

Proceedings of the third workshop on computersystems

Citation for published version (APA):
Withagen, W. J. (Ed.) (1991). Proceedings of the third workshop on computersystems: research forum on
design, realization and the use of computersystems. Eindhoven University of Technology.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/74a37ed8-7dd7-42a4-8d95-18a19110bf71

Proceedings of the

Third Workshop Computersystems
Research forum on design, realization and use of computersystems

Edited by: W. J. Withagen

Faculty of Electrical Engineering

Eindhoven University of Technology

Eindhoven, The Netherlands

May 15 1991

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Proceedings

Procedings of the third workshop computersystems: research
forum on design, realistation and use of computersystems.
Eindhoven, 16 may 1991/ ed. by Willem Jan Withagen. -
Eindhoven: University of Techonology, Faculty of Electrical
Engineering. -Fig., tab. -
Met lit. opg., reg.
ISBN 90-6144-995-2
NUGI 832
Trew.: computersystemen.

ll

(

'·

•

..

..

I.

This workshop was the third in a. serie of workshops organised by the research forum on design,
rea.liza.tion, a.nd application of computersystems. Currently the forum consists of researchers
of four Dutch universities:

Delft University of Technology

Eindhoven University of Technology

University of Amsterdam

University of Twente

The forum a.lso maintains a mailinglist to aid communication between the researchers. Submis
sion of messages must be directed to:

system-network@d uteca.et.tudelft.nl,

requests for inclusion or removal of this list should be directed to:

system-request@duteca.et.tudelft.nl.

Information about the forum ca.n be requested from the university representatives:

Pieter Hartel11

Ha.ns Mulder
phh@ecs.soton.ac.uk
ha.nsm@duteca..et.tudelft.nl

Amsterdam
Delft
Eindhoven
Twente

Willem Ja.n Witha.gen wjw@eb.ele.tue.nl
Corrie Huijs chuijs@cs.utwente.nl

"Until 8/91 acting representative is Henk Muller, henkmOfwi.uva.nl

The copyrights of the papers included in these proceedings remain with the individual authors.
The authors are encouraged to submit the papers to other (international) conferences or to
journals.

Proceedings a.nd conference information:

Program chair Willem J a.n Withagen
Proceedings Editor Willem Ja.n Withagen

ill

..

,

Table of Contents

Dalia: A Language for the description and Analysis of Digital Systems 1

Henk van der Weij, Eindhoven University of Technology

Parallel Computers for Advanced Information Processing . 17

E. Odijk, Philips Resa.ch la.bora.tories

Parallel Discrete-Event Simulation .. 19

Benno Overeinder, University of Amsterdam

A Partitoning and Redundancy Model for Wafer-Scale Integrated Circuits 31

Ma.rtin F. Beusek.a.mp, University of Twente

Efficient Implementation of High-Level Parallel Symbolic Languages 51

Ma.rk Korsloot, Delft University of Technology

3rd Computersystems Workshop, ma.y 15 1991, Eindhoven. v

DALIA: A Language for the Description and Analysis of
Digital Systems

Henk van der Weij
Eindhoven University of Technology

Faculty of Electrical Engineering
Digital Systems Section

P.O. box 513, 5600MB Eindhoven, The Netherlands

Abstract

DALIA is a formal language for the description and analysis of digital systems at a behavioural
as well as a structural level of abstraction. It is based on a functional style of programming, ex
tended with annotations for indicating system structure, accessability, and signal :flow direction.
Program transformation rules are defined for rewriting DALIA descriptions to behaviourally
equivalent alternatives. Since the same language is used for behavioural and structural descrip
tions, a smooth conversion between them can be made. The language is developed to be used as
a formal basis for automated system design, adopting the following philosophy: First the (infor
mal) requirements for the system to be designed are formalised in the DALIA notation. Next,
the formal specification is stepwise transformed to a structural description of the system reali
sation (typically register transfer or gate level). The latter phase deals with formal descriptions
and transformations, allowing a correctness by construction methodology.

1 Introduction

Nowadays, the technology to physically implement VLSI (Very Large Scale Integration) circuits
has taken a lead on methods to correctly design them. This causes a need for formal design
methods that can be automated and are able to manage the increasing complexity.

In this article, I will concentrate on a design method, and more specifically, a description
language for digital systems. The design method adopted here consists of two main parts: a
specification phase and a realisation phase (figure 1).

I (informal) requirements I

specification phase

I formal specification I
realisation phase

I structural description J

Figure 1: Design phases

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

Specification phase

In the specification phase, the informal requirements for a system to be designed are translated to
a formal specification. This formal specification completely defines the system to be designed1 •

It is important to note that the specification phase can not (and will never be) fully automated.
It can be computer-supported though, but the starting point will always be an informal idea.

Realisation phase

Once a formal description of the system to be designed has been obtained, its realisation can
commence. The essence of the design methodology proposed here is, that this phase will be
completely jom&al, and thus provable correct. The being formal of this phase does not induce
that no human input is required; it only states that the actual transformation of the formal
specification to a realisation is performed mechanically. The designer can 'guide' the process,
and this will even be a necessity in the case of complex designs (which are the ones we want to
deal with).

This translation of a 'high-level' description to a hardware structure is called high-level
synthesis [5, 12].

1.1 Digital system description

When adopting a correctness by construction design methodology, a well defined description
language has to be chosen for the representation of digital systems. System descriptions in this
language must be suited for algorithmic manipulation to enable automation of the design path,
especially the realisation phase.

In this article, a language will be introduced for the representation of digital systems under
design. For this language, a number of general requirements can be stated: it must be

• Implementation independent

• Hierarchical

• General

• Formal

• Automatically processable

Currently used languages do not fulfil all of these requirements. The hardware description
standard VHDL [2J for example, which is directed towards practical system design, is really
useful for describing and simulating digital systems, but hardly analysable in a formal way.
This is due to the large number of constructs, and the fact that it is an imperative language.
Apparently, a more formal basis is needed to fulfil the requirements stated above.

A more formal approach to the modelling of digital systems is the use of formalisms for the
description of communicating processes like CCS [13) and CSP [8). These languages however
are not really suited for description of data processing at a logic level. Extensions have been
made to make these formalisms more practical, like LOTOS [1, 9] which is an extension of CCS.
The basic language however remains action oriented, which makes it difficult to integrate data
structures, while maintaining analysabillty.

1Theoreiically, this mea.ns that the initial informal requirements can be forgotten. They do however provide
non-fu:nctional, but Ullea.ble information like design history a.nd documentation

2 3rd Computersystems Workshop, may 15 1991, Eindhoven.

..

..

..

•

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

Higher-order logic is another approach to digital system description [7]. In higher-order
logic, behaviour of a digital system is defined by predicates on its external lines. A circuit
structure can be represented by the conjunction of predicates of the sub-circuits. Abstraction of
the internal structure is accomplished by existential quantification over the internal lines (14].
Though the principle is very simple, a large class of systems can be described. A disadvantage
is, that expressions tend to expand to large proportions when dealing with complex designs .
Furthermore, it makes use of a discrete time model, whereas it would be desirable to abstract
from time intervals (delay insensitive specification).

Another direction of research is toward description of digital systems using functional lan
guages. The DALIA language also belongs to this class. Functional languages are easy to
analyse, but not directly suited for structural description (like description of hardware architec
tures). In the next section, a closer look will be taken on the application of functional languages
in hardware description.

2 Functional languages and hardware description

In a functional language, programs are described by means of functions. This essentially differs
from the more common imperative approach, as used in languages like PASCAL and C. The
imperative way of programming is induced by the one-word-at-a-time von Neumann concept,
rather than by programmer demands [3]. In software development, the use of an imperative
language can be somehow justified because of its easy implementation on conventional architec
tures. For the description of hardware however, imperative programming unacceptably limits
the flexibility of the language.

Functional languages offer some advantages with respect to imperative languages. They are
better analisable, and inherently capable of describing concurrency (arguments of a function
can be evaluated in parallel). These are very desirable properties for a hardware description
language.

As mentioned before, functional languages do not express structure which is a problem in
case of translating a specification to a hardware architecture. This problem can be solved by
changing the interpretation of function applications. For example, in [10, 15], tail recursion
is interpreted as iteration, and infinite lists as signals. This solution however does not deal
with another problem: the modelling of bidirectional information flow, a common concept in
hardware designs. H this is to be handled in a formal way, other bases than pure functions have
to be used like [4].

Another, more pragmatic approach is to add constructs for indicating structure like in SBL
[6]. This is also the approach adopted for the design of DALIA, since it offers a basis for practical
integration of the language in a hardware environment.

3 An informal introduction to DALIA

DALIA was designed by considering the most elementary characteristics of digital systems in
general. The constructs of the language have been kept simple, in order to ease application of
formal operations on system descriptions.

DALIA is able to describe system behaviour (formal specification) as well as system structure
(architecture description). This makes it possible to use a single language as a description
framework during the system design, avoiding conversion between different languages.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 3

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

In DALIA, digital systems are represented by interacting concurrent processes. A process
is an abstract information processing entity that performs part of the function of the total
system. Processes may contain subprocesses, so a hierarchical system structure can be used.
Furthermore, operations called dependencies have been defined for modelling logic operations.

3.1 Processes

Basically, a DALIA system description consists of a set of rules, defining the allowable transfor
mations of the system. As a simple example, consider the following set of rules:

def (a OR 0) -+ a
def (0 OR b) -+ b
def (1 OR 1) -+ 1
def (NOT 0)-+ 1
def (NOT 1)-+ 0
def (a NOR b)-+ (NOT (a OR b))

These rules define the operations (functions) OR, NOT, and NOR. Expressions are evaluated by
transforming them according to the given rules. An example of an evaluation is

(1 NOR 0) -+ (NOT (1 OR 0)) -+ (NOT 1) -+ 0

By adopting appropriate evaluation conventions, it is also possible to describe hardware-like
structures. For example, an OR gate can be described as

def (OR_GATE a b x)
-+ (OR_GATE a b (a NOR b))

Here a system is defined by a recursive definition. The system itself (NOR_GATE) is just a
parameter, with the property that it 'remains unchanged at the same position' when applying
any of the rules. This is exactly the property of a hardware resource.: it is an unchangeable part
of the system.

To explicitly state that parts of the system are unchangeable, the process concept is in
troduced. A process also permits local variables and data transformation rules, thus hiding
irrelevant information from the outside world. A system description in DALIA consists of a set
of process definitions

system::=
{ proc_def}

In DALIA, processes are the means of structuring system descriptions. A process consists of
three ma.in parts:

• Interface

• Internal variables

• Behaviour description

4 3rd Computersystems Workshop, may 15 1991, Eindhoven.

..

•

,

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

Communication with a process takes place via the interface. The other parts of the process are
invisible from the outside, hiding irrelevant details.

The internal variables determine the state of the process. The values of these variables can
be changed by interaction of the process with its environment.

The description of the process' function is contained in the behaviour definition. Behaviour
is defined by data dependencies between the variables of the process (interface and internal
variables).

A variable will retain its value until it is overwritten, and reading variables is non-destructive.
This provides a memory function, which reflects the register concept a.s known from hardware
implementations.

As an example, the OR_GATE is described by the following process:

def (OR_GATE a b x) =
({ a E ?bit, b E ?bit, x E !bit }

x =(a OR b)

or in expanded form:

def (OR_GATE a b x) =
({ a E ?bit, b E ?bit, x E !bit }

case (a b)
E (bit 0) --+ x=a
E (0 bit) --+ x=b
E (11) --+ x=1

endcase

Some additional notations have been introduced here, like assertions (enclosed by curly brackets),
indicating type and direction of the interface variables, and a case construct. These will be
discussed later.

Another important concept is the subprocess. The use of subprocesses is illustrated by the
following process description of a NOR gate:

def (NOR_GATE a b x) =
[var or_g = (OR_GATE bit bit bit);

{ a E ?bit, b E ?bit, x E !bit }
or_g.a=a I or_g.b=b I x=(NOT or_g.x)

or using an additional subcomponent NOT _GATE with its obvious meaning:

def (NOR_GATE a b x) =
[var i,

or_g = (OR_GATE bit bit bit),
not_g = (NOT _GATE bit bit);

{ a E ?bit, b E ?bit, x E !bit }
or _g.a=a I or _g.b=b I i=or _g.x I
not_g.a=i I x=not_g.x]

Here subcomponents are referred to by variables, and the connection of components is defined by
a list of assignments. The vertical bars stand for asynchronous composition (see section 3.3.3).

3rd Computersystems Workshop, may 15 1991, Eindhoven. 5

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

3.2 Values

The values used in the language are symbolic. All values are either symbols or symbol trees. A
symbol is denoted by an identifier, which will by convention consist of only upper-case characters
or non-letter symbols. A symbol tree is a. structure that contains a. number of branches, that
are in turn symbolic values. A tree is denoted by indicating its structure using round brackets.
Some examples of symbolic values are

SYM
1
(A (B C) D)

(symbol)
(symbol)
(tree)

Symbols do not have a predefined 'meaning'. For example symbol! is just another identifier
for a. symbol. An interpretation can be attached to a. symbol only when operations on it are
defined.

In DALIA, sets of symbolic values play an important role. They are used for specifying guards in
conditional dependencies and for putting constraints on variables (typing). Sets will be denoted
using normal set operators like U , n, and \ . In the notation adopted here, no distinction will
be made between symbols and sets containing only one symbol, to ease notation. For example,
A U B U C denotes the set containing symbols A, B, and C.

3.3 Data dependencies

The behaviour of a. process is defined by its dependencies. Dependencies define how variables
are related to each other. A process can be 'executed' by concurrent evaluation of its data.
dependencies.

Ba.sica.lly, there are two kinds of dependencies: assignment and conditional dependency, which
can be combined using the asynchronous and synchronous composition operators.

3.3.1 Assignment

The assignment attaches the value of an expression to a variable. It acts much like the normal
assignment in imperative languages, but its interpretation differs because dependencies operate
concurrently; it denotes how the current value of a. variable is related to the current value of
other variables in the system. The interpretation will become more clear in sections 3.3.3 and
3.3.4, where composition of dependencies is explained. An example of an assignment is

x =(a b)

which defines variable x to be equal to the combination of variables a and b.

3.3.2 Conditional dependency

Conditional dependencies can be used for the definition of logic operations on symbolic data.
In a. conditional dependency, (part of) the state of a process and its interface is compared to a
set of symbolic values, describing a set of states. Only those subdependencies in the conditional
statement that are attached to a set containing the current value of the selector expression will
be activated. For example,

6 3'"" Computersystems Workshop, may 15 1991, Eindhoven.

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

case (a b)
E (0 0)-+ x=1
E (11)-+ x=O

end case

denotes that the value of x will be 1 if both a and b are zero, and 0 if a and b are both equal
to 1. Otherwise, this dependency does not affect x. Variables unaffected by dependencies will
retain their current value.

3.3.3 Asynchronous composition

With asynchronous composition, dependencies can be combined without specifying synchroni
sation between them. Evaluation of asynchronously combined dependencies is assumed to be
'fair': no statement is made about evaluation order of the dependencies or the time it takes to
evaluate them, but eventually all dependencies will be evaluated. This assumption excludes the
occurrence of livelock.

Though asynchronously combined dependencies are not time-related, they are allowed to
share variables through which communication can take place. It is even possible to synchronise
dependencies by using shared variables, but this is often circumstantial.

An example of asynchronous composition is the following:

y=(u v) I u=x I v=x I x=E

Here u, v, x, and y denote variables, and E denotes a symbol. The corresponding dependency
graph is shown in figure 2. Independently of which evaluation order is applied, the result of the
evaluation will be the same: x, u, v, andy will be equal to E, E, E, and (E E) respectively.

Figure 2: Dependency graph

3.3.4 Synchronous composition

For the synchronisation of dependencies, synchronous composition should be used. In an opera
tional terminology: when evaluating two synchronously combined dependencies, first the result
of evaluating both sides will be calculated, the combined result will be instantaneously applied
on the state space. A synchronous combination can be compared to a transition in Petri nets
[16]. It is used for introducing synchronisation points in the data-flow graph.

An example of synchronous composition is

x=y,y=x

3rd Computersystems Workshop, may 15 1991, Eindhoven. 7

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

Evaluation of this dependency will cause x and y to be 'swapped'. A dependency like this is only
useful when placed within a conditional dependency, since otherwise x andy would be swapped
infinitely which is unlikely to be desired. An example of such an embedded dependency is

caae (x y)
E (0 1)-+ x=y, y=x

endcaae

3.4 Assertions

For analysing descriptions, assertions can be inserted at various places in the process definitions.
An assertion contains predicates on variables. By checking their consistency, processes can be
searched for errors. Also, assertions provide information that can be used to transform processes
(see section 4).

An example of an asserted dependency is

{xEAUB}
case x

E 8 U C-+ y=x
end case

4 Process transformations

A process transformation is a function that transforms a process description to a semantically
equal alternative description [11]. To give an indication of the principle, consider the asserted
conditional dependency of section 3.4. The assertion states that x is a member of set A U B.
The condition within the case dependency specifies the case that x is a member of set 8 U C.
From this, it can be derived that in this specific case x can never be equal to A nor to C. This
means that C can be removed from the set specified in the case dependency.

{xEAUB}
case x

E 8 -+ { x E 8 } y=x
end case

which in turn is semantically equal to

{xEAUB}
case x

E 8-+ y=B
end case

The result of these process transformations is a 'more simple' process, performing exactly the
same function as the original one. This example illustrates just one of the applications of process
transformations.

The aim is to formalise transformations like these, in order to automate the manipulation of
process descriptions. For this, a formal definition of process transformations will be given:

Definition 1 A process transformation is a function t: L-+ L with 'v'leL(C(t(l)) = C(l)). Here
L denotes the set of all possible process descriptions and C : L -+ S a function that maps process
descriptions on their semantics. S denotes the semantic domain of the description language.

8 3rd Computersystems Workshop, may 15 1991, Eindhoven.

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

In the definition above, S is not defined formally since this is out of the scope of this article.
From the definition, it follows that process transformations map descriptions in the lan

guage on other descriptions under invariance of behaviour. They can be used to manipulate
descriptions in a provably correct way. Process manipulations can be used to correctly optimise
systems, transform specifications to architecture descriptions, or prove equivalence between sys
tems. When automating transformations, the risk of introducing errors will be decreased, since
all formal steps are correct by construction.

4.1 Primitive transformations

For transforming processes, definition 1 can be applied. It states that a process may be trans
formed to another process if their semantics are the same. This is however not a suitable
approach for automating process manipulations. The problem is, that first a transformation has
to be proposed, and only afterwards it can be proven correct. Clearly, such a trial-and-error
approach is very inefficient.

So, in attempt to give 'direction' to process transformations, a set of primitive process trans
formations will be derived from definition 1 and the semantics definition of the language. Com
plex transformations can be performed by repeatedly applying primitive transformations.

A primitive process transformation rule will be denoted in terms of an attribute grammar for
the language. An attribute grammar [18} is a grammar definition, with attributes attached to
its elements (terminals or non-terminals). Attributes describe properties of these elements that
ca.n not (or not easily) be described in terms of syntax. For example, a variable identifier may
have an attribute attached to it, denoting its type. The value of the attributes can be derived
from other attributes in the parse-tree of a program. Relations between attributes are defined
by attribution roles attached to the syntax-definition rules.

A complete attribute grammar of the language will not be given here. Only attributes
occurring in transformation rules will be explained. Transformation rules will be denoted as
follows:

stroct1 +-+ stroc~

{ condition }

Here stroctt and stroct2 denote syntax expressions, and condition denotes a statement about
the syntax elements and their attributes that has to hold for the equality to be true.

To achieve full processability of descriptions, the primitive rules must enable the conversion
of any description to any of its semantic equivalents. This property is called completeness [17].

Definition 2 A set of process transformations T is complete if and only if
Vr,meL((C(l) = C(m))::} 3teT•(t(l) = m))

Here T* denotes the collection of functions that can be constructed by composing primitive
transformations (i.e. any sequence too t1 o · · · o tn with ti a primitive transformation).

It is not self evident that such a set of primitive transformations exists, but an attempt has
been made to construct a powerful set, able to accomplish many process transformations. Trans
formations that can not be performed will have to take place using definition 1: by proposing a
new process and proving it equivalent using the formal semantics definition of the language.

4.2 A set of primitive transformations

In the scope of this article, it is not possible to show all primitive transformations defined yet.
Some important ones will be highlighted next.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 9

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

4.2.1 Commutativity

These rather obvious transformations can be described as follows:

That these transformations are valid is clear, since the compositions are in parallel, so no eval
uation sequence is specified.

4.2.2 Synchronisation

This transformation can be used to introduce or remove synchronisation between dependencies:

dept I deP2 +-+ dep1 , deP2
{ dept.USeS ndeJ12.afJects = 0
A deP'J.USes ndePJ.afJects = 0
}

This definition states that synchronisation may be removed or inserted if the dependencies
involved do not make use of variables the other one may change. Here attribute uses contains
the variable identifiers referred to in the dependency, and affects contains the identifiers of
variables that are affected by evaluating the dependency.

An example of a derivation using this transformation is the following:

x=z,y=E,z=F
x=z , z=F , y=E

+-+ (commutativity)
+-+ (synchronisation)

[x=z , z= F] I y= E

4.2.3 Condition calculus

Several rules are defined that deal with conditional dependencies. Some important ones will be
shown here.

One of the most important rules deals with the propagation of conditions from the context into
conditional dependencies:

{ref E S} {ref E S}
case ref case ref

E set E set nS
-+ dep +-+

-+ dep
rest rest

endcase endcase

The next rule states that dependencies can be removed if they will never be active (e denotes
the empty dependency):

{ state E 0} { state E 0}
+-+

dep e_ ___ ___,

10 3rd Computersystems Workshop, may 15 1991, Eindhoven.

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

Here state denotes the collection of all variables within the scope of the process. £ denotes the
empty dependency.

These two rules can also be denoted using an attribute cond attached to each dependency.
This attribute specifies the states in which the dependency may be activated. The notation
using the assertion has been used since it is better readable.

The next rules deal with the removal of parts of the case dependency:

case ref
Eset-+£
rest

end case

case ref
+-+ rest

end case

A rule for creating mutually exclusive cases is the following:

case ref
E set1
-+dePt
E set2
-+ deP2
rest

endcase

case ref
E set1 \ sef.J
-+ dePt
E set2 \ set1

+-+ -+ deP2
E set2 nset1
-+ dep1 I deP2
rest

end case

4.2.4 Other transformations

It is not possible to present all rules defined yet. Other rules take care of operations like

• Removing assignments to unused variables

• Removing declarations of unused variables

• Substitution of defines

• Expansion of subprocesses

• Substitution of variables

In the next section, a sample system description will be transformed, illustrating the use of
process transformation.

4.3 An example

As a simple example to illustrate the use of process transformation, the design of a 3-bit wide
incrementor will be shown (figure 3).
First, the top level of the system will be defined:

3"d Computersystems Workshop, may 15 1991, Eindhoven. 11

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

def (INC3 in out)=
[{ in E int3, out E int3 }

out = (INC in)

INCR3

Figure 3: Incrementor

The function of the incrementor has been specified by using a universal increment function
defined on integer values. The data types (actually sets) used here and in the rest of this
example are defined as

def int = ZERO u (int bit)
def ZERO = (ZERO 0)
def bit= 0 u 1
def int3 = (((ZERO bit) bit) bit)

The values modelled by elements of these sets are defined as follows:

val((r b))= 2val(r) + bitval(b)
val(ZERO) = 0
bit val(0) = 0
bitval(1) = 1

The definition of ZERO is unusual, since it can be rewritten only by using ZERO again. This
is however no problem, because its value is well determined (0). When evaluating dependencies
that make use of ZERO, it will be evaluated only if required.

Function INC can be defined as follows:

def (INC x) =
({X E int }

case x
E (t:int 0)-+ (t 1)
E (t:int 1)-+ ((INC t) 0)

end case

With this last definition, the system has been completed. Expansion can now start by substi
tuting the INC function in INC3. By evaluating the initial assertions (in E int3, out E int3),
consistency of the system can be checked. After some transformations, the result is

12 3rd Computersystems Workshop, may 15 1991, Eindhoven.

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systellls.

def (INC3 in out) =
[{ in E int3, out E int3 }

case in
E (t:int 0) -+ out = (t 1) ·
E (t:int 1)-+ { t E ((ZERO bit) bit)}

out = ((INC t) 0)
end case

By successively substituting INC and expanding the case statements, eventually the following
dependency (in some form) ca.n be derived:

case in
E (((ZERO 1) 1) 1)-+

out=((((ZERO 1) 0) 0) 0)
end case

This causes an inconsistency in the assertions since it was stated that out E int3, and

((((ZERO 1) 0) 0) 0) nint3 =
((((ZERO 1) 0) 0) 0) n(((ZERO bit) bit) bit) =
(((((ZERO 1) nZERO) 0) 0) 0) =
((([(ZERO 1) n(ZERO 0)) 0) 0) 0) =
((((ZERO [1 nO]) 0) 0) 0) =
((((ZERO 0) 0) 0) 0) =
0

This result indicates that an error has been made in the specification. This is indeed the fact,
since the increment of 7 is 8, requiring 4 bits in binary representation. By reconsidering the
initial requirements, it can be decided to 'throw away' the most significant bit or define a four
bit wide output in the system specification.

5 Architecture mapping

The eventual purpose of the description and analysis language is the actual realisation of digital
systems. A realisation may be a software program, but the accent of the description language
is on hardware synthesis.

For translating a system description to a hardware architecture, the processes in the descrip
tion have to be mapped on resources. These resources may be gate-level components or more
complex building blocks like ALU's, memories, or even microprocessors. Within the language,
it is possible to create a model of an architecture, by modelling each resource as a process and
specify the connections between these resource processes by assignments.

The processes occurring in a hardware description are bound to some restrictions that are
inherent to hardware implementation. For example, data. types must be finite and no recursion
or process creation is allowed. If the original description does contain these 'unimplementable'
constructs, they have to be converted. This can be done by evaluating the constraints, that
give a definition of what the process is to expect as its input. By eliminating redundant parts
of constrained processes (like non-occurring data values or recursion), a. finite structure may be
obtained. If not, the system is either unimplementa.ble, or the wrong decisions have been made

3"d Computersystems Workshop, may 15 1991, Eindhoven. 13

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

during its analysis, leading the transformation to a dead point. This points out the necessity of
human intervention during the design.

An architecture description of the incrementor example of section 4 is

def (INCREAL in2 inl inO out2 outl outO) =
[{ in2 E ?bit, inl E ?bit, inO E ?bit,

out2 E !bit, outl E !bit, outO E !bit }
var i=(NOT _GATE bit bit),

a=(AND_GATE bit bit bit),
xl,x2=(XOR_GATE bit bit bit);

var n;
i.in=inO I outO=i.out I
a.inl=inO I a.in2=in1 I n=a.out I
xl.inl=inO I xl.in2=in1 I outl=xl.out I
x2.inl=n I x2.in2=in2 I out2=x2.out

The interface has been slightly changed for reasons of readability. Figure 4 depicts the described
architecture.

inO,..,...--,--i autO

----'----'-- . -·--··--~~ outl inl~~

in2 _____,~D- out2

Figure 4: Increment realisation

6 Conclusions and further research

The language proposed here seems suited for the formal processing of digital system descriptions,
which makes it possible to use it as a basic representation method for an automated design
system. Though for complex systems it is difficult, if not impossible, to fully automate hardware
synthesis from a given specification, the language may prove to be useful in offering a formal
design framework. This framework is capable of guaranteeing correctness of all design steps,
whether taken autonomously by the system or by the designer.

Further research will concentrate on automatic decision making. An 'expert system' layer
controlling the language framework will store information from previous designs and apply
heuristic searching techniques to take standard design steps or generate design proposals for

14 3rd Computersystems Workshop, may 15 1991, Eindhoven.

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

the designer. It is not likely that fully automatic system design is possible in the near future,
but new methods will certainly ease the designers' task.

References

(1) LOTOS: Language for the temporal ordening specification of observational behaviour, in
ternational standard ISO/IS 9074, 1987.

(2) IEEE standard VHDL language reference manual, 1988.

[3) John Backus. Can programming be liberated from the von neumann style? a functional
style and its algebra of programs. In Communications of the ACM, pages 613-641, August
1978.

(4) Raymond T. Boute. The beta calculus: Scoping and substitution in formal descriptions of
systems with bidirectional information flow. Technical Report 92, University of Nijmegen,
1986.

(5) Raul Camposano and Wolfgang Rosenstiel. Synthesising circuits from behavioral descrip
tions. In Transactions on Computer Aided Design, pages 171-180. IEEE, February 1989.

[6] Ganesh C. Gopalakrishnan, David R. Smith, and Mandayam K. Srivas. An algebraic ap
proach to the specification and realisation of VLSI designs. In Computer Hardware De
scription Languages and their Applications, pages 16-38. IFIP, August 1985.

(7) Mike Gordon. Why higher-order logic is a good formalism for specifying and verifying
hardware. In Formal Aspects of VLSI Design, pages 153-177, 1986.

(8) C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International Series in
Computer Science. Prentice-Hall, 1985.

(9) Dieter Hogrefe. Estelle, LOTOS und SDL: Standard-Specifikationssprachen fur Verteilte
Systeme. Springer-Verlag, 1989.

(10} Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. ACM Distin
guished Dissertations. MIT Press, 1984.

(11] Carlos Delgrado Kloos and Walter Dosch. Transformational development of digital circuit
descriptions: a case study. In Compeuro Conference on VLSI and Computers, pages 319--
322. IEEE, May 1987.

[12] Michael C. McFarland, Alice C. Parker, and Raul Camposano. Tutorial on high level
synthesis. In Design Automation Conference, pages 33Q-336. ACM/IEEE, June 1988.

[13] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science.
Springer-Verlag, 1980.

(14] Ben Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, 1986.

(15] John T. O'Donnell. Hardware description with recursion equations. In Computer Hardware
Description Languages and their Applications, pages 363-382. IFIP, April 1987.

(16} James L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, 1981.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 15

H v.d. Weij: DALIA: A Language for the Description and Analysis of Digital Systems.

[17] Ra.nga Vemuri. How to prove the correctness of a set of register level design transformations.
In Design Automation Conference., pages 207-212. ACM/IEEE, June 1990.

[18} William M. Waite and Gerhard Goos. Compiler Construction. Text and Monographs in
Computer Science. SpringerM Verlag, 1984.

16 3"d Computersystems Workshop, may 15 1991, Eindhoven.

Abstract

Parallel Computers for
Advanced Information Processing

irE. Odijk
Philips Natuurkundig laboratorium

P.O. box 80.000, 5600 JA Eindhoven, The Netherlands
e-mail: odijkOprl.philips.nl

Within the Computer Architecture Department of Philips Research Laboratories Eindhoven,
a five years research effort has resulted in the design and implementation of a parallel object
oriented computer system, POOMA, and a parallel object-oriented language to express programs
for execution on this system.

Conceptually, POOMA is a distributed-memory, scalable, computer that consists of self
contained computers, each with their own cpu, main memory and a communication unit. These
computers communicate via a sparsely connected, packet-switching, topology of bidirectional
communication links that are serviced by the communication unit.

The architecture (which is understood to denote the functionality as implemented by both
the hardware and systems software) has been designed to meet the requirements of the parallel
object-oriented language, and the match of the conceptual and operational models can be well
demonstrated.

The presentation will include a survey of the systems concepts, the rationale of a number of
the design choices and an informal presentation of the lessons that have been learnt during the
design.

Contents
The contents of the article is printed in a separate handout. It is a copy of the publication in

IEEE micro of december.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 17

18 3"d Computersystems Workshop, may 15 1991, Eindhoven.

Abstract

Parallel Discrete Event Simulation

Benno Overeinder Bob Hertzberger Peter Sloot

Department of Computer Systems
University of Amsterdam

Kruislaa.n 403, 1098 SJ Amsterdam, The Netherlands
e-ma.il: overeindtfvi. uva. nl

In simulating applications for execution on specific computing systems, the simulation per
formance figures must be known in a. short period of time. One basic a.pproa.ch to the problem of
reducing the required simulation time is the exploitation ofpa.ra.llelism. However, in pa.ra.llelizing
the simulation new problems arise. Due to the distributed generation of events ca.usa.lity errors
can occur, as a. result the sequence in which to process the events is essentia.lly indetermina.ted.

In this paper we present a. model to analyse the inherent para.llelism of a. simulation, together
with a. survey of existing strategies to perform the simulation in para.llel. Some extensions to
this model are discussed, resulting in reliable evaluation of the effectiveness of these strategies.

1 Introduction

In the Para.llel Scientific Computing Working-group a.t the University of Amsterdam, we are
interested in the execution performance of classes of applications on classes of computing systems.
We distinguish the following levels tha.t are involved in performance prediction: application,
general a.bstra.ct machine, simulation language, and discrete event simulator. Each level is
supported by the level underneath. In this wa.y the efficiency of a. level is partia.lly determined
by the supporting level, thus imposing severe constraints to the simulator. Especia.lly if the
performance figures are iteratively used to optimize the application, the effectiveness of the
simulator is of vital importance.

Large discrete event simulations are known to consume enormous amounts of time on se
quential machines. One basic a.pproa.ch to reduce the required simulation time is the exploitation
of para.llelism. A major dra.wba.ck however, is the inherent complexity of this type of simulation
since the notion of global time does not easily ma.p on a. para.llel computer. Sophisticated clock
synchronization algorithms are required to ensure tha.t cause-and-effect relationships a.re correct
reproduced by the simulator.

The idea. of pa.ra.llel simulation-in literature also indicated by distributed simulation-was
first proposed by K.M. Chandy and independently by R.E. Bryant. Papers by Chandy and
Misra. [Cha.79], and Bryant [Bry77] contain basic ideas of para.llel simulation, the problem of
deadlock and schemes for deadlock resolution, detection and recovery [Cha.81]. Alternative
schemes proposed by D.R. Jefferson are based on the concepts of Virtual Time [Jef85].

This paper is structured in the following wa.y. Section 2 gives an introduction to discrete event
simulation. In section 3 a. para.llel view to the sequential simulation is proposed, and various
methods for para.llel simulation a.re described together with a. discussion on their effectiveness.
Fina.lly, in section 4 an evaluation of these methods and some suggestions for further research
a.re presented.

B. Overeinder: Parallel Discrete Event Simulation.

2 Concepts of Discrete Event Simulation

Modelling and simulation can be characterized as the complex of activities associated with
constructing models of real world systems and simulating them on a computer.

Essential to every model is the time base on which events occur. Accordingly, models can be
classified depending on their temporal behaviour [Zei76]. A model is a continuous time model
when time flows smoothly and continuously. A model is a discrete time model if time flows in
jumps of some specified time unit.

A second classification can be based on the range sets of a model's descriptive variables. The
model is a continuous state model if the range of the descriptive variables can be represented
by the real numbers. The model is a discrete state model if its variables only assume discrete
values.

Continuous time models can be further divided into differential equation and discrete event
classes. A differential equation model is a continuous timfM:ontinuous state model where changes
in state occur smoothly and continuously in time. In a discrete event model, even though time
flows continuously, state changes can occur only at countable points in time-i.e., time jumps
from one event to the next, and these events can occur arbitrarily separated from each other.

2.1 Discrete Event Simulation

The concept of a system and a model of a system were already used in the definition of the
classes of simulation. These concepts need to be specified in order to develop a framework for
the design of a discrete event model of a system. The major concepts are:

System A collection of entities that interact together over time to accomplish one or more
goals.

Model An abstract representation of the system under consideration, usually containing logical
and/or mathematical relationships that describe the behaviour of the system.

System state A collection of variables that contain all the information necessary to describe
the system at any time.

Entity Any object or component in the system that requires explicit representation in the
model.

Attributes The properties of a given entity.

Event An instantaneous occurrence that may change the state of the system.

Activity A duration of time of specified lengtJ:t during which entities engage some operation.

Process A sequence of events ordered in time. These events must be logically connected,
involving the same entity.

To illustrate these concepts, we consider a bank. In the dynamics of a bank, customers might
be one of the entities, the balance in their accounts might be an attribute, and making deposits
might be an activity. Possible state variables are the number of busy tellers, the number of
customers waiting in line or being served, and the arrival time of the next customer. The arrival
of a customer as well as the completion of service of a customer are possible events.

Every discrete event simulation contains a state variable called the simulation clock to model
the flow of time. Simulated time is advanced from the time of the current event to the time

20 3rd Computersystems Workshop, may 15 1991, Eindhoven.

B. Overeinder: Parallel Discrete Event Simulation.

of the next scheduled event; thus skipping periods of inactivity. Future events are stored in a
calendar that contains the time and the type of all scheduled events, usually in chronological
order. The nature of the routine depends on the world view used in the model. Let us therefore
consider some different world views relevant to discrete event simulation.

2.2 World Views

All simulations contain an executive routine for the management of the calendar and clock, i.e.,
the sequencing of events and driving of the simulation. This executive routine fetches the next
scheduled event, advances the simulation clock and transfers control to the appropriate routine.
The operation routines depend on the world view, and may be events, activities, or processes.

A world view is the point of view from which the modeller sees the world or the system to
be modelled. Most of the discrete event simulations use one of the three following perspectives
[Hoo86]: event scheduling, activity scanning, or process interaction.

In event scheduling each type of event has a. corresponding event routine. The executive
routine processes a time ordered calendar of event notices to select an event for execution.
Event notices consist of a. time stamp and a. reference to an event routine. Event execution can
schedule new events by creating an event notice and place it at the appropriate position in the
calendar. The clock is always updated to the time of the next event, the one at the top of the
calendar.

In the activity scanning approach a. simulation contains a. list of activities, each ·of which
is defined by two events: the start event and the completion event. Each activity contains
test conditions and actions. The executive routine scans the activities for satisfied time and
test conditions and executes the actions of the first selectable activity. When execution of an
activity completes, the scan begins again.

The process interaction world view focuses on the flow of entities through a model. This
strategy views systems as sets of concurrent, interacting processes. The behaviour of each class
of entities during its lifetime is described by a. process class. Process classes can have multiple
entries and exits at which a process interacts with its environment. The executive routine uses
a calendar to keep track of forthcoming tasks. However, apart from recording activation time
and process identity, the executive routine must also remember the state in which the process
was last suspended.

Evidently, large discrete event simulations, using one of these three world view strategies,
put extreme computational demands on sequential computers. Intuitively, the process interac
tion world view seems to be attractive as a. starting point in our effort to the parallelization of
the simulation. The modeller perceives the simulation already as a set of concurrent objects
interacting with each other by well-defined communication. Besides, parallel simulation is in
teresting because it represents a problem domain that often contains substantial amounts of
inherent parallelism (e.g., see [Liv85]).

In the following section a parallel view to a sequential execution will be presented in order
to analyse the inherent parallelism of the simulation. Next the problems involved in parallel
execution and the methodologies to circumvent these problems are described.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 21

B. Overeinder: Pa.ra.llel Discrete Event Simulation.

3 From Sequential to Parallel Discrete Event Simulation

3.1 The Average Parallelism Measure

H we have made the decision to do the simulation in para.llel, there are some fundamental
questions to be answered. What is the para.llelism inherent to the simulation? How much
benefit do we expect from doing things in para.llel? And, once the job is done, how well did we
perform this?

One very interesting characterization of the simulation that can be used to answer these
questions is the avemge pamllelism. Average para.llelism can be defined in two equiva.lent ways:

1. The ratio of the total service time required to process events, to the length of the critical
path through the execution of the simulation.

2. The speedup figures, if a hypothetical machine contains an unbounded number of available
processors and zero synchronization overhead.

As a consequence of the second definition, the average para.llelism figure should be regarded
as an upper bound to the speedup that can be achieved.

To reveal the average parallelism inherent to a simulation, we have implemented a tool to
analyse a sequential simulation run and extract the average parallelism [Ove91]. A system
model is defined to express the parallelism explicitly and consists of a software component and
a hardware component. The software component is a graph representing the execution of a
sequential simulation. The hardware component of our system model reflects our focus on the
parallelism inherent to a simulation, and makes assumptions of ideal hardware.

Figure 5: A program activity graph.

The execution of a simulation is represented by an acyclic directed graph (see Fig. 5). Each
vertex of the graph corresponds to an event occurring in the simulation. Precedence constraints
exist among the events, modelling the chronological order of events. These precedence con
straints are modelled by the arcs of the graph: an arc from vertex EA to vertex Ec means
that event Ec cannot occur (or be executed) before event EA is processed. Two types of arcs
are distinguished: intm-process arcs and inter-process arcs. Intra-process arcs are precedence

22 3"d Computersystems Workshop, may 15 1991, Eindhoven.

B. Overeinder: Parallel Discrete Event Simulation.

constraints between events that occur within the same process (e.g., arc between vertex EA and
Ec in Fig. 5). The intra-process arc denotes an independent unit of sequential work inside a
process. We can consider inter-process arcs as precedence constraints between events that occur
in different processes (e.g., arc between vertex EB and Ec). These inter-process arcs represent
synchronization requirements achieved by some communication primitive.

The hardware component of the system is modelled as an infinite number of identical pro
cessors, each of unit speed. The synchronization between processors has zero overhead and the
entire computer is devoted to one single task.

A sequential run of the simulation generates an acyclic directed graph of events with their
precedence constraints. When every process in the simulation is assigned to a different proces
sor (i.e., one process to one exclusive processor), all intra-process dependent events occur at the
same exclusive processor and all inter-process dependent events occur at different processors.
As a consequence, the intra-process arc denotes an independent unit of sequential work on a
processor, whereas the inter-process arc represents synchronization requirements between pro
cessors. Furthermore, the execution times of the independent units of work, measured during
the sequential run, are assigned to the intra-process arcs and the zero synchronization costs to
the inter-process arcs. In this way the graph is reduced to a representation of the execution
of the simulation on a hypothetical machine. The total amount of time required to process
the events is equal to the sum of all the costs in the graph and the critical path through the
execution of the simulation is now represented by the longest path in the graph.

Eager et al. [Eag89] use the average parallelism measure to express lower bounds on speedup
and efficiency, and on the incremental benefit and cost of allocating additional processors. It is
our opinion that average parallelism can be applied as a measure in the evaluation of effectiveness
of various methods in parallel simulation. In other words, how much of the parallelism that is
inherent to the simulation is actually exploited?

3.2 The Fundamental Problem in Parallel Discrete Event Simulation

We are especially interested in parallelization of asynchronous system simulation, where events
are not synchronized by a global clock, but rather occur at irregular time intervals. In these
simulations few events occur at any single point in simulated time and therefore parallelization
techniques based on synchronous execution using a global simulation clock performs poorly.
Concurrent execution of events at different points in simulated time is required, but this intro
duces interesting synchronization problems.

These problems become clear if one examines the operation of a sequential discrete event
simulator. The sequential simulator typically uses three data structures: the state variables, an
event list (the calendar), and a global simulation clock. For the execution routine (see section 2.2)
it is crucial that the smallest time stamped event (Emin) from the event list is selected as the
one to be processed next. If it would depart from this rule and select an other event with a
larger time stamp (Ez), it would be possible for Ez to change the state variables used by Emin·
This implies that one is simulating a system where the future could affect the past. We call
errors of this kind causality errors.

Let us next consider the parallelization of a simulation based on the above paradigm. Most
parallel discrete event simulation (PDES) strategies adhere to a process interaction world view
that strictly forbids processes to have direct access to shared state variables. To this methodology
some extensions have been made to support the parallel execution of the simulation [Cha79].
The system being modelled is viewed as being composed of some number of physical processes
that interact at various points in simulated time. The simulation is constructed as a set of logical

3rd Computersystems Workshop, may 15 1991, Eindhoven. 23

B. Overeinder: Parallel Discrete Event Simulation.

procetJses LPo, LP1, ••• , one per physical process. All interactions between physical processes
are modelled by time stamped event messages sent between the corresponding logical processes.
Each logical process contains a portion of the state corresponding to the physical process it
models, 88 well 88 a local clock that denotes the progress of the process.

One can aasure that no causality error occurs if one adheres to the local causality constraint:

Local Causality Constraint: A discrete event simulation, consisting of logical
processes that interact exclusively by exchanging time stamped messages, obeys the
local causality constraint if and only i./ each logical process executes events in non
decreaaing time stamp order.

simulated
time

20

10 [!!]

(a.)

Figure 6: Causality error.

simtda.ted
time

20

)ID
10 ®

(b)

Consider two events. Et at logical process LP1 with time stamp 10, and E2 at LP2 with
time stamp 20 (see Fig. 6). If Et schedules a new event Ea for LP2 containing a time stamp less
than 20, then Ea could affect E2, necessitating sequential execution of all three events. If one
had no information what events could be scheduled by other events, one would be enforced to
process the only save event, the one containing the smallest time stamp, resulting in a sequential
execution.

During the simulation we must therefore decide whether Et can be executed concurrently
with E2• But how do we know whether or not E1 affects E:z without actually performing the
simulation for E1? It is this question the parallel discrete event simulation strategies must
address.

In this paper we classify parallel discrete event simulation strategies by two categories: con
senJative and optimistic. Conservative approaches strictly avoid the possibility of any causality
error ever occurring. These approaches rely on some strategy to determine when it is safe to
process an event. The optimistic approaches use a. detection and recovery approach: whenever
causality errors are detected a. rollback mechanism is invoked to recover. We will describe some
of the concepts behind conservative and optimistic simulation mechanisms.

3.3 Conservative Methods

The conservative approaches are the first distributed simulation mechanisms. The basic problem
conservative mechanisms must address is to determine which event is save to process. If a process
contains an event E1 with time stamp T1 and the process can determine that it is impossible
to receive another event with time stamp smaller than T1 , then the process can safely process

24 3rd Computersystems Workshop, may 15 1991, Eindhoven.

B. Overeinder: Para.llel Discrete Event Simulation.

event E1 without a future violation of the local causality constraint. Processes containing no
safe events must block; this can lead to deadlock situations if no appropriate precautions are
taken.

Independently, Chandy and Misra [Cha79], and Bryant [Bry77] developed the para.llel dis
crete event simulation algorithms, where one statica.lly specifies the links that indicate which
process may communicate with which other processes. In order to determine when it is safe
to process a message, it is required that messages from any process to any other process are
transmitted in chronological order according their time stamps. Each link has a clock associated
with it that is equal to 'either the time stamp of the message at the front of that link's queue
or, if the queue is empty, the time of the last received message. The process repeatedly selects
the link with the sma.llest clock and, if there is a message in that link's queue, updates its local
clock to the link's clock and process the message. The order of event processing will be correct
because a.ll future messages received will have later time stamps than the local clock, since they
will arrive in chronological order along each link. H the selected queue is empty, the process
blocks. This is because the process may receive a message over this link with a time that is less
than a.ll the other input time stamps. Thus to insure correct chronology, the process is forced
to wait for a message to update the clock on the link before the process can update its local
clock. This protocol guarantees that each process will only process events in nondecreasing time
stamp order, and thereby ensuring chronological integrity.

Figure 7: An example of deadlock. (The numbers indicate time stamps.)

Deadlock occurs when there is a cycle of blocked processes and each process is blocked due
to another process in the cycle. For example consider the network of Fig. 7. Each process
is waiting on the incoming link containing the sma.llest clock value because the corresponding
queue is empty. All three processes are blocked, even though there are event messages in other
queues that are waiting to be processed.

Null messages are used to avoid deadlock. This scheme requires that there is a strictly
positive lower bound on the loolcahead for at least one process in each cycle. Lookahead is
defined to be the amount of time that a process can look into the future. In other words, if the
local clock of the process is any time T and the process can predict a.ll messages it will send
with time stamps less than T + L, where L is the lookahead. Thus, for a queueing network
model, a strictly positive lower bound for the service time for some stations would be required.
Intuitively, processes keep the clocks of their output links ahead of their local clocks by sending
null messages. A null message with time stamp Tnull from process LPA to LPs, tells LPs that
there will be no more messages from process LPA with time stamp less than Tnull· Whenever
a process finishes processing an event, it sends a null message on each of its output ports

3rd Computersystems Workshop, may 15 1991, Eindhoven. 25

B. Overeinder: Parallel Discrete Event Simulation.

indicating the lower bound on the time stamp of the next outgoing message. The receiver of the
null message can then compute new bounds on its outgoing links, send this information to its
neighbours, and so on.

Chandy and Misra [Cha81] also presented a two-phase scheme where the simulation proceeds
until deadlocked, then the deadlock is detected and resolved. The mechanism is similar to that
described above, except nQ null messages are created. Instead the computation is allowed to
deadlock. The scheme involves a controller process to monitor for deadlock and control deadlock
recovery. Deadlock detection mechanisms are described in [Gro89, Mis86]. The deadlock can
be broken by the observation that the message with the smallest time stamp is always save to
process; or, with use of a distributed computation, obtain a lower bound to enlarge the set of
safe messages.

The mechanisms described above only attempt to detect and recover from global deadlocks.
Prakash and Ramamoorthy [Pra88] suggested a hierarchical decentralized algorithm that takes
advantage of the locality of these deadlocks. Another approach to detect and recover from local
deadlocks can be found in [Mis86].

The performance of conservative mechanisms is critically determined by the degree to which
processes can look ahead and predict future events; or more importantly, what will not happen
in the simulated future. A process with lookahead L can guarantee that no events, other than
the ones that it can predict, will be generated up to time Clock+ L. This may enable processes
to safely process forthcoming messages that they have already received. Fujimoto describes
lookahead quantitatively using a parameter called the lookahead ratio and presents empirical
data to demonstrate the importance of exploiting lookahead to achieve good performance [Fuj89].
Other studies of the performance as a function oflookahead can be found in [Lin89, Lou90, Su89].

3.4 Optimistic Methods

In optimistic approaches a process's clock may run ahead of the clocks of its incoming links and if
errors are made in the chronology a procedure to recover is invoked. In contrast to conservative
approaches, optimistic strategies need not determine when it is safe to proceed. Advantages of
this approach are that it has a potentially larger speedup than conservative approaches and that
the topology of possible interactions between processes need not be known.

An optimistic approach to distributed simulation called Time Warp, based on the Virtual
Time paradigm, was proposed by Jefferson and Sowizral [Jef82, Jef85]. Here virtual time is the
same as the simulated time. The local clock, called the Local Virtual Time (LVT) of a process,
is set to the minimum receive time of all unprocessed messages. Processes can execute events
and proceed in local simulated time as long as they have any input at all. As a consequence,
the local clock or LVT of a process may get ahead of its predecessors' LVTs, and it may receive
an event message from a predecessor with time stamp smaller than its LVT, i.e., in the past
of the process. H this happens the process rolls back in simulated time. The event causing the
roll back is called a straggler. Recovery is accomplished by undoing the effects of all events that
have been processed prematurely by the process receiving the straggler.

The premature execution of an event results in two things that have to be rolled back: the
state of the logical process and the event messages to other processes. Rolling back the state
is accomplished by periodically saving the process state and restoring an old state vector on
roll back. Unsending a previously sent message is accomplished by sending a anti-message that
annihilates the original when it reaches its destination. Messages that are sent while the process
is propagating forward in simulated time are called positive messages. If a process receives an
anti-message that corresponds to a positive message that is still in the input queue, then the

26 3rd Computersystems Workshop, may 15 1991, Eindhoven.

B. Overeinder: Parallel Discrete Event Simulation.

two will annihilate each other and the process will proceed. H an anti-message arrives that ·
correspond to a positive message that is already processed, then the process has made an error
and must a.lso roll back. It sets its current state to the last state vector saved with simulated time
earlier than the time stamp ofthe message. A direct consequence of the roll back mechanism is
that more anti-messages may be sent to other processes recursively.

The Global Virtual Time (GVT) is the minimum of the LVTs for all the processes and the
time stamps of all messages sent but unprocessed. No event with time stamp smaller than GVT
will ever be rolled back, so storage used by such event (i.e., saved states) can be discarded.

The procedure just described is referred to as Time Warp with aggressive cancellation. An
alternative is lazy cancellation, where anti-messages are not sent immediately after roll back.
Here, the process resumes executing forward in simulated time from its new LVT, and when it
procedures a message it compares it with the messages in its output queue. H the same message
is recreated, then there is no need to cancel the message. An anti-message created at simulated
timeT is only sent after the process's clock sweeps past timeT without regenerating the same
message. Thus, under lazy cancellation a roll back at the successor process may be avoided. On
the other hand, if messages are not reproduced, then roll backs at the successor processes will
be required under both mechanisms, and they will occur sooner with aggressive cancellation.

Depending on the application, lazy cancellation may either improve or degrade performance.
States may be saved less frequently at the expense of greater overhead for roll back. As a
consequence, lazy cancellation requires more memory than aggressive cancellation. Studies of
the performance of optimistic approaches can be found in [Lin90, Mad90].

4 Conclusion and Discussion

Performance evaluation is critical for the design, implementation, and improvement of complex
applications executing on parallel computers. Analytical approaches to performance evaluation
are usually inadequate because they are based on unrealistic assumptions and require many
approximations. Therefore, simulation is a good alternative for obtaining accurate measures of
performance. Currently, however, detailed simulations are extremely slow. Parallel simulation
seems to be a promising approach for speeding up the simulations, although much more work
needs to be done to increase the effectiveness of the existing methods.

Conservative methods offer good potential for certain classes of problems. A major drawback,
however, is that they cannot fully exploit the parallelism available in the simulation application.
Hit is possible that event EA might affect EB either directly or indirectly, conservative ap
proaches must execute EA and EB sequentially. H the simulation is such that EA seldom affect
EB these events could have been processed concurrently most of the time. As a consequence,
conservative algorithms heavily rely on lookahead to achieve good performance.

Optimistic methods offer the greatest potential as a general purpose simulation mechanism.
A critical question faced by optimistic approaches is whether the system will spent most of
its time on executing incorrect computations and rolling them back, at the expense of correct
computations. An intuitive explanation why the behaviour tends to be stable is that incorrect
computations can only be initiated by a premature execution of a correct event. This premature
execution, and subsequent incorrect computations, are by definition in the simulated time future
of the correct, straggler computation. Also, the further the incorrect computation spreads
the further it moves into the simulated time future, thus lowering its priority for execution.
Preference is always given to computations containing smaller time stamps. The incorrect
computation will be slowed down, allowing the error detection and correction mechanism to
correct before too much damage has been done.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 27

B. Overei:nder: Parallel Discrete Event Simulation.

A more serious problem with the optimistic mechanisms is the need to periodically save
the state of each logical process. This limits the effectiveness of the optimistic mechanisms to
applications where the amount of computation, required to process an event, is significantly
larger than the cost of saving the state vector.

The type of application, or classes of applications, is important when determining an ap
propriate approach t,o distributed simulation. For dynamic topology systems and systems with
irregular interactions, Time Warp methods are preferred over conservative methods, especially
if state-saving overheads do not dominate. On the other hand, if the application has good looka
hea.d properties, conservative algorithms can exploit the special structure within a fixed topology
system. If the application has both poor lookahea.d and large state-saving overheads all existing
parallel discrete event simulation approaches will have trouble obtaining good performance, even
if the application has a considerable amount of parallelism.

A challenging, yet not fully exploited, problem is the use of hierarchical methods in parallel
discrete event simulation (PDES). It is our contention that, if processes are forced to remember
the values of all private variables, an object-oriented methodology can be employed. Here a.
class must encapsulate all relevant aspects of an entity: its attributes, actions, and life cycle.
Communication between objects is allowed only through well-defined interfaces, described by
the types of messages an object is willing to respond to. With the use of such object-oriented
methodologies, the hierarchical decomposition of the problem under investigation can also be
made available in the simulation. In conservative approaches there is some modest effort to
use this hierarchical knowledge in the detection of local deadlock and recovery [Pra88J. In
optimistic approaches, hierarchical knowledge could be used by the error detection and correction
mechanism to quickly stop the spread of the erroneous computations. Furthermore, the proposed
model in section 3.1 has to be extended for the evaluation of the various PDES strategies. Many
performance evaluations of PDES strategies, found in the literature, compare the parallelism
available in the application with the measured speedup of the application on a specific parallel
computer. In consequence, there is interference with load balance and scheduling strategies
that obscure the effectiveness of the PDES strategy. The extended model should eliminate
this interference, and measure the exploited parallelism by a. PDES strategy. In this way, the
exploited parallelism can be compared to the average parallelism to obtain the effectiveness of
the strategy.

Acknowledgements

I would like to thank Sja.a.k Koot from our working-group for some valuable discussions.

References

[Bry77J Bryant, R.E., "Simulation of Packet Communications Architecture Computer Sys
tems," MIT-LCS-TR-188, Massachusetts Institute of Technology, 1977.

[Cha.79} Chandy, K.M., and J. Misra., "Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs," IEEE 1h.msactions on Software Engineering,
vol. SE-5, no. 5, pp. 44o-452, September 1979.

[Cha81J Chandy, K.M., and J. Misra, "Asynchronous Distributed Simulation via a Sequence
of Parallel Computations," Communications of the ACM, vol. 24, no. 11, pp. 198-205,
November 1981.

28 3"d Computersystems Workshop, may 15 1991, Eindhoven.

B. Overeinder: Para.llel Discrete Event Simulation.

[Eag89] Eager, D.L., J. Zahorjan, and E.D. Lazowska, "Speedup Versus Efficiency in Para.llel
Systems," IEEE Transactions on Computers, vol. 38, no. 3, pp. 408-423, March 1989.

[Fuj89] Fujimoto, R.M., "Performance Measurements of Distributed Simulation Strategies,"
Transactions of the Society for Computer Simulation, vol. 6, no. 2, pp. 89-132, April
1989.

[Gro89] Groselj, B., and C. Trapper, "A Deadlock Resolution Scheme for Distributed Simula
tion," Proceedings of the SCS Multiconference on Distributed Simulation, pp. 108-112,
March 1989.

[Hoo86] Hooper, J. W., "Strategy Related Characteristics of Discrete Event Languages and
Models," Simulation, vol. 46, no. 4, pp. 153-159, April1986.

[Jef82] Jefferson, D.R., and H. Sowizral, "Fast Concurrent Simulation using the Time Warp
Mechanism, Part 1: Local Control," Technical Report N-1906-AF, RAND Corporation,
December 1982.

[Jef85] Jefferson, D.R., "Virtuctl Time," ACM Transactions on Programming Languages and
Systems, vol. 7, no. 3, pp. 404-425, July 1985.

[Lin89] Lin, Y-B., and E. Lazowska, "Exploiting Lookahead in Para.llel Simulation," Technical
Report 89-10-06, Department of Computer Science, University of Washington, Seattle
(WA), 1989.

[Lin90] Lin, Y-B., and E. Lazowska, "Reducing the State Saving Overhead for Time Warp
Para.llel Simulation," Technical Report 90-02-03, Department of Computer Science,
University of Washington, Seattle (WA), 1990.

[Liv85] Livny, M., "A Study of Para.llelism in Distributed Simulation," Proceedings of the SCS
Multiconference on Distributed Simulation, pp. 94-98, San Diego (CA), January 1985.

[Lou90] Loucks, W.M., and B.R. Preiss, "The Role of Knowledge in Distributed Simulation,"
Proceedings of the SCS Multiconference on Distributed Simulation, pp. 9-16, San Diego
(CA), January 1990.

[Mad90] Madisetti, V., J. Walrand, and D. Messerschmitt, "Synchronization in Message
Passing Computers-Models, Algorithms, and Analysis," Proceedings of the SCS Mul
ticonference on Distributed Simulation, pp. 35-48, San Diego (CA), January 1990.

[Mis86] Misra, J., "Distributed Discrete Event Simulation," ACM Computing Surveys, vol. 18,
no. 1, pp. 39-65, March 1986.

[Ove91] Overeinder, B.J., and P.M.A. Sloot, "Para.llelism in Architecture Simulation," Techni
cal Report, Department of Computer Systems, University of Amsterdam, Amsterdam,
The Netherlands, under preparation.

[Pra88] Prakash, A., and C.V. Ramamoorthy, "Hierarchical Distributed Simulations," Pro
ceedings of the 8th International Conference on Distributed Computing Systems, pp.
341-347, San Jose (CA), June 1988.

[Su89] Su, W.K., and C.L. Seitz, "Variants ofthe Chandy-Misra-Bryant Distributed Discrete
Event Simulation Algorithm," Proceedings of the SCS Multiconference on Distributed
Simulation, pp. 38-43, March 1989.

3"d Computersystems Workshop, may 15 1991, Eindhoven. 29

B. Overeinder: Parallel Discrete Event Simulation.

[Zei76] Zeigler, B.P., Theort/ of Modelling and Simulation, John Wiley k Sons, New York,
1976.

30 3"11 Computersystems Workshop, may 15 1991, Eindhoven.

A Partitioning and Redundancy Model for

Wafer-Scale Integrated Circuits.

Dr.ir. Martin F. Beusekamp
University of Twente

Department of Computer Science
P.O. Box 217

7 500 AE Enschede
Telefoon: 053 - 893796
Telefax: 053 - 356531

Abstract

In wafer scale integration, a certain amount of redundancy is required to achieve an
acceptable yield. In general, this redundancy is added to the circuit after the step of
implementing the architecture, by duplicating specific parts of the circuit and providing
for the necessary wiring and switches to reconfigure the circuit after testing. However,
this is not the optimal procedure. This paper presents a general, architecture
independent model to calculate the required amount of redundancy and the necessary
degree of partitioning of the circuit to achieve a maximum efficiency. The model takes
several technological parameters into account. It is shown that in practical cases, the
efficiency curve around the maximum is relatively flat.
The model presents the optimal degree of partitioning, rate of redundancy, total area,
yield and efficiency for any desired (large) circuit. It is shown that, for every
technological environment, there exists a critical circuit size, below which the
implementation of partitioning and redundancy is undesirable. Above this critical circuit
size, partitioning into rather small cells leads to optimal efficiency, in spite of the fact
that small cells require a considerable overhead of reconfiguration wiring and switches.
This also means .that the implementation of very large redundant cells or blocks will
cost more area than the enhancement of efficiency justifies. It was shown that the model
can be adapted to any specific architecture by adjusting parameters and limiting
possible solutions to restricted, architecture-dependent values. By a simple
mathematical substitution, the model can be made completely analytic, making it very
simple to investigate the sensitivity of the optimal solution to small variations in
parameters.

M. Beusebmp: A pa.rlitioning and redundancy model for wafer-scale ICs . . " _,_ ·- .. ., ' ..

Contents.

List of symbols

1. Scope of this memorandum

2. Introduction

3. The partitioning and redundancy model
3.a. General assumption
3.b. The concept of partitioning and redundancy
3.c. lllustration with numerical examples
3.d. Extension to realistic WSI-circuits
3.e. Results of the model
3.f. Influence of the technological parameters wand b

4. Application to specific architectures

Conclusions and summary

Appendix

References

5

6

6

7
7
7
9

11
14
16

16

19

19

21

32 3f'll Computersystems Workshop, may 15 1991, Eindhoven.

M. Beusekamp: A partitioning a.nd redundancy model for wafer-scale ICs

List of symbols.

The following symbols will be used in this memorandum. In the text, the ftrst
occurrence of a symbol is printed in boldface.

3.crit

b
E
E*
Em ax
i
k
n
p

w

y,y(k)
y

Yc
Yw

= AcfAc,SO
=area of desired circuitry, if processed in a conventional way
= area of circuitry which will show a yield of 50% in the given technological

process
= circuit area from which the implementation of partitioning and redundancy

becomes favourable
= redundant area
=total area
=area needed for additional wiring and reconftguration switches
= area of wiring which will show a yield of 50% in the given technological

process

= Aw,soiAc,SO
=efficiency Y.(Ac/Ar)
=preliminary efficiency Y.(k/n)
= maximum efficiency at a given value of k
= general integer variable
= number of required basic cells
= number of available basic cells
= general variable of probability
=parameter characterizing the overhead of additional wiring and

reconftguration switches
= single-cell yield
= overall yield
= yield of circuit part of a single cell
= yield of wiring part of a single cell

3"d Computersystems Workshop, may 15 1991, Eindhoven. 33

M. Beuseka.tnp: A pa.rtit!oning a.nd redundancy Il!_oAe.!J~r wafer-scale ICs

1. Scope of this memorandum.

The past few decades have shown a rapidly increasing level of the integration of
electronic circuits in monolithic silicon devices. A better understanding of and control
over technological processes and the development of cleaner fabrication facilities
have led to chip sizes as large as several cm2 and to smallest feature sizes in the order
of 1 f.J.m, with 0.7 f.J.m predicted in the near future [1]. However, physical limits will
make it hardly possible to continue this increase of integration. Firstly, because it will
be very expensive to construct clean-room fabrication facilities with a significantly
lower dust~particle density than the present state-of-the-art (class 10, indicating a
maximum of 10 dust particles >0.5 f.J.m per cubic foot (28 dm3) of air). Secondly,
because a decrease in the smallest feature size to, say, a few tenths of a f.J.m, requires
tools and equipment beyond the present technological possibilities [2].

Nevertheless, there is a great demand for large electronic circuits, integrated in one
package, mainly because of the higher achievable speed and reliability. Chip-on-

. board and other hybrid techniques provide some possibilities, but realization on a
single silicon wafer will yield smaller and cheaper circuits with a higher performance
and a significantly higher reliability. To be able to produce very large monolithic
silicon devices, the traditional policy of immediate disposal of defective devices is
abandoned. Techniques to repair these devices are in development. Moreover, the
concept of redundancy is widely accepted as a means to provide "spare parts",
substituting defective blocks of circuitry on chip. Of course, this requires the
possibility of rewiring circuits on chip, for which methods are in development as
well. They range from purely physical, irreversible techniques like laser cutting and
laser fusion to software controlled, reversible semiconductor switches. The former
method has the advantage of requiring hardly any additional chip area, the latter
allows implementations which are reconfigurable for an infinite number of times, if
necessary per algorithm. An overview is given in [3].

34

Various techniques aiming for the integration on monolithic silicon wafers of circuits
which are significantly larger than state-of-the-art VLSI-technology allows, are
known under the general term "Wafer Scale Integration". This memorandum will
discuss a mathematical model, based on physical reality, concerning the partitioning
of large circuits into smaller circuits and the addition of redundancy in wafer scale
integrated circuits.

2. Introduction.

The basic limiting factor in increasing the chip size on a silicon wafer is, of course,
the yield. The main problem is the high probability that a relatively large circuit is
disturbed by a dust particle. Increasing the chip size will dramatically decrease the
probability of producing a significant number of faultless chips, as the probability of
faults increases exponentially with the area.

In Wafer-Scale Integration (WSI), redundancy is used to implement circuit sizes
which are significantly larger than state-of-the-art VLSI-techniques permit, and still

3"d. Computersystems Workshop, may 15 1991, Eindhoven.

.·

M. Beu~~p: A _p_a.rtitioning a.nd redundancy model for wa.fer-scale ICs

achieve an acceptable yield. Many models [e.g. 4,5,6] have been published to
calculate and optimize the effect of redundancy in more or less specific architectures.
This reflects the general policy of implementing redundancy by duplicating certain
parts of the micro-architecture of the circuit under design, without paying appropriate
attention to the actual sizes of the duplicated sub-circuits and the amount of
redundancy which is implemented by this duplication [e.g. 7,8].
This memorandum, however, will present an architecture-independent model to
calculate the optimal partitioning and the required amount of redundancy to achieve a
maximum efficiency. It takes several technological parameters into account. At the
end, it is indicated how this model can be adapted to any specific architecture. In the
appendix, a mathematical substitution is presented, which makes the model
completely analytical. This means that by derivation with respect to its parameters,
the influence of these parameters can very easily be investigated.

3. The partitionin~: and redundancy model.

3.a. General assumption.

The main purpose of the model to be presented in this memorandum, will be to gain
insight in the optimal rate of partitioning any desired circuit into sub-circuits and the
application of such an amount of redundancy that a maximum efficiency is reached.
In order to derive an architecture-independent model it will, for the time being, be
assumed that the desired (large) circuit can be partitioned into any (positive integer)
number k of identical cells, each having a probability y of functioning correctly. In
general, this will be an unrealistic assumption, but in section 4 it will be shown that
the model can easily be adapted to any specific, realistic architecture by merely
adjusting some parameters and limiting the possible solutions to restricted,
architecture-dependent values.

3.b. The concept of partitionine and redundancy.

In case of a conventional chip without redundancy, consisting of k identical cells with
a probability y of functioning correctly and with randomly distributed defects on the
wafer, the overall yield Y will obviously be

y (1)

which will be low for k more than a few units, unless y is very close to unity. This is
illustrated by figures 1 and 2.

From expression (1) it is clear that, even with a moderately low number of required
cells of, for instance, k = 16 and a relatively high single-cell yield of y = 0.8, the
overall yield will only be

y = {0.8) 1 6 = 0.028. (2)

3rd Computersystems Workshop; may 15 1991, Eindhoven. 35

M. Beusekamp: A pa.rtitioning and redundancy model for wafer-scal~_ICs

36

1.0 TY --

0.8

0.6

0.4

0.2

0~~~~--~~----~----~~--~Y~--~
0 0.2 0.4. 0.6 0.8 1.0

Figure 1. Overall yield Y of a conventional chip· as a function of the
single-cell yield y, with the required number k of cells as a parameter.

Figure 2. Overall yield Y of a conventional chip as a function of the
required number k of C(!lls, with the single-cell yield y as a parameter.

ard Computersystems Workshop, ma.y 15 1991, Eindhoven.

.M. Beuselsa,mp: A pa.rtitioning and re<!undancy model for wafer-scale ICs

The effect of redundancy can easily be shown by expansion of this numerical
example. Suppose that two of the above-mentioned structures were made, each
consisting of 16 basic cells. The probability of finding at least one gcxxl structure will
than be

y = 1- [1-(0.8) 1 6]2 = 0.056 (3)

This is still a low yield, mainly because the total of 32 basic cells have already been
split into two independent sets of 16, irrespective of their usability. If the complete set
of 32 cells is considered as one stock from which 16 working cells have to be
selected, the overall yield can be calculated as follows.

Let us assume that a stock of n (n ~ k) of the above-mentioned basic cells is
available. The probability P of finding exactly i faulty cells among these n cells is
well known from basic theory on statistics

p
(niJ yh-i (1-y)i (4)

If k cells are required, a number of 0 ... n-k faulty cells is acceptable. Therefore, the
probability of finding at least k gcxxl cells in a stock of n cells will be [9]

n-k

(:J y = I: yn-i (1-y)i (5.1)
i=O

n-k n! yn-i (1-y)i
= I: (5.2)

i=O (n-i) ! ' I J. •

n-k yn-i (1-y)i
n!. I: (5.3)

i=O (n-i)! ' I]_ .

In the example of k = 16, n = 32 and y = 0.8, this leads to an overall yield of

16
Y = 32! I:

i=O

(0. 8) 32-i (0. 2) i
------------- = 0.99997

(32-i) ! i!
(6)

which means that it is almost cenain that at least 16 properly functioning cells can be
found among the complete set of 32. This numeric example shows the strength of the
concept of partitioning a circuit into smaller sub-circuits and applying redundant
circuitry.

3.c. Illustration with numerical examples.

Let us first investigate expression (5) a little further by examining a few examples.
An available set of n = 32 and a required set of k = 16 units show a strong
dependency of the overall yield Y with respect to the single-cell yield y, but at least, y
is in a very reasonable region

ard Computersystems Workshop, may 15 1991, Eindhoven. 37

M. Beusekamp: A partitioniy and redundancy model for wafer-seale ICs

38

y y

0.2 0.00014
0.3 0.01384
0.4 0.16480
0.5 0.56997
0.6 0.90803
0.7 0.99476
0.8 0.99997

Table 1. Illustration of the strong influence of the single-cell yield y on
the overall yield Y for n = 32 and k = 16.

This dependency becomes even stronger if the n/k-ratio is maintained, but the
magnitudes of n and k are increased to n = 256 and k = 128

y y

0.4 0.00075
0.5 0.52491
0.6 0.99951

Table 2. Illustration of the stronger dependency between the single-cell
yield y and the overall yield Y for larger values of n = 256 and k = 128.

Expression (5) also shows that even with a small amount of redundancy, an overall
yield of Y = 0.9 can be achieved with reasonable values for the single-cell yield y

k y

4 0.197
8 0.340

12 0.472
16 0.596
20 0.713
24 0.823
28 0.922

Table 3. The required single-cell yield y to achieve an overall yield of
Y = 0.9 for various numbers k of required cells from a stock of n = 32
cells.

Finally, it can be shown that with a single-cell yield of y = 0.8 and a required overall
yield of Y = 0.9, the necessary amount of redundancy n/k deceases somewhat with an
increasing number k of required cells

ar4 Computersystems Workshop, may 15 1991, Eindhoven.

\

----~¥· Beuseka.mp: A ~~titioning __ a.n«! redundancy model_for wa.fer-scale ICs

k n n/k

2 4 2.000
4 6 1. 500
8 12 1.500

16 23 1.438
32 44 1. 375
64 86 1. 344

128 168 1. 312

Table 4. Required amount of redundancy for various rates of partitioning.

It is clear that with a high number n of available cells, the overall yield Y will
increase. But of course, the chip area needed to accommodate these n cells will
increase as well and is in fact proportional to n. Therefore, an efficiency coefficient
E* can be defined as the yield divided by n/k, the latter being the "penalty" which has
to be paid for implementing redundant circuitry

E* = Y. (k/n)
n-k yn-i (1-y)i

k(n-1)! I:
i=O (n-i) ! i!

(7)

For n~oo, it is clear that Y ~ 1, but E* = Y.(k/n)~O. For n < k there is no solution
possible, so E* = Y = 0. Therefore, there must be a maximum in E* fork ~ n < ~
This maximum can be found with a simple search algorithm which finds the optimal
n for a given k andy. Some numerical examples are shown in tables 5 and 6.

y n y n/k

0.3 67 0.8920 4.19
0.4 50 0.9045 3.13
0.5 39 0.9002 2.44
0.6 32 0.9080 2.00
0.7 27 0.9202 1. 69
0.8 23 0.9285 1. 44
0.9 20 0.9568 1.25

Table 5. Optimal number n of cells, leading to a maximum efficiency E*,
for a given number of required cells of k = 16 and for various single-cell
yields y.

3.d. Extension to realistic WSI-circuits.

Obviously, the model as derived so far is not realistic enough, as it favours
partitioning the desired circuit into an infmite number of very small cells. The reason
for this is that partitioning a circuit into smaller parts requires additional wiring,
which will increase the total area and decrease the overall yield, as wiring can fail as
well. Moreover, the implementation of redundancy requires additional circuitry to

3ra Computersystems Workshop, may 15 1991, Eindhoven. 39

M. Beusekamp: A partitioning a.nd redundancy model for wafer-scale ICa

40

reconfigure the circuit after testing. Therefore, the model must be extended to take
this extra wiring and circuitry into account.

k n y n/k

2 2 0.6400 1. 00
4 6 0.9011 1.33
8 12 0.9274 1.33

16 23 0.9285 1. 30
32 46 0.9696 1.30
64 89 0.9757 1.28

128 174 0.9844 1.26

Table 6. Optimal number n of cells, leading to a maximum efficiency E*,
for a given single-cell yield of y = 0.8 and for various numbers k of
required cells.

Let Ac,so denote that specific area of circuitry which will have a yield of 0.5 or 50%
in the given technological process. Ac.so is, of course, directly related to the average
defect density of the process. Let Ac denote the area that would be required to
integrate the desired circuit in a conventional way, without partitioning and/or
redundancy. Let a be the ratio between Ac and Ac.so

(8)

Clearly, the overall yield Y of such a circuit, processed in the conventional way,
would then be

(9)

Let us now partition the desired circuit into k identical cells. Each of these cells will
then have a single-cell yield of

(10)

Partitioning a circuit into two identical sub-circuits will generally introduce a "lane"
between them, required for additional wiring and reconfiguration switches. It will
therefore be realistic to assume that partitioning a circuit into k smaller sub-circuits
will require an additional area Aw for wiring and reconfiguration switches which is
proportional to 2log(k)

(11)

This means that every step of partitioning doubling the total number of required sub
circuits will add an equal amount of re-wiring area, captured in the parameter w. In
practice, values for w of 0.1 ... 0.5 may be expected. The inclusion of this re-wiring
area will lead to a new total area needed for the circuit

[1 + w.2log(k)] .A0 (12)

ara Computersystems Workshop, ma.y 15 1991, Eindhoven.

M. Beusekamp: A 2artitioning an_d reduf!~_&n~I_J:llodel for wafer-scale ICs
' '

The area of the wafer which is only occupied by additional wiring and switches will
generally have a higher yield than the same area of circuitry, because fewer critical
technological processing steps have been performed on it. Let Aw,so be that area for
wiring and switches with a yield of 0.5 or 50% and let

b = A.., sol Ac, so (13)

In practice, b will be in the order of 1 ... 2. As a consequence, each of the k basic cells
will require an additional amount of wiring and switches with a yield of

y.., = (0. 5) w.
2
log(k) .a/bk

= 2- (wa/bk) . 2log (k)

= k-wa/bk

resulting in a total yield for each cell of

y(k) YcYw

(14.1)

(14.2)

(14.3)

(15.1)

(15.2)

(15.3)

Introducing redundancy can easily be done by substituting the constant y in (5.3) by
the k-dependent y(k) of (15.3). The redundant area Ar of the complete circuit will be
n/k- 1 times the area needed for circuitry, additional wiring and reconfiguration
switches. Therefore, the total area occupied will now be

= (nlk) • (Ac+A...)

= [1 + w. 21 og (k)] . Ac. (n I k)

(16.1)

(16.2)

(16.3)

The efficiency E now has to be defined as the yield divided by the area penalty which
has to be paid for implementing redundant circuitry and additional wiring plus
reconfiguration switches

·With y(k) as in (15.3), this leads to an efficiency

n-k y(k)n-i [1-y(k)]i
n! I:

i=O (n-i)! i!
E

[1 + w.2log(k)]. (nlk)

k. (n-1) ! n-k y(k)n-i [1-y(k)]i
I:

[1 + w.2log(k)] i=O (n-i)! i!

3rd Computersystems Workshop, may 15 1991, Eindhoven.

(17)

(18.1)

(18.2)

41

M. Be~p: A partitioning and redundancy model for wafer-scale ICs .

42

For every k, there exists an n (k S n < oo) for which the efficiency E shows a
maximum Emax· The problem is to find the maximum of the maxima, for varying k,
given the technological parameters w and b and the circuit size a. This can be done by
a simple search algorithm. The result will be an optimal rate of partitioning, the
required redundancy n/k to achieve the maximum efficiency Emax• the yield Y which
will be achieved at maximum efficiency and the required total area At including the
area ne~ed for redundancy and re-wiring.

3.e. Results of the model.

Let us investigate expression (18) by assuming the technological parameters to have
constant and realistic values of w = 0.3 and b = 1.5

a k n n/k y At lAc Emax

0.125 1 1 1.00 0.9170 1. 00 0.9170
0.25 1 1 1. 00 0.8409 1. 00 0.8409
0.5 1 1 1. 00 . 0.7071 1. 00 0.7071
1.0 1 1 1. 00 0.5000 1. 00 0.5000
2 26 32 1. 23 0.9670 2.97 0.3260
4 62 74 1.19 0.9812 3.33 0.2950
8 135 158 1.17 0.9863 3.66 0.2698

16 312 358 1.15 0.9938 4.00 0.2485
32 673 763 1.13 0.9955 4.33 0.2300

Table 7. Optimal rates of partitioning and redundancy for various
amounts of required circuitry (a), at given values for the technological
parameters w = 0.3 and b = 1.5

It can be seen that (in this case) for aS 1 both partitioning of the circuit as well as
application of redundancy are not yet required and in fact undesirable, as the
maximum efficiency is achieved for k = n = 1. For a ~ 2, a rather large and increasing
rate of partitioning (k) leads to optimal results, with a gradually decreasing rate of
redundancy (n/k). As could be expected, the required total area At/Ac increases, and
the overall-efficiency E decreases with increasing a. It is surprising, however, that for
circuit sizes ranging from a = 2 to a = 32, the maximum efficiency only decreases a
factor of 1.42 (0.3260/0.2300).

The fact that for small values of a the application of redundancy is undesirable can be
explained by looking at a graph of E as. a function of n (or n-k), for various k as
depicted in figure 3.

Obviously, for small values of k, meaning large basic cell areas, the area penalty
which has to be paid by including redundancy is more severe. than the enhancement
of the yield which will be achieved. This also explains the behaviour of Y as a
function of a. For relatively small circuits (aS 1), no redundancy is implemented and
the yield Y will obviously decrease with increasing circuit size a. For larger circuits,
the application of partitioning and redundancy causes an important enhancement of
the yield, at maximum efficiency, at the cost of not too much area, because a large k

ara Computersystems Workshop, may 15 1991, Eindhoven.

M. Beusekamp: A partitioning 8.!!~ redundancy mEd~for wafer-scale ICs

means small basic cells and there are not many redundant cells needed to enhance the
yield significantly, as was already shown in a numerical example.

fE

0.3

0.2

0.1

k=1

0
n-k-

0 4 8 12 16
Figure 3. An example of the behaviour of the efficiency E as a function of
the available number of cells (n), with the required number of cells (k) as
a parameter.

Special attention should be given to the fact that there apparently exists a critical
circuit-area acrlt• below which the partitioning of the circuit is undesirable, but above
which a significant degree of partitioning is required to reach the maximum
efficiency. This can be explained by looking at a graph of the maximum efficiency
Emax as a function of the number k of required cells, for various values of a, as
depicted in figure 4.

0.5 fEmax

0.4

•
•

0.2 l--....,.--~--,...---.---~--,...--k....,-r----
0 5 1 0 15 20 25 30 35

Figure 4. An example of the behaviour of the maximum efficiency Emax
around a = acrit• as a function of the required number of cells (k), with the
desired circuit area (a) as a parameter.

ara Computersystems Workshop, may 15 1991, Eindhoven. 43

M. Beuseb.m_p: A partitioning a,p.d redundancy m_~~ for wa.fer-sca.le ICs

As can be seen, the graphs of figure 4 may show more than one (local) maximum,
indicated in the figure with dots. The heights of these maxima all depend on the
circuit size a, but with different sensitivities. For small values of a, the maximum at
k = 1 will be the only, or at least the highest one. At a given value of a= llcrit• another
local maximum, at a significantly larger value of k, will be equally high as the
maximum at k = 1. From this specific llcrit upwards, partitioning of the circuit and the
application of redundancy will be favourable.

3.f. Influence of the technoloeical parameters w and b.

Of course, all results as given in table 7 depend on the technological parameters w
and b. As an illustration, table 8 gives the results calculated for a given a = 8 and for
various values of w and b. As can be seen, the required total area as well as the
maximum efficiency strongly depend on w, but not so much on b.

w b k n n/k y At_/Ac Emax

0.1 1.0 193 211 1. 09 0.9912 1. 92 0.5154
0.1 1.5 174 190 1. 09 0.9920 1. 90 0.5208
0.1 2.0 164 179 1.09 0.9924 1. 89 0.5238

0.3 1.0 183 213 1.16 0.9902 3.79 0. 2614
0.3 1.5 135 158 1.17 0.9863 3.66 0.2698
0.3 2.0 117 137 1.17 0.9863 3.58 0.2752

0.5 1.0 234 277 1.18 0.9911 5.84 0.1697
0.5 1.5 167 199 1.19 0.9908 5.59 0.1772
0.5 2.0 130 156 1.20 0.9870 5.41 0.1823

Table 8.11/ustration of the effect of the technological parameters wand b
on partitioning, redundancy, area and maximum efficiency for a given
desired circuit area a= 8.

Also, the critical circuit area acrit• at which the maxima at k = 1 and at k > 1 in
figure 4 have equal heights, depends more on w than on b, as is illustrated in table 9.

4. Application to specific architectures.

The model which was presented in the previous section, was put in general terms and
was not based on any specific architecture. It was assumed that a circuit could be
partitioned into any number of cells, that all these cells were identical and that the
circuit could be reconfigurated in such a way that any faulty cell could be replaced by
any good cell. Of course, this will generally not be true in practice. Nevertheless, the
model can be used for a wide variety of architectures, provided the following
adaptations are being made.

44 ard Computersystems Workshop, may 15 1991, Eindhoven.

M. B_~useka.xpp: A partitioning ~~redundancy model for wafer~sca.le ICs

w b acrit

0.1 1.0 0.71
0.1 1.5 0.70
0.1 2.0 0.69

0.3 1.0 1. 62
0.3 1.5 1.57
0.3 2.0 1.52

0.5 1.0 2.27
0.5 1.5 2.19
0.5 2.0 2.13

Table 9./llustration of the effect of the technological parameters wand b
on the critical circuit area acril·

1) It is, of course, not always possible to partition a specific circuit into any number
of sub-circuits. The micro-architecture will often cause a preference for certain
numbers of cells, for instance powers of two. In practice, this means that not all
natural numbers should be allowed as possible solutions of k, but that solutions of
k should be restricted to a limited set of integer values fitting the micro
architecture of the specific circuit under development. This will not influence the
previously mentioned results significantly, because the efficiency of the optimal
partitioning will not show a very sharp maximum (see figure 4). This can, for
instance, be illustrated by table 10, which shows the calculated results in the case
of a= 8, around the maximum efficiency, which will occur at k = 135 (w = 0.3,
b = 1.5, see table 7).

As can be seen from the above-mentioned and other experiments, a slight
variation in k around maximum efficiency will not significantly influence the
total area, efficiency and optimal ratio of redundancy.

k n n/k y At/Ac Emax

136 159 1.17 0. 98 62 3.65 0.26982729
135 158 1.17 0.9863 3.66 0.26982730
134 157 1.17 0.9863 3.66 0.26982559

,!, ,!, ,!, ,!, ,!, ,!,
128 151 1.18 0.9866 3.66 0.26977643

Table 10. The effect of small variations in k around the value of
maximum efficiency (a= 8, w = 0.3, b = 1.5)

2) From table 7 it can be seen that a circuit with a size of, for instance, a = 32 has to
be partitioned into 673 sub-circuits to give an optimal efficiency. In practical
situations, this number may be considered rather large. Table 11 shows the effect
of rounding k to the nearest lower and subsequently lower powers of two

3rd Computersystems Workshop, may 15 1991, Eindhoven. 45

M. Beusekamp: A pa.rtitjnnjpg and redundMcy mode} for wa.fer-sca.le ICs

46

(w = 0.3, b = 1.5). From this table it can be seen that, in this case, solutions down
to, say, k = 128 still show an acceptable

1
efficiency.

k n n/k y At_/Ac Emax

673 763 1.13 0.9955 4.33 0.2300
512 601 1.17 0.9951 4.34 0.2291
256 342 1. 34 0.9895 4.54 0.2178
128 215 1. 68 0.9795 5.21 0.1881

64 160 2.50 0.9618 7.00 0.1374
32 158 4.94 0.9319 12.34 0.0755
16 250 15.63 0.8834 34.37 0.0257

Table 11. The effect of decreasing the rate of partitioning on required
redundancy, area, yield and efficiency (a= 32, w = 0.3, b = 1.5)

3) So far, it was assumed that the desired circuit could be partitioned into any
number of identical cells. This may be acceptable for very regular structures, like
memories and systolic arrays, but not for all types of circuits. The model of this
memorandum may therefore predominantly be useful for regularly structured
architectures. Nevertheless, the architecture of almost any circuit allows a
distinction of large functional blocks with a regular structure. Applying the model
on each of these blocks separately, will also give a (nearly) optimal solution for
the complete circuit.
Moreover, there are three reasons causing the area of a wafer-scale integrated
circuit to be significantly larger than that of a VLSI-circuit. Firstly, a WSI-circuit
will by nature incorporate a certain amount of redundant circuitry. Secondly, a
relatively large area will be occupied by the implementation of the additional
wiring and switches needed to (re-)con figurate the circuit during the initial test or
any power-up routine. Thirdly, the development of WSI-circuits will take some
time, during which regular VLSI-circuits will continue to develop as well. In
order to produce economically competitive WSI-circuits, one will have to aim at
circuit sizes which are at least half an order of magnitude larger than state-of-the
art VLSI-circuits. The size of realistic WSI-circuits will therefore be of such a
magnitude that they will inevitably have to be more or less regular in order to be
designed by presently available CAD-tools.

4) In the model, it was assumed that any faulty cell could be replaced by any spare
cell. In a practical situation, this will generally not be true. A faulty cell will have
to be replaced by a cell in its close vicinity. Often, the implementation provides
for complete rows and/or columns of spare cells, and reconfiguration is
perfonned by implementing the proper "sidesteps". To the model, this means that
n can not adopt any integer value k S n < oo, but n will be restricted to certain
architecture-dependent values. These restricted values of n can, just like the
above-mentioned restricted values of k, be incorporated into the algorithm of the
model, which will then find the optimal solution under the additional constraints.
Moreover, all restrictions considering reconfiguration wiring and switches can be
accounted for in the parameters w and b.

3rd Computersystems Workshop, may 15 1991, Eindhoven.

_ M. Beusekamp: A partitioning a.nd redunda.n~y model for wafer-scale ICs

Conclusions and summary.

A model was presented which calculates the optimal degree of partitioning, rate of
redundancy, total area, yield and efficiency for any desired (large) circuit. It was
shown that there exists a critical circuit size, below which the implementation of
partitioning and redundancy is undesirable. Above this critical circuit size,
partitioning into rather small cells leads to optimal efficiency, in spite of the fact that
small cells require a considerable overhead of reconfiguration wiring and switches.
This also means that the implementation of very large redundant cells or blocks will
cost more area than the enhancement of efficiency justifies. It was shown that the
model can be adapted to any specific architecture by adjusting parameters and
limiting possible solutions to restricted, architecture-dependent values. By a simple
mathematical substitution, the model can be made completely analytic, making it
very simple to investigate the sensitivity of the optimal solution to small variations in
parameters.

Appendix.

In expression (18), the faculty functions may cause some difficulties, due to the rapid
increase of n! with increasing n. In many applications, the numeric value of n! will
exceed the range of the integer or even real variables on the used computing
instrument. The calculated results, however, are in a reasonable range, as n! is
divided by (n-i)!(i)! in all cases, due to the binomial origin of the faculty functions.
Out-of-range-problems can therefore be avoided by calculating with the logarithms of
the faculty functions.
On the other hand, these faculty functions are the only functions causing (18) to be
non-analytic. In order to take the derivative of (18) with respect to its parameters, for
sensitivity calculations, it may be found very useful to substitute n! by its well-known
Stirling-approximation [e.g. 10,11].

n! ,.. (n/e} n • ..J (21tn} .C (n) (A.l)

This approximation is based on the theory of gamma-functions. Its derivation is
beyond the scope of this memorandum. C(n) is a correction factor, consisting of a
series expansion of n-1

C (n) = 1 + (C1 /n} + (C2 Jn2) + (C3 /n 3) + (C4 /n4) + ...

(A.2)

C1 ... Cr are the results of first order Bernouilli-functions. In most publications, this
correction factor is truncated after the fifth term (Cr == 0 for r > 4). The numeric
values ofC1 ... C4 are

3rd Computersystems Workshop, may 15 1991, Eindhoven. 47

M. Beuseka.IJ!.p; A partitioning a.nd redunda.ney model for wafer-scale ICs

C1 1112 =
C2 1/288 =
c3 -139/51840
c4 = -571/2488320

8.3333333.10-2
3.4722222.10-3

= -2.6813271.10-3
= -2.2947209.10-4

Table A.l. Numeric values of the coefficients in the correction factor
C(n).

Let SLA ("Stirling Low Accuracy") be the Stirling approximation of n! with C(n)=l
(meaning Cr = 0 for r > 0), let SMA ("Stirling Medium Accuracy") be the Stirling
approximation of n! with C(n) = 1 + (l/12n) (meaning Cr = 0 for r > 1), and let SHA
("Stirling High Accuracy") be the Stirling approximation of n! with C(n) truncated
after the fifth term (meaning Cr = 0 for r > 4). Then, the accuracies as summarized in
table A.2 for the approximations are obtained. For n-+ oo, n!/SLA, n!/SMA and
n!/SHA all approach unity.

n n! /SLA n!/SMA n! /SHA

0 00 00 00

1 1.08444 1.001019 1.00050078
2 1. 04221 1. 000519 1.00002102
3 1.02806 1. 00027 9 1.00000300
4 1.02101 1.000171 1.00000073
5 1.01678 1.000115 1.00000024
6 1.01397 1.000083 1.00000010

Table A.2. Accuracies of the Stirling approximation of n! with several
numbers of terms in the correction factor C(n) taken into account.

Obviously, the SLA-approximation has the disadvantage of an unacceptably low
accuracy for low values of n. The SHA-approximation on the other hand, provides an
excellent accuracy (for n > 0), but will be cumbersome to differentiate, due to the
relatively high number of terms in the correction factor C(n). In most applications,
the SMA-approximation will show a useful balance between both.

The difficulty of the infinite error arising when calculating 0! can be overcome by
recognizing that n! = (n+ 1) !/(n+ 1). Combining this with (A.l) and (A.2) where Cr = 0
for r > 1 yields

n! = ..J(21tfe3) • [(n+1)/e]n-l/2. (n+l3f 12) (A.3)

This analytic approximation of n! shows an error ranging from 0.1% for n = 0 to less
than 0.01% and approaching zero for n > 5.

48 3rd Computersystems Workshop, may 15 1991, Eindhoven.

References.

I. E.g. all publications on the Philips/Siemens Mega-project.
2. J. Middelhoek. "De juiste connecties". Proceedings of the Holland Elektronica

Interconnectiedag, Holland Elektronica, Zoetenneer, The Netherlands,
ISBN 9071.306-10-0, March 1988, pp. 43-49.

3. Gabriele Saucier and Jacques Trilhe. Editorial introduction to Gabriele Saucier and
Jacques Trilhe (editors), Proceedings of the IFIP WG 10.5 Workshop on Wafer Scale
Integration, North Holland, ISBN 0-444-70103-6, March 1986, pp. V-XX.

4. Jim C. Harden, Noel R. Strader II. "Architectural Yield Optimization for WSI". IEEE
Transactions on Computers, vol. 37, no. 1, January 1988, pp. 88-110.

5. Hans-Jiirgen M. Iden. "On the Optimization of Hierarchical Redundancies Including
Configuration Nets and Switches". Earl Swartzlander and Joe Brewer (editors),
Proceedings of the First International Conference on Wafer-Scale Integration, IEEE
Society Press, ISBN 0-8186-9901-9, January 1989, pp. 173-182~

6. Tom Leighton, Charles E. Leiserson. "A Survey of Algorithms for Integrating Wafer
Scale Systolic Arrays". Gabriele Saucier and Jacques Trilhe (editors), Proceedings of the
IFIP WG 10.5 Workshop on Wafer Scale Integration, North Holland, ISBN 0-444-
70103-6, March 1986, pp. 177-195.

7. Fran~ois Blayo, Philippe Hurat "A Reconfigurable WSI Neural Network". Earl
Swartzlander and Joe Brewer (editors), Proceedings of the First International
Conference on Wafer-Scale Integration, IEEE Society Press, ISBN 0-8186-9901-9,
January 1989, pp. 141-150.

8. R.M. Lea. "A WSI Image Processing Module". Gabriele Saucier and Jacques Trilhe
(editors), Proceedings of the IFIP WG 10.5 Workshop on Wafer Scale Integration, North
Holland, ISBN 0-444-70103-6, March 1986, pp. 43-58.

9. Ben Warren, Wayne Richardson, Keigi Kanegawa, Cliff Amell. "A One Megabit
SRAM Fabricated with 1.2 ~ Technology". Earl Swartzlander and Joe Brewer
(editors), Proceedings of the First International Conference on Wafer-Scale Integration,
IEEE Society Press, ISBN 0-8186-9901-9, January 1989, pp. 47-53.

10. I.N. Sneddon (editor). "Encyclopaedic Dictionary of Mathematics for Engineers and
Applied Scientists". Pergamon Press, Oxford, ISBN 0-08-016767-5, 1976, First edition,
p. 641.

11. Granino A. Kom, Theresa M. Kom. "Mathematical Handbook for Scientists an
Engineers". McGraw-Hill Book Company, New York, 1961, pp. 698-699.

3rd Computersystems Workshop, ma.y 15 1991, Eindhoven. 49

Abstract

Efficient Implementation of High-Level
Parallel Symbolic Languages

Mark Korsloot~
Dept. of Electrical Engineering
Delft University of Technology

PO.Box 5031, 2600 GA Delft, the Netherlands
markGduteca.et.tudelft.nl

A compile-time technique is presented for determining if a set of procedures within a parallel
program can be executed sequentially without causing deadlock. The analysis and methods are
described for committed-choice parallel logic programming languages; however, the concepts are
general enough for any concurrent languages with :fine-grain communicating processes. We derive
methods for ensuring that sequential evaluation of a program module cannot result in producer
consumer suspension within the module itself, thereby resulting in deadlock. The advantages
of sequentializing fine-grain languages include the use of "traditional" compiler optimizations,
such as global register allocation, and continuation-stacking procedure invocation.

1 Introduction

Traditional parallel procedural languages evolved from sequential programming languages. The
quest to uncover more parallelism, in more efficient ways, is paramount in the development of
these languages. Alternatively, concurrent languages, such as committed-choice parallel logic
programming languages, have a great deal of inherent parallelism. These languages and their
implementations have been refined to exploit the parallelism more and more efficiently, with
increasingly sophisticated interpreters and emulators, in both software, firmware, and hardware.
Less research has been done concerning efficient compilation for the parallel execution of these
concurrent languages.

In this paper, we introduce a method to safely sequentialize pieces of concurrent programs,
with the intention of increasing execution speed. Specifically, we describe our method with
respect to the family of flat committed-choice parallel logic programming languages, such as
FCP, FGHC, and Parlog [16J. To achieve serialization, we combine a general mode-analysis
algorithm [20] with a goal-ordering algorithm described here. We fully describe the conditions
under which the analysis can successfully sequentialize a program, and indicate practical uses
of the technique, such as global register allocation and continuation-based goal management.

There are several reasons why sequential execution can be beneficial. One of the advan
tages of sequential code blocks is to increase granularity (5, 18]. An often-mentioned problem
of committed-choice languages is their small average granularity, causing a high overhead for
process management and an abundance of light-weight processes. By sequentializing portions
of a fine-grain parallel program, execution time decreases and process·or utilization increases.
Apart from this, sequentializing part of a program also makes it possible to use many well
known compiler optimization techniques (e.g., [11), such as a global or interprocedural register

2 This work has been done in cooperation with Prof. E. Tick, Dept. of Computer Science,
University of Oregon

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

allocation scheme. The trick is to determine which sets of procedures should be serialized for
overall benefit, and if they can be serialized safely, i.e., without chance of deadlock.

Our ultimate goal is to exploit efficient memory management, optimal register allocation, and
destructive variable assignment techniques within "sequential" program modules. Thus we can
compile parts of committed-choice programs as if they were sequential, procedural languages,
thereby increasing the average granularity. By judicious modularization of a program, overall
efficiency of committed-choice programs will improve significantly with relatively simple analysis.

This paper is organized as follows. A brief review of committed-choice languages and ar
gument modes is given in Section 2. Section 3 shortly describes a first attempt at efficiently
implementing committed-choice languages by exploiting directional programs, as first discussed
by Gregory [8). Section 4 describes a more general method of mode analysis, due to Ueda [20).
The results of this mode analysis can be used to ensure safe sequential execution, as described in
Section 5. Section 6 describes how the preceding methods can serve as the basis for the efficient
implementation of sequential modules, and Section 7 summarizes the paper.

2 Background and Terminology

In this section a brief review of committed-choice languages and argument modes is given. The
terminology introduced here, for input and output modes, modules, basic blocks, and internal and
external suspension, is necessary for the remainder of the paper. In the literature, the notion
of modes is somewhat overloaded in its meaning, through sloppy usage and intuitive bias. We
hope to clarify the intended meanings. It is important to stress that we limit ourselves to the
family of :flat committed-choice languages [16). This limitation is not a severe handicap, as the
expressive power of these languages is comparable3 to those languages with deep guards [17);
however, their implementation is simpler and more streamlined.

In :flat committed-choice languages, Horn clauses have the form

where m and n are zero or positive integers. His the clause head, Gi is a guard goal, and Bi is
a body goal. A goal can be considered a procedure invocation. A conjunction of goals is simply
a set of goals, appearing within the same clause. The commit operator 'I' divides the clause into
a passive part (the guard) and active part (the body). For :flat languages, the guard goals can
only be built-in predicates, such as integer(X), or X>O.

Both the clause head and internal goals can have arguments. The head arguments correspond
to formal parameters in a procedure definition, whereas the guard and body goal arguments
correspond to passed parameters in a procedure call. A procedure is defined as the set of clauses
having the same name and number of head arguments.

An important concept is the notion of modes. A procedure argument is used to communicate
values between the caller and callee. Intuitively, when the caller passes a value into the callee,
the corresponding argument is used in an input mode. Similarly, when the callee passes a value
back to the caller, the argument is used in an output mode. However, due to the nature of the
logical variable, a single argument, in a given invocation, can be used both to pass values in and
return values back. One example of this is called "incomplete messages," e.g., m(X) is an input
message containing an unbound variable X, meant to be bound with a return message by the
callee.

3 See Shapiro [15] for an in-depth comparison of this family of languages.

52 3rd Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

Mode declarations can be either explicit (as in Parlog [8]), or implicit. A mode can be either
input or output. In Parlog, the user must declare the modes for each "top-level" argument of
a predicate. A top-level argument is the outermost term passed to a procedure, distinct from
any subterms that it may be composed of. The following definitions are due to Gregory [8] and
others.

Definition: An input argument of a goal, denoted here by mode'?', is an argument
which is either instantiated when the goal is called, or it is a variable. However,
during head matching or guard evaluation, when the input argument is a variable,
it can never be instantiated by the head-matching process. Basically, only input
matching is performed. 0

Definition: An output argument, denoted here by mode 'A', is an argument which
is always unbound in the caller, and whose value is bound by the callee. 0

In the following, arguments of a predicate which have been declared as input or output will
be named input positions or output positions, respectively. Furthermore, the goal(s) which
instantiate a variable are called the producer(s) of this variable, while the goal(s) which use, but
not instantiate, a variable are called the consumer(s} of that variable.

There are some flaws, however, in the simple mode system. Primarily, the modes concern
only top-level functors. For example, consider the following program:

100de f(?,•).
f([llla]. Z) :-true I g(l),h(ls,Z).

The mode declaration of the first argument does not convey anything about the value of I when
f/2 is called: it only specifies that the first argument of the caller must be a (non-empty) list.
Furthermore, specifying an argument as input does not exclude the possibility that the argument
is bound to a non-variable term in the body, e.g.,

mode f(?).
f(l) :- true I 1=0.

The above is a legal Parlog program, and when called with the query "?- f (I)," X will be bound
to 0 ' which contradicts the intuitive notion of input argument.

The notions of input and output modes, as introduced by Ueda [20], are somewhat more
consistent in this regard. Instead of simply specifying the top-level arguments, Ueda's method
attempts to infer the modes of all variables and structures occurring in the clause. Ueda distin
guishes terms by specifying the path which must be taken to get to a specific term. For example,
the path to get to variable X in predicate f/2 above is specified as <f .1><. ,1>,4 i.e., the head
of the first argument of f /2.

The value of a path is then defined as the first (principal) functor following this path when
the term at the end of the path is instantiated. In our previous example, if X is instantiated to
a(O ,0), then the value of the path <f ,1><. ,1> is a/2. We now give definitions of input and
output path modes due to Ueda [19].

Definition: If a path is defined as input, the value (i.e., the principal functor) of
this path may (but need not) be bound by the caller, and will never be bound by
the callee. o

'For lists, the functor ./2 is used, so<· ,1> is the head of a. list, while<· ,2> is the ta.il of a. list.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 53

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

Definition: If a path is defined as output, the value (i.e., the principal functor) of
this path will never be bound by the caller, and may (but need not) be bound by
the callee. D

We now define the notions of a sequential module and a sequential basic block. We use the term
module to describe a set of self-contained predicates, which is entered (called) through a single
entry-point (the module entry-point). In this context, "self-contained" means that no predicate
inside the module calls any predicates outside the module, nor does any predicate outside the
module call any predicate inside the module, apart from the visible module entry-point. For
example, consider the following code segment:

a. :- b,c,d.
b :- e,b.
c :- b.
d.
e.

Predicates b and e comprise a module; this module is entered only through b. From within this
module, there are no calls to predicates outside it. Extending this notion, a complete program
can be viewed as a. module with the top-level query calling the module entry-point (assuming that
the query consists of a. single goal only). If the goals inside a module are executed sequentially,
the module is called a sequential module, for obvious reasons.

A basic block is defined simply as a group of body goals within the same clause. Note
that this definition is more general than the standard definition for machine instructions [1],
although the intention is similar. If these body goals are executed sequentially, the block is
called a sequential basic block. Grouping together these body goals can be done in several ways.
First, the goals can be folded together (either by the user or as a. source-level transformation by
the compiler) into another goal, which is specifically marked as "sequential." For example, in
the previous code, if we group the goals c and d, the program could be transformed into:

:- sequential g.
a. :- b,g.
b :- e,b.
c :-b.
d.
e.
g :- c,d.

A second possibility for grouping a. set of body goals is using an operator such as the sequential
conjunction operator 't' from Parlog:

a :- b, (c t d).

In the third option for marking a. sequential basic block, no explicit transformations or anno
tations are made, but rather the compiler detects the presence of a. sequential basic block, and
implicitly transforms the block into an internal representation.

Extending these notions with respect to the call graph of a. program, a. module is defined as
a. subgraph of the entire graph. This subgra.ph is entered through only one node, 5 and has no
edges to nodes outside the subgra.ph. In contrast, a. basic block is a. set of nodes which are all
connected to the same parent. Recall that this implies that all goals in a. clause can be executed
concurrently. An example is shown in Figure 8a., which represents the aforementioned program.
The left box represents a. module, and the right box represents a. basic block.

6 There ma.y be multiple edges entering a module, but they can be connected only to the modnle entry-point.

54 3"ct Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

®:
I"--------" sequential

basic block

.. --------~
.. ________ ,

(b)

Figure 8: (a) Modules and Basic Blocks in Call Graphs. (b) A Call Graph with a Sequentialized
Basic Block.

By sequentializing a basic block, the call graph changes as follows: if a basic block consists
of n goals, for all but the first goal, the edges connecting them to their parent are removed from
the call graph, and then goals are connected such that goal i is connected to i+ 1 (for all i < n).
This is shown in Figure 8b.

Algorithms for selecting sequential modules and basic blocks (i.e., their composite procedures
and appropriate size) are an ongoing research topic of great importance, related to granularity
analysis (e.g., [5, 18]). However, this is beyond the scope of our paper.

Another important notion to be defined in this context is that of suspension. The execution
of a committed-choice goal will suspend whenever an input variable is not sufficiently instantiated
for the goal to commit. This situation changes when another process further instantiates the
variable, allowing the suspended process to resume. H the variable is never instantiated, deadlock
will arise, which is defined as a situation where one or more suspended processes exist, but no
runnable processes exist. We define suspension with respect to both modules and basic blocks:

Definition: A process (or a set of processes) is suspended externally, when the cause
of the suspension lies outside the suspended module (basic block). D

For example, consider the query "?- c(X) ,p(X)." where c/1 (the consumer of X) and p/1 (the
producer of X) are different modules. H c/1 is executed first, then external suspension of c/1
occurs. Intuitively, external suspension means that a process, external to the module, which
produces data for the module, has run of out of data, and the module must wait for this producer
to produce more data. When a process is suspended on more than one variable, with at least
one of the causes of suspension outside the module, this is also called external suspension.

Definition: A process (or a set of processes) is suspended internally, when the cause
ofthe suspension lies inside the suspended module (basic block). D

Intuitively, internal suspension means that some variable which is local to the module or basic
block is not sufficiently instantiated to allow the process to continue. H a process is suspended
on more than one variable, suspension is called internal if and only if all causes are inside the
suspended module. With these definitions, the following theorem is easy to derive:

Theorem 1 If the goals inside a module or basic block are executed sequentially,
then internal suspension will always cause deadlock for the top-level call of the module
entry-point.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 55

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

The proof is simple: if suspension occurs, the module has to wait for some other process to
produce more data. However, this process is located inside the module, and will never be
executed because the goals inside the module are executed sequentially. Therefore the call to
this module deadlocks. Although this theorem may be obvious, its importance is that it clearly
shows that internal suspension must be prevented for sequential basic blocks and modules. In
the next section we begin to develop conditions under which this is true.

3 Directional Programs

One of the first attempts towards a parallel logic language which could be implemented efficiently
on a distributed, loosely-coupled architecture was the Relational Language [3], the direct pre
cursor of Parlog [8]. Apart from the mode system, which is also present in Parlog, the Relational
Language featured strong arguments.

Definition: A strong argument of a procedure invocation, if it is in an output
position, is a term that is completely constructed by a single body goal in that
procedure's definition, without any contribution from other goals in this conjunction.
The constructing goal is often called the producer. H a. strong argument is in an input
position, it is completely constructed by external goal(s), and no bindings to it are
made in this procedure invocation. D

Thus there can never be an output substitution for any variable occurring in a strong input
argument position. This does not preclude the construction of terms containing unbound vari
ables, but these variables can never be instantiated within the conjunction by a goal other than
the producer. As an example, consider the following code segment:

mode f(-).
f1(1) :-I= g(O).
f2(1) :-I= g(Y).
f3(1) :-X= g(Y), Y = 0.

The X arguments in both fl/1 and f2/1 are strong (their values are completely constructed
by a. single body goal), whereas the X argument in f3/1 is not strong. Note that Y is not
instantiated by another body goal in f2/1. The implication of strong variables is far reaching:
"back communication" (e.g., the use of incomplete messages) is impossible. In general, the full
power of the logical variable is lost.

For completeness, we now discuss the status of variables that are not strong. To retain the
full power of the logical variable, weak arguments are necessary. For example, argument X in
f3/1 is weak because, its value is constructed by two body goals within the same clause. For
output arguments, the distinction between weak and strong is not important (in both cases,
output bindings are only made through variables occurring in output positions), therefore in the
following we will distinguish only between strong and weak input arguments.

Definition: A weak input argument of a. goal is one in which variables might be
instantiated by the evaluation of the goal. 0

Weak input arguments were introduced in Par log (and implicitly used in other committed-choice
languages), because Parlog programs only specify the modes for top-level arguments, without
considering subterms of these top-level arguments. Consider, for example, the following correct
Parlog program:

56

mode f(?).
f(g(l)) :- 1=0.

3rd Computersystems Workshop, may 15 1991, Eindhoven.

.·

M. Korsloot: Efficient Implementation of ffigh~Level Parallel Symbolic Languages.

Although the weak argument of f/1 is (correctly) defined as input, because it is a. structured
term g/1, the variable X inside this argument will be instantiated when f/1 is called.

With the definition of strong arguments, a. directional program can be defined:

Definition: A directional logic program is a. program in which all arguments (of all
clauses of all procedures) are strong. D

A d.ifectional module can be defined similarly. In a. directional program, the mode declarations
indicate which body goal constructs the value of a. variable: the goal in which the variable appears
in an output argument position. Gregory [8] uses directionality only to check for the compil~
time safety of guards, something which we do not discuss here. However, the directionality
mechanism is more powerful we show, in Theorem 2, that it can be used to significantly lower
the number of suspensions:

Theorem 2 If a program is directional, and given a corTeCt ordering of the body
goals, no deadlock will occur, and the program can only suspend externally, i.e., on
variables whose producers are the to~level query.

Again, this theorem can easily be extended to cover modules. For example, consider the body
goals "f(A), g(A,B), h(B)." Suppose f/1 is the producer for A and h/1 is the producer for B.
A correct ordering, to avoid deadlock during sequential execution, is "f(A) a h(B) a g(A,B)."

It may be the case that more than one ordering exists satisfying this theorem; however, it
is also possible that no such ordering exists, thus leading to internal suspension of a. directional
program. For example, consider the body goals "f(A,B), g(A,B)" where f/2 is producer for A
and g/2 is producer for B. In this case, the program is still directional, but there is no ordering
of f/2 and g/2 satisfying Theorem 2.

When body goals are executed in the "correct order," the number of suspensions is reduced
because a. producer of a. variable is always executed before its consumer(s). Although we will not
go into further details here, [12] illustrates why the requirement for a. program to be directional
(i.e., for all arguments to be strong) is too restrictive, and in the remainder of this paper we will
describe an approach to ease this requirement, while retaining the full use of Theorem 2.

4 Mode Analysis

As the requirement for full directionality with only strong arguments is too restrictive to be
effective, another type of mode analysis is necessary. A viable alternative is the mode analysis
described by Ueda. [20] (other options, which we do not consider in this paper, are available,
such as abstract interpretation [13]). Ueda.'s mode analysis automatically infers the modes of all
arguments at the top-level and those inside structured top~level arguments. A mode is either
input or output6 as defined in Section 2.

4.1 Simplified Rules

The mode analysis described in this section reviews Ueda.'s technique, a.l.though a. different
(hopefully more clear) exposition and less formal notation is used here. The mode analysis
uses the notion of a. path to denote a. specific (textual) occurrence of a. term. A path describes
how the different layers of structured data. elements must be "peeled off" to get to this specific
occurrence. For example, given the clause head f (X, g ([X I J)) , the path to the first occurrence

6 Shortened to "in" and "out" in certain contexts.

3"d Computersystems Workshop, may 15 1991, Eindhoven. 57

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic La.ngua.ges.

of X is <f ,1>, while the path to the second occurrence is <f ,2><g,1><. ,1>. This second
path mea.ns "take the second argument off," then "take the first argument of g," a.nd then
"take the :first argument of the list."

The mode of a. path p, which is denoted as m(p), is defined as either input or output.
The definitions of input and output in [20) are somewhat ambiguous, so we use two improved
definitions [19]. Let p be a pa.th leading to a variable. Then:

• "m(p) = in" means that the value (i.e., the principal functor) of the variable at p mag
(but need not) be bound by the caller, and will never be bound by the callee.

• "m(p) = out" means that the value (i.e., the principal functor) of the variable at p mag
(but need not) be bound by the callee, and will never be bound by the caller.

Intuitively, this implies that an input path will not be (further) instantiated, while an output
path implies that a process can never suspend on the value of the path. Note that variable
variable unification does not count as "binding the value" of a variable. Thus, input paths
leading to variables cannot cause suspension, even if the incoming argument is unbound.

If possible, the modes of all paths must be inferred to find a safe goal ordering, which avoids
internal suspension. The mode of a path can be found by applying the following rules:

§ 1. For some path p in a clause, m(p) = in, if either

1. p leads to a non-variable in the head or body, or

2. p leads to a variable which occurs more than once in the head, or

3. pleads to a variable which also occurs in the guard at path Ph and m(p~a) =in

§2. Two arguments of a unification body goal (=/2) have opposite modes, for all possible
p, or more formally: {Vp m(<=, 1 > p) ::j:. m(<=, 2 > p)}.

To better understand the modes, we now give the intuition for these rules. If a path leads to
a non-variable in the clause, then the value of the path is already known, and it will not be
instantiated by the callee, thus its mode is 'in.' If a variable occurs more than once in the head,
it can only be used for equality checking before commitment.7 No bindings are allowed, thus
again its mode is 'in'. Similarly, if a variable in the guard is used for checking (i.e., its mode is
'in'), then it is clear that value of the path to that variable is provided by the caller, so its mode
is 'in.'

Because of the nature of unification, one of the arguments of •/2 will function as producer
for a specific path, while the other argument functions as consumer. Note, however, that §2 does
not require that for all possible paths p, the modes of an argument are the same. For example,
giventheuni:fi.cation [1,X]=[Y,2],m(<=,1><.,1>) = in,whilem(<=,1><.,2>) =out.

When a variable occurs more than once, with at least one occurrence in the body, the
Situation gets more complicated. Because paths to variables occurring more than once in the
head all have the same (input) mode (see §1b), it is correct (and simpler) to count only one
occurrence of a variable in the head in the following rules.

§3. If there are exactly two occurrences, we have two possibilities:

1Note tha.t these sema.ntics a.re particular to FGHC. For exa.mple, the procedure "f(1,1) :- 1•3." ca.n only
succeed with the query "?- f(3,3) ." If the intention was to output two copies of 3, then the proper code is:
"f (1, f) :- 1•3 • Y•l." Parlog a. voids this problem by a.llowing both arguments to be explicitly defined as output
modes.

58 3rd Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

1. H both occurrences are in the body, the modes of their paths are inverted.

2. H there is one occurrence in the head and one in the body, the modes of their
paths are the same.

§4. H there are more than two occurrences of a shared variable (i.e., at least two occur
rences in the body), the situation is even more complex:

1. H the body contains more than two occurrences of the shared variable and the
head has no occurrences, then one of the modes is 'out,' and the others are 'in.'8

2. H the head contains one occurrence of the shared variable (so the body has two
or more occurrences), then the modes are as follows:

(a) The mode of the head occurrence is 'in' iff the modes of all body occurrences
are 'in.'9

(b) The mode of the head occurrence is 'out' iff one of the body occurrences is
'out,' and the other body occurrences are 'in.'

The inversion in §3 can be intuitively explained by looking at an input path in a clause head.
For that clause, the variable acts as a consumer of data (therefore its mode is input). However,
within the clause the variable in the head acts as a producer for the body of the clause, thus
inverting its mode within the clause. The opposite of this holds for an output path in the head.

The complexity of §4 can be explained intuitively by looking at the inversion of the modes
discussed previously, combined with the fact that only one occurrence of a variable can be its
actual producer. The problem with this last rule is that it causes non-binary constraints to
occur. To clarify this, we will give two examples of how the modes of a shared variable can look
when multiple (three in this case) occurrences are present.

f(X) : - b1(X), b2(X). f : - b1(X), b2(X), b3(X)
in in in out in in

out out in in out in
out in out in in out

4.2 An Example of Mode Analysis

To explain the concept of modes and paths, and to understand the rules given above, it is best
give an example. Figures 9 and 10 give the mode analysis for quicksort. In these proofs, let
qi(p) = m(<q,i>p) and Bi(p) = m(<s,i>p), while '=k' represents the kth instance of the
unification goal =/2, and '£'represents an empty path. Furthermore, each step in the proof is
annotated with the rule used. Each mode relationship proved is called an axiom, e.g., there are
six axioms comprising the full mode definition for q/3.

AB an example of how such a proofs are constructed, consider the fourth axiom in Figure 10.
We start with the path to the term on the right-hand side of =1/2. The value of this path is a
non-variable {D), so according to §1a, its mode is 'in.' Using §2, we then derive that the mode
of the corresponding path on the left-hand side of =t/2 is 'out.' As there are two occurrences
of the variable S, one in the head and one in the body, §3b applies. H we now substitute p=£
in the last axiom derived, and combine it with the previous one, the final outcome is s3(£) •
out. The other axioms are proved similarly. Together these results give an idea how data flows

11This means that one of the occurrences iB designated as the producer of this variable.
11 Note that if a variable occurs more than once in the head, its mode iB 'in' by §lb, implying that §4b-ii cannot

be used.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 59

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

60

q(O, RO,B.) :-1.0 =1 B..
q([liLJ,RO,B.) :- s(L,l,L1,L2),q(L1,B.O,[liR1J),q(L2,R1,B.).

1. q1(t;) = in

2. q3(€) = in

3. q2(t:) = out
a. Vp q2(p) = mC<=1,1>p)
b. Vp q3(p) = mC<=1,2>p)
c. Vp q2(p) #; q3(p)
d. q2(e) = out

4. Vp q1(<.,2>p) = s1(p)

6. Vp q3(p) = q3(<.,2>p)
a. Vp q3(<. ,2>p) #; q2(p)
b. Vp q3(p) = q3(<.,2>p)

§1a

§1a, 2nd body goal

§3b
§3b
§2 .
"2"+c: sub p=t:

§3b (on L)

§3a (on 1.1)
"3.c" + a

e. Three possibilities: §4b
a. q1(<.,1>p) =in, s2(p) =in, q3(<.,1>p) =in
b. q1(<.,1>p) =out, s2(p) =out, q3(<.,1>p) =in
c. q1(<.,1>p) =out, s2(p) =in, q3(<.,1>p) =out

7. s3(€) = out
a. Vp q1(p) #; s3(p) §3a (on L1)
b. s3(€) = out "1" + a

8. s4(d = out see "7"

Figure 9: Mode Analysis Proof for Quicksort: q/3.

ara Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

s(D. _,s.L) :- S =1 D. L =2 D.
s([IIIa],A,S,L) :-!>I I L =a [IIL1], s(Is,A,S,L1).
s([IIIs],A,S,L) :-!=<I I S =4 [IIS1], s(Is,A,S1,L).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a1(f) = in

s1(<.,1>) =in

a2(f) = in

s3(f) = out
a. m(<=1.2>) = in
b. m(<=lo1>) = out
c. Vp m(=lo1>p) = s3(p)
d. s3(f) = out

s4(t) = out

Vp s1(p) = s1(<.,2>p)

Vp s4(p) = s4(<.,2>p)
a. Vp s4(p) "I m(<=a.2><. ,2>p)
b. Vp s4(p) = m(<=a.1>p)
c. Vp s4(< .• 2>p) = m(<=a.1><.,2>p)
d. m(<=a.1>p) "I m(<=a.2>p)
e. Vp s4(p) = s4(< .• 2>p)

Vp s3(p) = s3(<.,2>p)

a4(<.,1>) =out
a. s1(<. ,1>) = in
b. Vp s1(<.,1>p) = m(<=3 ,2>< .• 1>p)
c. m(<=a.2><.,1>) =in
d. m(<=a.1><.,1>) =out
e. s4(<.,1>) =out

s3(<. ,1>) = out

§1a

§1c

§1c

§1a
§2
§3b
c: sub p=t

see "4"

§3b

§3a (on L1)
§3b (on L)
b: sub p=<. ,2>
§2
a+c+d

••• "7"

see "2"
§3b
b: sub p=t
§2
see "7.b"

see "9"

Figure 10: Mode Analysis Proof for Quicksort: s/4.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 61

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

within this procedure, i.e., which arguments (and which variables within structures) are input,
and which are output. This information can be used by a compiler to make optimal use of its
resources, such as memory and registers.

To show that mode analysis can fail as well, consider the following example:

f :- r(I,Y), g(I), g(Y).
r(I,Y) :- I=Y.

Applying §3a to the first clause gives: Vp m(< r, 1 > p) ::f. m(< g, 1 > p) and
Vp m(< r, 2 > p) ::f. m(< g, 1 > p). In other words: Vp m(< r, 1 >. p) = m(< r, 2 > p) However,
applying §2 to the second clause gives: Vp m(< r, 1 > p) ::f. m(< r, 2 > p), which clearly contra
dicts the previous conclusion, so the mode analysis fails and no consistent modes can be found.
This implies that this code cannot safely be considered as a sequential module, and standard
compilation techniques must be used. The reason why the mode analysis fails can be seen more
clearly from the unfolded program:

f :- g(I), g(I).

IT both occurrences of X had mode 'in,' then there would be no producer for X. On the other
hand, if both occurrences of X are 'out,' then they are competing to produce a value for X, but
it is not certain which of the processes will generate the value. Therefore we cannot say which
occurrence must be executed first to obtain a safe, i.e., deadlock-free, sequential module.

To come back, however, to the quicksort example, the most interesting point about this
analysis is the sixth axiom in Figure 9. The analysis shows that three distinct modes of execution
are possible for q/3, hinging on the use of shared variable X. Since X appears twice in. the body
of the second clause, the proof uses rule §4b. The three distinct modes depend on whether X
is input by the clause head (first choice) or bound by a body goal (latter two choices). Given
the mode analysis of s/4 in Figure 10, the second choice (b) is contradicted, since s2(£) = in.
Therefore only two choices remain.

The problem is that these two choices are both valid: essentially Ueda's analysis indicates
that without further information (e.g., modes of the query), X may be generated by the third
argument of q/3 and output through the first argument (c), or vice versa (a). To the program
mer, whose intent may have been the standard use of quicksort (a), this result may seem odd.
However, choice (c) is valid - consider the query:

?- q ((I], (3, 2, 1], (2, 1]) .
I = 3

Although this is an artificially-created query, which is unlikely to appear in any program, this
query is valid, and should execute successfully!

This example shows that to safely execute this module sequentially, more information is
needed about the mode of the first argument. One way of finding this mode is by looking at the
place(s) where the module is called. For example, given the definition and the modes of gen/2
in Figure 11, with gi(p) = m(<gen 1 i>p), look at the following call to the module:

••• 1 gen (Max, List) I q (List I SortedList I D) , ...

Because only one occurrence of a variable in the body (or query) can have mode out and
Figure llshows that g2 (<. ,1>) = out, we can conclude that q1 (<. ,1>) = in, which leaves
us with only the normal use of quicksort (a).

As said before, one way of finding the extra information, needed to show that a module
can safely be executed sequentially, is by using the context information, i.e., looking where the
module is called. A second method is having the user explicitly specify modes to disambiguate

62 3rd Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

gen(O,I) ·- G =1 D.
gen(I,I) ·- I1:=I-1, I =2 [Ills], gen(I1,Ia).

1. g1(f) = in §1a

2. g2(f) = out §1a, §2, §3b

3. g2(<. ,1>) = out "1", §4b-i, §2

4. Vp g2(p) = g2(<.,2>p) §3a, §3b, §2

Figure 11: Mode Analysis for gen/2.

such cases. For example, to indicate that an argument will be input throughout, i.e., for all
subterms, the user can specify a strong input argument, perhaps with the mnemonic '??'. Note
that this is not the same as fully ground!

One ·can even envision having the compiler query the programmer to provide this disam
biguating information. The advantage of compiler queries is that only a small percentage of
modes will likely need to be disambiguated. Thus the programmer would be saved from having
to map out all the modes a priori, and need only specify ones that the analysis proves are am
biguous. We might add that this tends to be a good programming practice anyway! Good logic
programmers specify the top-level argument modes of each procedure (possibly as a comment),
but as shown, this is not sufficient documentation in all cases. For the example discussed above,
the determination of safe sequential execution hinges on whether or not the head of the first
argument is bound, so help is needed for this one mode only.

5 Goal Ordering

In this section we discuss how the mode information is used to reorder body goals within a
clause to ensure safe sequential execution. For this, we have to introduce a directionality role:

§5. For a variable occurring more than once in the body, the first "executed" occur
rence10 must be in an output position, thus later occurrences can only be in input
positions.

This rule ensures that internal suspension is impossible in a sequential module. The basic idea
is to find an ordering that does not contradict this rule, using the axioms derived by the mode
analysis.

Now, by extending Theorem 2 to cover modules, and defining "correct ordering" to be that
ordering of body goals which adheres to rule §5, the following theorem follows:

Theorem 3 If, at compile-time, a consistent ordering for a sequential module can
be found, then only external suspension can occur with respect to that module.

In the rest of the program, other forms of suspension can occur, but the important point is that
there can never be internal suspension in that module. H a consistent order can be found, the
module can be compiled efficiently, as will be discussed in Section 6. Otherwise, compilation

10 Assuming a left-to-right execution order, this is also the textually first occurring body goal.

3rd Computersystems Workshop, may 15 1991, Eindhoven. 63

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

of the sequential module defaults to standard committed-choice compilation techniques (e.g.,
(4, 10, 16, 17]).

We now present an algorithm for finding a consistent ordering. The first point to consider
is that not all the mode axioms that fully describe a procedure are needed here, nor do we
need the axioms in their full generality. Certain axioms, which we call recursit1e azioms, have
a general form similar to axiom 5 of q/3: Vp q3(p) • q3(<. ,2>p). The meaning is that the
mode of any third argument path is the same as the mode of the tail of that path. Intuitively,
the procedure is recursing on the third argument, which is a list.

For the purposes of goal ordering, only the modes of variables appearing (syntactically) in
the procedure definition are needed. Therefore all general paths p in the derived axioms can
be instantiated to £. For example, in the previous axiom, q3(£) • q3(<. ,2>). Combining
this with axiom 2 in Figure 9 allows us to derive that q3 (< • , 2>) • in. We call this process
of instantiating general mode axioms into less general axioms, recursit1e grounding. As another
example, combining axiom 4 in Figure 9 with axiom 1 in Figure 10 gives q1 (< . , 2>) • in.

Mter recursive grounding, we are left with two possible sets of modes for procedure q/3:

q([lllJ,RO,I) :- B(L,I,L1,L2), q(L1,RO,[ll11]), q(L2,11,1).
q([?l?], ·,?) :- •(?,?, •• •), q(?, ·,[?1 ?]), q(?, ·,?).
q([•l?], ·,?) :-a(?,?,·, •), q(?, ·,[·1 ?]), q(?, ·,?).

The next step is to attempt to order the body goals in the second clause11 so that the constraints
implied by both sets of axioms (with respect to rule §5) are satisfied.

For each set of modes, the ordering algorithm iterates through each variable occurring more
than once in the body: X, L1, L2, and R1. For each, constraint(s) are created relating the
goals containing that variable. For example, for the first set of modes, X induces no constraints
(since both the first and second goals use X for input). Examination of L1, however, induces the
constraint: G1 < G2. Each new constraint is checked for consistency with previously generated
constraints. A contradiction is fatal: the clause cannot be ordered for sequential execution.

Continuing with the previous example, L2 induces G1 < G3 and R1 induces G3 < G2. So
far, all these constraints are consistent. However, analyzing the second set of modes, we find
that X induces G2 < Gl. This alone causes the analysis to fail (and subsequent examination of
L1 causes additional contradictions within the second set of modes itself).

If we can derive that the mode of the head of the first argument is 'in' (for example using
the context information, as shown in Section 4.2), then there is only one set of modes, and the
ordering algorithm terminates successfully with the following order:

q([IILJ,IO,I) :- a(L,I,L1,L2), q(L2,R1,R), q(L1,RO,[liR1]).
q([?l?], ·,?) :-a(?,?, ·, •), q(?, ·,?), q(?, ·,[?1 ?]).

6 Implementation Issues

In this section we will show how the results of the mode analysis can be helpful to improve the
implementation of committed-choice languages. In general, straightforward implementation of
committed-choice languages has several inefficiencies, such as a large amount of processes, and
the requirement for a high memory bandwidth. Furthermore most committed-choice languages
are implemented using an abstract machine based on the original WAM [22]. Although this
is without any doubt a very good starting point, it becomes obvious that there are several
deficiencies in this model when it is modified and applied to committed-choice languages. Our

11 The fint cl&uae has only one goal, so it does not require ordering.

64 3"d Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

ultimate goal is therefore to define a general abstract machine model which is more at a RISe

level, which, combined with the optimization techniques discussed in this section, will give a
speedup compared to previous implementations.

It can already be seen that one of the advantages of the mode analysis is the detection
of sequential modules. These sequential modules can be implemented as if they were part of a
standard procedural language, using all available and well-understood compile-time optimization
techniques. Issues to look at are, for example, better register usage, lower memory usage, and
thus the production of less memory garbage.

Currently our aims for efficient compilation are the use of continuation-based goal man
agement, intra-module register allocation (as opposed to intra-procedural register allocation),
conversion of unification to assignment (and, if possible destructive assignment), and local mem
ory reuse.

6.1 Continuation-based Goal Management

One of the advantages of the detecting of sequential modules is that these modules can be
implemented more efficiently than general "parallel" modules. One of the areas of improvement is
the management of goal records. The simplest and most efficient technique of goal management is
continuation stacking [1]. This technique is used in the implementation of nearly all conventional
languages, such as C and Pascal, as well in most WAM-based Prolog implementations [22]. In
contrast, all committed-choice implementations we know of (such as JAM [4], Strand [7], FCP
[9], and FGHC [10]) use separate goal records for each body goal. The advantages of using
continuation stacking are that no separate full goal records are needed for each and every body
goal, and that the goals can be managed as a stack instead of as a heap.

The potential of suspension still exists, so a true stack cannot be built (it could be built on
the heap, but since it might suspend, we cannot guarantee that when resumed the top of the
stack will not be buried within the heap). Therefore we say continuation "stack," meaning a
conceptual stack built of linked records. Such a stack implementation loses the advantage of
quick allocationfdeallocation, but retains the advantage of minimizing the number of allocated
frames. As we established in Section 2, there can be no deadlock due to suspension, as all
suspensions of sequential modules are external.

Compare this to committed-choice implementations to date, where "goal stacking" is used
to the exclusion of all other allocation methods. This requires the creation of a new goal record
for every body goal (except for the last one, if tail-recursion optimization is used) which must be
enqueued separately. If the continuation frames are allocated from the heap and are managed
as a conceptual stack, then suspension/resumption is straightforward. This scheme supports an
unlimited number of suspended "stacks," i.e., sequential modules. These represent large granules
of computation beyond which the programmer does not wish to exploit parallelism, because of,
for example, a limited number of processors.

6.2 Register Allocation

Normally, almost no register allocation methods can be applied to WAM-based implementations
of logic programming languages, because the arguments for a procedure of arity n are forced to
be in registers 1 ton. Therefore traditional and more advanced register allocation methods (for
example, coloring [2] and interprocedural register allocation [14]) are not applicable here.

The advantage of sequential modules is now that it enlarges the scope within which a register
allocator can work from nothing to the entire module. The only restriction on the use of registers
is that arguments of the module entry-point goal are still in the first n registers. In this way, it is

3rd Computersystems Workshop, may 15 1991, Eindhoven. 65

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

still possible to retain incremental compilation (although this form of compilation will probably
have to be abandoned anyway, in favor of some form of flow analysis). One can even envision
an extension of Wall's algorithm [21], where the register allocation is performed at link time,
to make it possible to compile logic programs as separate modules (not necessarily sequential),
and perform the register allocation when the different parts of a program are loaded.

Because it is guaranteed that invocation of a sequential module only occurs at the module
entry-point, and that no calls are made to predicates which are outside the module, a register
allocation algorithm does not need to make any assumptions about the placement of arguments
in registers other than about the arguments which are received through the module entry-point.

AB a simple example of the use of register allocation (even at the WAM level) consider the
following module, which is always called through sumlist/2 with the first argument bound to
a list and the second argument unbound, as shown by the mode analysis: m(<sumlist,1>) •
in and m(<sumlist,2>) • out.

aumliat(I,Sum) :-true I sum(I,O,Sum).

sum(D ,Old,Sum) :- true I Sum = Old.
sum([llls],Old,Sum) :-true I lev is Old+ I, sua(ls,Jev,Sum).

Using the !COT PDSS/KLl compiler system, we get the following KL1 code [10].

predicate sumlist,2
L1: try_ae_else

put_value
put_integer
ezecute

L2: suspend

predicate sum,3
S1: try_me_else

vait_nil
get_value
proceed

L2
3,2
2,0
sum,3
sumlist,2

S2
1
3,2

S2: try_ae_else S3

S3:

vait_list 1
read_variable 4
read..variable 1
add
put_ value
ezecute
suspend

2,4,2
1,5
sum,3
sum,3

Now using the information from the mode analysis that this module is self-contained (i.e., no calls
to predicates outside the modules and all calls to the modules enter at the top-level sumlist/2),
an optimizing compiler can make the following (simple) optimization:

66

predicate sumlist,2
L1: try_ae_elae

put_integer
ezecute

L2: suspend

predicate sum,3
S1: try_ae_else

vait_nil
get_Yalue
proceed

S2: try_ae_else

L2
3,0
sum,3
sumlist,2

S2
1
3,2

S3

ard Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

vait_list 1
read_ variable 4
read_ variable 1
add 3,4,3
execute sum,3

S3: suspend sum,3

The optimized version uses the knowledge that this module is self-contained by rearranging
the arguments of sum/3 such that they don't occupy registers 1 through 3 any more. In the
optimized version, the number of instructions executed for an input list of size n decreases from
8n + 8 to 7n + 7 instructions. Although not much, a. simple optimization a.J.ready reduces the
number of instructions executed by 12%. For larger modules, the gain will be even higher.

Thus intra-module allocation, a. limited form of global allocation, can conceivably reap great
reduction in memory traffic and signification improvement in performance.

6.3 Memory reuse

A third area. for application of the mode analysis and its ability to detect single-producer single
consumer streams is the area. of memory reuse. Reuse of memory is important as committed
choice languages consume memory a.t a. high rate, and produce much inaccessible cells, which
can only be reclaimed by a. garbage collector. An example of this is, for example, the handling of
large data. structures, where for every update, a. new, slightly modified copy has to be made and
the old structure is discarded. Therefore it is important to avoid copying structures as much as
possible and for an efficient language implementation, it is essential to find techniques to update
data. structures destructively, i.e., in place, which techniques are as efficient as in procedural
languages (or, e.g., as rplaca in Lisp).

The important thing in destructively updating a. data. structure is knowing when it is safe
to do so, i.e. to know when the old version is not required any more. This can be difficult in a.
parallel environment, but in our sequential modules, it is much easier.

Another, simpler approach for memory reuse is the (partial) reuse of simple data. structures,
already allocated on the heap, such as a. list cell, or a list cell and its head. This approach, as
described by Foster [6], uses a specialized 'Reuse'-register and adds some new instructions to
a. basic WAM-like abstract machine for Strand. However, it assumes the capability of detecting
single-consumer streams and is only applicable for reusing data structures within individual
process definitions. By using our mode analysis technique and sequential modules, it is possible
to extend Foster's technique to cover an entire module.

7 Conclusions

This paper presents a. compile-time technique for determining if a set of procedures within a.
parallel program can be executed sequentially without causing deadlock. More specifically, the
analysis and methods are described in the context of committed-choice parallel logic program
ming languages, such as FCP, FGHC, a.nd Parlog. These concurrent languages have inherent
fine-grain parallelism, so that the task at hand is to throttle high-overhead parallelism, rather
than uncovering more parallelism. We present a framework of sequential program modules and
basic blocks that can be derived and guaranteed to be deadlock-free at compile time. This
paper outlines a source-to-source code optimization that ensures that sequential execution can
proceed smoothly. Thus "traditional" procedural language optimizations that have previously
been discarded by those implementing committed-choice languages (e.g., [4, 10, 16, 17]) can

art~ Computersystems Workshop, may 15 1991, Eindhoven. 67

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

now be considered, such as continuation-based goal management and interprocedural register
allocation.

Future research in this area includes two major targets. First, algorithms must be designed
for the selection of sequential modules and basic blocks. Selection walks a fine line between
making modules too large, thereby throttling too niuch parallelism, and making modules too
small, thereby not increasing granularity enough to be effective. The second target of future
research is to gain experience with the techniques by automating the mode-analysis algorithm,
and characterizing some benchmark programs. Automation of Ueda's method is an open re
search area, as is the characterization of what percentage of code within real programs can be
successfully sequentialized.

Our ultimate goal is the development of higher-performance parallel logic programming
systems, in particular committed-choice languages [16], and languages such as Pandora and
Andorra, using an efficient, state-of-the-art compiler system combined with a R.ISC-like abstract
machine, where the addition and deletion of instructions is solely based on their merit for the
overall performance. Other parts of our work have, e.g., led to the development of an algorithm
for the determinacy analysis of Flat Pandora. programs [11], and several parts are currently being
implemented.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Techniques, and Tools. Addison
Wesley, Reading MA, 1985.

[2] F. Chow and J. Hennessy. Register Allocation by Priority-based Coloring. In SIGPLAN
'84 Symposium on Compiler Construction, pages 222-232, June 1984.

[3] K. L. Clark and S. Gregory. A Relational Language for Parallel Programming. In Conference
on Functional Programming Languages and Computer Architecture, pages 171-178. ACM,
Portsmouth NH, October 1981.

[4] J. A. Crammond. Implementation of Committed-Choice Logic Languages on Shared
Memo'7J Multiprocessors. PhD thesis, Heriot-Watt University, Endinburgh, May 1988.

[5) S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Pro
grams. In SIGPLAN '90 Conference on Programming Language Design and Implementa
tion, pages 17 4-188, June 1990.

[6] I. Foster. Copy Avoidance through Local Reuse. Technical Report MCS-P99-0989, Argonne
National Laboratory, August 1989.

[7] I. Foster and S. Taylor. Strand: A Practical Parallel Programming Language. In North
American Conference on Logic Programming, pages 497-512. Cleveland, MIT Press, Octo
ber 1989.

[8) S. Gregory. Parallel Logic Programming in PARLOG: The Language and its Implementa
tion. Addison-Wesley Ltd., Wokingham, England, 1987.

[9] A. Houri and E. Shapiro. A Sequential Abstract Machine for Flat Concurrent Prolog.

68

Technical Report CS86-20, Dept. of Computer Science, The Weizmann Institute of Science,
Rehovot, Israel, July 1986.

3rd Computersystems Workshop, may 15 1991, Eindhoven.

M. Korsloot: Efficient Implementation of High-Level Parallel Symbolic Languages.

[10] Y. Kimura and T. Chika.yama. An Abstract KL1 Machine and its Instruction Set. In
International Symposium on Logic Programming, pages 468-4 77. San Francisco, August
1987.

[11] M. Korsloot and E. Tick. A Determinacy Testing Algorithm for Nondeterminate Flat Con
current Logic Programming Languages. In International Conference on Logic Programming.
Paris, MIT Press, June 1991.

[12] M. Korsloot and E. Tick. Detection of Sequential Modules in Parallel Programs. Technical
Report CIS-TR-91-09, University of Oregon, March 1991.

[13] C. S. Mellish. Abstract Interpretation of PROLOG Programs. In S. Abramsky and C. Han
kin, editors, Abstract Interpretation of Declarative Languages, pages 181-198. Ellis Horwood
Ltd, Chichester, 1987.

[14] J.M. Mulder. Inter: An Inexpensive Inter-procedural Register Allocator. In Proceedings of
the 15th Symposium on Microprocessing and Microprogramming, September 1989.

[15] E. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Computing
Surveys, 21(3):412-510, September 1989.

[16] E.Y. Shapiro, editor. Concun-ent Prolog: Collected Papers, volume 1,2. MIT Press, Cam
bridge MA, 1987.

[17] S. Taylor. Parallel Logic Programming Techniques. Prentice Hall, Englewood Cliffs, NJ,
1989.

[18] E. Tick. Compile-Time Granularity Analysis of Parallel Logic Programming Languages.
New Generation Computing, 7(2):325-337, January 1990.

[19] K. Ueda. personal communication, November 1990.

[20] K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In International
Conference on Logic Programming, pages 3-17. Jerusalem, MIT Press, June 1990.

[21] D. Wall. Global Register Allocation at Link Time. In SIGPLAN Symposium on Compiler
Construction, pages 264-275, June 1986.

[22] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI Interna
tional, 1983.

3"d Computersystems Workshop, may 15 1991, Eindhoven. 69

	Voorblad
	Table of contents
	1. DALIA: A language for the description and analysis of digital systems
	2. Parallel computers for advanced information processing
	3. Parallel discrete event simulation
	4. A partitioning and redundancy model for Wafer-Scale Integrated Circuits
	5. Efficient implementation of high-level parallel symbolic language

