing the required effect.
There are cases where evaluating a goal has to wait until a prespecified time is

reached. This can be expressed using the de 1 ay metapredicate after computing the
delay time period relative to current time of starting goal reduction. It can, however,
be convenient to provide another metapredicate to express such cases:

mode at(Time?, Goal?).

The goal at(FutureTime, Wai tingGoa1) waits until the value of the current
time is equal to the value bound to Fu tureTi me to reduce the Wa i t i ngGoa 1. The
at goal fails if the value bound to Fu tureTi me is less than current time; otherwise
it always succeeds.

Assuming that time reference and conversion are provided, we can define a
functor (data constructor)

date(870425,073000)

which represents the date of a day (a sequence of three digit pairs: year, month, and

REAL-TIMECONTROLOFSWITCHINGSYSTEMS 137

day) and the time on that day (a sequence of three digit pairs: hour, minute, and
second) at which a subscriber requested a wake-up service. The metagoal

at(date(870425,073000), ring(LineIdent,

recorded_message(wake_up)ll

waits until the given time in the goal matches the current time and reduces itself to
the goal given in its second input argument, which is reduced, with the effect of
ringing the given subscriber line number to deliver a recorded wake-up message.

The at meta-predicate can be defined in terms of the de lay metapredicate as
follows:

at(AbsTime, Goal) :-

true : ctime(TimeNow),

relate(TimeNow, AbsTime, RetTime),

delay(RelTime, Goal).

-assuming that the goal relate(TimeNow, AbsTime, RetTime) succeeds
with Re LTi me instantiated to the value of converting AbsTi me relative to Ti meNow.

9. A METAINTERPRETER FOR PARLOG-RT

PARLOG-RT programs are expressed in an intermediate form between source and
kernel PARLOG. A program in PARLOG-RT is defined by declaring its access modes,
which are used, here, for syntactic check purposes. An input variable (a variable
which occurs inside a head argument with input mode) may appear anywhere in the
clause. The appearance of an output variable (the variable which occurs inside a
head argument with output mode) in the guard part of a clause is illegal (output
variables which are arguments of a guard call can be renamed and unified after
commitment in the body part). This means that output unification may only appear
in the body part of a clause. Instantiating input variables is achieved by input
matching (one-way unification), while the instantiation of output variables employs
full unification (using the full unification primitive = [5]).

9. I. Distributed Logical Clocks

Each goal-reduction process maintains a local logical clock:

mode clock(?).

clock(S) :-

true : clock(0, S).

The logical-clock process takes a display stream S as an input argument and creates
a clock which starts ticking from 0, and which interfaces its owner goal process

138 NABIEL A. ELSHIEWY

through the display stream S:

modeclock(?, ?I.

clock(_, Cl). % discard the clock.

clock(C, Cdisplay(T)ISl) :- % read current time.

true : T=C, succ(C, Cs),

clock(Cs, s).

cLock(C, Cset(T,Alarm)lSl) :- % set andread Alarm.

true : succcc, Cs),

aCarm(T, Alarm),

clock(Cs, S).

clock(C, S) :-

var(S) : succcc, Cs),

clock(Cs, S).

% or just update the clock.

The alarm function, provided with each logical clock, is specified as follows:

mode alarmc?, -1.

alarm(0, S) :- % signal timeout.

true : S=signal.

alarm(C, Alarm) :- % count down the time.

c > 0:

pred(D, Cp),

alarm(Cp, Alarm).

To synchronize a distributed system of logical clocks, assuming that the different
clocks in the system are running at the same rate, the following relation can be
considered as a specification of a simple synchronization algorithm:

mode synchroniset?, ?I.

synchronise(_, Cl). % done.

synchronise(T, CSI IRest :- % create a logical clock.

true : clock(T, Sl),

synchronise(T, Rest).

The predicate synch roni se takes a value T and a list of display stream variables
as input arguments, and is reduced to a conjunction of logical clock processes, each
of which is initially set to the value T and is connected to the goal process which
owns the clock through a display stream S.

In a real implementation, synchronizing clocks may require that, e.g., each clock
process reliably broadcast its clock value to every other clock process in the network
of conjunctive goals. There are many proposed clock synchronization algorithms
which work even in the presence of faults; see e.g. [lo].

REAL-TIME CONTROL OF SWITCHING SYSTEMS 139

The predicates succ and pred are assumed to be provided by the kernel system:

mode succ(C?,Cs-1.

mode pred(C?,Cp^).

They output respectively the successor and the predecessor of a given input value.
These relations resemble a counter connected to the ticks produced by a physical
clock.

9.2. Goal Reduction

To reduce a goal clause P, a goal-reduction process and a logical clock are created to
run in parallel and to be interfaced through a display stream S:

mode reduce(?).

reduce(P) :-

true : clock(S), reduce(P,S).

mode reduce(?,-1.

reducectrue, S) :- % An empty goal

true : S=Cl.

reduce((P1, P2), S) :- % Parallel conjunction

true : S=Cdisplay(T)l,

synchronise(T, CSI, S211,

reduce(P1, Sl),
reduce(P2, S2).

reduce((P1 & P2), S) :- % Sequential conjunction

true : reduce(P1, Sl)
& reduce(P2, S2),

concat(S1, S2, S).

reduce((ctime(T)), S) :- % Read the clock

true : S=Cdisplay(T)l.

reduce(P, S) :- % System-defined goal

built-in(P) : S=Cl, call(P).

reduce(P, S) :- % User-defined goal

c lauses(P, Clauses) :

S=Cdisplay(T)ISll,

resolve(P, Clauses, T, Body),

reduce(Body, Sl).

The following predicates are assumed to be provided by the kernel system:

mode clauses(P?,S^).

reads and collects a user-defined predicate P and produces at S the AND-OR tree

140 NABIELA.ELSHlEWY

structure of that predicate. If an after or before goal appears in a guard part of
a clause, the clause head takes the form af ter(T,H) or before(T,H) where T is
the timing parameter and H is the clause head.

mode buiLt_in(P?).

succeeds if P is a predefined predicate in the system.

mode caLL(P?).

is a metapredicate which is reduced to the given goal P. It succeeds if the reduction
of P succeeds.

The reduction of an empty goal always succeeds. Each subgoal in a parallel
conjunctive goal is reduced, independently in parallel, and a system of synchronized
clocks is created in which each subgoal has a clock attached to it. In a sequential
conjunctive goal, subgoals are reduced in sequence one after the other; each has a
locsl display stream interfacing the clock. All local display streams are concatenated
together into the clock display stream in the same order as the sequential conjunc-
tive goals. The concatenation operator is coded as follows:

mode concat(?,?,^).

concat(C1, Ys, Zs) :-

true : Zs=Ys.

concat(CXIXs1, Ys, Z) :-

true : Z=CX1Zsl, concato(s, Ys, Zs).

Reading the time is achieved by sending a display-time command to the clock as a
structure with a variable argument. Using the back-communication mechanism, the
goal is reduced with the variable instantiated to the clock’s current time value. A
built-in system-defined goal is reduced by a metacall to it. In the case of a
user-defined goal, only one clause, of all clauses defining the unifying predicate,
must be chosen for reduction. This is resolved by nondeterministic guarded choice
in which goal-head matching and the guard part of a clause must succeed for the
clause to be a candidate of choice. It is assumed that the body of the clause which
reports candidacy first is chosen for reduction. All other candidates are ignored.

9.3. Resolving Guarded Choice

It is required that all clauses which define a program be present at the time of
interpretation and that they be joined to each other through the search operators
(. or ;) in an AND-OR tree structure. The search for a candidate clause is performed
in parallel except if sequential search is forced by the sequential search operator ;.
For a single clause, the goal new_va rs produces a new copy of the clause with new
variables in it. The goal commi t (described below) tries to unify the goal with the
head of the copied clause and to reduce the guard part of the copied clause. If
commi t succeeds the goal, reso Lve returns the body of the copied clause:

mode resoLve(3 3 7 -1. ',',',

resoLve(P, clause(C), T, Body) :- % Single clause

new_vars(C, Cn), Cn=(H:- G:B),

cLock(T, Sm), commit(P,H,G,Sm):

Body=B.

REAL-TIME CONTROL OF SWITCHING SYSTEMS 141

resoLve(P, (Cl. C2), T, Body) :- % Parallel search:

resoLve(P, Cl, T, B): 48 Resolve both the first

Body=B. 5% and

resoLve(P, (Cl. C21, T, Body) :-

resoLve(P, C2, T, B):

Body=B.

5% the second in parallel

resoLve(P, (Cl; C21, T, Body) :-

resoLve(P, Cl, T, B) :

Body=B;

% Sequential search:

% Resolve the first

resoLve(P, (Cl; C2), T, Body) :-

resoLve(P, C2, T, B):

Body=B.

% otherwise

% the second

9.4. Input Matching and Guard Evaluation

The choice of a candidate clause is committed to the clause of which both input
matching and guard evaluation succeed first. Both input matching and guard
evaluation proceed in parallel. To match a goal and a clause head we assume the
following primitive is provided:

mode C=(TL^, Tr?).

It is a matching (one-way unification) primitive which conveys only data directed
from the right-hand-side term T r into the left-hand-side term T I. A call T L < = T r
unifies T L and Tr by binding variables in T L so that T L and Tr are syntactically
identical. If the call could proceed only by binding variables in Tr, it suspends. The
call fails if both terms are nonunifiable.

To handle timing constraints on the inputs the commi t predicate is specified as

follows:

mode commit(3 3 9 -1. '1'1'1

commit(P, after(T, HI, G, S) :- % Late input matching

true : S=Cset(T, ALarmIlSgl,

check_commit(ALarm, P, H,

G, Sg, timeout).

commit(P, before(T, HI, S) :- % Early input matching

true : S=Cset(T, Alarm11 Sgl,

check_commit(ALarm, P, H,
G, Sg, committed);

commit(P, H, G, S) :-

true : H <= P, reduce(G,S).

% Otherwise, normal

142 NABIELA.ELSHIEWY

If matching a clause head with a calling goal is time-guarded, the commi t predicate
sets the clock alarm and checks the commitment. An after guarded commitment
succeeds only if the alarm is notified first (time-out). A before guarded commit-
ment succeeds only if both the matching and guard evaluation succeeded before the
clock alarm. To match and evaluate the guards while watching the clock alarm the
following predicate is defined:

mode check_commit(?,?,?,?.^,^).

check_commit(signal, _, _, _, _, Result) :- % Alarmsignals

true : Result = timeout.

check_commit(_, P, H, G, S, Result) :- % Matched in
time

new_vars((H,G), (Hn,Gn)),

Hn <= P, reduce(Gn,S):

H q Hn, Result = committed.

If the clock signals alarm, the first clause is a candidate to bind Resu 1 t to
t i meou t. If both matching and guard evaluation succeeded before any alarm was
signaled, the output variable Resu 1 t is bound to commi t ted in the second clause.
The reason for making a fresh copy Hn of the input argument H, with new variables
in it, is to ensure the guard-safety property of PARLOG programs.

The evaluation of the guard call (H < = P) may result in binding variables in H,
which is not allowed in PARLOG. As a consequence, variables in G must also be
renamed in the same operation to ensure that any common variables in G and H will
also be common after renaming. Making use of PARLOG'S back-communication
mechanism, the unification (H = Hn) in body part allows any possible variable
substitutions to appear in H as an expected result of the input matching operation.

10. CONCLUSIONS AND FURTHER WORK

We have presented a language called PARLOG-RT which extends the parallel logic
language PARLOG to enable logic programming of real-time computations. The
operational model of the language extends that of PARLOG by allowing each goal
reduction process, in a network of goals, to maintain its own logical clock. Temporal
annotations, which make use of the time information available, were introduced to
allow the expression of time and timing constraints on both the reception and
sending of data between communicating processes (goals).

We have shown that the notions of time and event can be expressed in the
framework of the process interpretation of Horn-clause logic with no need to
introduce modal or temporal logic operators. A metainterpreter for the language
PARLOG-RT has been defined to illustrate the computational model and to describe
an implementation scheme for the language.

We believe that the system of distributed clocks can easily be mapped into any
architecture which supports synchronized interprocess communication. A proof that
the system of distributed logical clocks satisfies Lamport’s clock conditions [9] for
correctness and synchronization is given in [4].

The notation of the language PARLOG-RT has been used to describe a subscriber-
line controller of a telephone switching system in terms of a labeled transition

REAL-TIMECONTROLOFSWITCHINGSYSTEMS 143

system which truly captured the interesting aspects of the system behavior. We have
used a pragmatic approach to the development of programs in our experiment. The
PARLOG-RT interpreter has been modified in much the same way as the browsing
simulator described in [6] to allow for user intervention to control and explore
interesting transitions in the specified system behavior. In a program clause, actions
which cause transitions between configurations can be annotated as user options.
The annotated actions may be input data (stimuli) or time guards. Other types of
actions can also be annotated as user options, if desired, as long as they are placed
in the guard part of a program clause.

In running the specification, the interpreter displays, for each transition. a list of
all possible actions which may cause a transition from the current configuration (the
current goal to be reduced) to another configuration. After the user has chosen an
action, the system makes a transition to the appropriate configuration, and a new
list of possible actions is displayed. A user choice can be undone, so that the user is
enabled to explore other possible transitions caused by different actions. This
approach was also very helpful in debugging the system specification.

A drawback with this approach is that when the system and its interacting
components grow large, the list of actions can be too long for users to be able to
manage the exploring and validating of all possible transitions. A possible solution
is the application of expert-system techniques along the lines of [12]. The domain-
specific knowledge of the behavior of the system is stored in terms of suitable
structure in a knowledge base. A specialized PARLOG-RT metainterpreter acts as an
inference engine which through interaction with the knowledge base can automati-
cally explore the possible transitions, possibly with guidance from a human applica-
tion expert. When a satisfiable specification is obtained, the program is compiled
and optimized into efficient code using special compilation algorithms and optimiza-
tion techniques [5].

In the course of describing the telephone switching system, it was observed that
because all subscriber and trunk lines are competing for the allocation of resources
by sending request messages to the resource allocator, the allocator must use a fair
strategy for responding to such requests. The natural way to forward the different
requests is to merge all streams conveying those requests into one input stream to
the resource allocator. If one stamps each request with the time of its arrival into the
associated stream, a fair merge operator can be defined [4] to merge the requests for
resource allocations in the order of their arrival times.

I wish to thank Bjarne Dicker, head of Ellemtel’s Computer Science Laboratory, for encouragement and
support. I am grateful to Seif Haridi for his help and valuable advice. I wish also to thank Steve Gcgoty

for his careful reading of many drafts of the paper and his insightful comments, which led to many

corrections and substantial improvements. Thanks are also due to Lars-Erik Thorelli, Ian Foster. Joe

Armstrong, Carl W. Welin. and Peter “Per” Brand for reading and commenting earlier drafts of this

paper. Special thanks to Robert Virding for a fruitful collaboration on the implementation of PARLOG

and related issues.

REFERENCES

1. Armstrong, J. L., Elshiewy, N. A., and Virding, R., The Phoning Philosophers Problem or
Logic Programming for Telecommunications Applications, in: Proceedings of 3rd IEEE
Symposium on Logic Programming, Salt Lake City, 1986, pp. 28-33.

144 NABIEL A. ELSHIEWY

2.

3.

Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic, ACM Trans.
Programming Languages and Systems 8(1):1-49 (1986).

Dacker, B., Elshiewy, N. A., Hedeland, P., Welin, C.-W., and Williams, M., Experiments
with Programming Languages and Techniques for Telecommunication Applications, in:
Proceedings of 6th International Conference on Software Engineering for Telecommunica-
tion Switching Systems, Eindhoven, 1986.

4. Elshiewy, N. A., Time, Clocks and Committed Choice Parallelism for Logic Program-
ming of Real Time Computations, Research Report R-86013, Swedish Institute of
Computer Science (SICS), 1986.

5.

6.

Gregory, S., Parallel Logic Programming in PAR LOG: The Language and Its Implementa-
tion, Addison-Wesley, 1987.

7.

Gregory, S., Neely, R., and Ringwood, G. A., PARLOG for Specification, Verification and
Simulation, in: Proceedings of the 7th International Symposium on Computer Hardware
Description Languages and Their Applications, North-Holland, 1985, pp. 139-148.

Haridi, S. and Sahlin, D., An Abstract Machine for LPLO, Research Report TRITA-CS-
8302, Dept. of Telecommunications and Computer Systems, Royal Inst. of Technology,
Stockholm, 1983.

8.

9.

10.

11.

12.

13.

14.

15.

Kowalski, R., Predicate Logic as Programming Language, in: Proceedings of the IFIP 74,
North-Halland, 1974, pp. 569-574.

Lamport, L., Time, Clocks and the Ordering of Events in a Distributed System, Comm.
ACM 21(7):558-565 (1978).

Lamport, L., Using Time Instead of Timeout for Fault-Tolerant Distributed Systems,
ACM Trans. Programming Languages and Systems 6(2):254-280 (1984).

Robinson, J. A., A Machine-Oriented Logic Based on the Resolution Principle, J. Assoc.
Comput. Mach. 12(1):23-41 (1965).

16.

17.

18.

Sterling, L., Expert System = Knowledge + Meta-interpreter, Technical Report CS84-17,
Dept. of Applied Mathematics, Weizmann Inst. of Science, 1984.

Sterling, L. and Shapiro, E., The Art of Prolog: Advanced Programming Techniques, MIT
Press, 1986.

Shapiro, E., Concurrent Prolog: A Progress Report, IEEE Computer 19(8):44-58 (1986).

Takeuchi, A. and Furukawa, K., Parallel Logic Programming Languages, in: Proceedings
of the 3rd International Logic Programming Conference, London, Lecture Notes in
Comput. Sci. 240, Springer-Verlag, 1986, pp. 242-254.

Plotkin, G., A Structural Approach to Operational Semantics, Lecture Notes, DAIMI
FN-19, Computer Science Dept., Aarhus Univ., 1981.

Ueda, K., Guarded Horn Clauses, in: Proceedings of Logic Programming ‘85, Lecture
Notes in Comput. Sci. 221, Springer-Verlag, 1986, pp. 168-179.

Warren, D. H. D., Or-parallel execution models of Prolog, in: Proceedings of TA PSOFT
‘87, International Joint Conference on Theory and Practice of Software Development. Pisa.
Italy, 1987, pp. 243-259.

