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This workshop was the third in a. serie of workshops organised by the research forum on design, 
rea.liza.tion, a.nd application of computersystems. Currently the forum consists of researchers 
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Eindhoven University of Technology 

University of Amsterdam 

University of Twente 

The forum a.lso maintains a mailinglist to aid communication between the researchers. Submis
sion of messages must be directed to: 

system-network@d uteca.et.tudelft.nl, 

requests for inclusion or removal of this list should be directed to: 

system-request@duteca.et.tudelft.nl. 

Information about the forum ca.n be requested from the university representatives: 

Pieter Hartel11 

Ha.ns Mulder 
phh@ecs.soton.ac.uk 
ha.nsm@duteca..et.tudelft.nl 

Amsterdam 
Delft 
Eindhoven 
Twente 

Willem Ja.n Witha.gen wjw@eb.ele.tue.nl 
Corrie Huijs chuijs@cs.utwente.nl 

"Until 8/91 acting representative is Henk Muller, henkmOfwi.uva.nl 

The copyrights of the papers included in these proceedings remain with the individual authors. 
The authors are encouraged to submit the papers to other (international) conferences or to 
journals. 
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DALIA: A Language for the Description and Analysis of 
Digital Systems 

Henk van der Weij 
Eindhoven University of Technology 

Faculty of Electrical Engineering 
Digital Systems Section 

P.O. box 513, 5600MB Eindhoven, The Netherlands 

Abstract 

DALIA is a formal language for the description and analysis of digital systems at a behavioural 
as well as a structural level of abstraction. It is based on a functional style of programming, ex
tended with annotations for indicating system structure, accessability, and signal :flow direction. 
Program transformation rules are defined for rewriting DALIA descriptions to behaviourally 
equivalent alternatives. Since the same language is used for behavioural and structural descrip
tions, a smooth conversion between them can be made. The language is developed to be used as 
a formal basis for automated system design, adopting the following philosophy: First the (infor
mal) requirements for the system to be designed are formalised in the DALIA notation. Next, 
the formal specification is stepwise transformed to a structural description of the system reali
sation (typically register transfer or gate level). The latter phase deals with formal descriptions 
and transformations, allowing a correctness by construction methodology. 

1 Introduction 

Nowadays, the technology to physically implement VLSI (Very Large Scale Integration) circuits 
has taken a lead on methods to correctly design them. This causes a need for formal design 
methods that can be automated and are able to manage the increasing complexity. 

In this article, I will concentrate on a design method, and more specifically, a description 
language for digital systems. The design method adopted here consists of two main parts: a 
specification phase and a realisation phase (figure 1). 

I (informal) requirements I 

specification phase 

I formal specification I 
realisation phase 

I structural description J 

Figure 1: Design phases 
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Specification phase 

In the specification phase, the informal requirements for a system to be designed are translated to 
a formal specification. This formal specification completely defines the system to be designed1 • 

It is important to note that the specification phase can not (and will never be) fully automated. 
It can be computer-supported though, but the starting point will always be an informal idea. 

Realisation phase 

Once a formal description of the system to be designed has been obtained, its realisation can 
commence. The essence of the design methodology proposed here is, that this phase will be 
completely jom&al, and thus provable correct. The being formal of this phase does not induce 
that no human input is required; it only states that the actual transformation of the formal 
specification to a realisation is performed mechanically. The designer can 'guide' the process, 
and this will even be a necessity in the case of complex designs (which are the ones we want to 
deal with). 

This translation of a 'high-level' description to a hardware structure is called high-level 
synthesis [5, 12]. 

1.1 Digital system description 

When adopting a correctness by construction design methodology, a well defined description 
language has to be chosen for the representation of digital systems. System descriptions in this 
language must be suited for algorithmic manipulation to enable automation of the design path, 
especially the realisation phase. 

In this article, a language will be introduced for the representation of digital systems under 
design. For this language, a number of general requirements can be stated: it must be 

• Implementation independent 

• Hierarchical 

• General 

• Formal 

• Automatically processable 

Currently used languages do not fulfil all of these requirements. The hardware description 
standard VHDL [2J for example, which is directed towards practical system design, is really 
useful for describing and simulating digital systems, but hardly analysable in a formal way. 
This is due to the large number of constructs, and the fact that it is an imperative language. 
Apparently, a more formal basis is needed to fulfil the requirements stated above. 

A more formal approach to the modelling of digital systems is the use of formalisms for the 
description of communicating processes like CCS [13) and CSP [8). These languages however 
are not really suited for description of data processing at a logic level. Extensions have been 
made to make these formalisms more practical, like LOTOS [1, 9] which is an extension of CCS. 
The basic language however remains action oriented, which makes it difficult to integrate data 
structures, while maintaining analysabillty. 

1Theoreiically, this mea.ns that the initial informal requirements can be forgotten. They do however provide 
non-fu:nctional, but Ullea.ble information like design history a.nd documentation 
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Higher-order logic is another approach to digital system description [7]. In higher-order 
logic, behaviour of a digital system is defined by predicates on its external lines. A circuit 
structure can be represented by the conjunction of predicates of the sub-circuits. Abstraction of 
the internal structure is accomplished by existential quantification over the internal lines (14]. 
Though the principle is very simple, a large class of systems can be described. A disadvantage 
is, that expressions tend to expand to large proportions when dealing with complex designs . 
Furthermore, it makes use of a discrete time model, whereas it would be desirable to abstract 
from time intervals (delay insensitive specification). 

Another direction of research is toward description of digital systems using functional lan
guages. The DALIA language also belongs to this class. Functional languages are easy to 
analyse, but not directly suited for structural description (like description of hardware architec
tures). In the next section, a closer look will be taken on the application of functional languages 
in hardware description. 

2 Functional languages and hardware description 

In a functional language, programs are described by means of functions. This essentially differs 
from the more common imperative approach, as used in languages like PASCAL and C. The 
imperative way of programming is induced by the one-word-at-a-time von Neumann concept, 
rather than by programmer demands [3]. In software development, the use of an imperative 
language can be somehow justified because of its easy implementation on conventional architec
tures. For the description of hardware however, imperative programming unacceptably limits 
the flexibility of the language. 

Functional languages offer some advantages with respect to imperative languages. They are 
better analisable, and inherently capable of describing concurrency (arguments of a function 
can be evaluated in parallel). These are very desirable properties for a hardware description 
language. 

As mentioned before, functional languages do not express structure which is a problem in 
case of translating a specification to a hardware architecture. This problem can be solved by 
changing the interpretation of function applications. For example, in [10, 15], tail recursion 
is interpreted as iteration, and infinite lists as signals. This solution however does not deal 
with another problem: the modelling of bidirectional information flow, a common concept in 
hardware designs. H this is to be handled in a formal way, other bases than pure functions have 
to be used like [4]. 

Another, more pragmatic approach is to add constructs for indicating structure like in SBL 
[6]. This is also the approach adopted for the design of DALIA, since it offers a basis for practical 
integration of the language in a hardware environment. 

3 An informal introduction to DALIA 

DALIA was designed by considering the most elementary characteristics of digital systems in 
general. The constructs of the language have been kept simple, in order to ease application of 
formal operations on system descriptions. 

DALIA is able to describe system behaviour (formal specification) as well as system structure 
(architecture description). This makes it possible to use a single language as a description 
framework during the system design, avoiding conversion between different languages. 

3rd Computersystems Workshop, may 15 1991, Eindhoven. 3 
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In DALIA, digital systems are represented by interacting concurrent processes. A process 
is an abstract information processing entity that performs part of the function of the total 
system. Processes may contain subprocesses, so a hierarchical system structure can be used. 
Furthermore, operations called dependencies have been defined for modelling logic operations. 

3.1 Processes 

Basically, a DALIA system description consists of a set of rules, defining the allowable transfor
mations of the system. As a simple example, consider the following set of rules: 

def (a OR 0) -+ a 
def (0 OR b) -+ b 
def (1 OR 1) -+ 1 
def (NOT 0)-+ 1 
def (NOT 1)-+ 0 
def (a NOR b)-+ (NOT (a OR b)) 

These rules define the operations (functions) OR, NOT, and NOR. Expressions are evaluated by 
transforming them according to the given rules. An example of an evaluation is 

(1 NOR 0) -+ (NOT (1 OR 0)) -+ (NOT 1) -+ 0 

By adopting appropriate evaluation conventions, it is also possible to describe hardware-like 
structures. For example, an OR gate can be described as 

def (OR_GATE a b x) 
-+ (OR_GATE a b (a NOR b)) 

Here a system is defined by a recursive definition. The system itself (NOR_GATE) is just a 
parameter, with the property that it 'remains unchanged at the same position' when applying 
any of the rules. This is exactly the property of a hardware resource.: it is an unchangeable part 
of the system. 

To explicitly state that parts of the system are unchangeable, the process concept is in
troduced. A process also permits local variables and data transformation rules, thus hiding 
irrelevant information from the outside world. A system description in DALIA consists of a set 
of process definitions 

system::= 
{ proc_def} 

In DALIA, processes are the means of structuring system descriptions. A process consists of 
three ma.in parts: 

• Interface 

• Internal variables 

• Behaviour description 

4 3rd Computersystems Workshop, may 15 1991, Eindhoven. 
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Communication with a process takes place via the interface. The other parts of the process are 
invisible from the outside, hiding irrelevant details. 

The internal variables determine the state of the process. The values of these variables can 
be changed by interaction of the process with its environment. 

The description of the process' function is contained in the behaviour definition. Behaviour 
is defined by data dependencies between the variables of the process (interface and internal 
variables). 

A variable will retain its value until it is overwritten, and reading variables is non-destructive. 
This provides a memory function, which reflects the register concept a.s known from hardware 
implementations. 

As an example, the OR_GATE is described by the following process: 

def (OR_GATE a b x) = 
( { a E ?bit, b E ?bit, x E !bit } 

x =(a OR b) 

or in expanded form: 

def (OR_GATE a b x) = 
( { a E ?bit, b E ?bit, x E !bit } 

case (a b) 
E (bit 0) --+ x=a 
E (0 bit) --+ x=b 
E (11) --+ x=1 

endcase 

Some additional notations have been introduced here, like assertions (enclosed by curly brackets), 
indicating type and direction of the interface variables, and a case construct. These will be 
discussed later. 

Another important concept is the subprocess. The use of subprocesses is illustrated by the 
following process description of a NOR gate: 

def (NOR_GATE a b x) = 
[ var or_g = (OR_GATE bit bit bit); 

{ a E ?bit, b E ?bit, x E !bit } 
or_g.a=a I or_g.b=b I x=(NOT or_g.x) 

or using an additional subcomponent NOT _GATE with its obvious meaning: 

def (NOR_GATE a b x) = 
[ var i, 

or_g = (OR_GATE bit bit bit), 
not_g = (NOT _GATE bit bit); 

{ a E ?bit, b E ?bit, x E !bit } 
or _g.a=a I or _g.b=b I i=or _g.x I 
not_g.a=i I x=not_g.x ] 

Here subcomponents are referred to by variables, and the connection of components is defined by 
a list of assignments. The vertical bars stand for asynchronous composition (see section 3.3.3). 

3rd Computersystems Workshop, may 15 1991, Eindhoven. 5 
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3.2 Values 

The values used in the language are symbolic. All values are either symbols or symbol trees. A 
symbol is denoted by an identifier, which will by convention consist of only upper-case characters 
or non-letter symbols. A symbol tree is a. structure that contains a. number of branches, that 
are in turn symbolic values. A tree is denoted by indicating its structure using round brackets. 
Some examples of symbolic values are 

SYM 
1 
(A (B C) D) 

(symbol) 
(symbol) 
(tree) 

Symbols do not have a predefined 'meaning'. For example symbol! is just another identifier 
for a. symbol. An interpretation can be attached to a. symbol only when operations on it are 
defined. 

In DALIA, sets of symbolic values play an important role. They are used for specifying guards in 
conditional dependencies and for putting constraints on variables (typing). Sets will be denoted 
using normal set operators like U , n, and \ . In the notation adopted here, no distinction will 
be made between symbols and sets containing only one symbol, to ease notation. For example, 
A U B U C denotes the set containing symbols A, B, and C. 

3.3 Data dependencies 

The behaviour of a. process is defined by its dependencies. Dependencies define how variables 
are related to each other. A process can be 'executed' by concurrent evaluation of its data. 
dependencies. 

Ba.sica.lly, there are two kinds of dependencies: assignment and conditional dependency, which 
can be combined using the asynchronous and synchronous composition operators. 

3.3.1 Assignment 

The assignment attaches the value of an expression to a variable. It acts much like the normal 
assignment in imperative languages, but its interpretation differs because dependencies operate 
concurrently; it denotes how the current value of a. variable is related to the current value of 
other variables in the system. The interpretation will become more clear in sections 3.3.3 and 
3.3.4, where composition of dependencies is explained. An example of an assignment is 

x =(a b) 

which defines variable x to be equal to the combination of variables a and b. 

3.3.2 Conditional dependency 

Conditional dependencies can be used for the definition of logic operations on symbolic data. 
In a. conditional dependency, (part of) the state of a process and its interface is compared to a 
set of symbolic values, describing a set of states. Only those subdependencies in the conditional 
statement that are attached to a set containing the current value of the selector expression will 
be activated. For example, 

6 3'"" Computersystems Workshop, may 15 1991, Eindhoven. 
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case (a b) 
E (0 0)-+ x=1 
E (11)-+ x=O 

end case 

denotes that the value of x will be 1 if both a and b are zero, and 0 if a and b are both equal 
to 1. Otherwise, this dependency does not affect x. Variables unaffected by dependencies will 
retain their current value. 

3.3.3 Asynchronous composition 

With asynchronous composition, dependencies can be combined without specifying synchroni
sation between them. Evaluation of asynchronously combined dependencies is assumed to be 
'fair': no statement is made about evaluation order of the dependencies or the time it takes to 
evaluate them, but eventually all dependencies will be evaluated. This assumption excludes the 
occurrence of livelock. 

Though asynchronously combined dependencies are not time-related, they are allowed to 
share variables through which communication can take place. It is even possible to synchronise 
dependencies by using shared variables, but this is often circumstantial. 

An example of asynchronous composition is the following: 

y=(u v) I u=x I v=x I x=E 

Here u, v, x, and y denote variables, and E denotes a symbol. The corresponding dependency 
graph is shown in figure 2. Independently of which evaluation order is applied, the result of the 
evaluation will be the same: x, u, v, andy will be equal to E, E, E, and (E E) respectively. 

Figure 2: Dependency graph 

3.3.4 Synchronous composition 

For the synchronisation of dependencies, synchronous composition should be used. In an opera
tional terminology: when evaluating two synchronously combined dependencies, first the result 
of evaluating both sides will be calculated, the combined result will be instantaneously applied 
on the state space. A synchronous combination can be compared to a transition in Petri nets 
[16]. It is used for introducing synchronisation points in the data-flow graph. 

An example of synchronous composition is 

x=y,y=x 

3rd Computersystems Workshop, may 15 1991, Eindhoven. 7 
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Evaluation of this dependency will cause x and y to be 'swapped'. A dependency like this is only 
useful when placed within a conditional dependency, since otherwise x andy would be swapped 
infinitely which is unlikely to be desired. An example of such an embedded dependency is 

caae (x y) 
E (0 1)-+ x=y, y=x 

endcaae 

3.4 Assertions 

For analysing descriptions, assertions can be inserted at various places in the process definitions. 
An assertion contains predicates on variables. By checking their consistency, processes can be 
searched for errors. Also, assertions provide information that can be used to transform processes 
(see section 4). 

An example of an asserted dependency is 

{xEAUB} 
case x 

E 8 U C-+ y=x 
end case 

4 Process transformations 

A process transformation is a function that transforms a process description to a semantically 
equal alternative description [11]. To give an indication of the principle, consider the asserted 
conditional dependency of section 3.4. The assertion states that x is a member of set A U B. 
The condition within the case dependency specifies the case that x is a member of set 8 U C. 
From this, it can be derived that in this specific case x can never be equal to A nor to C. This 
means that C can be removed from the set specified in the case dependency. 

{xEAUB} 
case x 

E 8 -+ { x E 8 } y=x 
end case 

which in turn is semantically equal to 

{xEAUB} 
case x 

E 8-+ y=B 
end case 

The result of these process transformations is a 'more simple' process, performing exactly the 
same function as the original one. This example illustrates just one of the applications of process 
transformations. 

The aim is to formalise transformations like these, in order to automate the manipulation of 
process descriptions. For this, a formal definition of process transformations will be given: 

Definition 1 A process transformation is a function t: L-+ L with 'v'leL(C(t(l)) = C(l)). Here 
L denotes the set of all possible process descriptions and C : L -+ S a function that maps process 
descriptions on their semantics. S denotes the semantic domain of the description language. 

8 3rd Computersystems Workshop, may 15 1991, Eindhoven. 
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In the definition above, S is not defined formally since this is out of the scope of this article. 
From the definition, it follows that process transformations map descriptions in the lan

guage on other descriptions under invariance of behaviour. They can be used to manipulate 
descriptions in a provably correct way. Process manipulations can be used to correctly optimise 
systems, transform specifications to architecture descriptions, or prove equivalence between sys
tems. When automating transformations, the risk of introducing errors will be decreased, since 
all formal steps are correct by construction. 

4.1 Primitive transformations 

For transforming processes, definition 1 can be applied. It states that a process may be trans
formed to another process if their semantics are the same. This is however not a suitable 
approach for automating process manipulations. The problem is, that first a transformation has 
to be proposed, and only afterwards it can be proven correct. Clearly, such a trial-and-error 
approach is very inefficient. 

So, in attempt to give 'direction' to process transformations, a set of primitive process trans
formations will be derived from definition 1 and the semantics definition of the language. Com
plex transformations can be performed by repeatedly applying primitive transformations. 

A primitive process transformation rule will be denoted in terms of an attribute grammar for 
the language. An attribute grammar [18} is a grammar definition, with attributes attached to 
its elements (terminals or non-terminals). Attributes describe properties of these elements that 
ca.n not (or not easily) be described in terms of syntax. For example, a variable identifier may 
have an attribute attached to it, denoting its type. The value of the attributes can be derived 
from other attributes in the parse-tree of a program. Relations between attributes are defined 
by attribution roles attached to the syntax-definition rules. 

A complete attribute grammar of the language will not be given here. Only attributes 
occurring in transformation rules will be explained. Transformation rules will be denoted as 
follows: 

stroct1 +-+ stroc~ 

{ condition } 

Here stroctt and stroct2 denote syntax expressions, and condition denotes a statement about 
the syntax elements and their attributes that has to hold for the equality to be true. 

To achieve full processability of descriptions, the primitive rules must enable the conversion 
of any description to any of its semantic equivalents. This property is called completeness [17]. 

Definition 2 A set of process transformations T is complete if and only if 
Vr,meL((C(l) = C(m))::} 3teT•(t(l) = m)) 

Here T* denotes the collection of functions that can be constructed by composing primitive 
transformations (i.e. any sequence too t1 o · · · o tn with ti a primitive transformation). 

It is not self evident that such a set of primitive transformations exists, but an attempt has 
been made to construct a powerful set, able to accomplish many process transformations. Trans
formations that can not be performed will have to take place using definition 1: by proposing a 
new process and proving it equivalent using the formal semantics definition of the language. 

4.2 A set of primitive transformations 

In the scope of this article, it is not possible to show all primitive transformations defined yet. 
Some important ones will be highlighted next. 

3rd Computersystems Workshop, may 15 1991, Eindhoven. 9 
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4.2.1 Commutativity 

These rather obvious transformations can be described as follows: 

That these transformations are valid is clear, since the compositions are in parallel, so no eval
uation sequence is specified. 

4.2.2 Synchronisation 

This transformation can be used to introduce or remove synchronisation between dependencies: 

dept I deP2 +-+ dep1 , deP2 
{ dept.USeS ndeJ12.afJects = 0 
A deP'J.USes ndePJ.afJects = 0 
} 

This definition states that synchronisation may be removed or inserted if the dependencies 
involved do not make use of variables the other one may change. Here attribute uses contains 
the variable identifiers referred to in the dependency, and affects contains the identifiers of 
variables that are affected by evaluating the dependency. 

An example of a derivation using this transformation is the following: 

x=z,y=E,z=F 
x=z , z=F , y=E 

+-+ (commutativity) 
+-+ (synchronisation) 

[ x=z , z= F ] I y= E 

4.2.3 Condition calculus 

Several rules are defined that deal with conditional dependencies. Some important ones will be 
shown here. 

One of the most important rules deals with the propagation of conditions from the context into 
conditional dependencies: 

{ref E S} {ref E S} 
case ref case ref 

E set E set nS 
-+ dep +-+ 

-+ dep 
rest rest 

endcase endcase 

The next rule states that dependencies can be removed if they will never be active ( e denotes 
the empty dependency): 

{ state E 0} { state E 0} 
+-+ 

dep e ...._ ___ ___, 

10 3rd Computersystems Workshop, may 15 1991, Eindhoven. 
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Here state denotes the collection of all variables within the scope of the process. £ denotes the 
empty dependency. 

These two rules can also be denoted using an attribute cond attached to each dependency. 
This attribute specifies the states in which the dependency may be activated. The notation 
using the assertion has been used since it is better readable. 

The next rules deal with the removal of parts of the case dependency: 

case ref 
Eset-+£ 
rest 

end case 

case ref 
+-+ rest 

end case 

A rule for creating mutually exclusive cases is the following: 

case ref 
E set1 
-+dePt 
E set2 
-+ deP2 
rest 

endcase 

case ref 
E set1 \ sef.J 
-+ dePt 
E set2 \ set1 

+-+ -+ deP2 
E set2 nset1 
-+ dep1 I deP2 
rest 

end case 

4.2.4 Other transformations 

It is not possible to present all rules defined yet. Other rules take care of operations like 

• Removing assignments to unused variables 

• Removing declarations of unused variables 

• Substitution of defines 

• Expansion of subprocesses 

• Substitution of variables 

In the next section, a sample system description will be transformed, illustrating the use of 
process transformation. 

4.3 An example 

As a simple example to illustrate the use of process transformation, the design of a 3-bit wide 
incrementor will be shown (figure 3). 
First, the top level of the system will be defined: 

3"d Computersystems Workshop, may 15 1991, Eindhoven. 11 
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def (INC3 in out)= 
[ { in E int3, out E int3 } 

out = (INC in) 

INCR3 

Figure 3: Incrementor 

The function of the incrementor has been specified by using a universal increment function 
defined on integer values. The data types (actually sets) used here and in the rest of this 
example are defined as 

def int = ZERO u (int bit) 
def ZERO = (ZERO 0) 
def bit= 0 u 1 
def int3 = (((ZERO bit) bit) bit) 

The values modelled by elements of these sets are defined as follows: 

val((r b))= 2val(r) + bitval(b) 
val(ZERO) = 0 
bit val( 0) = 0 
bitval( 1) = 1 

The definition of ZERO is unusual, since it can be rewritten only by using ZERO again. This 
is however no problem, because its value is well determined (0). When evaluating dependencies 
that make use of ZERO, it will be evaluated only if required. 

Function INC can be defined as follows: 

def (INC x) = 
( {X E int } 

case x 
E (t:int 0)-+ (t 1) 
E (t:int 1)-+ ((INC t) 0) 

end case 

With this last definition, the system has been completed. Expansion can now start by substi
tuting the INC function in INC3. By evaluating the initial assertions (in E int3, out E int3), 
consistency of the system can be checked. After some transformations, the result is 
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def (INC3 in out) = 
[ { in E int3, out E int3 } 

case in 
E (t:int 0) -+ out = (t 1) · 
E (t:int 1)-+ { t E ((ZERO bit) bit)} 

out = ((INC t) 0) 
end case 

By successively substituting INC and expanding the case statements, eventually the following 
dependency (in some form) ca.n be derived: 

case in 
E (((ZERO 1) 1) 1)-+ 

out=((((ZERO 1) 0) 0) 0) 
end case 

This causes an inconsistency in the assertions since it was stated that out E int3, and 

((((ZERO 1) 0) 0) 0) nint3 = 
((((ZERO 1) 0) 0) 0) n(((ZERO bit) bit) bit) = 
(((((ZERO 1) nZERO) 0) 0) 0) = 
((([(ZERO 1) n(ZERO 0)) 0) 0) 0) = 
((((ZERO [1 nO]) 0) 0) 0) = 
((((ZERO 0) 0) 0) 0) = 
0 

This result indicates that an error has been made in the specification. This is indeed the fact, 
since the increment of 7 is 8, requiring 4 bits in binary representation. By reconsidering the 
initial requirements, it can be decided to 'throw away' the most significant bit or define a four 
bit wide output in the system specification. 

5 Architecture mapping 

The eventual purpose of the description and analysis language is the actual realisation of digital 
systems. A realisation may be a software program, but the accent of the description language 
is on hardware synthesis. 

For translating a system description to a hardware architecture, the processes in the descrip
tion have to be mapped on resources. These resources may be gate-level components or more 
complex building blocks like ALU's, memories, or even microprocessors. Within the language, 
it is possible to create a model of an architecture, by modelling each resource as a process and 
specify the connections between these resource processes by assignments. 

The processes occurring in a hardware description are bound to some restrictions that are 
inherent to hardware implementation. For example, data. types must be finite and no recursion 
or process creation is allowed. If the original description does contain these 'unimplementable' 
constructs, they have to be converted. This can be done by evaluating the constraints, that 
give a definition of what the process is to expect as its input. By eliminating redundant parts 
of constrained processes (like non-occurring data values or recursion), a. finite structure may be 
obtained. If not, the system is either unimplementa.ble, or the wrong decisions have been made 
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during its analysis, leading the transformation to a dead point. This points out the necessity of 
human intervention during the design. 

An architecture description of the incrementor example of section 4 is 

def (INCREAL in2 inl inO out2 outl outO) = 
[ { in2 E ?bit, inl E ?bit, inO E ?bit, 

out2 E !bit, outl E !bit, outO E !bit } 
var i=(NOT _GATE bit bit), 

a=(AND_GATE bit bit bit), 
xl,x2=(XOR_GATE bit bit bit); 

var n; 
i.in=inO I outO=i.out I 
a.inl=inO I a.in2=in1 I n=a.out I 
xl.inl=inO I xl.in2=in1 I outl=xl.out I 
x2.inl=n I x2.in2=in2 I out2=x2.out 

The interface has been slightly changed for reasons of readability. Figure 4 depicts the described 
architecture. 

inO ....,..,...--,--i autO 

----'----'-- . -·--··--~~ outl inl~~ 

in2 _____,~D- out2 

Figure 4: Increment realisation 

6 Conclusions and further research 

The language proposed here seems suited for the formal processing of digital system descriptions, 
which makes it possible to use it as a basic representation method for an automated design 
system. Though for complex systems it is difficult, if not impossible, to fully automate hardware 
synthesis from a given specification, the language may prove to be useful in offering a formal 
design framework. This framework is capable of guaranteeing correctness of all design steps, 
whether taken autonomously by the system or by the designer. 

Further research will concentrate on automatic decision making. An 'expert system' layer 
controlling the language framework will store information from previous designs and apply 
heuristic searching techniques to take standard design steps or generate design proposals for 
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the designer. It is not likely that fully automatic system design is possible in the near future, 
but new methods will certainly ease the designers' task. 
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Within the Computer Architecture Department of Philips Research Laboratories Eindhoven, 
a five years research effort has resulted in the design and implementation of a parallel object
oriented computer system, POOMA, and a parallel object-oriented language to express programs 
for execution on this system. 

Conceptually, POOMA is a distributed-memory, scalable, computer that consists of self
contained computers, each with their own cpu, main memory and a communication unit. These 
computers communicate via a sparsely connected, packet-switching, topology of bidirectional 
communication links that are serviced by the communication unit. 

The architecture (which is understood to denote the functionality as implemented by both 
the hardware and systems software) has been designed to meet the requirements of the parallel 
object-oriented language, and the match of the conceptual and operational models can be well 
demonstrated. 

The presentation will include a survey of the systems concepts, the rationale of a number of 
the design choices and an informal presentation of the lessons that have been learnt during the 
design. 

Contents 
The contents of the article is printed in a separate handout. It is a copy of the publication in 

IEEE micro of december. 
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In simulating applications for execution on specific computing systems, the simulation per
formance figures must be known in a. short period of time. One basic a.pproa.ch to the problem of 
reducing the required simulation time is the exploitation ofpa.ra.llelism. However, in pa.ra.llelizing 
the simulation new problems arise. Due to the distributed generation of events ca.usa.lity errors 
can occur, as a. result the sequence in which to process the events is essentia.lly indetermina.ted. 

In this paper we present a. model to analyse the inherent para.llelism of a. simulation, together 
with a. survey of existing strategies to perform the simulation in para.llel. Some extensions to 
this model are discussed, resulting in reliable evaluation of the effectiveness of these strategies. 

1 Introduction 

In the Para.llel Scientific Computing Working-group a.t the University of Amsterdam, we are 
interested in the execution performance of classes of applications on classes of computing systems. 
We distinguish the following levels tha.t are involved in performance prediction: application, 
general a.bstra.ct machine, simulation language, and discrete event simulator. Each level is 
supported by the level underneath. In this wa.y the efficiency of a. level is partia.lly determined 
by the supporting level, thus imposing severe constraints to the simulator. Especia.lly if the 
performance figures are iteratively used to optimize the application, the effectiveness of the 
simulator is of vital importance. 

Large discrete event simulations are known to consume enormous amounts of time on se
quential machines. One basic a.pproa.ch to reduce the required simulation time is the exploitation 
of para.llelism. A major dra.wba.ck however, is the inherent complexity of this type of simulation 
since the notion of global time does not easily ma.p on a. para.llel computer. Sophisticated clock 
synchronization algorithms are required to ensure tha.t cause-and-effect relationships a.re correct 
reproduced by the simulator. 

The idea. of pa.ra.llel simulation-in literature also indicated by distributed simulation-was 
first proposed by K.M. Chandy and independently by R.E. Bryant. Papers by Chandy and 
Misra. [Cha.79], and Bryant [Bry77] contain basic ideas of para.llel simulation, the problem of 
deadlock and schemes for deadlock resolution, detection and recovery [Cha.81]. Alternative 
schemes proposed by D.R. Jefferson are based on the concepts of Virtual Time [Jef85]. 

This paper is structured in the following wa.y. Section 2 gives an introduction to discrete event 
simulation. In section 3 a. para.llel view to the sequential simulation is proposed, and various 
methods for para.llel simulation a.re described together with a. discussion on their effectiveness. 
Fina.lly, in section 4 an evaluation of these methods and some suggestions for further research 
a.re presented. 
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2 Concepts of Discrete Event Simulation 

Modelling and simulation can be characterized as the complex of activities associated with 
constructing models of real world systems and simulating them on a computer. 

Essential to every model is the time base on which events occur. Accordingly, models can be 
classified depending on their temporal behaviour [Zei76]. A model is a continuous time model 
when time flows smoothly and continuously. A model is a discrete time model if time flows in 
jumps of some specified time unit. 

A second classification can be based on the range sets of a model's descriptive variables. The 
model is a continuous state model if the range of the descriptive variables can be represented 
by the real numbers. The model is a discrete state model if its variables only assume discrete 
values. 

Continuous time models can be further divided into differential equation and discrete event 
classes. A differential equation model is a continuous timfM:ontinuous state model where changes 
in state occur smoothly and continuously in time. In a discrete event model, even though time 
flows continuously, state changes can occur only at countable points in time-i.e., time jumps 
from one event to the next, and these events can occur arbitrarily separated from each other. 

2.1 Discrete Event Simulation 

The concept of a system and a model of a system were already used in the definition of the 
classes of simulation. These concepts need to be specified in order to develop a framework for 
the design of a discrete event model of a system. The major concepts are: 

System A collection of entities that interact together over time to accomplish one or more 
goals. 

Model An abstract representation of the system under consideration, usually containing logical 
and/or mathematical relationships that describe the behaviour of the system. 

System state A collection of variables that contain all the information necessary to describe 
the system at any time. 

Entity Any object or component in the system that requires explicit representation in the 
model. 

Attributes The properties of a given entity. 

Event An instantaneous occurrence that may change the state of the system. 

Activity A duration of time of specified lengtJ:t during which entities engage some operation. 

Process A sequence of events ordered in time. These events must be logically connected, 
involving the same entity. 

To illustrate these concepts, we consider a bank. In the dynamics of a bank, customers might 
be one of the entities, the balance in their accounts might be an attribute, and making deposits 
might be an activity. Possible state variables are the number of busy tellers, the number of 
customers waiting in line or being served, and the arrival time of the next customer. The arrival 
of a customer as well as the completion of service of a customer are possible events. 

Every discrete event simulation contains a state variable called the simulation clock to model 
the flow of time. Simulated time is advanced from the time of the current event to the time 
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of the next scheduled event; thus skipping periods of inactivity. Future events are stored in a 
calendar that contains the time and the type of all scheduled events, usually in chronological 
order. The nature of the routine depends on the world view used in the model. Let us therefore 
consider some different world views relevant to discrete event simulation. 

2.2 World Views 

All simulations contain an executive routine for the management of the calendar and clock, i.e., 
the sequencing of events and driving of the simulation. This executive routine fetches the next 
scheduled event, advances the simulation clock and transfers control to the appropriate routine. 
The operation routines depend on the world view, and may be events, activities, or processes. 

A world view is the point of view from which the modeller sees the world or the system to 
be modelled. Most of the discrete event simulations use one of the three following perspectives 
[Hoo86]: event scheduling, activity scanning, or process interaction. 

In event scheduling each type of event has a. corresponding event routine. The executive 
routine processes a time ordered calendar of event notices to select an event for execution. 
Event notices consist of a. time stamp and a. reference to an event routine. Event execution can 
schedule new events by creating an event notice and place it at the appropriate position in the 
calendar. The clock is always updated to the time of the next event, the one at the top of the 
calendar. 

In the activity scanning approach a. simulation contains a. list of activities, each ·of which 
is defined by two events: the start event and the completion event. Each activity contains 
test conditions and actions. The executive routine scans the activities for satisfied time and 
test conditions and executes the actions of the first selectable activity. When execution of an 
activity completes, the scan begins again. 

The process interaction world view focuses on the flow of entities through a model. This 
strategy views systems as sets of concurrent, interacting processes. The behaviour of each class 
of entities during its lifetime is described by a. process class. Process classes can have multiple 
entries and exits at which a process interacts with its environment. The executive routine uses 
a calendar to keep track of forthcoming tasks. However, apart from recording activation time 
and process identity, the executive routine must also remember the state in which the process 
was last suspended. 

Evidently, large discrete event simulations, using one of these three world view strategies, 
put extreme computational demands on sequential computers. Intuitively, the process interac
tion world view seems to be attractive as a. starting point in our effort to the parallelization of 
the simulation. The modeller perceives the simulation already as a set of concurrent objects 
interacting with each other by well-defined communication. Besides, parallel simulation is in
teresting because it represents a problem domain that often contains substantial amounts of 
inherent parallelism (e.g., see [Liv85]). 

In the following section a parallel view to a sequential execution will be presented in order 
to analyse the inherent parallelism of the simulation. Next the problems involved in parallel 
execution and the methodologies to circumvent these problems are described. 
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3 From Sequential to Parallel Discrete Event Simulation 

3.1 The Average Parallelism Measure 

H we have made the decision to do the simulation in para.llel, there are some fundamental 
questions to be answered. What is the para.llelism inherent to the simulation? How much 
benefit do we expect from doing things in para.llel? And, once the job is done, how well did we 
perform this? 

One very interesting characterization of the simulation that can be used to answer these 
questions is the avemge pamllelism. Average para.llelism can be defined in two equiva.lent ways: 

1. The ratio of the total service time required to process events, to the length of the critical 
path through the execution of the simulation. 

2. The speedup figures, if a hypothetical machine contains an unbounded number of available 
processors and zero synchronization overhead. 

As a consequence of the second definition, the average para.llelism figure should be regarded 
as an upper bound to the speedup that can be achieved. 

To reveal the average parallelism inherent to a simulation, we have implemented a tool to 
analyse a sequential simulation run and extract the average parallelism [Ove91]. A system 
model is defined to express the parallelism explicitly and consists of a software component and 
a hardware component. The software component is a graph representing the execution of a 
sequential simulation. The hardware component of our system model reflects our focus on the 
parallelism inherent to a simulation, and makes assumptions of ideal hardware. 

Figure 5: A program activity graph. 

The execution of a simulation is represented by an acyclic directed graph (see Fig. 5). Each 
vertex of the graph corresponds to an event occurring in the simulation. Precedence constraints 
exist among the events, modelling the chronological order of events. These precedence con
straints are modelled by the arcs of the graph: an arc from vertex EA to vertex Ec means 
that event Ec cannot occur (or be executed) before event EA is processed. Two types of arcs 
are distinguished: intm-process arcs and inter-process arcs. Intra-process arcs are precedence 
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constraints between events that occur within the same process (e.g., arc between vertex EA and 
Ec in Fig. 5). The intra-process arc denotes an independent unit of sequential work inside a 
process. We can consider inter-process arcs as precedence constraints between events that occur 
in different processes (e.g., arc between vertex EB and Ec ). These inter-process arcs represent 
synchronization requirements achieved by some communication primitive. 

The hardware component of the system is modelled as an infinite number of identical pro
cessors, each of unit speed. The synchronization between processors has zero overhead and the 
entire computer is devoted to one single task. 

A sequential run of the simulation generates an acyclic directed graph of events with their 
precedence constraints. When every process in the simulation is assigned to a different proces
sor (i.e., one process to one exclusive processor), all intra-process dependent events occur at the 
same exclusive processor and all inter-process dependent events occur at different processors. 
As a consequence, the intra-process arc denotes an independent unit of sequential work on a 
processor, whereas the inter-process arc represents synchronization requirements between pro
cessors. Furthermore, the execution times of the independent units of work, measured during 
the sequential run, are assigned to the intra-process arcs and the zero synchronization costs to 
the inter-process arcs. In this way the graph is reduced to a representation of the execution 
of the simulation on a hypothetical machine. The total amount of time required to process 
the events is equal to the sum of all the costs in the graph and the critical path through the 
execution of the simulation is now represented by the longest path in the graph. 

Eager et al. [Eag89] use the average parallelism measure to express lower bounds on speedup 
and efficiency, and on the incremental benefit and cost of allocating additional processors. It is 
our opinion that average parallelism can be applied as a measure in the evaluation of effectiveness 
of various methods in parallel simulation. In other words, how much of the parallelism that is 
inherent to the simulation is actually exploited? 

3.2 The Fundamental Problem in Parallel Discrete Event Simulation 

We are especially interested in parallelization of asynchronous system simulation, where events 
are not synchronized by a global clock, but rather occur at irregular time intervals. In these 
simulations few events occur at any single point in simulated time and therefore parallelization 
techniques based on synchronous execution using a global simulation clock performs poorly. 
Concurrent execution of events at different points in simulated time is required, but this intro
duces interesting synchronization problems. 

These problems become clear if one examines the operation of a sequential discrete event 
simulator. The sequential simulator typically uses three data structures: the state variables, an 
event list (the calendar), and a global simulation clock. For the execution routine (see section 2.2) 
it is crucial that the smallest time stamped event (Emin) from the event list is selected as the 
one to be processed next. If it would depart from this rule and select an other event with a 
larger time stamp (Ez), it would be possible for Ez to change the state variables used by Emin· 
This implies that one is simulating a system where the future could affect the past. We call 
errors of this kind causality errors. 

Let us next consider the parallelization of a simulation based on the above paradigm. Most 
parallel discrete event simulation (PDES) strategies adhere to a process interaction world view 
that strictly forbids processes to have direct access to shared state variables. To this methodology 
some extensions have been made to support the parallel execution of the simulation [Cha79]. 
The system being modelled is viewed as being composed of some number of physical processes 
that interact at various points in simulated time. The simulation is constructed as a set of logical 
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procetJses LPo, LP1, ••• , one per physical process. All interactions between physical processes 
are modelled by time stamped event messages sent between the corresponding logical processes. 
Each logical process contains a portion of the state corresponding to the physical process it 
models, 88 well 88 a local clock that denotes the progress of the process. 

One can aasure that no causality error occurs if one adheres to the local causality constraint: 

Local Causality Constraint: A discrete event simulation, consisting of logical 
processes that interact exclusively by exchanging time stamped messages, obeys the 
local causality constraint if and only i./ each logical process executes events in non 
decreaaing time stamp order. 

simulated 
time 

20 

10 [!!] 

(a.) 

Figure 6: Causality error. 

simtda.ted 
time 

20 

)ID 
10 ® 

(b) 

Consider two events. Et at logical process LP1 with time stamp 10, and E2 at LP2 with 
time stamp 20 (see Fig. 6). If Et schedules a new event Ea for LP2 containing a time stamp less 
than 20, then Ea could affect E2, necessitating sequential execution of all three events. If one 
had no information what events could be scheduled by other events, one would be enforced to 
process the only save event, the one containing the smallest time stamp, resulting in a sequential 
execution. 

During the simulation we must therefore decide whether Et can be executed concurrently 
with E2• But how do we know whether or not E1 affects E:z without actually performing the 
simulation for E1? It is this question the parallel discrete event simulation strategies must 
address. 

In this paper we classify parallel discrete event simulation strategies by two categories: con
senJative and optimistic. Conservative approaches strictly avoid the possibility of any causality 
error ever occurring. These approaches rely on some strategy to determine when it is safe to 
process an event. The optimistic approaches use a. detection and recovery approach: whenever 
causality errors are detected a. rollback mechanism is invoked to recover. We will describe some 
of the concepts behind conservative and optimistic simulation mechanisms. 

3.3 Conservative Methods 

The conservative approaches are the first distributed simulation mechanisms. The basic problem 
conservative mechanisms must address is to determine which event is save to process. If a process 
contains an event E1 with time stamp T1 and the process can determine that it is impossible 
to receive another event with time stamp smaller than T1 , then the process can safely process 
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event E1 without a future violation of the local causality constraint. Processes containing no 
safe events must block; this can lead to deadlock situations if no appropriate precautions are 
taken. 

Independently, Chandy and Misra [Cha79], and Bryant [Bry77] developed the para.llel dis
crete event simulation algorithms, where one statica.lly specifies the links that indicate which 
process may communicate with which other processes. In order to determine when it is safe 
to process a message, it is required that messages from any process to any other process are 
transmitted in chronological order according their time stamps. Each link has a clock associated 
with it that is equal to 'either the time stamp of the message at the front of that link's queue 
or, if the queue is empty, the time of the last received message. The process repeatedly selects 
the link with the sma.llest clock and, if there is a message in that link's queue, updates its local 
clock to the link's clock and process the message. The order of event processing will be correct 
because a.ll future messages received will have later time stamps than the local clock, since they 
will arrive in chronological order along each link. H the selected queue is empty, the process 
blocks. This is because the process may receive a message over this link with a time that is less 
than a.ll the other input time stamps. Thus to insure correct chronology, the process is forced 
to wait for a message to update the clock on the link before the process can update its local 
clock. This protocol guarantees that each process will only process events in nondecreasing time 
stamp order, and thereby ensuring chronological integrity. 

Figure 7: An example of deadlock. (The numbers indicate time stamps.) 

Deadlock occurs when there is a cycle of blocked processes and each process is blocked due 
to another process in the cycle. For example consider the network of Fig. 7. Each process 
is waiting on the incoming link containing the sma.llest clock value because the corresponding 
queue is empty. All three processes are blocked, even though there are event messages in other 
queues that are waiting to be processed. 

Null messages are used to avoid deadlock. This scheme requires that there is a strictly 
positive lower bound on the loolcahead for at least one process in each cycle. Lookahead is 
defined to be the amount of time that a process can look into the future. In other words, if the 
local clock of the process is any time T and the process can predict a.ll messages it will send 
with time stamps less than T + L, where L is the lookahead. Thus, for a queueing network 
model, a strictly positive lower bound for the service time for some stations would be required. 
Intuitively, processes keep the clocks of their output links ahead of their local clocks by sending 
null messages. A null message with time stamp Tnull from process LPA to LPs, tells LPs that 
there will be no more messages from process LPA with time stamp less than Tnull· Whenever 
a process finishes processing an event, it sends a null message on each of its output ports 

3rd Computersystems Workshop, may 15 1991, Eindhoven. 25 



B. Overeinder: Parallel Discrete Event Simulation. 

indicating the lower bound on the time stamp of the next outgoing message. The receiver of the 
null message can then compute new bounds on its outgoing links, send this information to its 
neighbours, and so on. 

Chandy and Misra [Cha81] also presented a two-phase scheme where the simulation proceeds 
until deadlocked, then the deadlock is detected and resolved. The mechanism is similar to that 
described above, except nQ null messages are created. Instead the computation is allowed to 
deadlock. The scheme involves a controller process to monitor for deadlock and control deadlock 
recovery. Deadlock detection mechanisms are described in [Gro89, Mis86]. The deadlock can 
be broken by the observation that the message with the smallest time stamp is always save to 
process; or, with use of a distributed computation, obtain a lower bound to enlarge the set of 
safe messages. 

The mechanisms described above only attempt to detect and recover from global deadlocks. 
Prakash and Ramamoorthy [Pra88] suggested a hierarchical decentralized algorithm that takes 
advantage of the locality of these deadlocks. Another approach to detect and recover from local 
deadlocks can be found in [Mis86]. 

The performance of conservative mechanisms is critically determined by the degree to which 
processes can look ahead and predict future events; or more importantly, what will not happen 
in the simulated future. A process with lookahead L can guarantee that no events, other than 
the ones that it can predict, will be generated up to time Clock+ L. This may enable processes 
to safely process forthcoming messages that they have already received. Fujimoto describes 
lookahead quantitatively using a parameter called the lookahead ratio and presents empirical 
data to demonstrate the importance of exploiting lookahead to achieve good performance [Fuj89]. 
Other studies of the performance as a function oflookahead can be found in [Lin89, Lou90, Su89]. 

3.4 Optimistic Methods 

In optimistic approaches a process's clock may run ahead of the clocks of its incoming links and if 
errors are made in the chronology a procedure to recover is invoked. In contrast to conservative 
approaches, optimistic strategies need not determine when it is safe to proceed. Advantages of 
this approach are that it has a potentially larger speedup than conservative approaches and that 
the topology of possible interactions between processes need not be known. 

An optimistic approach to distributed simulation called Time Warp, based on the Virtual 
Time paradigm, was proposed by Jefferson and Sowizral [Jef82, Jef85]. Here virtual time is the 
same as the simulated time. The local clock, called the Local Virtual Time (LVT) of a process, 
is set to the minimum receive time of all unprocessed messages. Processes can execute events 
and proceed in local simulated time as long as they have any input at all. As a consequence, 
the local clock or LVT of a process may get ahead of its predecessors' LVTs, and it may receive 
an event message from a predecessor with time stamp smaller than its LVT, i.e., in the past 
of the process. H this happens the process rolls back in simulated time. The event causing the 
roll back is called a straggler. Recovery is accomplished by undoing the effects of all events that 
have been processed prematurely by the process receiving the straggler. 

The premature execution of an event results in two things that have to be rolled back: the 
state of the logical process and the event messages to other processes. Rolling back the state 
is accomplished by periodically saving the process state and restoring an old state vector on 
roll back. Unsending a previously sent message is accomplished by sending a anti-message that 
annihilates the original when it reaches its destination. Messages that are sent while the process 
is propagating forward in simulated time are called positive messages. If a process receives an 
anti-message that corresponds to a positive message that is still in the input queue, then the 
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two will annihilate each other and the process will proceed. H an anti-message arrives that · 
correspond to a positive message that is already processed, then the process has made an error 
and must a.lso roll back. It sets its current state to the last state vector saved with simulated time 
earlier than the time stamp ofthe message. A direct consequence of the roll back mechanism is 
that more anti-messages may be sent to other processes recursively. 

The Global Virtual Time (GVT) is the minimum of the LVTs for all the processes and the 
time stamps of all messages sent but unprocessed. No event with time stamp smaller than GVT 
will ever be rolled back, so storage used by such event (i.e., saved states) can be discarded. 

The procedure just described is referred to as Time Warp with aggressive cancellation. An 
alternative is lazy cancellation, where anti-messages are not sent immediately after roll back. 
Here, the process resumes executing forward in simulated time from its new LVT, and when it 
procedures a message it compares it with the messages in its output queue. H the same message 
is recreated, then there is no need to cancel the message. An anti-message created at simulated 
timeT is only sent after the process's clock sweeps past timeT without regenerating the same 
message. Thus, under lazy cancellation a roll back at the successor process may be avoided. On 
the other hand, if messages are not reproduced, then roll backs at the successor processes will 
be required under both mechanisms, and they will occur sooner with aggressive cancellation. 

Depending on the application, lazy cancellation may either improve or degrade performance. 
States may be saved less frequently at the expense of greater overhead for roll back. As a 
consequence, lazy cancellation requires more memory than aggressive cancellation. Studies of 
the performance of optimistic approaches can be found in [Lin90, Mad90]. 

4 Conclusion and Discussion 

Performance evaluation is critical for the design, implementation, and improvement of complex 
applications executing on parallel computers. Analytical approaches to performance evaluation 
are usually inadequate because they are based on unrealistic assumptions and require many 
approximations. Therefore, simulation is a good alternative for obtaining accurate measures of 
performance. Currently, however, detailed simulations are extremely slow. Parallel simulation 
seems to be a promising approach for speeding up the simulations, although much more work 
needs to be done to increase the effectiveness of the existing methods. 

Conservative methods offer good potential for certain classes of problems. A major drawback, 
however, is that they cannot fully exploit the parallelism available in the simulation application. 
Hit is possible that event EA might affect EB either directly or indirectly, conservative ap
proaches must execute EA and EB sequentially. H the simulation is such that EA seldom affect 
EB these events could have been processed concurrently most of the time. As a consequence, 
conservative algorithms heavily rely on lookahead to achieve good performance. 

Optimistic methods offer the greatest potential as a general purpose simulation mechanism. 
A critical question faced by optimistic approaches is whether the system will spent most of 
its time on executing incorrect computations and rolling them back, at the expense of correct 
computations. An intuitive explanation why the behaviour tends to be stable is that incorrect 
computations can only be initiated by a premature execution of a correct event. This premature 
execution, and subsequent incorrect computations, are by definition in the simulated time future 
of the correct, straggler computation. Also, the further the incorrect computation spreads 
the further it moves into the simulated time future, thus lowering its priority for execution. 
Preference is always given to computations containing smaller time stamps. The incorrect 
computation will be slowed down, allowing the error detection and correction mechanism to 
correct before too much damage has been done. 
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A more serious problem with the optimistic mechanisms is the need to periodically save 
the state of each logical process. This limits the effectiveness of the optimistic mechanisms to 
applications where the amount of computation, required to process an event, is significantly 
larger than the cost of saving the state vector. 

The type of application, or classes of applications, is important when determining an ap
propriate approach t,o distributed simulation. For dynamic topology systems and systems with 
irregular interactions, Time Warp methods are preferred over conservative methods, especially 
if state-saving overheads do not dominate. On the other hand, if the application has good looka
hea.d properties, conservative algorithms can exploit the special structure within a fixed topology 
system. If the application has both poor lookahea.d and large state-saving overheads all existing 
parallel discrete event simulation approaches will have trouble obtaining good performance, even 
if the application has a considerable amount of parallelism. 

A challenging, yet not fully exploited, problem is the use of hierarchical methods in parallel 
discrete event simulation (PDES). It is our contention that, if processes are forced to remember 
the values of all private variables, an object-oriented methodology can be employed. Here a. 
class must encapsulate all relevant aspects of an entity: its attributes, actions, and life cycle. 
Communication between objects is allowed only through well-defined interfaces, described by 
the types of messages an object is willing to respond to. With the use of such object-oriented 
methodologies, the hierarchical decomposition of the problem under investigation can also be 
made available in the simulation. In conservative approaches there is some modest effort to 
use this hierarchical knowledge in the detection of local deadlock and recovery [Pra88J. In 
optimistic approaches, hierarchical knowledge could be used by the error detection and correction 
mechanism to quickly stop the spread of the erroneous computations. Furthermore, the proposed 
model in section 3.1 has to be extended for the evaluation of the various PDES strategies. Many 
performance evaluations of PDES strategies, found in the literature, compare the parallelism 
available in the application with the measured speedup of the application on a specific parallel 
computer. In consequence, there is interference with load balance and scheduling strategies 
that obscure the effectiveness of the PDES strategy. The extended model should eliminate 
this interference, and measure the exploited parallelism by a. PDES strategy. In this way, the 
exploited parallelism can be compared to the average parallelism to obtain the effectiveness of 
the strategy. 
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Abstract 

In wafer scale integration, a certain amount of redundancy is required to achieve an 
acceptable yield. In general, this redundancy is added to the circuit after the step of 
implementing the architecture, by duplicating specific parts of the circuit and providing 
for the necessary wiring and switches to reconfigure the circuit after testing. However, 
this is not the optimal procedure. This paper presents a general, architecture
independent model to calculate the required amount of redundancy and the necessary 
degree of partitioning of the circuit to achieve a maximum efficiency. The model takes 
several technological parameters into account. It is shown that in practical cases, the 
efficiency curve around the maximum is relatively flat. 
The model presents the optimal degree of partitioning, rate of redundancy, total area, 
yield and efficiency for any desired (large) circuit. It is shown that, for every 
technological environment, there exists a critical circuit size, below which the 
implementation of partitioning and redundancy is undesirable. Above this critical circuit 
size, partitioning into rather small cells leads to optimal efficiency, in spite of the fact 
that small cells require a considerable overhead of reconfiguration wiring and switches. 
This also means .that the implementation of very large redundant cells or blocks will 
cost more area than the enhancement of efficiency justifies. It was shown that the model 
can be adapted to any specific architecture by adjusting parameters and limiting 
possible solutions to restricted, architecture-dependent values. By a simple 
mathematical substitution, the model can be made completely analytic, making it very 
simple to investigate the sensitivity of the optimal solution to small variations in 
parameters. 
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List of symbols. 

The following symbols will be used in this memorandum. In the text, the ftrst 
occurrence of a symbol is printed in boldface. 

3.crit 

b 
E 
E* 
Em ax 
i 
k 
n 
p 

w 

y,y(k) 
y 

Yc 
Yw 

= AcfAc,SO 
=area of desired circuitry, if processed in a conventional way 
= area of circuitry which will show a yield of 50% in the given technological 

process 
= circuit area from which the implementation of partitioning and redundancy 

becomes favourable 
= redundant area 
=total area 
=area needed for additional wiring and reconftguration switches 
= area of wiring which will show a yield of 50% in the given technological 

process 

= Aw,soiAc,SO 
=efficiency Y.(Ac/Ar) 
=preliminary efficiency Y.(k/n) 
= maximum efficiency at a given value of k 
= general integer variable 
= number of required basic cells 
= number of available basic cells 
= general variable of probability 
=parameter characterizing the overhead of additional wiring and 

reconftguration switches 
= single-cell yield 
= overall yield 
= yield of circuit part of a single cell 
= yield of wiring part of a single cell 
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1. Scope of this memorandum. 

The past few decades have shown a rapidly increasing level of the integration of 
electronic circuits in monolithic silicon devices. A better understanding of and control 
over technological processes and the development of cleaner fabrication facilities 
have led to chip sizes as large as several cm2 and to smallest feature sizes in the order 
of 1 f.J.m, with 0.7 f.J.m predicted in the near future [1]. However, physical limits will 
make it hardly possible to continue this increase of integration. Firstly, because it will 
be very expensive to construct clean-room fabrication facilities with a significantly 
lower dust~particle density than the present state-of-the-art (class 10, indicating a 
maximum of 10 dust particles >0.5 f.J.m per cubic foot (28 dm3) of air). Secondly, 
because a decrease in the smallest feature size to, say, a few tenths of a f.J.m, requires 
tools and equipment beyond the present technological possibilities [2]. 

Nevertheless, there is a great demand for large electronic circuits, integrated in one 
package, mainly because of the higher achievable speed and reliability. Chip-on-

. board and other hybrid techniques provide some possibilities, but realization on a 
single silicon wafer will yield smaller and cheaper circuits with a higher performance 
and a significantly higher reliability. To be able to produce very large monolithic 
silicon devices, the traditional policy of immediate disposal of defective devices is 
abandoned. Techniques to repair these devices are in development. Moreover, the 
concept of redundancy is widely accepted as a means to provide "spare parts", 
substituting defective blocks of circuitry on chip. Of course, this requires the 
possibility of rewiring circuits on chip, for which methods are in development as 
well. They range from purely physical, irreversible techniques like laser cutting and 
laser fusion to software controlled, reversible semiconductor switches. The former 
method has the advantage of requiring hardly any additional chip area, the latter 
allows implementations which are reconfigurable for an infinite number of times, if 
necessary per algorithm. An overview is given in [3]. 

34 

Various techniques aiming for the integration on monolithic silicon wafers of circuits 
which are significantly larger than state-of-the-art VLSI-technology allows, are 
known under the general term "Wafer Scale Integration". This memorandum will 
discuss a mathematical model, based on physical reality, concerning the partitioning 
of large circuits into smaller circuits and the addition of redundancy in wafer scale 
integrated circuits. 

2. Introduction. 

The basic limiting factor in increasing the chip size on a silicon wafer is, of course, 
the yield. The main problem is the high probability that a relatively large circuit is 
disturbed by a dust particle. Increasing the chip size will dramatically decrease the 
probability of producing a significant number of faultless chips, as the probability of 
faults increases exponentially with the area. 

In Wafer-Scale Integration (WSI), redundancy is used to implement circuit sizes 
which are significantly larger than state-of-the-art VLSI-techniques permit, and still 
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achieve an acceptable yield. Many models [e.g. 4,5,6] have been published to 
calculate and optimize the effect of redundancy in more or less specific architectures. 
This reflects the general policy of implementing redundancy by duplicating certain 
parts of the micro-architecture of the circuit under design, without paying appropriate 
attention to the actual sizes of the duplicated sub-circuits and the amount of 
redundancy which is implemented by this duplication [e.g. 7,8]. 
This memorandum, however, will present an architecture-independent model to 
calculate the optimal partitioning and the required amount of redundancy to achieve a 
maximum efficiency. It takes several technological parameters into account. At the 
end, it is indicated how this model can be adapted to any specific architecture. In the 
appendix, a mathematical substitution is presented, which makes the model 
completely analytical. This means that by derivation with respect to its parameters, 
the influence of these parameters can very easily be investigated. 

3. The partitionin~: and redundancy model. 

3.a. General assumption. 

The main purpose of the model to be presented in this memorandum, will be to gain 
insight in the optimal rate of partitioning any desired circuit into sub-circuits and the 
application of such an amount of redundancy that a maximum efficiency is reached. 
In order to derive an architecture-independent model it will, for the time being, be 
assumed that the desired (large) circuit can be partitioned into any (positive integer) 
number k of identical cells, each having a probability y of functioning correctly. In 
general, this will be an unrealistic assumption, but in section 4 it will be shown that 
the model can easily be adapted to any specific, realistic architecture by merely 
adjusting some parameters and limiting the possible solutions to restricted, 
architecture-dependent values. 

3.b. The concept of partitionine and redundancy. 

In case of a conventional chip without redundancy, consisting of k identical cells with 
a probability y of functioning correctly and with randomly distributed defects on the 
wafer, the overall yield Y will obviously be 

y (1) 

which will be low for k more than a few units, unless y is very close to unity. This is 
illustrated by figures 1 and 2. 

From expression (1) it is clear that, even with a moderately low number of required 
cells of, for instance, k = 16 and a relatively high single-cell yield of y = 0.8, the 
overall yield will only be 

y = {0.8) 1 6 = 0.028. (2) 
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Figure 1. Overall yield Y of a conventional chip· as a function of the 
single-cell yield y, with the required number k of cells as a parameter. 

Figure 2. Overall yield Y of a conventional chip as a function of the 
required number k of C(!lls, with the single-cell yield y as a parameter. 
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The effect of redundancy can easily be shown by expansion of this numerical 
example. Suppose that two of the above-mentioned structures were made, each 
consisting of 16 basic cells. The probability of finding at least one gcxxl structure will 
than be 

y = 1- [1-(0.8) 1 6]2 = 0.056 (3) 

This is still a low yield, mainly because the total of 32 basic cells have already been 
split into two independent sets of 16, irrespective of their usability. If the complete set 
of 32 cells is considered as one stock from which 16 working cells have to be 
selected, the overall yield can be calculated as follows. 

Let us assume that a stock of n (n ~ k) of the above-mentioned basic cells is 
available. The probability P of finding exactly i faulty cells among these n cells is 
well known from basic theory on statistics 

p 
(niJ yh-i (1-y)i (4) 

If k cells are required, a number of 0 ... n-k faulty cells is acceptable. Therefore, the 
probability of finding at least k gcxxl cells in a stock of n cells will be [9] 

n-k 

(:J y = I: yn-i (1-y)i (5.1) 
i=O 

n-k n! yn-i (1-y)i 
= I: (5.2) 

i=O (n-i) ! ' I J. • 

n-k yn-i (1-y)i 
n!. I: (5.3) 

i=O (n-i)! ' I ]_ . 

In the example of k = 16, n = 32 and y = 0.8, this leads to an overall yield of 

16 
Y = 32! I: 

i=O 

( 0. 8) 32-i ( 0. 2) i 
------------- = 0.99997 

(32-i) ! i! 
(6) 

which means that it is almost cenain that at least 16 properly functioning cells can be 
found among the complete set of 32. This numeric example shows the strength of the 
concept of partitioning a circuit into smaller sub-circuits and applying redundant 
circuitry. 

3.c. Illustration with numerical examples. 

Let us first investigate expression (5) a little further by examining a few examples. 
An available set of n = 32 and a required set of k = 16 units show a strong 
dependency of the overall yield Y with respect to the single-cell yield y, but at least, y 
is in a very reasonable region 
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y y 

0.2 0.00014 
0.3 0.01384 
0.4 0.16480 
0.5 0.56997 
0.6 0.90803 
0.7 0.99476 
0.8 0.99997 

Table 1. Illustration of the strong influence of the single-cell yield y on 
the overall yield Y for n = 32 and k = 16. 

This dependency becomes even stronger if the n/k-ratio is maintained, but the 
magnitudes of n and k are increased to n = 256 and k = 128 

y y 

0.4 0.00075 
0.5 0.52491 
0.6 0.99951 

Table 2. Illustration of the stronger dependency between the single-cell 
yield y and the overall yield Y for larger values of n = 256 and k = 128. 

Expression (5) also shows that even with a small amount of redundancy, an overall 
yield of Y = 0.9 can be achieved with reasonable values for the single-cell yield y 

k y 

4 0.197 
8 0.340 

12 0.472 
16 0.596 
20 0.713 
24 0.823 
28 0.922 

Table 3. The required single-cell yield y to achieve an overall yield of 
Y = 0.9 for various numbers k of required cells from a stock of n = 32 
cells. 

Finally, it can be shown that with a single-cell yield of y = 0.8 and a required overall
yield of Y = 0.9, the necessary amount of redundancy n/k deceases somewhat with an 
increasing number k of required cells 
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k n n/k 

2 4 2.000 
4 6 1. 500 
8 12 1.500 

16 23 1.438 
32 44 1. 375 
64 86 1. 344 

128 168 1. 312 

Table 4. Required amount of redundancy for various rates of partitioning. 

It is clear that with a high number n of available cells, the overall yield Y will 
increase. But of course, the chip area needed to accommodate these n cells will 
increase as well and is in fact proportional to n. Therefore, an efficiency coefficient 
E* can be defined as the yield divided by n/k, the latter being the "penalty" which has 
to be paid for implementing redundant circuitry 

E* = Y. (k/n) 
n-k yn-i (1-y)i 

k(n-1)! I: 
i=O (n-i) ! i! 

(7) 

For n~oo, it is clear that Y ~ 1, but E* = Y.(k/n)~O. For n < k there is no solution 
possible, so E* = Y = 0. Therefore, there must be a maximum in E* fork ~ n < ~ 
This maximum can be found with a simple search algorithm which finds the optimal 
n for a given k andy. Some numerical examples are shown in tables 5 and 6. 

y n y n/k 

0.3 67 0.8920 4.19 
0.4 50 0.9045 3.13 
0.5 39 0.9002 2.44 
0.6 32 0.9080 2.00 
0.7 27 0.9202 1. 69 
0.8 23 0.9285 1. 44 
0.9 20 0.9568 1.25 

Table 5. Optimal number n of cells, leading to a maximum efficiency E*, 
for a given number of required cells of k = 16 and for various single-cell 
yields y. 

3.d. Extension to realistic WSI-circuits. 

Obviously, the model as derived so far is not realistic enough, as it favours 
partitioning the desired circuit into an infmite number of very small cells. The reason 
for this is that partitioning a circuit into smaller parts requires additional wiring, 
which will increase the total area and decrease the overall yield, as wiring can fail as 
well. Moreover, the implementation of redundancy requires additional circuitry to 
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reconfigure the circuit after testing. Therefore, the model must be extended to take 
this extra wiring and circuitry into account. 

k n y n/k 

2 2 0.6400 1. 00 
4 6 0.9011 1.33 
8 12 0.9274 1.33 

16 23 0.9285 1. 30 
32 46 0.9696 1.30 
64 89 0.9757 1.28 

128 174 0.9844 1.26 

Table 6. Optimal number n of cells, leading to a maximum efficiency E*, 
for a given single-cell yield of y = 0.8 and for various numbers k of 
required cells. 

Let Ac,so denote that specific area of circuitry which will have a yield of 0.5 or 50% 
in the given technological process. Ac.so is, of course, directly related to the average 
defect density of the process. Let Ac denote the area that would be required to 
integrate the desired circuit in a conventional way, without partitioning and/or 
redundancy. Let a be the ratio between Ac and Ac.so 

(8) 

Clearly, the overall yield Y of such a circuit, processed in the conventional way, 
would then be 

(9) 

Let us now partition the desired circuit into k identical cells. Each of these cells will 
then have a single-cell yield of 

(10) 

Partitioning a circuit into two identical sub-circuits will generally introduce a "lane" 
between them, required for additional wiring and reconfiguration switches. It will 
therefore be realistic to assume that partitioning a circuit into k smaller sub-circuits 
will require an additional area Aw for wiring and reconfiguration switches which is 
proportional to 2log(k) 

(11) 

This means that every step of partitioning doubling the total number of required sub
circuits will add an equal amount of re-wiring area, captured in the parameter w. In 
practice, values for w of 0.1 ... 0.5 may be expected. The inclusion of this re-wiring 
area will lead to a new total area needed for the circuit 

[1 + w.2log(k)] .A0 (12) 
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The area of the wafer which is only occupied by additional wiring and switches will 
generally have a higher yield than the same area of circuitry, because fewer critical 
technological processing steps have been performed on it. Let Aw,so be that area for 
wiring and switches with a yield of 0.5 or 50% and let 

b = A.., sol Ac, so (13) 

In practice, b will be in the order of 1 ... 2. As a consequence, each of the k basic cells 
will require an additional amount of wiring and switches with a yield of 

y.., = (0. 5) w. 
2
log(k) .a/bk 

= 2- (wa/bk) . 2log (k) 

= k-wa/bk 

resulting in a total yield for each cell of 

y(k) YcYw 

(14.1) 

(14.2) 

(14.3) 

(15.1) 

(15.2) 

(15.3) 

Introducing redundancy can easily be done by substituting the constant y in (5.3) by 
the k-dependent y(k) of (15.3). The redundant area Ar of the complete circuit will be 
n/k- 1 times the area needed for circuitry, additional wiring and reconfiguration 
switches. Therefore, the total area occupied will now be 

= (nlk) • (Ac+A...) 

= [ 1 + w. 21 og ( k) ] . Ac. ( n I k) 

(16.1) 

(16.2) 

(16.3) 

The efficiency E now has to be defined as the yield divided by the area penalty which 
has to be paid for implementing redundant circuitry and additional wiring plus 
reconfiguration switches 

·With y(k) as in (15.3), this leads to an efficiency 

n-k y(k)n-i [1-y(k)]i 
n! I: 

i=O (n-i)! i! 
E 

[1 + w.2log(k)]. (nlk) 

k. (n-1) ! n-k y(k)n-i [1-y(k)]i 
I: 

[1 + w.2log(k)] i=O (n-i)! i! 

3rd Computersystems Workshop, may 15 1991, Eindhoven. 

(17) 

( 18.1) 

(18.2) 

41 



M. Be~p: A partitioning and redundancy model for wafer-scale ICs . 

42 

For every k, there exists an n (k S n < oo) for which the efficiency E shows a 
maximum Emax· The problem is to find the maximum of the maxima, for varying k, 
given the technological parameters w and b and the circuit size a. This can be done by 
a simple search algorithm. The result will be an optimal rate of partitioning, the 
required redundancy n/k to achieve the maximum efficiency Emax• the yield Y which 
will be achieved at maximum efficiency and the required total area At including the 
area ne~ed for redundancy and re-wiring. 

3.e. Results of the model. 

Let us investigate expression (18) by assuming the technological parameters to have 
constant and realistic values of w = 0.3 and b = 1.5 

a k n n/k y At lAc Emax 

0.125 1 1 1.00 0.9170 1. 00 0.9170 
0.25 1 1 1. 00 0.8409 1. 00 0.8409 
0.5 1 1 1. 00 . 0.7071 1. 00 0.7071 
1.0 1 1 1. 00 0.5000 1. 00 0.5000 
2 26 32 1. 23 0.9670 2.97 0.3260 
4 62 74 1.19 0.9812 3.33 0.2950 
8 135 158 1.17 0.9863 3.66 0.2698 

16 312 358 1.15 0.9938 4.00 0.2485 
32 673 763 1.13 0.9955 4.33 0.2300 

Table 7. Optimal rates of partitioning and redundancy for various 
amounts of required circuitry (a), at given values for the technological 
parameters w = 0.3 and b = 1.5 

It can be seen that (in this case) for aS 1 both partitioning of the circuit as well as 
application of redundancy are not yet required and in fact undesirable, as the 
maximum efficiency is achieved for k = n = 1. For a ~ 2, a rather large and increasing 
rate of partitioning (k) leads to optimal results, with a gradually decreasing rate of 
redundancy (n/k). As could be expected, the required total area At/Ac increases, and 
the overall-efficiency E decreases with increasing a. It is surprising, however, that for 
circuit sizes ranging from a = 2 to a = 32, the maximum efficiency only decreases a 
factor of 1.42 (0.3260/0.2300). 

The fact that for small values of a the application of redundancy is undesirable can be 
explained by looking at a graph of E as. a function of n (or n-k), for various k as 
depicted in figure 3. 

Obviously, for small values of k, meaning large basic cell areas, the area penalty 
which has to be paid by including redundancy is more severe. than the enhancement 
of the yield which will be achieved. This also explains the behaviour of Y as a 
function of a. For relatively small circuits (aS 1), no redundancy is implemented and 
the yield Y will obviously decrease with increasing circuit size a. For larger circuits, 
the application of partitioning and redundancy causes an important enhancement of 
the yield, at maximum efficiency, at the cost of not too much area, because a large k 
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means small basic cells and there are not many redundant cells needed to enhance the 
yield significantly, as was already shown in a numerical example. 

fE 

0.3 

0.2 

0.1 

k=1 

0 
n-k-

0 4 8 12 16 
Figure 3. An example of the behaviour of the efficiency E as a function of 
the available number of cells (n), with the required number of cells (k) as 
a parameter. 

Special attention should be given to the fact that there apparently exists a critical 
circuit-area acrlt• below which the partitioning of the circuit is undesirable, but above 
which a significant degree of partitioning is required to reach the maximum 
efficiency. This can be explained by looking at a graph of the maximum efficiency 
Emax as a function of the number k of required cells, for various values of a, as 
depicted in figure 4. 

0.5 fEmax 

0.4 

• 
• 

0.2 l--....,.--~--,...---.---~--,...--k....,-r----
0 5 1 0 15 20 25 30 35 

Figure 4. An example of the behaviour of the maximum efficiency Emax 
around a = acrit• as a function of the required number of cells ( k), with the 
desired circuit area (a) as a parameter. 
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As can be seen, the graphs of figure 4 may show more than one (local) maximum, 
indicated in the figure with dots. The heights of these maxima all depend on the 
circuit size a, but with different sensitivities. For small values of a, the maximum at 
k = 1 will be the only, or at least the highest one. At a given value of a= llcrit• another 
local maximum, at a significantly larger value of k, will be equally high as the 
maximum at k = 1. From this specific llcrit upwards, partitioning of the circuit and the 
application of redundancy will be favourable. 

3.f. Influence of the technoloeical parameters w and b. 

Of course, all results as given in table 7 depend on the technological parameters w 
and b. As an illustration, table 8 gives the results calculated for a given a = 8 and for 
various values of w and b. As can be seen, the required total area as well as the 
maximum efficiency strongly depend on w, but not so much on b. 

w b k n n/k y At_/Ac Emax 

0.1 1.0 193 211 1. 09 0.9912 1. 92 0.5154 
0.1 1.5 174 190 1. 09 0.9920 1. 90 0.5208 
0.1 2.0 164 179 1.09 0.9924 1. 89 0.5238 

0.3 1.0 183 213 1.16 0.9902 3.79 0. 2614 
0.3 1.5 135 158 1.17 0.9863 3.66 0.2698 
0.3 2.0 117 137 1.17 0.9863 3.58 0.2752 

0.5 1.0 234 277 1.18 0.9911 5.84 0.1697 
0.5 1.5 167 199 1.19 0.9908 5.59 0.1772 
0.5 2.0 130 156 1.20 0.9870 5.41 0.1823 

Table 8.11/ustration of the effect of the technological parameters wand b 
on partitioning, redundancy, area and maximum efficiency for a given 
desired circuit area a= 8. 

Also, the critical circuit area acrit• at which the maxima at k = 1 and at k > 1 in 
figure 4 have equal heights, depends more on w than on b, as is illustrated in table 9. 

4. Application to specific architectures. 

The model which was presented in the previous section, was put in general terms and 
was not based on any specific architecture. It was assumed that a circuit could be 
partitioned into any number of cells, that all these cells were identical and that the 
circuit could be reconfigurated in such a way that any faulty cell could be replaced by 
any good cell. Of course, this will generally not be true in practice. Nevertheless, the 
model can be used for a wide variety of architectures, provided the following 
adaptations are being made. 
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w b acrit 

0.1 1.0 0.71 
0.1 1.5 0.70 
0.1 2.0 0.69 

0.3 1.0 1. 62 
0.3 1.5 1.57 
0.3 2.0 1.52 

0.5 1.0 2.27 
0.5 1.5 2.19 
0.5 2.0 2.13 

Table 9./llustration of the effect of the technological parameters wand b 
on the critical circuit area acril· 

1) It is, of course, not always possible to partition a specific circuit into any number 
of sub-circuits. The micro-architecture will often cause a preference for certain 
numbers of cells, for instance powers of two. In practice, this means that not all 
natural numbers should be allowed as possible solutions of k, but that solutions of 
k should be restricted to a limited set of integer values fitting the micro
architecture of the specific circuit under development. This will not influence the 
previously mentioned results significantly, because the efficiency of the optimal 
partitioning will not show a very sharp maximum (see figure 4). This can, for 
instance, be illustrated by table 10, which shows the calculated results in the case 
of a= 8, around the maximum efficiency, which will occur at k = 135 (w = 0.3, 
b = 1.5, see table 7). 

As can be seen from the above-mentioned and other experiments, a slight 
variation in k around maximum efficiency will not significantly influence the 
total area, efficiency and optimal ratio of redundancy. 

k n n/k y At/Ac Emax 

136 159 1.17 0. 98 62 3.65 0.26982729 
135 158 1.17 0.9863 3.66 0.26982730 
134 157 1.17 0.9863 3.66 0.26982559 

,!, ,!, ,!, ,!, ,!, ,!, 
128 151 1.18 0.9866 3.66 0.26977643 

Table 10. The effect of small variations in k around the value of 
maximum efficiency (a= 8, w = 0.3, b = 1.5) 

2) From table 7 it can be seen that a circuit with a size of, for instance, a = 32 has to 
be partitioned into 673 sub-circuits to give an optimal efficiency. In practical 
situations, this number may be considered rather large. Table 11 shows the effect 
of rounding k to the nearest lower and subsequently lower powers of two 
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(w = 0.3, b = 1.5). From this table it can be seen that, in this case, solutions down 
to, say, k = 128 still show an acceptable

1
efficiency. 

k n n/k y At_/Ac Emax 

673 763 1.13 0.9955 4.33 0.2300 
512 601 1.17 0.9951 4.34 0.2291 
256 342 1. 34 0.9895 4.54 0.2178 
128 215 1. 68 0.9795 5.21 0.1881 

64 160 2.50 0.9618 7.00 0.1374 
32 158 4.94 0.9319 12.34 0.0755 
16 250 15.63 0.8834 34.37 0.0257 

Table 11. The effect of decreasing the rate of partitioning on required 
redundancy, area, yield and efficiency (a= 32, w = 0.3, b = 1.5) 

3) So far, it was assumed that the desired circuit could be partitioned into any 
number of identical cells. This may be acceptable for very regular structures, like 
memories and systolic arrays, but not for all types of circuits. The model of this 
memorandum may therefore predominantly be useful for regularly structured 
architectures. Nevertheless, the architecture of almost any circuit allows a 
distinction of large functional blocks with a regular structure. Applying the model 
on each of these blocks separately, will also give a (nearly) optimal solution for 
the complete circuit. 
Moreover, there are three reasons causing the area of a wafer-scale integrated 
circuit to be significantly larger than that of a VLSI-circuit. Firstly, a WSI-circuit 
will by nature incorporate a certain amount of redundant circuitry. Secondly, a 
relatively large area will be occupied by the implementation of the additional 
wiring and switches needed to (re-)con figurate the circuit during the initial test or 
any power-up routine. Thirdly, the development of WSI-circuits will take some 
time, during which regular VLSI-circuits will continue to develop as well. In 
order to produce economically competitive WSI-circuits, one will have to aim at 
circuit sizes which are at least half an order of magnitude larger than state-of-the
art VLSI-circuits. The size of realistic WSI-circuits will therefore be of such a 
magnitude that they will inevitably have to be more or less regular in order to be 
designed by presently available CAD-tools. 

4) In the model, it was assumed that any faulty cell could be replaced by any spare 
cell. In a practical situation, this will generally not be true. A faulty cell will have 
to be replaced by a cell in its close vicinity. Often, the implementation provides 
for complete rows and/or columns of spare cells, and reconfiguration is 
perfonned by implementing the proper "sidesteps". To the model, this means that 
n can not adopt any integer value k S n < oo, but n will be restricted to certain 
architecture-dependent values. These restricted values of n can, just like the 
above-mentioned restricted values of k, be incorporated into the algorithm of the 
model, which will then find the optimal solution under the additional constraints. 
Moreover, all restrictions considering reconfiguration wiring and switches can be 
accounted for in the parameters w and b. 
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Conclusions and summary. 

A model was presented which calculates the optimal degree of partitioning, rate of 
redundancy, total area, yield and efficiency for any desired (large) circuit. It was 
shown that there exists a critical circuit size, below which the implementation of 
partitioning and redundancy is undesirable. Above this critical circuit size, 
partitioning into rather small cells leads to optimal efficiency, in spite of the fact that 
small cells require a considerable overhead of reconfiguration wiring and switches. 
This also means that the implementation of very large redundant cells or blocks will 
cost more area than the enhancement of efficiency justifies. It was shown that the 
model can be adapted to any specific architecture by adjusting parameters and 
limiting possible solutions to restricted, architecture-dependent values. By a simple 
mathematical substitution, the model can be made completely analytic, making it 
very simple to investigate the sensitivity of the optimal solution to small variations in 
parameters. 

Appendix. 

In expression (18), the faculty functions may cause some difficulties, due to the rapid 
increase of n! with increasing n. In many applications, the numeric value of n! will 
exceed the range of the integer or even real variables on the used computing 
instrument. The calculated results, however, are in a reasonable range, as n! is 
divided by (n-i)!(i)! in all cases, due to the binomial origin of the faculty functions. 
Out-of-range-problems can therefore be avoided by calculating with the logarithms of 
the faculty functions. 
On the other hand, these faculty functions are the only functions causing (18) to be 
non-analytic. In order to take the derivative of (18) with respect to its parameters, for 
sensitivity calculations, it may be found very useful to substitute n! by its well-known 
Stirling-approximation [e.g. 10,11]. 

n! ,.. (n/e} n • ..J (21tn} .C (n) (A.l) 

This approximation is based on the theory of gamma-functions. Its derivation is 
beyond the scope of this memorandum. C(n) is a correction factor, consisting of a 
series expansion of n-1 

C (n) = 1 + (C1 /n} + (C2 Jn2) + (C3 /n 3 ) + (C4 /n4 ) + ... 

(A.2) 

C1 ... Cr are the results of first order Bernouilli-functions. In most publications, this 
correction factor is truncated after the fifth term (Cr == 0 for r > 4). The numeric 
values ofC1 ... C4 are 
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C1 1112 = 
C2 1/288 = 
c3 -139/51840 
c4 = -571/2488320 

8.3333333.10-2 
3.4722222.10-3 

= -2.6813271.10-3 
= -2.2947209.10-4 

Table A.l. Numeric values of the coefficients in the correction factor 
C(n). 

Let SLA ("Stirling Low Accuracy") be the Stirling approximation of n! with C(n)=l 
(meaning Cr = 0 for r > 0), let SMA ("Stirling Medium Accuracy") be the Stirling 
approximation of n! with C(n) = 1 + (l/12n) (meaning Cr = 0 for r > 1), and let SHA 
("Stirling High Accuracy") be the Stirling approximation of n! with C(n) truncated 
after the fifth term (meaning Cr = 0 for r > 4). Then, the accuracies as summarized in 
table A.2 for the approximations are obtained. For n-+ oo, n!/SLA, n!/SMA and 
n!/SHA all approach unity. 

n n! /SLA n!/SMA n! /SHA 

0 00 00 00 

1 1.08444 1.001019 1.00050078 
2 1. 04221 1. 000519 1.00002102 
3 1.02806 1. 00027 9 1.00000300 
4 1.02101 1.000171 1.00000073 
5 1.01678 1.000115 1.00000024 
6 1.01397 1.000083 1.00000010 

Table A.2. Accuracies of the Stirling approximation of n! with several 
numbers of terms in the correction factor C( n) taken into account. 

Obviously, the SLA-approximation has the disadvantage of an unacceptably low 
accuracy for low values of n. The SHA-approximation on the other hand, provides an 
excellent accuracy (for n > 0), but will be cumbersome to differentiate, due to the 
relatively high number of terms in the correction factor C(n). In most applications, 
the SMA-approximation will show a useful balance between both. 

The difficulty of the infinite error arising when calculating 0! can be overcome by 
recognizing that n! = (n+ 1) !/(n+ 1 ). Combining this with (A.l) and (A.2) where Cr = 0 
for r > 1 yields 

n! = ..J(21tfe3) • [(n+1)/e]n-l/2. (n+l3f 12 ) (A.3) 

This analytic approximation of n! shows an error ranging from 0.1% for n = 0 to less 
than 0.01% and approaching zero for n > 5. 
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A compile-time technique is presented for determining if a set of procedures within a parallel 
program can be executed sequentially without causing deadlock. The analysis and methods are 
described for committed-choice parallel logic programming languages; however, the concepts are 
general enough for any concurrent languages with :fine-grain communicating processes. We derive 
methods for ensuring that sequential evaluation of a program module cannot result in producer
consumer suspension within the module itself, thereby resulting in deadlock. The advantages 
of sequentializing fine-grain languages include the use of "traditional" compiler optimizations, 
such as global register allocation, and continuation-stacking procedure invocation. 

1 Introduction 

Traditional parallel procedural languages evolved from sequential programming languages. The 
quest to uncover more parallelism, in more efficient ways, is paramount in the development of 
these languages. Alternatively, concurrent languages, such as committed-choice parallel logic 
programming languages, have a great deal of inherent parallelism. These languages and their 
implementations have been refined to exploit the parallelism more and more efficiently, with 
increasingly sophisticated interpreters and emulators, in both software, firmware, and hardware. 
Less research has been done concerning efficient compilation for the parallel execution of these 
concurrent languages. 

In this paper, we introduce a method to safely sequentialize pieces of concurrent programs, 
with the intention of increasing execution speed. Specifically, we describe our method with 
respect to the family of flat committed-choice parallel logic programming languages, such as 
FCP, FGHC, and Parlog [16J. To achieve serialization, we combine a general mode-analysis 
algorithm [20] with a goal-ordering algorithm described here. We fully describe the conditions 
under which the analysis can successfully sequentialize a program, and indicate practical uses 
of the technique, such as global register allocation and continuation-based goal management. 

There are several reasons why sequential execution can be beneficial. One of the advan
tages of sequential code blocks is to increase granularity (5, 18]. An often-mentioned problem 
of committed-choice languages is their small average granularity, causing a high overhead for 
process management and an abundance of light-weight processes. By sequentializing portions 
of a fine-grain parallel program, execution time decreases and process·or utilization increases. 
Apart from this, sequentializing part of a program also makes it possible to use many well
known compiler optimization techniques (e.g., [11), such as a global or interprocedural register 

2 This work has been done in cooperation with Prof. E. Tick, Dept. of Computer Science, 
University of Oregon 
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allocation scheme. The trick is to determine which sets of procedures should be serialized for 
overall benefit, and if they can be serialized safely, i.e., without chance of deadlock. 

Our ultimate goal is to exploit efficient memory management, optimal register allocation, and 
destructive variable assignment techniques within "sequential" program modules. Thus we can 
compile parts of committed-choice programs as if they were sequential, procedural languages, 
thereby increasing the average granularity. By judicious modularization of a program, overall 
efficiency of committed-choice programs will improve significantly with relatively simple analysis. 

This paper is organized as follows. A brief review of committed-choice languages and ar
gument modes is given in Section 2. Section 3 shortly describes a first attempt at efficiently 
implementing committed-choice languages by exploiting directional programs, as first discussed 
by Gregory [8). Section 4 describes a more general method of mode analysis, due to Ueda [20). 
The results of this mode analysis can be used to ensure safe sequential execution, as described in 
Section 5. Section 6 describes how the preceding methods can serve as the basis for the efficient 
implementation of sequential modules, and Section 7 summarizes the paper. 

2 Background and Terminology 

In this section a brief review of committed-choice languages and argument modes is given. The 
terminology introduced here, for input and output modes, modules, basic blocks, and internal and 
external suspension, is necessary for the remainder of the paper. In the literature, the notion 
of modes is somewhat overloaded in its meaning, through sloppy usage and intuitive bias. We 
hope to clarify the intended meanings. It is important to stress that we limit ourselves to the 
family of :flat committed-choice languages [16). This limitation is not a severe handicap, as the 
expressive power of these languages is comparable3 to those languages with deep guards [17); 
however, their implementation is simpler and more streamlined. 

In :flat committed-choice languages, Horn clauses have the form 

where m and n are zero or positive integers. His the clause head, Gi is a guard goal, and Bi is 
a body goal. A goal can be considered a procedure invocation. A conjunction of goals is simply 
a set of goals, appearing within the same clause. The commit operator 'I' divides the clause into 
a passive part (the guard) and active part (the body). For :flat languages, the guard goals can 
only be built-in predicates, such as integer(X), or X>O. 

Both the clause head and internal goals can have arguments. The head arguments correspond 
to formal parameters in a procedure definition, whereas the guard and body goal arguments 
correspond to passed parameters in a procedure call. A procedure is defined as the set of clauses 
having the same name and number of head arguments. 

An important concept is the notion of modes. A procedure argument is used to communicate 
values between the caller and callee. Intuitively, when the caller passes a value into the callee, 
the corresponding argument is used in an input mode. Similarly, when the callee passes a value 
back to the caller, the argument is used in an output mode. However, due to the nature of the 
logical variable, a single argument, in a given invocation, can be used both to pass values in and 
return values back. One example of this is called "incomplete messages," e.g., m(X) is an input 
message containing an unbound variable X, meant to be bound with a return message by the 
callee. 

3 See Shapiro [15] for an in-depth comparison of this family of languages. 
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Mode declarations can be either explicit (as in Parlog [8]), or implicit. A mode can be either 
input or output. In Parlog, the user must declare the modes for each "top-level" argument of 
a predicate. A top-level argument is the outermost term passed to a procedure, distinct from 
any subterms that it may be composed of. The following definitions are due to Gregory [8] and 
others. 

Definition: An input argument of a goal, denoted here by mode'?', is an argument 
which is either instantiated when the goal is called, or it is a variable. However, 
during head matching or guard evaluation, when the input argument is a variable, 
it can never be instantiated by the head-matching process. Basically, only input 
matching is performed. 0 

Definition: An output argument, denoted here by mode 'A', is an argument which 
is always unbound in the caller, and whose value is bound by the callee. 0 

In the following, arguments of a predicate which have been declared as input or output will 
be named input positions or output positions, respectively. Furthermore, the goal(s) which 
instantiate a variable are called the producer(s) of this variable, while the goal(s) which use, but 
not instantiate, a variable are called the consumer(s} of that variable. 

There are some flaws, however, in the simple mode system. Primarily, the modes concern 
only top-level functors. For example, consider the following program: 

100de f(?,•). 
f([llla]. Z) :-true I g(l),h(ls,Z). 

The mode declaration of the first argument does not convey anything about the value of I when 
f/2 is called: it only specifies that the first argument of the caller must be a (non-empty) list. 
Furthermore, specifying an argument as input does not exclude the possibility that the argument 
is bound to a non-variable term in the body, e.g., 

mode f(?). 
f(l) :- true I 1=0. 

The above is a legal Parlog program, and when called with the query "?- f (I)," X will be bound 
to 0 ' which contradicts the intuitive notion of input argument. 

The notions of input and output modes, as introduced by Ueda [20], are somewhat more 
consistent in this regard. Instead of simply specifying the top-level arguments, Ueda's method 
attempts to infer the modes of all variables and structures occurring in the clause. Ueda distin
guishes terms by specifying the path which must be taken to get to a specific term. For example, 
the path to get to variable X in predicate f/2 above is specified as <f .1><. ,1>,4 i.e., the head 
of the first argument of f /2. 

The value of a path is then defined as the first (principal) functor following this path when 
the term at the end of the path is instantiated. In our previous example, if X is instantiated to 
a(O ,0), then the value of the path <f ,1><. ,1> is a/2. We now give definitions of input and 
output path modes due to Ueda [19]. 

Definition: If a path is defined as input, the value (i.e., the principal functor) of 
this path may (but need not) be bound by the caller, and will never be bound by 
the callee. o 

'For lists, the functor ./2 is used, so<· ,1> is the head of a. list, while<· ,2> is the ta.il of a. list. 
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Definition: If a path is defined as output, the value (i.e., the principal functor) of 
this path will never be bound by the caller, and may (but need not) be bound by 
the callee. D 

We now define the notions of a sequential module and a sequential basic block. We use the term 
module to describe a set of self-contained predicates, which is entered (called) through a single 
entry-point (the module entry-point). In this context, "self-contained" means that no predicate 
inside the module calls any predicates outside the module, nor does any predicate outside the 
module call any predicate inside the module, apart from the visible module entry-point. For 
example, consider the following code segment: 

a. :- b,c,d. 
b :- e,b. 
c :- b. 
d. 
e. 

Predicates b and e comprise a module; this module is entered only through b. From within this 
module, there are no calls to predicates outside it. Extending this notion, a complete program 
can be viewed as a. module with the top-level query calling the module entry-point (assuming that 
the query consists of a. single goal only). If the goals inside a module are executed sequentially, 
the module is called a sequential module, for obvious reasons. 

A basic block is defined simply as a group of body goals within the same clause. Note 
that this definition is more general than the standard definition for machine instructions [1], 
although the intention is similar. If these body goals are executed sequentially, the block is 
called a sequential basic block. Grouping together these body goals can be done in several ways. 
First, the goals can be folded together (either by the user or as a. source-level transformation by 
the compiler) into another goal, which is specifically marked as "sequential." For example, in 
the previous code, if we group the goals c and d, the program could be transformed into: 

:- sequential g. 
a. :- b,g. 
b :- e,b. 
c :-b. 
d. 
e. 
g :- c,d. 

A second possibility for grouping a. set of body goals is using an operator such as the sequential 
conjunction operator 't' from Parlog: 

a :- b, (c t d). 

In the third option for marking a. sequential basic block, no explicit transformations or anno
tations are made, but rather the compiler detects the presence of a. sequential basic block, and 
implicitly transforms the block into an internal representation. 

Extending these notions with respect to the call graph of a. program, a. module is defined as 
a. subgraph of the entire graph. This subgra.ph is entered through only one node, 5 and has no 
edges to nodes outside the subgra.ph. In contrast, a. basic block is a. set of nodes which are all 
connected to the same parent. Recall that this implies that all goals in a. clause can be executed 
concurrently. An example is shown in Figure 8a., which represents the aforementioned program. 
The left box represents a. module, and the right box represents a. basic block. 

6 There ma.y be multiple edges entering a module, but they can be connected only to the modnle entry-point. 
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Figure 8: (a) Modules and Basic Blocks in Call Graphs. (b) A Call Graph with a Sequentialized 
Basic Block. 

By sequentializing a basic block, the call graph changes as follows: if a basic block consists 
of n goals, for all but the first goal, the edges connecting them to their parent are removed from 
the call graph, and then goals are connected such that goal i is connected to i+ 1 (for all i < n). 
This is shown in Figure 8b. 

Algorithms for selecting sequential modules and basic blocks (i.e., their composite procedures 
and appropriate size) are an ongoing research topic of great importance, related to granularity 
analysis (e.g., [5, 18]). However, this is beyond the scope of our paper. 

Another important notion to be defined in this context is that of suspension. The execution 
of a committed-choice goal will suspend whenever an input variable is not sufficiently instantiated 
for the goal to commit. This situation changes when another process further instantiates the 
variable, allowing the suspended process to resume. H the variable is never instantiated, deadlock 
will arise, which is defined as a situation where one or more suspended processes exist, but no 
runnable processes exist. We define suspension with respect to both modules and basic blocks: 

Definition: A process (or a set of processes) is suspended externally, when the cause 
of the suspension lies outside the suspended module (basic block). D 

For example, consider the query "?- c(X) ,p(X)." where c/1 (the consumer of X) and p/1 (the 
producer of X) are different modules. H c/1 is executed first, then external suspension of c/1 
occurs. Intuitively, external suspension means that a process, external to the module, which 
produces data for the module, has run of out of data, and the module must wait for this producer 
to produce more data. When a process is suspended on more than one variable, with at least 
one of the causes of suspension outside the module, this is also called external suspension. 

Definition: A process (or a set of processes) is suspended internally, when the cause 
ofthe suspension lies inside the suspended module (basic block). D 

Intuitively, internal suspension means that some variable which is local to the module or basic 
block is not sufficiently instantiated to allow the process to continue. H a process is suspended 
on more than one variable, suspension is called internal if and only if all causes are inside the 
suspended module. With these definitions, the following theorem is easy to derive: 

Theorem 1 If the goals inside a module or basic block are executed sequentially, 
then internal suspension will always cause deadlock for the top-level call of the module 
entry-point. 
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The proof is simple: if suspension occurs, the module has to wait for some other process to 
produce more data. However, this process is located inside the module, and will never be 
executed because the goals inside the module are executed sequentially. Therefore the call to 
this module deadlocks. Although this theorem may be obvious, its importance is that it clearly 
shows that internal suspension must be prevented for sequential basic blocks and modules. In 
the next section we begin to develop conditions under which this is true. 

3 Directional Programs 

One of the first attempts towards a parallel logic language which could be implemented efficiently 
on a distributed, loosely-coupled architecture was the Relational Language [3], the direct pre
cursor of Parlog [8]. Apart from the mode system, which is also present in Parlog, the Relational 
Language featured strong arguments. 

Definition: A strong argument of a procedure invocation, if it is in an output 
position, is a term that is completely constructed by a single body goal in that 
procedure's definition, without any contribution from other goals in this conjunction. 
The constructing goal is often called the producer. H a. strong argument is in an input 
position, it is completely constructed by external goal(s), and no bindings to it are 
made in this procedure invocation. D 

Thus there can never be an output substitution for any variable occurring in a strong input 
argument position. This does not preclude the construction of terms containing unbound vari
ables, but these variables can never be instantiated within the conjunction by a goal other than 
the producer. As an example, consider the following code segment: 

mode f(-). 
f1(1) :-I= g(O). 
f2(1) :-I= g(Y). 
f3(1) :-X= g(Y), Y = 0. 

The X arguments in both fl/1 and f2/1 are strong (their values are completely constructed 
by a. single body goal), whereas the X argument in f3/1 is not strong. Note that Y is not 
instantiated by another body goal in f2/1. The implication of strong variables is far reaching: 
"back communication" (e.g., the use of incomplete messages) is impossible. In general, the full 
power of the logical variable is lost. 

For completeness, we now discuss the status of variables that are not strong. To retain the 
full power of the logical variable, weak arguments are necessary. For example, argument X in 
f3/1 is weak because, its value is constructed by two body goals within the same clause. For 
output arguments, the distinction between weak and strong is not important (in both cases, 
output bindings are only made through variables occurring in output positions), therefore in the 
following we will distinguish only between strong and weak input arguments. 

Definition: A weak input argument of a. goal is one in which variables might be 
instantiated by the evaluation of the goal. 0 

Weak input arguments were introduced in Par log (and implicitly used in other committed-choice 
languages), because Parlog programs only specify the modes for top-level arguments, without 
considering subterms of these top-level arguments. Consider, for example, the following correct 
Parlog program: 

56 

mode f(?). 
f(g(l)) :- 1=0. 
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Although the weak argument of f/1 is (correctly) defined as input, because it is a. structured 
term g/1, the variable X inside this argument will be instantiated when f/1 is called. 

With the definition of strong arguments, a. directional program can be defined: 

Definition: A directional logic program is a. program in which all arguments (of all 
clauses of all procedures) are strong. D 

A d.ifectional module can be defined similarly. In a. directional program, the mode declarations 
indicate which body goal constructs the value of a. variable: the goal in which the variable appears 
in an output argument position. Gregory [8] uses directionality only to check for the compil~ 
time safety of guards, something which we do not discuss here. However, the directionality 
mechanism is more powerful we show, in Theorem 2, that it can be used to significantly lower 
the number of suspensions: 

Theorem 2 If a program is directional, and given a corTeCt ordering of the body 
goals, no deadlock will occur, and the program can only suspend externally, i.e., on 
variables whose producers are the to~level query. 

Again, this theorem can easily be extended to cover modules. For example, consider the body 
goals "f(A), g(A,B), h(B)." Suppose f/1 is the producer for A and h/1 is the producer for B. 
A correct ordering, to avoid deadlock during sequential execution, is "f(A) a h(B) a g(A,B)." 

It may be the case that more than one ordering exists satisfying this theorem; however, it 
is also possible that no such ordering exists, thus leading to internal suspension of a. directional 
program. For example, consider the body goals "f(A,B), g(A,B)" where f/2 is producer for A 
and g/2 is producer for B. In this case, the program is still directional, but there is no ordering 
of f/2 and g/2 satisfying Theorem 2. 

When body goals are executed in the "correct order," the number of suspensions is reduced 
because a. producer of a. variable is always executed before its consumer(s). Although we will not 
go into further details here, [12] illustrates why the requirement for a. program to be directional 
(i.e., for all arguments to be strong) is too restrictive, and in the remainder of this paper we will 
describe an approach to ease this requirement, while retaining the full use of Theorem 2. 

4 Mode Analysis 

As the requirement for full directionality with only strong arguments is too restrictive to be 
effective, another type of mode analysis is necessary. A viable alternative is the mode analysis 
described by Ueda. [20] (other options, which we do not consider in this paper, are available, 
such as abstract interpretation [13]). Ueda.'s mode analysis automatically infers the modes of all 
arguments at the top-level and those inside structured top~level arguments. A mode is either 
input or output6 as defined in Section 2. 

4.1 Simplified Rules 

The mode analysis described in this section reviews Ueda.'s technique, a.l.though a. different 
(hopefully more clear) exposition and less formal notation is used here. The mode analysis 
uses the notion of a. path to denote a. specific (textual) occurrence of a. term. A path describes 
how the different layers of structured data. elements must be "peeled off" to get to this specific 
occurrence. For example, given the clause head f (X, g ([X I J ) ) , the path to the first occurrence 

6 Shortened to "in" and "out" in certain contexts. 
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of X is <f ,1>, while the path to the second occurrence is <f ,2><g,1><. ,1>. This second 
path mea.ns "take the second argument off," then "take the first argument of g," a.nd then 
"take the :first argument of the list." 

The mode of a. path p, which is denoted as m(p), is defined as either input or output. 
The definitions of input and output in [20) are somewhat ambiguous, so we use two improved 
definitions [19]. Let p be a pa.th leading to a variable. Then: 

• "m(p) = in" means that the value (i.e., the principal functor) of the variable at p mag 
(but need not) be bound by the caller, and will never be bound by the callee. 

• "m(p) = out" means that the value (i.e., the principal functor) of the variable at p mag 
(but need not) be bound by the callee, and will never be bound by the caller. 

Intuitively, this implies that an input path will not be (further) instantiated, while an output 
path implies that a process can never suspend on the value of the path. Note that variable
variable unification does not count as "binding the value" of a variable. Thus, input paths 
leading to variables cannot cause suspension, even if the incoming argument is unbound. 

If possible, the modes of all paths must be inferred to find a safe goal ordering, which avoids 
internal suspension. The mode of a path can be found by applying the following rules: 

§ 1. For some path p in a clause, m(p) = in, if either 

1. p leads to a non-variable in the head or body, or 

2. p leads to a variable which occurs more than once in the head, or 

3. pleads to a variable which also occurs in the guard at path Ph and m(p~a) =in 

§2. Two arguments of a unification body goal (=/2) have opposite modes, for all possible 
p, or more formally: {Vp m( <=, 1 > p) ::j:. m( <=, 2 > p )}. 

To better understand the modes, we now give the intuition for these rules. If a path leads to 
a non-variable in the clause, then the value of the path is already known, and it will not be 
instantiated by the callee, thus its mode is 'in.' If a variable occurs more than once in the head, 
it can only be used for equality checking before commitment.7 No bindings are allowed, thus 
again its mode is 'in'. Similarly, if a variable in the guard is used for checking (i.e., its mode is 
'in'), then it is clear that value of the path to that variable is provided by the caller, so its mode 
is 'in.' 

Because of the nature of unification, one of the arguments of •/2 will function as producer 
for a specific path, while the other argument functions as consumer. Note, however, that §2 does 
not require that for all possible paths p, the modes of an argument are the same. For example, 
giventheuni:fi.cation [1,X]=[Y,2],m(<=,1><.,1>) = in,whilem(<=,1><.,2>) =out. 

When a variable occurs more than once, with at least one occurrence in the body, the 
Situation gets more complicated. Because paths to variables occurring more than once in the 
head all have the same (input) mode (see §1b), it is correct (and simpler) to count only one 
occurrence of a variable in the head in the following rules. 

§3. If there are exactly two occurrences, we have two possibilities: 

1Note tha.t these sema.ntics a.re particular to FGHC. For exa.mple, the procedure "f(1,1) :- 1•3." ca.n only 
succeed with the query "?- f(3,3) ." If the intention was to output two copies of 3, then the proper code is: 
"f (1, f) :- 1•3 • Y•l." Parlog a. voids this problem by a.llowing both arguments to be explicitly defined as output 
modes. 
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1. H both occurrences are in the body, the modes of their paths are inverted. 

2. H there is one occurrence in the head and one in the body, the modes of their 
paths are the same. 

§4. H there are more than two occurrences of a shared variable (i.e., at least two occur
rences in the body), the situation is even more complex: 

1. H the body contains more than two occurrences of the shared variable and the 
head has no occurrences, then one of the modes is 'out,' and the others are 'in.'8 

2. H the head contains one occurrence of the shared variable (so the body has two 
or more occurrences), then the modes are as follows: 

(a) The mode of the head occurrence is 'in' iff the modes of all body occurrences 
are 'in.'9 

(b) The mode of the head occurrence is 'out' iff one of the body occurrences is 
'out,' and the other body occurrences are 'in.' 

The inversion in §3 can be intuitively explained by looking at an input path in a clause head. 
For that clause, the variable acts as a consumer of data (therefore its mode is input). However, 
within the clause the variable in the head acts as a producer for the body of the clause, thus 
inverting its mode within the clause. The opposite of this holds for an output path in the head. 

The complexity of §4 can be explained intuitively by looking at the inversion of the modes 
discussed previously, combined with the fact that only one occurrence of a variable can be its 
actual producer. The problem with this last rule is that it causes non-binary constraints to 
occur. To clarify this, we will give two examples of how the modes of a shared variable can look 
when multiple (three in this case) occurrences are present. 

f(X) : - b1(X), b2(X). f : - b1(X), b2(X), b3(X) 
in in in out in in 

out out in in out in 
out in out in in out 

4.2 An Example of Mode Analysis 

To explain the concept of modes and paths, and to understand the rules given above, it is best 
give an example. Figures 9 and 10 give the mode analysis for quicksort. In these proofs, let 
qi(p) = m(<q,i>p) and Bi(p) = m(<s,i>p), while '=k' represents the kth instance of the 
unification goal =/2, and '£'represents an empty path. Furthermore, each step in the proof is 
annotated with the rule used. Each mode relationship proved is called an axiom, e.g., there are 
six axioms comprising the full mode definition for q/3. 

AB an example of how such a proofs are constructed, consider the fourth axiom in Figure 10. 
We start with the path to the term on the right-hand side of =1/2. The value of this path is a 
non-variable {D), so according to §1a, its mode is 'in.' Using §2, we then derive that the mode 
of the corresponding path on the left-hand side of =t/2 is 'out.' As there are two occurrences 
of the variable S, one in the head and one in the body, §3b applies. H we now substitute p=£ 
in the last axiom derived, and combine it with the previous one, the final outcome is s3(£) • 
out. The other axioms are proved similarly. Together these results give an idea how data flows 

11This means that one of the occurrences iB designated as the producer of this variable. 
11 Note that if a variable occurs more than once in the head, its mode iB 'in' by §lb, implying that §4b-ii cannot 

be used. 
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q(O, RO,B.) :-1.0 =1 B.. 
q([liLJ,RO,B.) :- s(L,l,L1,L2),q(L1,B.O,[liR1J),q(L2,R1,B.). 

1. q1(t;) = in 

2. q3(€) = in 

3. q2(t:) = out 
a. Vp q2(p) = mC<=1,1>p) 
b. Vp q3(p) = mC<=1,2>p) 
c. Vp q2(p) #; q3(p) 
d. q2(e) = out 

4. Vp q1(<.,2>p) = s1(p) 

6. Vp q3(p) = q3(<.,2>p) 
a. Vp q3(<. ,2>p) #; q2(p) 
b. Vp q3(p) = q3(<.,2>p) 

§1a 

§1a, 2nd body goal 

§3b 
§3b 
§2 . 
"2"+c: sub p=t: 

§3b (on L) 

§3a (on 1.1) 
"3.c" + a 

e. Three possibilities: §4b 
a. q1(<.,1>p) =in, s2(p) =in, q3(<.,1>p) =in 
b. q1(<.,1>p) =out, s2(p) =out, q3(<.,1>p) =in 
c. q1(<.,1>p) =out, s2(p) =in, q3(<.,1>p) =out 

7. s3(€) = out 
a. Vp q1(p) #; s3(p) §3a (on L1) 
b. s3(€) = out "1" + a 

8. s4(d = out see "7" 

Figure 9: Mode Analysis Proof for Quicksort: q/3. 
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s(D. _,s.L) :- S =1 D. L =2 D. 
s([IIIa],A,S,L) :-!>I I L =a [IIL1], s(Is,A,S,L1). 
s([IIIs],A,S,L) :-!=<I I S =4 [IIS1], s(Is,A,S1,L). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

a1(f) = in 

s1(<.,1>) =in 

a2(f) = in 

s3(f) = out 
a. m(<=1.2>) = in 
b. m(<=lo1>) = out 
c. Vp m(=lo1>p) = s3(p) 
d. s3(f) = out 

s4(t) = out 

Vp s1(p) = s1(<.,2>p) 

Vp s4(p) = s4(<.,2>p) 
a. Vp s4(p) "I m(<=a.2><. ,2>p) 
b. Vp s4(p) = m(<=a.1>p) 
c. Vp s4(< .• 2>p) = m(<=a.1><.,2>p) 
d. m(<=a.1>p) "I m(<=a.2>p) 
e. Vp s4(p) = s4(< .• 2>p) 

Vp s3(p) = s3(<.,2>p) 

a4(<.,1>) =out 
a. s1(<. ,1>) = in 
b. Vp s1(<.,1>p) = m(<=3 ,2>< .• 1>p) 
c. m(<=a.2><.,1>) =in 
d. m(<=a.1><.,1>) =out 
e. s4(<.,1>) =out 

s3(<. ,1>) = out 

§1a 

§1c 

§1c 

§1a 
§2 
§3b 
c: sub p=t 

see "4" 

§3b 

§3a (on L1) 
§3b (on L) 
b: sub p=<. ,2> 
§2 
a+c+d 

••• "7" 

see "2" 
§3b 
b: sub p=t 
§2 
see "7.b" 

see "9" 

Figure 10: Mode Analysis Proof for Quicksort: s/4. 
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within this procedure, i.e., which arguments (and which variables within structures) are input, 
and which are output. This information can be used by a compiler to make optimal use of its 
resources, such as memory and registers. 

To show that mode analysis can fail as well, consider the following example: 

f :- r(I,Y), g(I), g(Y). 
r(I,Y) :- I=Y. 

Applying §3a to the first clause gives: Vp m( < r, 1 > p) ::f. m( < g, 1 > p) and 
Vp m( < r, 2 > p) ::f. m( < g, 1 > p ). In other words: Vp m( < r, 1 >. p) = m( < r, 2 > p) However, 
applying §2 to the second clause gives: Vp m( < r, 1 > p) ::f. m( < r, 2 > p ), which clearly contra
dicts the previous conclusion, so the mode analysis fails and no consistent modes can be found. 
This implies that this code cannot safely be considered as a sequential module, and standard 
compilation techniques must be used. The reason why the mode analysis fails can be seen more 
clearly from the unfolded program: 

f :- g(I), g(I). 

IT both occurrences of X had mode 'in,' then there would be no producer for X. On the other 
hand, if both occurrences of X are 'out,' then they are competing to produce a value for X, but 
it is not certain which of the processes will generate the value. Therefore we cannot say which 
occurrence must be executed first to obtain a safe, i.e., deadlock-free, sequential module. 

To come back, however, to the quicksort example, the most interesting point about this 
analysis is the sixth axiom in Figure 9. The analysis shows that three distinct modes of execution 
are possible for q/3, hinging on the use of shared variable X. Since X appears twice in. the body 
of the second clause, the proof uses rule §4b. The three distinct modes depend on whether X 
is input by the clause head (first choice) or bound by a body goal (latter two choices). Given 
the mode analysis of s/4 in Figure 10, the second choice (b) is contradicted, since s2(£) = in. 
Therefore only two choices remain. 

The problem is that these two choices are both valid: essentially Ueda's analysis indicates 
that without further information (e.g., modes of the query), X may be generated by the third 
argument of q/3 and output through the first argument (c), or vice versa (a). To the program
mer, whose intent may have been the standard use of quicksort (a), this result may seem odd. 
However, choice (c) is valid - consider the query: 

?- q ( (I], (3, 2, 1], (2, 1] ) . 
I = 3 

Although this is an artificially-created query, which is unlikely to appear in any program, this 
query is valid, and should execute successfully! 

This example shows that to safely execute this module sequentially, more information is 
needed about the mode of the first argument. One way of finding this mode is by looking at the 
place(s) where the module is called. For example, given the definition and the modes of gen/2 
in Figure 11, with gi(p) = m(<gen 1 i>p), look at the following call to the module: 

••• 1 gen (Max, List) I q (List I SortedList I D ) , ... 

Because only one occurrence of a variable in the body (or query) can have mode out and 
Figure llshows that g2 (<. ,1>) = out, we can conclude that q1 (<. ,1>) = in, which leaves 
us with only the normal use of quicksort (a). 

As said before, one way of finding the extra information, needed to show that a module 
can safely be executed sequentially, is by using the context information, i.e., looking where the 
module is called. A second method is having the user explicitly specify modes to disambiguate 
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gen(O,I) ·- G =1 D. 
gen(I,I) ·- I1:=I-1, I =2 [Ills], gen(I1,Ia). 

1. g1(f) = in §1a 

2. g2(f) = out §1a, §2, §3b 

3. g2(<. ,1>) = out "1", §4b-i, §2 

4. Vp g2(p) = g2(<.,2>p) §3a, §3b, §2 

Figure 11: Mode Analysis for gen/2. 

such cases. For example, to indicate that an argument will be input throughout, i.e., for all 
subterms, the user can specify a strong input argument, perhaps with the mnemonic '??'. Note 
that this is not the same as fully ground! 

One ·can even envision having the compiler query the programmer to provide this disam
biguating information. The advantage of compiler queries is that only a small percentage of 
modes will likely need to be disambiguated. Thus the programmer would be saved from having 
to map out all the modes a priori, and need only specify ones that the analysis proves are am
biguous. We might add that this tends to be a good programming practice anyway! Good logic 
programmers specify the top-level argument modes of each procedure (possibly as a comment), 
but as shown, this is not sufficient documentation in all cases. For the example discussed above, 
the determination of safe sequential execution hinges on whether or not the head of the first 
argument is bound, so help is needed for this one mode only. 

5 Goal Ordering 

In this section we discuss how the mode information is used to reorder body goals within a 
clause to ensure safe sequential execution. For this, we have to introduce a directionality role: 

§5. For a variable occurring more than once in the body, the first "executed" occur
rence10 must be in an output position, thus later occurrences can only be in input 
positions. 

This rule ensures that internal suspension is impossible in a sequential module. The basic idea 
is to find an ordering that does not contradict this rule, using the axioms derived by the mode 
analysis. 

Now, by extending Theorem 2 to cover modules, and defining "correct ordering" to be that 
ordering of body goals which adheres to rule §5, the following theorem follows: 

Theorem 3 If, at compile-time, a consistent ordering for a sequential module can 
be found, then only external suspension can occur with respect to that module. 

In the rest of the program, other forms of suspension can occur, but the important point is that 
there can never be internal suspension in that module. H a consistent order can be found, the 
module can be compiled efficiently, as will be discussed in Section 6. Otherwise, compilation 

10 Assuming a left-to-right execution order, this is also the textually first occurring body goal. 
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of the sequential module defaults to standard committed-choice compilation techniques (e.g., 
(4, 10, 16, 17]). 

We now present an algorithm for finding a consistent ordering. The first point to consider 
is that not all the mode axioms that fully describe a procedure are needed here, nor do we 
need the axioms in their full generality. Certain axioms, which we call recursit1e azioms, have 
a general form similar to axiom 5 of q/3: Vp q3(p) • q3(<. ,2>p). The meaning is that the 
mode of any third argument path is the same as the mode of the tail of that path. Intuitively, 
the procedure is recursing on the third argument, which is a list. 

For the purposes of goal ordering, only the modes of variables appearing (syntactically) in 
the procedure definition are needed. Therefore all general paths p in the derived axioms can 
be instantiated to £. For example, in the previous axiom, q3(£) • q3(<. ,2>). Combining 
this with axiom 2 in Figure 9 allows us to derive that q3 ( < • , 2>) • in. We call this process 
of instantiating general mode axioms into less general axioms, recursit1e grounding. As another 
example, combining axiom 4 in Figure 9 with axiom 1 in Figure 10 gives q1 ( < . , 2>) • in. 

Mter recursive grounding, we are left with two possible sets of modes for procedure q/3: 

q([lllJ,RO,I) :- B(L,I,L1,L2), q(L1,RO,[ll11]), q(L2,11,1). 
q([?l?], ·,?) :- •(?,?, •• •), q( ?, ·,[?1 ?]), q( ?, ·,?). 
q([•l?], ·,?) :-a(?,?,·, •), q( ?, ·,[·1 ?]), q( ?, ·,?). 

The next step is to attempt to order the body goals in the second clause11 so that the constraints 
implied by both sets of axioms (with respect to rule §5) are satisfied. 

For each set of modes, the ordering algorithm iterates through each variable occurring more 
than once in the body: X, L1, L2, and R1. For each, constraint(s) are created relating the 
goals containing that variable. For example, for the first set of modes, X induces no constraints 
(since both the first and second goals use X for input). Examination of L1, however, induces the 
constraint: G1 < G2. Each new constraint is checked for consistency with previously generated 
constraints. A contradiction is fatal: the clause cannot be ordered for sequential execution. 

Continuing with the previous example, L2 induces G1 < G3 and R1 induces G3 < G2. So 
far, all these constraints are consistent. However, analyzing the second set of modes, we find 
that X induces G2 < Gl. This alone causes the analysis to fail (and subsequent examination of 
L1 causes additional contradictions within the second set of modes itself). 

If we can derive that the mode of the head of the first argument is 'in' (for example using 
the context information, as shown in Section 4.2), then there is only one set of modes, and the 
ordering algorithm terminates successfully with the following order: 

q([IILJ,IO,I) :- a(L,I,L1,L2), q(L2,R1,R), q(L1,RO,[liR1]). 
q([?l?], ·,?) :-a(?,?, ·, •), q( ?, ·,?), q( ?, ·,[?1 ?]). 

6 Implementation Issues 

In this section we will show how the results of the mode analysis can be helpful to improve the 
implementation of committed-choice languages. In general, straightforward implementation of 
committed-choice languages has several inefficiencies, such as a large amount of processes, and 
the requirement for a high memory bandwidth. Furthermore most committed-choice languages 
are implemented using an abstract machine based on the original WAM [22]. Although this 
is without any doubt a very good starting point, it becomes obvious that there are several 
deficiencies in this model when it is modified and applied to committed-choice languages. Our 

11 The fint cl&uae has only one goal, so it does not require ordering. 
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ultimate goal is therefore to define a general abstract machine model which is more at a RISe

level, which, combined with the optimization techniques discussed in this section, will give a 
speedup compared to previous implementations. 

It can already be seen that one of the advantages of the mode analysis is the detection 
of sequential modules. These sequential modules can be implemented as if they were part of a 
standard procedural language, using all available and well-understood compile-time optimization 
techniques. Issues to look at are, for example, better register usage, lower memory usage, and 
thus the production of less memory garbage. 

Currently our aims for efficient compilation are the use of continuation-based goal man
agement, intra-module register allocation (as opposed to intra-procedural register allocation), 
conversion of unification to assignment (and, if possible destructive assignment), and local mem
ory reuse. 

6.1 Continuation-based Goal Management 

One of the advantages of the detecting of sequential modules is that these modules can be 
implemented more efficiently than general "parallel" modules. One of the areas of improvement is 
the management of goal records. The simplest and most efficient technique of goal management is 
continuation stacking [1]. This technique is used in the implementation of nearly all conventional 
languages, such as C and Pascal, as well in most WAM-based Prolog implementations [22]. In 
contrast, all committed-choice implementations we know of (such as JAM [4], Strand [7], FCP 
[9], and FGHC [10]) use separate goal records for each body goal. The advantages of using 
continuation stacking are that no separate full goal records are needed for each and every body 
goal, and that the goals can be managed as a stack instead of as a heap. 

The potential of suspension still exists, so a true stack cannot be built (it could be built on 
the heap, but since it might suspend, we cannot guarantee that when resumed the top of the 
stack will not be buried within the heap). Therefore we say continuation "stack," meaning a 
conceptual stack built of linked records. Such a stack implementation loses the advantage of 
quick allocationfdeallocation, but retains the advantage of minimizing the number of allocated 
frames. As we established in Section 2, there can be no deadlock due to suspension, as all 
suspensions of sequential modules are external. 

Compare this to committed-choice implementations to date, where "goal stacking" is used 
to the exclusion of all other allocation methods. This requires the creation of a new goal record 
for every body goal (except for the last one, if tail-recursion optimization is used) which must be 
enqueued separately. If the continuation frames are allocated from the heap and are managed 
as a conceptual stack, then suspension/resumption is straightforward. This scheme supports an 
unlimited number of suspended "stacks," i.e., sequential modules. These represent large granules 
of computation beyond which the programmer does not wish to exploit parallelism, because of, 
for example, a limited number of processors. 

6.2 Register Allocation 

Normally, almost no register allocation methods can be applied to WAM-based implementations 
of logic programming languages, because the arguments for a procedure of arity n are forced to 
be in registers 1 ton. Therefore traditional and more advanced register allocation methods (for 
example, coloring [2] and interprocedural register allocation [14]) are not applicable here. 

The advantage of sequential modules is now that it enlarges the scope within which a register 
allocator can work from nothing to the entire module. The only restriction on the use of registers 
is that arguments of the module entry-point goal are still in the first n registers. In this way, it is 
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still possible to retain incremental compilation (although this form of compilation will probably 
have to be abandoned anyway, in favor of some form of flow analysis). One can even envision 
an extension of Wall's algorithm [21], where the register allocation is performed at link time, 
to make it possible to compile logic programs as separate modules (not necessarily sequential), 
and perform the register allocation when the different parts of a program are loaded. 

Because it is guaranteed that invocation of a sequential module only occurs at the module 
entry-point, and that no calls are made to predicates which are outside the module, a register 
allocation algorithm does not need to make any assumptions about the placement of arguments 
in registers other than about the arguments which are received through the module entry-point. 

AB a simple example of the use of register allocation (even at the WAM level) consider the 
following module, which is always called through sumlist/2 with the first argument bound to 
a list and the second argument unbound, as shown by the mode analysis: m(<sumlist,1>) • 
in and m(<sumlist,2>) • out. 

aumliat(I,Sum) :-true I sum(I,O,Sum). 

sum( D ,Old,Sum) :- true I Sum = Old. 
sum([llls],Old,Sum) :-true I lev is Old+ I, sua(ls,Jev,Sum). 

Using the !COT PDSS/KLl compiler system, we get the following KL1 code [10]. 

predicate sumlist,2 
L1: try_ae_else 

put_value 
put_integer 
ezecute 

L2: suspend 

predicate sum,3 
S1: try_me_else 

vait_nil 
get_value 
proceed 

L2 
3,2 
2,0 
sum,3 
sumlist,2 

S2 
1 
3,2 

S2: try_ae_else S3 

S3: 

vait_list 1 
read_variable 4 
read..variable 1 
add 
put_ value 
ezecute 
suspend 

2,4,2 
1,5 
sum,3 
sum,3 

Now using the information from the mode analysis that this module is self-contained (i.e., no calls 
to predicates outside the modules and all calls to the modules enter at the top-level sumlist/2), 
an optimizing compiler can make the following (simple) optimization: 
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predicate sumlist,2 
L1: try_ae_elae 

put_integer 
ezecute 

L2: suspend 

predicate sum,3 
S1: try_ae_else 

vait_nil 
get_Yalue 
proceed 

S2: try_ae_else 

L2 
3,0 
sum,3 
sumlist,2 

S2 
1 
3,2 

S3 
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vait_list 1 
read_ variable 4 
read_ variable 1 
add 3,4,3 
execute sum,3 

S3: suspend sum,3 

The optimized version uses the knowledge that this module is self-contained by rearranging 
the arguments of sum/3 such that they don't occupy registers 1 through 3 any more. In the 
optimized version, the number of instructions executed for an input list of size n decreases from 
8n + 8 to 7n + 7 instructions. Although not much, a. simple optimization a.J.ready reduces the 
number of instructions executed by 12%. For larger modules, the gain will be even higher. 

Thus intra-module allocation, a. limited form of global allocation, can conceivably reap great 
reduction in memory traffic and signification improvement in performance. 

6.3 Memory reuse 

A third area. for application of the mode analysis and its ability to detect single-producer single
consumer streams is the area. of memory reuse. Reuse of memory is important as committed
choice languages consume memory a.t a. high rate, and produce much inaccessible cells, which 
can only be reclaimed by a. garbage collector. An example of this is, for example, the handling of 
large data. structures, where for every update, a. new, slightly modified copy has to be made and 
the old structure is discarded. Therefore it is important to avoid copying structures as much as 
possible and for an efficient language implementation, it is essential to find techniques to update 
data. structures destructively, i.e., in place, which techniques are as efficient as in procedural 
languages (or, e.g., as rplaca in Lisp). 

The important thing in destructively updating a. data. structure is knowing when it is safe 
to do so, i.e. to know when the old version is not required any more. This can be difficult in a. 
parallel environment, but in our sequential modules, it is much easier. 

Another, simpler approach for memory reuse is the (partial) reuse of simple data. structures, 
already allocated on the heap, such as a. list cell, or a list cell and its head. This approach, as 
described by Foster [6], uses a specialized 'Reuse'-register and adds some new instructions to 
a. basic WAM-like abstract machine for Strand. However, it assumes the capability of detecting 
single-consumer streams and is only applicable for reusing data structures within individual 
process definitions. By using our mode analysis technique and sequential modules, it is possible 
to extend Foster's technique to cover an entire module. 

7 Conclusions 

This paper presents a. compile-time technique for determining if a set of procedures within a. 
parallel program can be executed sequentially without causing deadlock. More specifically, the 
analysis and methods are described in the context of committed-choice parallel logic program
ming languages, such as FCP, FGHC, a.nd Parlog. These concurrent languages have inherent 
fine-grain parallelism, so that the task at hand is to throttle high-overhead parallelism, rather 
than uncovering more parallelism. We present a framework of sequential program modules and 
basic blocks that can be derived and guaranteed to be deadlock-free at compile time. This 
paper outlines a source-to-source code optimization that ensures that sequential execution can 
proceed smoothly. Thus "traditional" procedural language optimizations that have previously 
been discarded by those implementing committed-choice languages (e.g., [4, 10, 16, 17]) can 
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now be considered, such as continuation-based goal management and interprocedural register 
allocation. 

Future research in this area includes two major targets. First, algorithms must be designed 
for the selection of sequential modules and basic blocks. Selection walks a fine line between 
making modules too large, thereby throttling too niuch parallelism, and making modules too 
small, thereby not increasing granularity enough to be effective. The second target of future 
research is to gain experience with the techniques by automating the mode-analysis algorithm, 
and characterizing some benchmark programs. Automation of Ueda's method is an open re
search area, as is the characterization of what percentage of code within real programs can be 
successfully sequentialized. 

Our ultimate goal is the development of higher-performance parallel logic programming 
systems, in particular committed-choice languages [16], and languages such as Pandora and 
Andorra, using an efficient, state-of-the-art compiler system combined with a R.ISC-like abstract 
machine, where the addition and deletion of instructions is solely based on their merit for the 
overall performance. Other parts of our work have, e.g., led to the development of an algorithm 
for the determinacy analysis of Flat Pandora. programs [11], and several parts are currently being 
implemented. 
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