

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

LOGIC PROGRAMMING: CONTEXT, CHARACTER

AND DEVELOPMENT

Thomas H. Conlon B.Sc. (Hons)

A thesis submitted to the University of Glasgow
for the degree of Master of Science

Department of Computing Science
University of Glasgow

January 1986

ProQuest Number: 10991713

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10991713

Published by ProQuest LLO (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

Acknowledgements

The ideas presented in this thesis are due to the logic
programming community worldwide. Their vigour, creativity
and imagination has made this modest synthesis possible, and
the debt is acknowledged in full.
Special thanks are due to those members of the logic
programming community with whom I have had the pleasure of
personal contact. Included here are Jonathon Briggs, Steve
Gregory, and Keith Clark. I am grateful to my supervisor. Dr
Rob Sutherland, for his support and for his encouragment of
my enthusiasm. Finally, acknowledgment is due to the Boards
of Governors of Jordanhill and Moray House Colleges of
Education, in whose employment I have been and on whom I
have depended for their goodwill towards my logic
programming activities.

ABSTRACT
Logic programming has been attracting increasing interest in
recent years. Its first realisation in the form of PROLOG
demonstrated concretely that Kowalski’s view of computation
as controlled deduction could be implemented with tolerable
efficiency, even on existing computer architectures. Since
that time logic programming research has intensified. The
majority of computing professionals have remained unaware of
the developments, however, and for some the announcement
that PROLOG had been selected as the core language for the
Japanese ’Fifth Generation’ project came as a total
surprise.
This thesis aims to describe the context, character and
development of logic programming. It explains why a radical
departure from existing software practices needs to be
seriously discussed; it identifies the characteristic
features of logic programming, and the practical realisation
of these features in current logic programming systems; and
it outlines the programming methodology which is proposed
for logic programming. The problems and limitations of
existing logic programming systems are described and some
proposals for development are discussed.
The thesis is in three parts. Part One traces the
development of programming since the early days of
computing. It shows how the problems of software complexity
which were addressed by the ’structured programming’ school
have not been overcome: the software crisis remains severe
and seems to require fundamental changes in software
practice for its solution. Part Two describes the
foundations of logic programming in the procedural
interpretation of Horn clauses. Fundamental to logic
programming is shown to be the separation of the logic of an
algorithm from its control. At present, however, both the
logic and the control aspects of logic programming present
problems; the first in terms of the extent of the language
which is used, and the second in terms of the control
strategy which should be applied in order to produce
solutions. These problems are described and various
proposals, including some which have been incorporated into
implemented systems, are described. Part Three discusses the
software development methodology which is proposed for logic
programming. Some of the experience of practical
applications is related. Logic programming is considered in
the aspects of its potential for parallel execution and in
its relationship to functional programming, and some
possible criticisms of the problem-solving potential of
logic are described. The conclusion is that although logic
programming inevitably has some problems which are yet to be
solved, it seems to offer answers to several issues which
are at the heart of the software crisis. The potential
contribution of logic programming towards the development of
software should be substantial.

CONTENTS

1 The Context of Logic Programming....................... 1
1.1 Programming and the von Neumann machine................1
1.2 The development of translators........................ 3
1.3 Software Crisis and response...........................5
1.4 The 'structured programming' school...................7
1.5 Unsolved problems of software construction.......... 9

1.5.1 The referential opacity of programs.............. 10
1.5.2 Predominance of informal development methods.... 11
1.5.3 Dissatisfaction with programming languages...... 14
1.5.4 Lack of scope for exploiting parallelism........16

1.6 Conclusion: forty years of programming.............. 18

2 Logic Programming: Foundations, Issues and Systems.... 19
2.1 Foundations and Issues................................ 19

2.1.1 An Overview.. 19
2.1.2 First-Order Logic.................................. 21
2.1.3 Full Clause Form and Horn Clause Form............. 22
2.1.4 Resolution... 23

2.1.4.1 The full clausal form of resolution......... 24
2.1.4.2 Resolution applied to Horn clauses.......... 25
2.1.4.3 Properties of Resolution..................... 27

2.1.5 Proof Procedures as Logic Interpreters.......... 27
2.1.6 Top-down Resolution Procedures................... 30

2.1.6.1 Top-down Search Trees.........................32
2.1.6. 2 The Computation Strategy..................... 38
2.1.6.3 The Search Strategy...........................42

2.1.7 Extensions beyond Horn Clause Form................47
2.1.7.1 Negation....................................... 48
2.1.7.2 Lists of Solutions............................ 51
2.1.7.3 Other logic extensions........................52

2.1. 7.3.1 Disjunctions...............................53
2.1.7.3.2 Conditional Alternatives................. 53
2.1. 7.3.3 Implication Conditions................... 54
2.1.7.3.4 Metalanguage...............................55

2.1.7.4 Subsidiary Features........................... 58
2.1.7.4.1 Arithmetic Primitives......................58
2.1.7.4.2 Input/Output provision.....................63

2.2 Logic Programming Systems............................. 67
2.2.1 Implementation aspects............................ 67
2.2.2 Features of Existing Systems...................... 69

2. 2. 2.1 Micro-PROLOG.................................. 70
2. 2. 2. 2 IC-PROLOG...................................... 73
2.2.2.3 DECIO-PROLOG.................................. 76
2.2.2.4 LOGLISP.. 78

3 Logic Programming for Software Development............82
3.1 Logic as a uniform software formalism............... 82

3.1.1 The development process with logic..............83
3.1.2 Logic specifications............................. 84
3.1.3 Top-down logic programming.......................86
3.1.4 Abstraction and modularity with logic.......... 88

3.1.4.1 Abstraction....................................88
3.1.4.2 Modularity.....................................90
3.1.4.3 Typing and mode information.................. 92

3.1.5 Realising efficiency............................. 97
3.1.6 The Control Problem............................... 99

3 .1. 6.1 Autonomous control............................ 99
3.1.6.2 Programmer-specified control................. 101

3.1.7 Program verification............................. 104
3.2 Aspects of logic as a computer language..............107

3.2.1 The record of applications........................107
3. 2.1.1 The Hungarian experience..................... 108
3.2.1.2 Chess end-game advice.........................110
3. 2.1.3 Representation of law.........................Ill

3.2.2 Progress in implementing parallelism............114
3.2.3 Relationship to functional programming......... 118

3. 2.3.1 Major differences............................. 118
3.2.3. 2 Future directions............................. 123

3.2.4 Human perceptions of logic programming......... 123
3.2.4.1 Experiences of PROLOG learners............... 124
3.2.4.2 Criticisms of logic for problem-solving 126

3.3 Conclusions..131

References... 133

THE CONTEXT OF LOGIC PROGRAMMING

Logic programming is a comparatively recent arrival on the
computing scene. As a latecomer, it must compete with
programming styles which are better established and which
have at the very least, the advantages of familiarity. It
follows that the success of logic programming will be
influenced by the extent to which it offers solutions to
problems which have proved to be difficult or insoluble
within existing approaches. Software engineers are not going
to abandon their existing methods and tools without good

reason: they will consider doing so only if they are
convinced that these methods and tools are inadequate and
that alternatives exist which not only remedy the
inadequacies but which are also demonstrably superior by any
fair set of criteria.
This section, then, explores the context of logic
programming. It begins by recalling the original von
Neumann concept of programming. Machine-language
programming is shown to have been quickly displaced by the
development of language translators, and early unstructured
methods are shown to have led to the discovery of a
'software crisis'. The main response of the computing
community in the nineteen-sixties and seventies was the
development of the 'structured programming' movement with an
associated family of programming languages and development
methodologies. However, the so-called 'high-level' languages
have been largely faithful to the machine-oriented view of
programming. Although the structured programming software
development methodology did make an important contribution
to the advancement of software science, particularly through
its emphasis on the application of abstraction and
modularity, it remains true that the efficient development
of correct, reliable, maintainable software is beset with
problems. At least some of these problems, such as that of
constructing programs which can exploit parallel computer
architectures, appear to require a solution which departs
radically from the von Neumann approach to programming.

1.1 Programming and the von Neumann machine

The originator of modern electronic computing is generally
recognised to be John von Neumann, the mathematician whose
design is still today the basis of computer architecture.
It is appropriate therefore to begin with a brief
examination of the von Neumann design.
The Princeton papers [2, 3] in which von Neumann set out his
ideas specify a computer having two principal parts, which

PAGE 1

we shall identify as the Central Processing Unit (CPU) and
the store. Conceptually, the CPU is the 'mill' which
operates on the raw material of data located in the store;
the store is also the destination-place of the processed
data. The store is partitioned into a number of different
locations, each location being capable of holding one word
of data - a word being some fixed number of binary bits,
depending on the machine - and each being associated with a
unique numeric address. The CPU and the store can be
thought of as connected by a tube, through which the CPU can
read the word in any location and write a word in any
location. The CPU can perform basic operations on words of
data, such as the addition of two words, as well as
performing operations such as testing whether a word is
zero. In a later description of the design [4], von Neumann
described the role of programming : -

'... any computing machine that is
to solve a complex mathematical problem
must be "programmed" for this task. This
means that the complex operation of
solving that problem must be replaced by
a combination of the basic operations of
the machine.'

Programs are described as 'order-systems', which are to be
located in the store along with the data:-

'Of course, the order-system -
this means the problem to be solved, the
intention of the user - is communicated
to the machine by "loading" it into the
memory. This is usually done from a
previously prepared tape or some other
medium.'

An 'order' is described as
'... physically, the same thing as

a number ... an order must indicate
which basic operation is to be
performed, from which memory registers
the inputs of that operation are to
come, and to which memory register its
output is to go.'

The orders may include those which transfer control to other
orders in the program -

'"Branching" is most conveniently
handled by a "conditional transfer"
order, which is one that specifies that
the successors address is X or Y,

PAGE 2

depending on whether a certain numerical
condition has arisen or not - e.g.
whether a number at a given address Z is
negative or not'.

As to the question of precisely which basic operations the
CPU should be able to perform, von Neumann suggested that
this should be influenced by the type of program which was
to be executed -

'For a given class of problems
one set of basic operations may be more
efficient, i.e. allow the use of
simpler, less extensive, combinations,
than another such set.'

1.2 The development of translators

Although it was written in the earliest years of computing,
the above quotations from von Neumann are still quite
recognisable as a description of programming as it is
usually practised today. Indeed, a personal computer
enthusiast working in the machine code of his machine's
microprocessor might well be struck by the apparent absence
of any advances in the years which have elapsed since. In
fact, however, the writing of 'order-systems' strictly in
terms of the 'basic operations' of the machine - that is,
machine language programming - was rapidly overtaken by the
development of translators. The first of these were
assemblers which offered convenient mnemonics for the
machine language instructions: each mnemonic statement of
the assembly language program was compiled by the assembler
into a single machine language instruction. Soon more
powerful translators were developed, partly to help with
special types of programming, and partly to enhance the
convenience of the assemblers. The earliest so-called high
level languages evolved naturally through this process of
gradually extending translational power. An example of
these languages was FORTRAN, which enabled the programmer to
refer to variable names instead of register addresses, and

which could compile a mathematical expression such as
0.5 * B * C * SIN(A)

into corresponding machine language instructions. So
advantageous were these translators over raw machine
language programming that they were initially named
'Automatic Programming Systems', and the 'Communications'
of May 1959 reported that almost 100 systems of this type

PAGE 3

(for IBM, UNIVAC, FERRANTI and other computers) were held
in the ACM library. With the exception of FORTRAN, these
translators - with names such as SPEEDCODING, SYMBOLIC
ASSEMBLY, FAST, MYSTIC, BASIC AUTOCODER, ARITHMATIC, DUMBO
and SUMMER SESSION - have long since been forgotten.
In general, the early translators were each designed to

operate with only one make and type of computer. As
computing became more widespread and the types of computer
became more diverse, this brought severe problems. A 1958
report from the Ad-Hoc Committee on Universal Languages [5]
opened with an expression of concern about

' ... the considerable length
of time required to develop an effective
method of communication with the
machine. Morever, it seems that the
ability to communicate easily is no
sooner acquired than the language
changes, and the problem is renewed,
usually at a higher level of
complexity.'

The Ad-Hoc committee identified the rapid obsolescence of
machines, the growing complexity of machine languages, and
the fact that compilers for acceptable languages only
became available for individual machines as the machines
were on the point of being replaced, as being the main
causes of problems. In remedy, the committee proposed a
Universal Computer Oriented Language (UNCOL): a generator
should be written for each existing translator to produce
UNCOL code, and a translator should be written for each
computer to translate UNCOL code into the corresponding
machine language. In the event, the UNCOL system never
materialised. Instead, the pressures for standardisation
led to the development of the high-level languages ALGOL 60
[6] and COBOL [7], which together with FORTRAN were to
dominate the programming of the nineteen-sixties.

PAGE 4

1.3 Software Crisis and response

The trend towards standardisation did not, however, prevent
the emergence of major problems which the software pioneers
were soon to encounter. For although von Neumann had
provided a blueprint for a general purpose computer, there
was no blueprint explaining how to construct the programs
which would enable it to solve real problems. At first,
when the problems tackled were straightforward - routine
mathematical caculations, for example - the ad-hoc
programming methods seemed to work, and no doubt there was
even some thrill in the business of 'fixing' the machines
to do whatever was required. But when ad-hoc approaches are
simply scaled up in an attempt to tackle ever more complex
problems, the result is disaster sooner or later. This is
exactly what the new computing industry discovered in the
nineteen-sixties. The phrase (it was first recorded at the
Conference on Software Engineering held at Garmish in 1968)
which was coined to describe the state of affairs was
'software crisis'. As Wulf [8] described it in 1977:-

'By now it is almost a cliche to say
that there is a "software crisis".
Nearly everone recognises that software
costs more than hardware, and that the
imbalance is projected to increase.
Nearly everyone recognises that software
is seldom produced on schedule. And
worse, that the typical software
product, costing more and delivered
later than originally planned, seldom
meets its performance goals; it's
bigger, slower, and vastly more error
prone than was originally anticipated.
The aggregated cost of a failure to meet
performance goals, measured in
additional resources, time, and
reconstruction of data lost due to an
error, may vastly outweigh the
original development cost.'

Indeed, for a time the very notion that large programs could
be developed without trauma virtually lost credibility. As
E.E. David [9] wrote in 1971:-

'Production of software for large
systems has become a scare item for
management.'

PAGE 5

The case of operating systems provided one manifestation of
the crisis. As the hardware advanced, the manufacturers
struggled to provide operating systems which would make the
increased power usable. The growing complexity quickly
exposed the inadequacy of the software techniques which
were available. McKeag [10] contrasts the operating system
for Cambridge University's TITAN computer of the
nineteen-fifties, which comprised 40,000 machine
instructions, with the GEORGE 3 operating system for the
nineteen-seventies ICL 1900 series, which with 400,000
machine instructions was ten times as large. The written
documentation for this software became correspondingly
overwhelming. The User Specification Manual for GEORGE by
its twenty-third amendment was (when measured in the
Imperial units of the time) two-and-a-half inches thick,
and its Implementation Manual included an inch-and-a-quarter
of what McKeag describes as 'incomprehensible flowcharts'.

Brooks [11] reports that during the construction of the
operating system 08/360, IBM workers maintained a
documenting workbook: when it grew to five feet thick it
was increasing at the rate of two inches per day, and only
a switch to microfiche prevented further uncontrollable
explosion. As for the quality of the software when it
finally emerged, Hoare [12] - who had himself led in the
mid-sixties a disastrous system software project for Elliot
computers which collapsed with the loss of thirty man-years
of programming effort - commented in April 1976 that:-

'Among manufacturer's software one can
find what must be the worst engineered
products of the computer age. No wonder
it was given away free - and a very
expensive gift it was, to the
recipient!'

In effect, the ad-hoc languages and programming methods
which had sufficed for the small problems in the early days
were exposed as grossly inadequate to meet the new demands.
In the face of growing complexity, something much better
would be required.

PAGE 6

1.4 The 'structured programming' school

Of the many voices which were raised in the sixties and
seventies in the debate over what to do about the 'software
crisis', the most influential were those who can now be
identified as comprising the 'structured programming'
school. Prominent among them were the names of Dijkstra,
Dahl and Hoare [13], Mills [14], and Wirth [15]. The
structured programming school viewed the construction of
sizeable computer programs as an engineering activity and
they looked to engineering traditions as a source of
guidance. The control of complexity was recognised as the
main problem of software construction: only through the
development and application of the right tools and methods
could the problem be solved.
In the event, the methods and tools which were developed by
the structured programming advocates are those which still
today dominate the practice of software engineering. A
brief account of them is worthwile here. Software products
were identified as having a 'life cycle' which, in a
typical delineation comprises the five stages -

1. Specification
2. Design
3. Implementation
4. Testing
5. Operation and maintenance

The major goals relating to software construction were
identified: software products should be validateable,
verifiable, be reliable, secure, efficient, flexible,
maintainable and economic. It was recognised that some of
these considerations would at times be in mutual opposition,
so that trade-offs would be required. The high costs of

the fifth stage of the software life cycle were recognised
(Sommerville [16] suggests that these costs typically exceed
the other costs combined by a factor of four), and the
implication was drawn that, as far as possible, decisions in
the earlier stages of development should be based on the
need to minimise these high later costs.
Although the structured programming school collectively
commented on factors relating to all stages of the software
life cycle, their main contribution has been to the
development of methods and tools concerned with program
design and development. On these subjects a vast library of
literature has accrued, and it is apparent from this that
'structured programming' does not neccessarily mean quite
the same thing to all of its many exponents. Early writings
focussed on particular programming practices which are seen
to epitomise the worst of the ad-hoc techniques: an example

PAGE 7

of this is the use of the GOTO statement, condemned most
notably by Dijkstra [17], with other writers quoting the
so-called Structure Theorem of Jacopini [18] which proved
that any flowchartable program could be equivalently
re-written in GOTO-less fashion by using only the
constructs of sequencing, decision-making (IF-THEN-ELSE)
and repetition (WHILE-DO-).
Notwithstanding the diversity, two clear principles run
through the structured programming literature. These are
the principles of abstraction (mainly applied to program
design) and of modularity (mainly applied to program
implementation). Abstraction is concerned with the
selection of essential aspects of a problem and the
deliberate subordination of inessential aspects: it has
long been recognised as a crucial problem-solving principle,
particularly in mathematics. Modularity is a
long-established concept of engineering, where it is
recognised that it is advantageous in constructing a large
system to partition the system into a collection of
sub-systems or 'modules' which, though interdependent, can
nevertheless be constructed independently. By applying the
principle of abstraction to program design, the structured
programming school arrived at the programming methodology of
stepwise refinement. Wirth summarised this process as

follows : -

'In each step a given task is broken up
into a number of subtasks. Each
refinement in the description of a task
may be accompanied by a refinement of
the description of the data which
constitute the means of communication
between the subtasks. Refinement of the
description of program and data should
proceed in parallel.' [15]

The stepwise refinement method would partition the program
into a collection of sub-programs. The pursuit of
modularity led to the introduction of programming principles
which would reduce the coupling between sub-programs;
important examples were the principles of information
hiding, which means that sub-programs have access only to
that information which they actually need, and of
localisation, which requires that programs should textually
contain their own sub-programs.
In pursuit of tools to support their methods, the structured
programming school turned their attention to programming

languages. Wirth observed (in 1971) that
'It is remarkable that it would be

difficult to find a language that would
not meet these important requirements

PAGE 8

better than the one language still used
most widely in teaching programming:
Fortran.'

Building on the positive features of Algol 60, Wirth
developed Pascal [19]. Other languages, such as Algol 68
[20] and PL/1 [21], were also influenced to various extents
by the requirement to support structured programming.
Although these languages have significant differences (as
indicated, for instance, by the fact that Wirth's Pascal
emerged out of dissension from the Algol 68 development, and
by the fact that PL/1 aroused much criticism from Dijkstra
[31] and others), they have features in common such as
function and procedure sub-program facilities, extensive
data typing provision, parameter-passing mechanisms and
scope rules, and appropriate repetition and decision
constructs; all of which assist in the implementation of
modular programs which have been developed by stepwise
refinement using the principle of abstraction.

1.5 Unsolved problems of software construction

The contribution to software engineering of the structured
programming school has been positive and extensive.
Testimony to this fact is abundant today within the
journals and records of the practising software engineering
profession, in which the concepts of structured programming
are predominant. Even inside the commercial data-processing
sector, where inertial forces are traditionally strong, the
methods of structured programming - albeit clothed in a
suitably palatable form (see for example, Jackson [21])
are widely accepted. Yet whilst it is mainly agreed that
the structured approaches are vastly better than the
earlier ad-hoc methods, dissatisfaction over software
construction methods and tools is still widespread. This is
well expressed by Darlington, writing in August 1985:-

'Most professional (and amateur)
programmers would like to claim that
what they do is scientific, but compared
with the standards attained in other,
more mature engineering disciplines such
as aeronautical or civil engineering,
programming has a long way to go. If one
were asked to build a bridge, I doubt
that it would be acceptable to construct
an initial version, try it out, and,
when it falls down, correct the mistakes
made in the design, and then repeat the
process until the bridge stays up. This

PAGE 9

is, however, the paradigm that most
practising programmers follow as they
debug their programs towards a working
state.' [197]

Software is still often unverified, insecure, inflexible,
inefficient, difficult to maintain and costly to produce. In
these respects, the 'software crisis' has not been resolved
by the contributions of the structured programming school.
The following sections describe some of the problems more
fully.

1.5.1 The referential opacity of programs

As has been described. Von Neumann characterised a computer
program as an 'order sequence' which solves problems by
successively re-calculating and re-assigning values to the
locations of the store. Whilst this concept has provided an
operational basis for the first few generations of digital
computers, it has been less satisfactory in providing human
beings with a model with which they can reason about
programs. This is well expressed in the observation of
Glaser, Hankin and Till [23] that : -

'... the notion of a global state that
may change arbitrarily at each step of
the computation has proved to be both
intuitively and mathematically
intractable.'

Backus has suggested that the statements of imperative
programs, and in particular the assignment statements,
create an 'unorderly world' which is 'conceptually
unhelpful' [1]. He gives as an example the fragment of
Algol: -

c: = 0
FOR i:= 1 STEP 1 UNTIL n DO

c:= c + a[i] * b[i]
Backus writes that:-

'Its statements operate on an "invisible
state" according to complex rules ... it
is dynamic and repetitive. One must
mentally execute it in order to
understand it.'

PAGE 10

He concludes
'Von Neumann languages do not have
useful properties for reasoning about
programs.'

The term 'referential opacity' is now widely used to
describe the property of programs whereby the same
expression may have different evaluations at different
points in the program's execution history. In general,
programs written in conventional languages which allow the
free use of the assignment statement are referentially
opaque. Darlington [197] gives an example of a Pascal
program in which the consecutive statements:-

writeln(g(2) + f(l));
writeln(f(l) + g(2));

respectively produce the output 10 and 8. He points out:
'Thus, commutativity, one of the
simplest manipulation laws ... does not
apply to Pascal programs.'

The assignment statement of course corresponds to the update
operation on the store of the von Neumann computer. As such
it is fundamental to the traditional, imperative view of
programming. The identification of assignment therefore as a
major source of program opaqueness presents a profound
challenge, but if the problem of finding ways to reason
effectively about programs is to be solved then it is a
challenge which appears to be unavoidable.

1.5.2 Predominance of informal development methods
In his recent review of current software engineering
practices, Sommerville [16] records the following tools as
being among those commonly applied at the development stages
of the software life cycle.

1. Specification stage: free English
prose, structured English, high-level
formal requirements languages, prototype
development tools.
2. Design stage: Data flow diagrams,
structure charts, HIPO charts,
high-level design description languages,
structured walkthroughs.

PAGE 11

3. Implementation stage: Programming
languages, tools of the programming
environment.
4. Testing and debugging stage: Code
inspections, top-down and bottom-up
testing, test data generators, execution
flow summarisers, file comparators,
symbolic dump programs, program trace
packages, static program analysers.

In general, a sofware project will involve some combination
of these tools and methods, selected according to the
prevailing preferences of the developers. For example, at
the design stage Sommerville indicates a preference for a
progression which involves data flow diagrams, structure
charts and pseudo-formal design languages.
There is no doubt that all of the tools and methods have
been useful in practical experience, and that they represent
an attempt by programmers to advance beyond the wholly
ad-hoc efforts of the early years of computing. However, it
is clear that the lack of continuity of tools and methods
between and within the stages of software development
impedes efficient software construction. Each transition
represents a fracture point which is a source of difficulty
and potentially of error. As Wasserman [225] observes in a
recent report,

'The state of the art of software tools
leaves much to be desired ... there are
few settings in which the tools actually
work effectively together and in support
of a software development methodology.'

It can be noted that many of the methods and tools still
have a strong ad-hoc flavour: this is especially true in the
case of graphical tools such as structure charts and data
flow diagrams which have no real formal basis. Their use
makes it rather difficult to reason with certainty about the
correctness of the development of software. Sommerville for
example warns that the task of deriving the 'most
appropriate' structure chart from a data flow diagram
represents a 'major problem' for the software engineer.
One consequence of the liberal use of informal methods is
that the vast majority of software which is being developed
today is not formally verified, but is only 'tested' in a
manner which, as is well understood, is capable of showing
the presence of errors but is quite incapable of showing
their absence. As computers are used to tackle ever more
complex problems, in which they are entrusted with
responsibilities (such as control of air traffic, safety
monitoring of nuclear power plants, and acting as expert
systems in medical and other domains), so the requirement

PAGE 12

that software be correct and reliable becomes more vital.
Neither has the proliferation of informal methods and tools
been successful in lowering the cost of software; or not, at
any rate, by comparison with the changing cost of hardware.
As Turner has pointed out recently, over the past two
decades there has been a dramatic reduction in hardware
costs and over the next decade VLSI developments are
expected to reduce hardware costs 'practically to zero',
whereas

'There has been no corresponding
reduction in software costs. In real
terms (man-hours or whatever) it costs
about the same to produce a given piece
of software today as it did fifteen
years ago.' [226]

Many researchers have come to the view that the efficient
production of verifiable software will depend on the
development of formal methods and tools. Thus, Darlington
suggests (somewhat polemically) that:-

'Our goal should be the precision of
mathematics. Noone feels the need to
debug a mathematical theorem or relies
on laws that are probably correct apart
from a few residual bugs. Programs are
superficially similar to mathematical
notations, so why can't we share their
degree of certainty?' [197]

However, he goes on to suggest that a necessary condition
for this to happen is abandonment of conventional languages.
The referential opacity of programs written in these
languages which was referred to above renders them
intractable to formal methods:

'Referential opacity means that a
system's behavior may be time-dependent;
i.e. the meaning of a fragment may
depend on the history of what happened
prior to the evaluation of that
fragment. No simple, meaning-preserving,
deductive rules can be developed for
that system.'

PAGE 13

1.5.3 Dissatisfaction with programming languages

Since programming languages are implicated in the general
condemnation of software development which is expressed
above, it is hardly surprising that complaints are
frequently heard about them. Perhaps, indeed, the wonder is
that dissatisfaction is not more widespread. Today's
commonly used programming languages are criticised for many
reasons, but two criticisms which seem to arise particularly
often are that programming languages are not sufficiently
problem-oriented and that they are becoming too complex.
Another is that in spite of their differences, languages
such as FORTRAN, PL/1, Pascal and Ada have fundamental
similarities which might suggest that the problems will not
be solved merely by further refinements and extensions.
The criticism of programming languages as non
problem-oriented usually refers to the large gap which lies
between the specification of software and the implementation
stage at which the programming languages start to become
useful. A specification provides a description of a
requirement, usually in terms of the relationship which
should exist between the expected input and the output.
Implementation on the other hand cannot proceed until an
algorithm is identified which corresponds to the
relationship. Programming languages enable algorithms to be
expressed in an executable form, but in general they offer
no help in their discovery. In practice, the gulf between
the descriptive specification of what is to be computed and
the algorithmic specification of how it is to be done is
wide. A more problem-oriented programming language would
start to become helpful closer to the specification; the
programming language should enable the programmer to
formulate some kind of computer-intellible problem
specification at an earlier stage than is now possible with
conventional languages.
An evident trend in the development of programming languages
is their growing complexity. Hoare [29] notes that : -

'Programmers are always surrounded by
complexity; we cannot avoid it. Our
applications are complex because we are
ambitious to use our computers in ever
more sophisticated ways. Programming is
complex because of the large number of
conflicting objectives for each of our
programming projects. If our basic tool,
the language in which we design and code
our programs, is also complicated, the
language itself becomes part of the
problem rather than part of its
solution.'

PAGE 14

Language designers have tended to equate language power with
the provision of large numbers of language features. Hoare
argues that this is a fallacy and that the engineering maxim
that 'the price of reliability is the pursuit of the utmost
simplicity' holds good for language design. However, his
advice to this effect, when supplied to the working parties
responsible for the design of first Algol 68 [20], then PL/1
[21] and most recently Ada [30], was ignored on each
occasion : -

'Gadgets and glitter prevail over
fundamental concerns of safety and
economy.'

Dijkstra [31] points to the harm which language
over-complexity (as instanced by PL/1) does to the thinking
skills of programmers : -

'Using PL/1 must be like flying a plane
with 7,000 buttons, switches and handles
to manipulate in the cockpit. I
absolutely fail to see how we can keep
our growing programs firmly within our
intellectual grip when by its sheer
baroqueness the programming language
our basic tool, mind you I - already
escapes our intellectual control.'

Backus [1] comments that:
'For twenty years programming languages
have been steadily progressing towards
their present condition of obesity.'

and he observes that : -
'Since large increases in size bring
only small increases in power, smaller,
more elegant languages such as Pascal
continue to be popular. But there exists
a desperate need for a powerful
methodology to help us think about
programs and no conventional language
even begins to meet that need.'

Nor even would every beginning student of computing science
agree that Pascal is quite so 'small'. Indeed, writing seven
years after he developed the language, Wirth [32] himself
noted : -

'My primary conclusion is that Pascal is
a language which already approaches the
[limits of] complexity, beyond which
lies the land of diminishing returns.'

PAGE 15

The growing complexity of programming languages is both a
response to the software crisis and a contributory factor to
it. Large languages attempt to provide the maximum of
support for structured programming, but at the same time
their complex syntax and semantic rules extend the range of
possible errors and make correctness arguments more
difficult. Furthermore, they make unwieldy tools for
thought. At the same time, there is agreement that a simple,
elegant language is not the same thing as a simple-minded,
naive one, as in (for example) BASIC or FORTRAN.
The idea that conventional languages are fundamentally alike
is well expressed by Backus. He writes:-

Conventional languages are based on the
programming style of the von Neumann
computer. Thus variables = storage
cells; assignment statements = fetching,
storing and arithmetic; control
statements = jump and test
instructions.' [1]

The development of FORTRAN first introduced the abstractions
which are identified in this comment. Essentially the same
abstractions as those of FORTRAN have been applied to the
design of almost all languages since that time, and it can
be observed that the observation applies with total validity
to Ada, which of course is one of the most recent arrivals.
Although there is no doubt that Ada is a vastly more complex
and sophisticated product than FORTRAN, it can be expected
that it too will have inherited any basic weaknesses which
exist in the von Neumann design.

1.5.4 Lack of scope for exploiting parallelism

As has been noted earlier, the von Neumann computer design
is built around the assumption that only a single processor
will be available. As Backus [1] points out, this design
incorporates a 'bottleneck' which impedes computation

'The task of a program is to change the
contents of the store in some major way;
when one considers that this task must
be accomplished entirely by pumping
single words back and forth throught the
von Neumann bottleneck, the reason for
its name becomes clear.'

It now seems likely that advances in hardware design will
produce new, multi-processor computers which offer an escape

PAGE 16

from the von Neumann bottleneck. Recent consideration has
been given to architectures based on the data-flow model of
computation (see for example Treleaven, et al [33]) for
which an experimental machine is presently under
development at Manchester University [34].
The question arises as to how programs will be constructed
for parallel machines, assuming they can be built.
Programming systems which incorporate an allowance for
parallelism have been developed on the basis of conventional
languages (for example, Dijkstra's PARBEGIN/PAREND [35],
Hoare’s parallel execution commands and CSP [36], the
Concurrent Pascal of Brinch-Hansen [37] and the Path Pascal
of Campbell and Kolstad [38]) but these have typically been
systems based on sequential execution with augmented
facilities for programmer-specified parallelism. It now
appears however that this approach will fail to exploit the
extent of the parallelism which VLSI will make available.
This is the view emphatically expressed recently by Turner:-

'One approach that can be dismissed more
or less straight away in this context is
the idea that we should take some
conventional sequential language, such
as FORTRAN or PASCAL, and add some new
primitives for launching processes and
controlling communication between
processes (perhaps along the lines of
the tasking facilities of ADA). Such an
approach may work well where the number
of processes to be controlled is small,
but when we are talking about hundreds,
thousands or even tens of thousands of
processes being controlled in parallel,
this cannot possibly be under the
conscious control of the programmer.
Parallelism on this scale can only arise
naturally, from some basic
'asynchronousness' of the language being
used and must not depend on any
deliberate action on the part of the
programmer.' [226]

Fundamentally, most conventional languages are sequential in
nature and this again can be traced to the assignment
statement. The update operation on the store of the von
Neumann machine is time-dependent. This is the reason for
Turner's decription of conventional languages as 'completely
unsuitable' for representing parallel processes. It is not
certain whether a highly parallel computer will possess a
store (in the von Neumann sense of global memory) but there
is a strong consensus among researchers that if so, then
unfettered assignment to its locations will not be permitted
(see for example Chamberlin [39]).

PAGE 17

1.6 Conclusion: Forty Years of Programming

When von Neumann's designs were first published, the
'difficult' aspects of computing were universally believed
to be related to the hardware. After forty years of
programming, there is now an equally widespread recognition
of the difficulties which are presented by the requirements
of software development. The earliest ad-hoc programming
efforts in machine languages were quickly dropped in favour
of high-level languages and the structured programming
school did bring some discipline to the chaos that was
software construction. But overwhelmingly the 'high-level'
languages have closely reflected the underlying machine
architecture. Although structured programming made an
important contribution in applying the principles of
abstraction and modularity to the problems of software, it
has operated within a machine-oriented view of programming
which is fundamentally the same as von Neumann's. Thus,
Darlington writes recently that

'The invention of the first high-level
languages, such as FORTRAN, represented
a significant advance over the use of
machine code and improved programmer
productivity tenfold. It is a pity that
not many other quantum leaps have been
made on the software side. Modern
high-level languages do not differ
radically from FORTRAN. Structured
programming, the white hope of the
sixties and seventies, has demonstrably
failed to provide the final solution'.
[197]

This is the context in which logic programming is emerging
as an alternative. Software construction has become beset
with severe problems which keep programmer productivity low,
which threaten software reliability, and which may
altogether frustrate our ability to exploit advances in
hardware. As computers begin to be applied to tasks in which
the consequences of failure are increasingly serious, so the
need for a radically different and much superior approach to
software development becomes more urgent.

PAGE 18

2 LOGIC PROGRAMMING: FOUNDATIONS, ISSUES AND SYSTEMS

2.1 Foundations and Issues
This section presents the foundations of logic programming
in the Horn clause subset of first-order logic and the
controlled deduction from Horn clauses through the top-down
application of the resolution rule of inference. However,
the fact that logic programming is relatively new (and
developing vigorously) means that foundations fairly quickly
give way to issues: the two main issues identified here
being the strategy for controlling deduction and the
selection of language extensions. First, a short informal
overview of logic programming is provided which may help in
forming an early perspective of the subject.

2.1.1 An Overview

A leading architect of logic programming is without doubt
Robert Kowalski. It is appropriate then to consider a short
summary of his own of the subject:-

"Logic programming is based upon (but
not necessarily restricted to) the
interpretation of rules of the form

A if B and C and
as procedures

to do A, do B and C and
This interpretation is equivalent to
'backwards reasoning' and is a special
case of the resolution rule of
inference." [40]

The rule
A if B and C and

which is quoted here by Kowalski is representative of the
Horn clause form of predicate logic. Hence, a logic program
basically comprises a set of Horn clauses which are

intended to be descriptive of the problem to be solved. Each
clause can be understood in its own right as a statement
expressing a relationship between objects occuring in the

PAGE 19

problem. This is the logical or declarative semantics of
logic programming. However, a top-down theorem-proving
system can view each clause as a procedure for solving
problems: a problem which matches the head of a clause can
be decomposed into a set of sub-problems given by the
clause body. This is the procedural semantics by which a
theorem-prover can in effect become an executor or
interpreter of logic programs. These twin interpretations
of Horn clauses - the logical and the procedural - yield
the dual semantics which are a central feature of logic
programming.
Kowalski’s rider that logic programming is not restricted
to the ’backwards reasoning’ procedural interpretation of
Horn Clauses is important. At least two directions for
extension are clearly apparent. First, Horn clauses form
only a small subset of first-order predicate logic, and
there is obvious scope for extending the language used
whilst still remaining within the accepted confines of
logic. Second, ’backwards reasoning’ offers one form of
procedural interpretation, but other procedural
interpretations of logic can be envisaged, such as (for
example) those which might be suggested by ’forwards
reasoning’ and ’middle out reasoning’.
Perhaps the best metaphor for logic programming is that of

Computation = Controlled Deduction
proposed by Hayes [56]. A second metaphor, due to Kowalski
[57], is the pseudo-equation

Algorithm = Logic + Control
which suggests the distinction - between what the knowledge
is which is required to solve a problem and how the
knowledge is to be applied in order to reach the solution
which is fundamental to logic programming and which
distinguishes logic programming from conventional imperative
programming systems.
Both of the above are frequently quoted in the logic
programming literature.

PAGE 20

2.1.2 First-Order Logic

First-order logic, which is sometimes referred to as the
predicate calculus, is the underlying language of logic
programming and an informal outline of its syntax and
semantics is appropriate at this point. For a more complete
treatment than is presented here, the books by Robinson [48]
and Hodges [42] are convenient references.
The formulae of first-order logic are constructed from the
following symbols:-

The quantifiers,
V (’for all’) and a (’there exists’).

The prepositional connectives,
& (’ and ’), V (’or’), -i (’ not ’),
-> (’implies’), <- (’is implied by’),
<-> (’is equivalent to’).

A set C of constant symbols.
A set V of variable symbols.
A set P of predicate symbols.
A set F of function symbols.

A term is a variable, a constant, or a functional expression
of the form

f(tl, t2, ..., tn)
where f is a function symbol and the ti are terms. An atom
(or atomic formula) is an expression of the form

p(tl, t2, ..., tn)
where p is a predicate symbol and the ti are terms. A
literal is either an atom (A) or a negated atom (-, A). A
formula is either an atom or an expression of the form

X & Y, X V Y, X -> Y, X <- Y, X <-> Y, n X, V yX, 3yX
where X and Y are formulae and y is a variable. A sentence
is a formula which contains no free (unquantified)
variables.
The usual semantics of first-order logic are the
model-theoretic semantics as presented for example by Tarski
[52], in which the meaning of a set of sentences rests on
the notions of a universe of discourse and an
interpretation. Intuitively, the universe of discourse of a
set of sentences is the set of all individuals described by
the sentences. An interpretation of a set of sentences can
be regarded as a set of assignments of one of the two truth
values true and false to each atom obtainable by combining

PAGE 21

an n-place predicate symbol with a set of n arguments taken
from the universe of discourse. Such an interpretation,
together with the axioms of first-order logic, permits the
assignment of a truth value to each sentence in the set. A
set of sentences which possess an interpretation within
which each sentence is assigned the value true is known as a
consistent set of sentences; the corresponding
interpretation is known as a model for the set.
The syntax of logic has been prone to some variations in
different presentations of the language. These syntactical
variations have carried over into logic programming also, as
will become evident in this thesis. Usually however this
does not present a major source of difficulty, and in what
follows no fuss will be made of it except where the risk of
confusion is sufficient to require that attention be drawn
to the forms which are being quoted.

2.1.3 Full clause form and Horn clause form
It can be shown that every set of sentences of first-order
logic can be converted to an equivalent (in terms of
satisfiability) set of sentences of the form

A1 V A2 V ... V An v (nBl v -iB2 v . . . v -iBm)

(n, m >= 0), where all variables are taken to be universally
quantified and in which each Ai and Bj is an atomic formula.
(The book by Nilsson [43] includes a conversion algorithm).
Sentences in this special form are known as clauses. A
logically equivalent sentence to the clause above is

A1 V A2 V ... V An <- B1 & B2 & ... & Bm
and this variant of clause form, which is sometimes known as
Kowalski form, is the one which will be used in what
follows.
Clauses (in Kowalski form) which have atoms on both sides of
the arrow are called implications. Special cases are clauses
of the form

A1 V A2 V ... V An <-
(ie, where m = 0), interpreted as assertions, and

<- B1 & B2 & ... & Bm
(ie, where n = 0), interpreted as denials, and the empty
clause

< -

(ie, where n = m = 0), interpreted as false.

PAGE 22

Clause form provides a normalised form for first-order
logic. Its use reduces the potential redundancy of having
equivalent formulae expressible in different ways. This is
likely to be of significant value in any system for the
automatic processing of logic.
An important subset of clause form is the set of clauses
which have at most one conclusion. This subset comprises
clauses which are either implications of the form

A <- B1 & B2 & ... & Bn
(n > 0), in which the consequent is often termed the head
and the antecedent is termed the body, or else are
unconditional assertions of the form

A <-
or else are denials of the form

<- B1 & B2 & ... & Bm
(m >= 0, with the empty clause denoting falsehood). These
are known as Horn clauses, named after the logician Alfred
Horn who first investigated them [44]. It can be shown that
any problem which can be expressed in logic can be
re-expressed by means of Horn clauses (although there is
often a loss both of economy and of naturalness of
expression: see, for example, Kowalski [45, ppl6, 193-206]).
In addition to possessing this completeness property, Horn
clauses have other attributes which make them attractive
from a computational perspective. These include their
extremely simple syntax; the fact that resolution (q.v.)
has a particularly straightforward interpretation for Horn
clauses; and their resemblence to conventional procedures
(having a head and a body) in an Algol-type language.

2. 1. 4 Resolution

The problem of showing that a set of clauses is satisfiable,
or otherwise, by searching arbitrary universes for a model
for the set appears rather daunting. Fortunately Herbrand
showed that the only universe which need be considered is
that comprising the set of variable-free terms which can be
formed from the constant and function symbols which appear
within the clauses (the so-called Herbrand Universe). A
proof is contained in Bundy [49]. In effect, this makes it
possible to investigate the consistency of clauses
’syntactically’, by constructing a proof consisting of
inference steps. Surprisingly perhaps, it turns out that
only one inference rule, Robinson’s resolution rule [41], is
ever required for each step.

PAGE 23

The resolution rule is an extremely powerful inference rule
for first-order logic. It can be regarded as a
generalisation of the rule known as modus ponens in
propositional logic:-

From the truth of P
and the truth of P -> Q
assert the truth of Q

In the following we present first the full clausal form of
the resolution rule and then its restriction to Horn
clauses. Many sources are available which provide much
fuller accounts of resolution, including the books by
Robinson [48], Kowalski [45], and Bundy [49]. Later we will
turn to consider resolution-based proof procedures.

2.1.4.1 The full clausal form of Resolution

Given two clauses
Cl: PI V P2 V ... V Pi <- pi & p2 & ... & pj
02: Q1 V Q2 V ... V Qk <- ql & q2 & ... & ql

where we may assume in general that the two clauses have
differently named variables, the resolution rule states that
if some most general substitution S for variables can make

some Ps identical to some qt (1 <= s <= i, 1 <= t <= 1),
written as

[Ps]S = [qt]S
then the clause

03: [PI V P2 V ... V Ps-1
V Ql V ... V Qk
V Ps+1 V ... V Pi

K — ql & ... & qt—1
& pi Gl ... & pj
& qt+1 & ... & ql]S

can be derived. The clause 03 is known as the resolved
clause (or resolvent) and the clauses 01 and 02 are known
as the parent clauses.

It is an important feature of resolution that given two
clauses, any atom in the conditions of either clause is a
potential candidate for being matched with any atom in the
conclusions of the other. In general, where two atoms can
be matched there will be more than one substitution of
terms for variables available, but one of these
substitutions is more general than all the others (it yields

PAGE 24

an atom of which the other substitutions only give
instances). For example, the two atoms

Pred(xl, 4, x2), Pred(Con, yl, y2)
(in which 4 and Con are constants and the other arguments
are variables) have the following matching substitution:-

{xl = Con, yl = 4, x2 = 3, y2 = 3}
but the most general substitution is

{xl = Con, yl = 4, x2 = y2}
since this substitution makes the least specific assignment
of terms to variables. The process of finding this most
general substitution, or unifier, is called unification. It
is generally accepted that the successes of resolution in
automatic deduction systems are substantially due to its use
of unification. Robinson [62] points out that earlier
deduction systems, such as those of Gilmore [60] and Wang
[61], attempted exhaustive substitution of terms for
variables and were effectively swamped by the numbers of
possibilities. By delaying the substitution of terms for
variables for as long as possible unification effectively
prevents many worthless specific replacements from being
tried. An account of the advantages of unification relative
to the Gilmore procedure is contained in Bundy [49].
Robinson (op. cit.) attributes the discovery of the
significance of unification to Herbrand; however it was
apparently overlooked until independent re-discovery in 1960
by Prawitz [63] and its incorporation by Robinson into the
resolution principle.

2.1.4.2 Resolution applied to Horn clauses

Resolution has a particularly simple form when applied to
Horn clauses. Given two Horn clauses

Cl: P <- pi & p2 & ... & pj
C2: 0 <- ql & q2 & ... G qk

in which some most general substitution S matches P with
(say) qt (K=t<=k), the resolvent is the clause

C3: [Q <- ql & ... & qt-1
& pi G ... & pj
G qt+1 & ... & qk]S

PAGE 25

A special case of Horn clause resolution is that which
Kowalski [45] calls top-down resolution. From parent Horn clauses having the form

Cl:
C2:

<- pi
<- ql

G p2 &
G q2 G & pj G qk

where some most general substitution S can match P with qt
(K=t<=k), the resolvent is

C3: [<- ql G q2 G ...G qt-1
G pi G ... G pj
G qt+1 G ... G qk]S

Top-down resolution resolves a denial with an implication to
obtain a new denial. It can be regarded as a generalisation
of the classical modus tollens rule of propositional logic.
Furthermore, top-down resolution can form the basis of
refutation (or proof by contradiction) procedures, in which
the required conclusion is first denied and a contradiction
is then established. Resolution of the initial denial with
an implication leads to further denials, with the derivation
of the empty denial denoting contradiction. Kowalski
describes this as 'backwards reasoning' and he identifies it
with the analytic process of decomposing problems into
sub-problems.
Another important special case of Horn clause resolution is
that which Kowalski calls bottom-up resolution. From parent
Horn clauses having the form

Cl: P <-
02: Q <- ql G q2 G ... G qk

where some most general substitution S can match P
(K=t<=k), the resolvent is

with qt

03: [Q <- ql G q2 G ...G qt-1 G qt+1 G ... G qk]S
Bottom-up resolution resolves an assertion with an
implication to obtain a new implication. As a special case,
where qt is the only condition in the body of the second
parent clause, an assertion is resolved with an implication
to generate a new assertion. It can be regarded as a
generalisation of the classical modus ponens inference rule
of propositional logic. Furthermore, bottom-up resolution
can form the basis of direct proof procedures, in which the
given assumptions are used to infer new conclusions with the
aim of eventually deriving the required result. Kowalski
describes this as 'forwards reasoning' and he identifies it
with the synthetic process of combining old information into
new.

PAGE 26

2.1.4.3 Properties of Resolution

Two important properties of the resolution rule of inference
are its soundness and its completeness. The soundness
property ensures that the rule is correct, in the sense that
any clause derived from a self-consistent set of clauses
through some sequence of resolution inference steps will
necessarily be a logical consequence of the given clauses.
The completeness property (sometimes called the refutation
completeness) guarantees that from any given set of
inconsistent clauses, the empty clause (denoting
contradiction) will be derivable by some finite sequence of
resolution steps. Proofs of both properties are given by
Bundy [49]; the completeness proof essentially depends upon
a theorem which is due to Herbrand [53] .
It is a significant theoretical limitation that resolution,
along with all other inference rules, is affected by the
Incompleteness Theorem of Godel [54]. Godel's result implies
that no purely mechanical procedure can be guaranteed to
correctly determine the validity of an arbitrary sentence of
logic. It follows that a proof system which exploits the
refutation completeness of resolution cannot be assured to
terminate in cases where no refutation exists (because the
clauses are satisfiable). A good informal account of the
incompleteness problem is to be found in Sheperdson [55].

2.1.5 Proof Procedures as Logic Interpreters

A proof procedure P for clausal logic is a systematic
method of applying a set of rules of inference to a set L of
clauses in an attempt to reach a required conclusion. A
derivation of a clause Cn from L using P is a sequence of
clauses

Cl, C2, C3, ... Cn
such that Cl belongs to L, and each clause in the sequence
is derived from its predecessor by applying inference
according to P.Kowalski [45] notes that all existing proof procedures for
clausal logic (and so by subsumption, for Horn Clause logic)
are refutation procedures. These procedures seek to show
that the denial of the required conclusion is inconsistent
with the given clauses (the input set) by forming their
union and deriving from it the empty clause. Assuming that
the input clauses are consistent in themselves, this is

PAGE 27

equivalent to showing that the required conclusion is a
logical consequence of the input clauses. At first this may
look like convoluted thinking, but in fact justification
lies in the refutation completeness of the resolution
inference rule as described earlier. This completeness ensures that, starting with

a set L of input Horn clauses, plus
a denial G, expressing the problem to be solved,

there does exist (at least) one derivation of the empty
clause using the resolution rule whenever G is inconsistent
with L. Derivations which end in the empty clause are known
as successful derivations. If the goal clause contained
variables, then ’answers' to the problem may be extracted by
tracing the substitutions which have been made during a
successful derivation. This is known as answer extraction.
In the context of logic programming, proof procedures are
wholly or partly automated and are known as logic
interpreters or program executors. The pairing of a set L of
input Horn clauses with a denial G is known as a logic
program, and G is known as the goal clause of the program.
That is.

Logic Program = {Input Set of Horn Clauses L}
+ Goal Clause G

The submission of the logic program to the logic interpreter
is progam execution, and each derivation of a sequence of
clauses which results is called a computation. A computation
is successful or unsuccessful depending on whether or not
the empty clause is derived; it is terminating or
non-terminating depending on whether or not the computation
is finite.

The problem of finding effective program executors is a
central problem of logic programming which is often referred
to as the control problem. In theory, an investigation of
the entire search space comprising all possible derivations
using resolution from the input clauses and the goal clause
will always find a successful computation if one exists, but
in practice this search space can be very large or even
infinite. Fortunately, it is also typically highly
redundant, containing many duplicated computations. Many
researchers, including Kowalski [45], Kowalski and Kuehner
[56], Robinson [41], [47], Loveland [57], and Siekmmann and
Stephen [58], have investigated the problem of how to
specify resolution proof procedures which are sound (or
correct) in the sense that successful computations actually
are logical refutations, complete (in the sense that the
empty clause is computed whenever a refutation exists), and
efficient in the sense that redundant searching is
eliminated as far as possible.
It should be stressed at this point that a logic program is
independent of the logic interpreter which is selected to

PAGE 28

execute it. Logic programs express the domain-specific
information content of problems, whereas the interpreter
contributes control whereby the solutions are deduced from
the logic. In illustration, it can be observed that given a
fixed logic program, it is possible to substitute the
application of any one correct and complete proof procedure
for any other; the only possible effect will be to alter the
efficiency by which solutions are found. This separation of
logic from control contrasts with traditional imperative
computing, in which programs (or algorithms) mix them
together. Kowalski [45] expresses this symbolically as

Algorithm = Logic + Control
Many of the advantages claimed for logic programming are
rooted in its separation of logic from control, and these
will be discussed later. However, it is worth noting here
Kowalski's observation that

"The control component can be expressed
by the programmer in a separate control
language; or it can be determined by the
program executor itself. ... A
completely satisfactory, autonomous
control strategy ... has not yet been
designed". [45]

Hence, in parallel with the work to develop better automatic
proof procedures, researchers have sought to provide control
facilities for the use of programmers. More will be said
about this later.
To date, it seems that little use has been made of
procedures based on bottom-up inference. (An exception is
the hyper-resolution system of Sickel [64]). The main
problem with such systems is that they are difficult to
motivate correctly. Kowalski [45] observes of bottom-up
procedures that

"... they generally lead to
combinatorially explosive behaviour,
generating assertions which follow from
the general description of the
problem-domain, in addition to
assertions which follow from the
assumptions of the particular problem in
hand."

However, a Horn clause theorem-prover based on bottom-up
resolution combined with top-down resolution has been
described by Kuehner [57]. In the field of automatic theorem
proving, an example of a (non-resolution) system which
exploits inference in both directions has been constructed

PAGE 29

by Bledsoe [58]. Kowalski has described a procedure, the
connection graph proof procedure, which permits both
bottom-up and top-down resolution to be mixed [45] . It is
clear, however, that most of the effort of logic programming
researchers to date has been concentrated on proof
procedures which are limited to the top-down application of
resolution. Hence, top-down resolution will be the focus of
our attention in the next section.

2.1.6 Top-down Resolution Procedures

Given a logic program L, comprising a set of Horn clauses
together with a denial G, a goal clause representing the
problem to be solved, a top-down resolution procedure is a
systematic method of applying top-down resolution inference
in an attempt to derive the empty clause. Recalling that
this inference step always resolves a denial with an
implication to generate a new denial, it will be clear that
a top-down derivation is a chain of denials

G, G' , G ’’,
where each succeeding denial is the result of resolving its
predecessor with an implication (or assertion) of L. (It is
significant that it is not possible for denials in L to
participate in such a derivation; this is part of another
important problem of logic programming, the so-called
negation problem, which will be discussed later.) As before,
derivations are referred to as computations in the
procedural terminology. A successful computation is one
which generates the empty clause.
Kowalski [45] regards the top-down procedural interpretation
of Horn clauses as providing their fundamental
problem-solving interpretation. In a top-down computation

G, G ’, G'', ...
the body of each denial is (in general) a conjunction of
atoms, say

<- gl & g2 & ... & gn
and is viewed as a goal statement, representing a
conjunction of goals or problems to be solved. I a goa
statement includes variables xl, x2, ... , x en e
problem which is specified by it is logically expressed as

Find xl, x2, ... , xk ,which solve the problems gl and g2 and ... and gn.
The implications of L are regarded as procedures which can

PAGE 30

potentially solve those goals which can be matched (unified)
with the procedure heads. A procedure which matches a goal
transforms it into the collection of sub-goals given by the
atoms of the procedure body with the matching substitutions
applied. Thus a goal can be interpreted as a procedure call
and a procedure responding to the call does so by generating
the set of sub-calls given by the atoms of the procedure
body. In general, substitutions (sometimes called
instantiations or bindings) will be made both for the
variables of the procedure (regarded as procedure input) and
for those of the goal (regarded as procedure output)♦
Assertions are regarded as procedures which are capable of
solving problems directly, without requiring that further
sub-problems be solved.
Two distinct types of decision-making are associated with
top-down resolution proof procedures. To illustrate this,
consider an arbitrary point at which a top-down computation
has arrived at a denial (say)

<- gl & g2 & ... & gm
This denial is one parent clause in the next resolution
step. To proceed to the next step in the computation, it is
necessary to make two kinds of selection:-

(1) A goal gk (K=k<=m) must be selected
from among the m goals of the denial to
be the atom which will be an attempted
match for the head of one of the input
clauses.
(2) In general, there will be several
clauses among L which have heads which
are unifiable with gk. One of these
clauses must be selected to be the other
parent in the resolution.

The strategy by which a given top-down proof procedure makes
decisions of type (1) is known as its computation strategy,
whilst that by which type (2) decisions are made is the
search strategy.
The soundness of a top-down resolution procedure is assured,
irrespective of its computation and search strategy. But
this fact, which follows from the soundness property of
resolution as described earlier, only ensures that a logic
interpreter based on top-down resolution will not generate
answers which are actually incorrect. Clearly it is also
highly desirable that an interpreter shall positively
discover the complete set of answers , and shall do so as
efficiently as possible. In these respects the computation
and search strategies are of crucial importance, albeit in
different ways, and much effort has been expended into
researching various alternatives.
The scope for experiment with the computation and search

PAGE 31

strategies of top-down procedures arises as a consequence of
the inherent non-determinism of logic programs. As has been
pointed ̂ out earlier, a logic program expresses the
information content of problems but it does not dictate how
the information may be used. In particular, logic does not
determine the order in which the conditions of implications
should be explored, and neither does it determine the order
in which alternative clauses for the same relation should be
investigated. Indeed, the investigations of both types could
in principle proceed in parallel fashion. These forms of
non-determinism are known as the and form of non-determinism
and the or form of non-determinism respectively. The scope
for varying the computation and search strategies is the
corresponding proof procedure (control) counterpart of these
(logical) non-determinisms. The prospects for actually
realising the two potential forms of parallelism, known
respectively as and-parallelism and or-parallelism, in
practice will be considered later.
Fixing upon a particular pair of computation and search
strategies is equivalent to fixing the control component of
the

Algorithm = Logic + Control
relationship. A logic program paired with a fixed
computation and search strategy then becomes a deterministic
algorithm. (A slightly differing perspective on this is
suggested by Clark, McKeeman and Sickel [59], who suggest
that a logic program with control unspecified can be
regarded as a non-deterministic algorithm which is the
family of all the deterministic algorithms that can be
obtained by adding specific computation and search strategy
control). As the pseudo-equation suggests, the same
algorithm could result from different combinations of logic
and control, and in particular the efficiency of a given
execution might be modified either by keeping the logic
fixed and altering the control or vice-versa. In this
section however it is the control of logic programs which
will be explored.

2.1.6.1 Top-down search trees

Given a logic program (L, G), where L is a set of Horn
clauses and G is a goal clause, together with a control
strategy C comprising a computation strategy and a search
strategy, the top-down search tree for the triplet (L, G ,
C) is the unordered tree with G at the root and where each
branch from the root represents a top-down computation from
G. Each node is labelled with a denial, and has sons which
are the denials obtainable by resolving the denial ̂at the
father node with one of the implications (or assertions) of

PAGE 32

L, selecting the atom for resolution from the denial
according to the computation strategy component of C. Where
a branch ends with the empty clause the tip is marked
indicating a successful computation; where a branch ends
with a denial which cannot be resolved further with a clause
of L, the tip is marked '[X]', indicating an unsuccesful
computation. The arcs are labelled with substitutions and
are indexed to show the clause of L which has been involved
in the resolution.
The size and shape of the search tree depends wholly on the
logic program and on the computation rule component of the
control strategy C, as the example following will
illustrate. It is helpful to view the task of a logic
interpreter based on C as being a search (although of course
it is really a construction) of the tree, guided by the
search rule component of C, in order to find branches which
end in '[]'.
To illustrate, consider this logic program:-

Input clauses L
& kind(x)1 eligible(x) <- tall(x)

2 eligible(x) <- rich(x)
3 tall(Tom) <-
4 tall(Bob) <-
5 tall(Ian) <-
6 kind(Ian) <-
7 kind(Sam) <-
8 rich(Bill) <-
Goal clause G

<- eligible(x)

PAGE 33

Here is the top-down search tree obtained by a computation
rule which selects goals in a last-in, first-out
left-to-right order:-

<- eligible(x)

<- tall(x) & kind(x) <- rich(x)
Bill 8

Bob Ian

<- kind(Tom) <- kind(Bob) <- kind(Ian)
[X] [X] [] 6

Another search tree for the same logic program, but this
time with deduction controlled by a last-in, first-out
right-to-left computation rule, is:-

<- eligible(x)

<- tall(x) & kind(x)

X = Sam

<- rich(x)
X = Bill 8 []

<- tall(Ian) <- tall(Sam)
[] 5 [X]

PAGE 34

Both search trees contain successful computations from which
can be extracted the complete set of solutions x = Ian and x
= Bill, but the trees are different. The tree corresponding
to the last-in, first-out left-to-right computation rule is
here the larger of the two, producing as it does an
additional unsuccessful computation. On the assumption that
the search rule in both cases specifies an exhaustive search
of the trees, a logic interpreter based on the first control
strategy will reasonably be judged to execute this program
less efficiently. As Kowalski [45] points out, it is
desirable in general to minimise the size of the tree to be
searched: this suggests either keeping the same control, and
re-formulating the logic with the aim of reducing the size
of the tree; or else fixing on the same logic program, and
improving the control strategy of the logic interpreter. The
latter is an important long-term goal for logic programming
which is further discussed below.
In contrast to the computation rule, the search rule does
not influence the size and shape of the tree. It only
determines the manner in which the tree is searched (or
rather, more correctly, constructed). The two main kinds of
search are breadth-first and depth-first searches. A
breadth-first search investigates the branches of the tree
evenly starting downwards from the root; all the nodes at
level n are explored before investigating any node at level
(n+1). Thus the first tree depicted above will be searched
as follows:

level 0

O
/ \ level 1

/ \ O []

0
/ \/ \ level 2

O []
/ 1 \

[X] [X] []

PAGE 35

The development at each level in a breadth-first search
could be a genuinely parallel one. If it is only
quasi-parallel, however, then the search rule must specify
the order in which to explore the nodes at a given level. A
depth-first search on the other hand develops the branches
one at a time; when a tip is reached, it backtracks to the
closest ancestor node which has unexplored sons and selects,
according to some selection strategy, one of the
corresponding branches to continue the search. An obvious
selection strategy (although not necessarily the best in
every case) is to select matching input clauses in the order
in which they are written. Coupled with a depth-first type
search, this gives a depth-first, top-to-bottom search rule.
Given a fixed and finite search tree which is to be
exhaustively searched, the only possible difference between
logic interpreters operating different search strategies
will be the differing orders in which solutions may be
found. Sometimes however it may not be necessary, or
desirable, to search the entire tree, since it may include
branches which are infinite or which are of no interest. As
before, this is a problem which can be tackled either by
changing the logic or changing the control. The logic can
be changed so as to specify only those computations which
are of interest; alternatively the control can be modified
so that the search rule prevents exploration of the unwanted
branches. The question of how the latter can be accomplished
is discussed later.
An important theoretical result, attributable to Hill [76]
among others, is that all top-down resolution inference
procedures are complete providing they exhaustively
investigate the entire top-down search space (that is,
eventually every node must be explored). Thus, with the
proviso of exhaustive search, completeness is independent of
the computation strategy. Kowalski [45] has pointed out that
procedures which employ depth-first search may lose
completeness if the execution 'falls down' an infinite
branch before all the solutions have been found. Thus
depth-first search strategies are 'unfair' in that they are
liable to devote an infinite amount of processor time to
developing one computation whilst ignoring others, and in
these instances the search is not exhaustive. He gives a
simple example, in which the input clauses comprise a
definition of the natural numbers and the goal is to find a
natural number:-

PAGE 36

Input clauses L
1 Numb(s(x)) <- Numb(x)
2 Numb(0) <-
Goal clause G

<- Numb(z)

(s here denotes the usual successor function over the
natural numbers). The top-down search tree (which in this
example does not depend on the choice of a computation rule,
since conjunctions of goals never appear) begins like this:-

<- Numb(z)
/\1 z = s(xl)/ \ 2 z = 0

/ \<- Numb(xl) <- Numb(O) []
/\1 xl = s(x2)/ \ 2 xl = 0

/ \
<- Numb(x2) <- Numb(O) []

/\
1 x 2 = s (x 3) / \ 2 x 2 = 0

/ \
<- Numb(x3) <- Numb(O) []

/\
/ \

The tree contains an infinity of finite branches giving
successful computations from which the respective
substitutions

z = 0, z = 1, z = 2, ...
can be extracted. However, a logic interpreter which follows
a depth-first top-to-bottom search rule will not find any of
them. The reason is that execution will descend fruitlessly
down the one infinite branch. One remedy here would be to
change the control strategy, say to breadth-first or to
depth-first bottom-to-top; another would be to re-order the
clauses of the logic program and to keep the control
strategy as it stands.

PAGE 37

2.1.6.2 The Computation Strategy
A computation strategy is of the last-in first-out kind if
the atom selected from the current denial for matching with
one of the input clauses is always one of the atoms most
recently introduced into the denial. For example, if the
current denial is

K — A1 & ... & An
then the selected atom will be some atom Ai which was
introduced in the last resolution step. If Ai unifies with
the head B of some procedure

B <- Bl & ... & Bm
through some substitution S, then the new goal statement
becomes
[<- A1 & ... & Ai-1 & Bl & ... & Bm & Ai+1 & ... & An]S

and the next selected atom will be one of the Bl, .. ,Bm.
Most top-down resolution systems have employed a last-in
first-out computation rule. These systems include ordered
linear resolution [65], SL-resolution [56],
inter-connectivity graph resolution [66], analytic
resolution [67], and SLD-resolution. The last of these is
the basis of the PROLOG family of logic programming systems
[69] which utilises a last-in first-out computation rule
with a strict left-to-right ordering for the selection of
atoms (so that A1 and Bl respectively would be selected in
the example above). Unsurprisingly then, some writers (such
as Hogger [70]) now refer to the last-in first-out
left-to-right computation rule as the standard computation
rule in the logic programming context.
The advantages of the standard computation rule for logic
programming are apparent. It is simple for programmers to
understand, and arguably therefore makes debugging less
difficult than a more complex strategy. It has proved fairly
straightforward and efficient to implement (see later).
Furthermore, with the standard rule the execution ordering
of the calls within a procedure body is similar to that of
conventional programming languages; for example, the
procedure

procedure(...) if
firstsubprocedure(...) &
secondsubprocedure(. . .) &
thirdsubprocedure(. . .)

when called will invoke the three subprocedures in the
expected sequence (although a depth-first search rule will
generally complicate this with backtracking behaviour). More

PAGE 38

consideration of the algorithmic behaviour of logic programs
will be given in a later section.
The major weakness of the standard computation rule stems
from its uniformity. In always selecting the atom A1 from
the current goal statement

<- Al & ... & An
it fails to take account of the opportunities which may be
present in the given specific problem to facilitate the
computation. A study of such opportunities has been
undertaken by Kowalski [45], who identifies the following
factors.
1. Independent sub-goals could be distributed to independent
problem-solvers without any danger of interfering with one
another. Thus, if two or more of Al, .. , An have no
variables in common then an excellent opportunity for
parallelism (or quasi-parallelism) is present. Even if the
sub-goals are dependent, parallel problem-solvers can still
be employed; for example, a solution to the conjunction
could be found by finding the most general common instance
of the substitutions which satisfy each individual sub-goal
(Conjunctive parallelism will be considered further in a
later section).
2. Where sub-goals are dependent (that is, have variables in
common), Kowalski suggests the general principle of
selecting the sub-goal to which the fewest procedures apply:
the aim is to reduce the overall size of the search tree by
minimising the number of branches which descend from each
node. The principle can be viewed either as a 'principle of
procrastination', which delays the selection of explosive
sub-goals for as long as possible, or else as a 'principle
of eager consideration', which favours sub-goals which can
be solved in few ways. In particular, a sub-goal which can
be solved in at most one way should be eagerly considered;
it needs to be evaluated eventually anyway, but should it
turn out to fail (be insoluble) then early discovery of the
fact will enable the whole goal statement to be failed
without the need for further computation.
It is recognised that the number of procedures which apply
to a sub-goal only gives a 'local' measure of explosiveness.
Look-ahead techniques, such as the mini-max strategy
described in Nilsson [71] and elsewhere, could provide more
accurate measures.
3. A related principle to the above, and one which Kowalski
suggests should be easier to apply, is to select a sub-goal
whidh involves the least 'finding' and the most 'showing' of
relationships: a severe 'finding' sub-goal is one which has
many uninstantiated variables, wheras a wholly 'showing'
sub-goal has none. This principle should favour sub-goals
which contain input (instantiated variables). It is

PAGE 39

generally highly inefficient to execute sub-goals which
contain no input; an example is the program:-

Sort(x y) <- Ord(y) & Perm(x y)
<- Sort((2 4 1 5 3) y)

where Sort(x y) holds when y is a sorted version of the list
X, Ord(y) holds when y is an ordered list and Perm(x y)
holds when y is a permutation of the list x. Here, the goal
asks for a sorted version of the list (2 4 1 5 3). If the
sub-goal Ord(y) containing no input is selected first, it
will generate an arbitrary ordered list which Perm((2 4 1 5
3) y) will test as a possible (if highly improbable)
permutation of the input list. A computation strategy which
schedules sub-goals first to minimise 'finding' should
select the atoms in the reverse order, resulting in more
satisfactory behaviour.
4. Lemma generation can be utilised. When a sub-goal is
solved, its solution is recorded. The benefit is gained when
the same sub-goal arises more than once during the program
execution. If the occurences are on different branches of
the search tree then only a single computation step is
required to solve it after the first solution. If the
occurences are on the same branch, and the second occurence
has been re-introduced by means of a procedure, then an
infinite branch is indicated: a 'loop' has been detected and
action can be taken accordingly. 'Negative' lemmas, which
record that a goal has been found insoluble, can also be
employed.
5. Some logic programs, which cannot be executed with
acceptable efficiency with any simple sequential computation
rule, respond well to co-routining. Kowalski quotes the
example of the admissible pairs problem, in which the goal
is to construct a pair of lists such that for all i, the
i-th element in the second list is twice the i-th element of
the first list, and the (i+l)-th element in the first list
is thrice the i-th element in the second list. The first
list is to begin with one. Thus, an admissible pair of lists
is: -

(1 6 36) and
(2 12 72)

The top clause in Kowalski's program is:-
Adm(x y) <- Double(x y) & Triple(x y)

Under a computation rule which executes Double to the finish
before initiating Triple, or vice-versa, the program is
intolerably non-deterministic: it repeatedly generates an
arbitrary pair of lists which lie in the Double (Triple)
relation and then checks whether this pair also lie in the

PAGE 40

Triple (Double) relation. But when the two calls are
allowed to behave as co-operating sequential processes, with
control switching from one to another as soon as sufficient
input is available, the program begins to generate
admissible pairs in a highly efficient manner.
It is clear from the above that there is considerable scope
for constructing a logic interpreter which implements a
computation strategy considerably more sophisticated than
the standard computation rule. However, Kowalski notes that
the problem of describing an efficient algorithm for
scheduling procedure calls has still to be solved, and that
the principles of procrastination and eager consideration
mentioned above '... work efficiently in a large number of
cases. But they are inadequate when all procedure calls are
non-deterministic'. [45] The quest for an improved
autonomous computation strategy must be an important goal of
future research.
In the absence of an effective automatic computation
strategy, much attention has been concentrated on the
provision of mechanisms which enable the programmer to
specify the scheduling of procedure calls directly. Gallaire
and Lasserre [72] have identified various such mechanisms
including those of pragmatic control, control annotations
and metarules. Since these mechanisms have been aimed at the
control of top-down resolution in general - that is, at the
search strategy component as well as at the computation
strategy component of control - they will be discussed
together in a later section. However, a brief consideration
here will be appropriate.
Gallaire and Lasserre say that pragmatic control 'consists
of writing a program tailored to the fixed strategy of the
interpreter'. By illustration, a PROLOG programmer who knows
that his logic interpreter incorporates the standard last-in
first-out left-to-right computation rule can arrange the
ordering of atoms within the body of each procedure so as to
obtain the desired algorithmic effect. Most PROLOGS,
including Warren's DECIO-PROLOG [73], also offer special
predicates (the so-called metalevel primitives) which can
assist with this effort. One example is the var primitive,
where var(x) succeeds if x is an unbound variable. Another
is the assertz primitive, which takes a clause as its
argument and which succeeds by appending the clause to the
logic program, therebye offering a facility which can be
used for lemma generation as discussed above.
Control annotations are annotations attached directly to the
program text to give control information to the interpreter.
A large set of such annotations are provided by the
IC-PROLOG system developed at Imperial College [74]. One
example is the '//' annotation which can substitute for '&'
in the body of a procedure. IC-PROLOG's default computation
rule is the standard one, but the use of '//' overides the
standard rule in favour of a timesharing parallel
evaluation. This and other control annotations of IC-PROLOG

PAGE 41

are further described by Clark and McCabe [75].
The use of metarules provides a quite different form of
programmer specified control. Metarules are special rules,
syntactically separated from the logic program, which give
control information to the interpreter. An example of a
metarule proposal is that of Gallaire and Lasserre [72]
whose metarules take the form of Horn clauses. Again, the
default computation rule is the standard one, but it may be
overridden by a metarule specifying special conditions for
scheduling procedure calls. An example is

READY(P(x, y, z)) - INST(x)
which says that the atom P(x, y, z) should be selected for
evaluation as soon as the variable x becomes instantiated.

2.1.6.3 The Search Strategy

As stated earlier, the size and shape of the top-down search
tree is determined by the logic program and by the
computation rule component of the control strategy. The
search strategy determines the way in which the tree is
searched (or more precisely, constructed). Hill [76] has
shown that every top-down resolution inference system is
complete, regardless of the computation rule, provided that
the search tree is exhaustively explored. Hence the
completeness of a logic programming system depends on its
search rule, which must be guaranteed to eventually select
each one of the alternative procedures which match the atom
chosen for elimination from the current denial.
Of the two main types of search strategy, namely the
depth-first and the breadth-first search strategies, it has
already been pointed out that the depth-first strategy risks
losing completeness where computation may 'fall down' an
infinite branch of the search tree before successful
computations have been discovered. This is a major weakness
of depth-first systems. A breadth-first strategy could also
lose completeness in cases where a node of the search tree
has an infinite number of sons (corresponding to a denial
resolving with an infinite number of input clauses - say,
arithmetic assertions); it is not clear how serious a
limitation this might be in practice. The PROLOG family of
logic programming systems [69] incorporate a depth-first
search rule with the reselection of clauses on backtracking
determined on a top-to-bottom basis (that is, alternative
clauses are tried in the order in which they are written);
this is often referred to as the standard search rule. An
example of a logic programming system using a breadth-first
search strategy is the LOGLISP system [70].
The standard search rule, like the standard computation
rule, is relatively efficient and cheap to implement (see

PAGE 42

later). However, in addition to the risk mentioned above of
losing completeness, this strategy has at least two other
weaknesses. First, as experience with earlier programming
systems which incorporated backtracking has shown, a
backtracking behaviour can be difficult to predict and
debug. Dowson [77], in a retrospective account of the now
defunct Artificial Intelligence backtracking language
Micro-Planner [78], writes that

'... backtracking makes programs almost
impossible to debug even with (as was
the case with Micro-Planner) the
availability of powerful tracing,
breakpointing and single-stepping
mechanisms'.

However, Dowson concedes that backtracking was a strength as
well as a weakness of Micro-Planner, and that the language
also suffered from other weaknesses. A second problem with a
backtracking search strategy is identified by Kowalski
[45]:-

'Although backtracking is effective in
many cases it can be distressingly
unintelligent in others.'

The basic problem is that (naive) backtracking systems learn
nothing from their failures. Returning after failure to the
most recent ancestor node with unexplored sons and
exhaustively searching the remaining sub-space is redundant
if the actual cause of the failure lies with a unification
higher in the search tree. Redundant behaviour of this type
was also a feature of Micro-Planner, of which Dowson (op.
cit.) writes:-

'Micro-Planner provides no convenient
mechanisms for passing back, after a
failure, information on the cause of the
failure which can be used to guide
subsequent exploration of the problem
space'.

Several proposals aimed at improving the 'intelligence' of
the depth-first strategy in the context of logic programming
have been advanced, including those of Bruynooghe and
Pereira [79], Cox [80], and Pereira and Porto [81]. These
proposals mainly follow Kowalski's suggestion that when an
unsolvable sub-goal is generated, the program executor
should analyse the substitutions which caused the failure
and backtracking should select an ancestor node which can
actually undo them (which will not always be the nearest
ancestor node) [45]. This should imply no loss of
completeness,

PAGE 43

since a backtracking strategy operating in this way in
effect only declines to search parts of the search tree
which have already been shown not to contain successful
computations. A small price would be the increased
complexity in the behaviour of an interpreter which
incorporated such a scheme; but more serious may be the cost
of implementation. The only known quantified costs for a
scheme of this kind are those reported by Bruynooghe and
Pereira (op. cit.) who adapted an existing PROLOG
interpreter (written in the language ’C) to support a
simplified form of their intelligent backtracking proposal.
Their results include execution times which are up to 99.7%
faster for the modified than for the standard interpreter,
and they conclude that 'implementation of intelligent
backtracking at a low level is worthwhile'. Unfortunately,
their results also include examples where the modified
interpreter was slower than the standard version by up to
119% (although it appears significant that the gains were
largely among the examples of 'pure' logic progams whereas
the losses mainly correspond to pragmatically constructed
programs written with the interpreter's control strategy in
mind). It is interesting that both Cox (op. cit.) and
Pereira and Porto (op. cit.), in proposing their own
intelligent backtracking schemes suggest that it is
reasonable nonetheless that the programmer should be
prepared to give explicit advice about backtracking to the
interpreter in some cases.
The need to give programmers some control over the extent of
backtracking within depth-first programming systems has been
recognised before. Kowalski [45] suggests that the
inefficiencies of backtracking in the PLANNER family led to
the development of CONNIVER [82], in which the programmer
has more control over the search strategy. Davies [83],
reporting the development from PLANNER of POPLER [84],
states that POPLER integrated 'greater and more sensitive
control' with the PLANNER backtracking approach. The
string-processing language SN0B0L4 [85], which employs a
depth-first search algorithm for pattern-matching, provides
facilities for the programmer to specify the extent of the
backtracking. However, in the case of logic programming
systems at least there are differing ideas about the best
mechanisms for providing this control. The most frequently
discussed mechanisms can be distinguished as pragmatic
control, control primitives, control annotations and
metarules. These mechanisms, which are relevant to the
control of search generally and not just to depth-first
control, will be discussed in a later section devoted to a
general discussion of the control of logic programs.
However, a brief explanation here is appropriate.
Pragmatic search control consists of tailoring the logic
program to the known search strategy of the logic
interpreter. In the case of an interpreter which operates
the standard strategy, such as a PROLOG interpreter, the

PAGE 44

depth-first top-to-bottom rule will always investigate the
textually higher clauses for a relation before the
textually lower ones. Programmers can therefore select a
judicious ordering of their clauses to ensure that
successful branches of the search tree are discovered
(constructed) first; if there is also a facility to
terminate the search at the user’s choice after each
successful computation has been discovered (as there is with
most PROLOG systems), then it can be argued that this may be
all that is required.
Control primitives appear syntactically as atoms within
clauses. The best known example is the ’slash’ or ’cut’
primitive which is a common feature of most PROLOG systems
and which is used to control the extent of backtracking. The
cut may appear in the body of a procedure, as with any other
atom. Hence a procedure call may introduce a cut into a goal
statement, corresponding to some node in the search tree.
When the point is subsequently reached where the cut is
selected for evaluation, it ’succeeds’ but with the side
effect of ’pruning’ from the search tree all unexplored
sub-trees between that point and the father of the node
which introduced the cut. An example of a (contrived) logic
program and its search tree, constructed with the standard
computation rule, is shown below with a dashed line to
indicate the search path produced by the standard search
rule. The effect of the cut, shown in the program as the
symbol ’/ ’, is to prevent the interpreter from exploring the
branch which ends in the goal <- F (as shown by the dotted
path). In this example, nothing is lost because the excised
branch contains no solutions: plainly however, the cut also
has the potential to prune successful computations from the
tree. Hence, the use of the cut introduces another possible
risk of losing completeness. The benefit which is hoped for
is the greater efficiency which comes from eliminating
redundant search, but to be effective the programmer must
apply it skillfully and with sound knowledge of the
interpreter’s control strategy.

Input Clauses
1 A <- B
2 A <- C
3 B <- C & / & E
4 B <- F
5 C <-
Goal Clause

<- A

PAGE 45

<- A

Aside from the cut, a variety of other primitives have been
provided within PROLOG systems to assist with the control
of search. The microprocessor-based micro-PROLOG system [94]
includes a 'single solution' primitive (syntactically, the
symbol ’!') which operates similarly to the cut but which is
somewhat different in the manner of its pruning. The
primitive FAIL, which can be used to (artificially and
unsuccessfully) terminate a branch of the search tree, is
available in most PROLOG systems.
Two forms of search control annotation which have been
implemented in the IC-PROLOG system [74] are head
annotations and guards. Head annotations are exemplified in
Clark, McCabe and Gregory [75] by the following pair of
procedures :-

[x has-descendant y" <- x parent-of z & z parent-of y,
X has-descendant y? <- x parent-of y & x parent-of z]

The bracketing expresses to the interpreter that the
procedures are control (and not logical) alternatives. If
the goal to be solved is of the form x has-descendant y with
y an unbound variable, then the '^ ' annotation on the head
of the first procedure will select that procedure for
resolution. If, on the other hand, y is bound to a
non-variable term in the call, then the ’?' implies that the
second procedure will be selected. The intended effect is to
produce the differing algorithmic behaviours which
efficiently solve the respective problems of finding
descendents and finding ancestors. Guards follow from the
idea of Dijkstra [86]. By annotating the first call of a
procedure by ’:', as illustrated by

B K~~ G: A1 & ... & Am

PAGE 46

the call G becomes a guard which is evaluated when the
procedure B matches the current goal (before the matching
substitution has been applied to the Al, ... , Am). The aim
is to more efficiently select the procedure which should
respond to the given goal.
Metarules are statements which refer to program clauses and
components of clauses whilst being syntactically separate
from the program text. They can be used to augment the logic
interpreter's default search strategy. An illustration is
given by the PLANNER family [78], which enabled the
programmer to supply 'recommendation lists' showing the
order in which procedures should be investigated in response
to a given procedure call. This mechanism can be regarded as
a special kind of evaluation function, as investigated by
Nilsson [43] and others for choosing between the nodes of a
search space in path-finding and similar problem types. More
recently a proposal for the use of metarules to direct the
search control of logic programs has been advanced by
Gallaire and Lasserre [72]. Their proposals incorporate a
powerful form of PLANNER-style recommendation list, in which
conditional orderings may be imposed upon the selection of
procedures which are candidates for resolution with a given
form of goal. This is illustrated by a metarule of the
form:-

+OPORDER(P(x, y), nl.n2 NIL) - Cl - C2 - ... - Ok
which directs that goals which match P(x, y) are to be
resolved with clauses numbered nl, n2, ... in that order, if
the conditions Cl, C2, ... are satisfied. The ordering can
also be based on the content of clauses (so that when two or
more clauses potentially respond to a call, preference can
be given to a clause the body of which contains some
specified condition). Gallaire and Lasserre's metarule
scheme is extremely flexible: as but one illustration, they
demonstrate how it could be used to impose a breadth-first
search strategy on a depth-first PROLOG logic interpreter.

2.1.7 Extensions beyond Horn Clause Form
Several studies have investigated the representative
capability of Horn clause logic and the computability theory
of Horn clause logic with resolution inference. Among the
most significant are those of Hill [76], Tarnlund [227],
Andreki and Nemeti [228], and Sebelik and Stepanek [229].
These studies show that Horn clause logic is a universal
computing formalism: it is equivalent in computational power
to all the other universal formalisms which have been
identified by the theory of computability. Indeed, the
investigation by Tarnlund for example has shown that logic
programs which are restricted to binary Horn clauses (those

PAGE 47

which contain at most one condition) alone form a basis for
computability.
Notwithstanding the theoretical adequacy of the Horn clause
form of logic, it has frequently been argued that logic
programming systems should go beyond it, expanding to some
degree towards full clausal form and outwards towards the
standard form of first and higher order logic. Kowalski [45]
suggests that the representation of problems in standard
form is often more economical and more natural than the
clausal form representation, and that an extension of clause
form is desirable for the specification of programs. Other
extensions have been proposed on the grounds of possible
benefits either in language power or in execution
efficiency. However, it is clear that each such extension
potentially brings with it complications of syntax and
semantics, and in particular the effect (if any) of any
extension on the soundness and completeness of standard
SLD-resolution must be understood by programmers.
Some of the more important extensions are discussed below.

2.1.7.1 Negation
The negation operator ' of standard first order logic is
not available in the clausal form. A headless clause such as

<- likes(x Tom)
('there does not exist an individual x who likes Tom')
expresses a negation, but such a clause can only be useful
in a top-down resolution inference system if it happens to
be the goal clause: each resolution step resolves the goal
clause with a headed clause (assertion or procedure), so
that 'negative facts' cannot be deployed. For practical
programming purposes however, probably the most restricting
aspect of the so-called 'negation problem' for logic
programming is the fact that clauses containing negative
literals in their bodies, as illustrated by

P(x) <- -1 Q(x)
which are allowed in standard form, cannot be directly
represented in the Horn clause form of logic where all
literals in clause bodies must be atomic formulae.
In theory, it is possible to express problems without
explicit negation. Hogger [87] for example gives three
alternative formulations, each one free of explicit
negation, of a logic program corresponding to a problem
which is specified using negation. His formulations
respectively use special predicates, pragmatic control
primitives, and computed arguments to substitute for the
negation. However, it is seldom argued that such devices are

PAGE 48

preferable to some extension beyond Horn Clause logic which
enables negation to be explicitly deployed. Such an
extension should provide a significant improvement in
practical expressive power and should enable logic programs
to be written which arise more naturally from problem
specifications which include negation.
In fact most logic programming systems either do provide a
negation meta-predicate, often named NOT, or else they make
it possible for programmers to define one for
themeselves.The intended effect of NOT (which is a
meta-predicate because it takes an atom as an argument) is
to implement negation-by-failure in which a call NOT(P)
succeeds if a call P fails and vice-versa. Much
investigation has been conducted into the soundness and
completeness of negation-by-failure and its relationship to
classical and other forms of negation.
A study of the negation problem has been conducted by Lloyd
[130]. He presents a proof (due to Clark [88]) that
negation-by-failure is sound (under SLD-resolution) on the
main condition that programs are taken as representing their
own completions. The completion of a program is formed by
adding clauses corresponding to the ’only if’ halves of the
programmer’s 'if halves of definitions, together with
certain axioms of equality: conceptually it amounts to the
programmer's acceptance of the closed world assumption that
the only information required to solve problems is that
contained within the database. A second requirement for
soundness is that in any call of the form NOT(P) which
contains unbound variables, the success of P should not
depend on binding any of those variables.
Kowalski [45] points out that negation-by-failure is easy to
implement, efficient to use and has much of the expressive
power of negation within the standard form of logic.
Although its soundness depends on the closed world
assumption, it is a fact that this assumption is already
widely accepted in database work. It can however be argued
that the 'global' application of the assumption over all
program predicates is too indiscriminate and that the
negation-by-failure property should be confined to
individual predicates designated by the programmer. Such a
refinement would be fairly straightforward to implement in
most PROLOG systems, which often define the NOT by the
meta-clauses :-

NOT(P) <- P & / & FAIL
NOT(P) <-

where the metavariable P represents an atom which could
however be specialised for individual predicates as
required.
It should be noted however that the above definition for NOT
fails to apply the check on the binding of variables of P,
and thus risks losing soundness. Lloyd (op. cit.) suggests
that a fair computation rule should seek to delay the

PAGE 49

selection of negative literals until they can be evaluated
without breaking the bindings requirement. The MU-PROLOG
system [131] has a fair computation rule, but the standard
PROLOG computation rule as described earlier is not fair in
Lloyd's sense. Some unfair PROLOG systems preserve soundness
by generating an error condition if the bindings requirement
for negative literals is breached, but others (for example,
micro-PROLOG [94]) do not. Systems in this latter category
attempt to reduce execution costs at the risk of soundness.
Within the closed world assumption, negation-by-failure is
known not to be complete. Where a call NOT(P) succeeds, no
solutions for the variables of the call can be produced
because of the implied failure of P. It is this
incompleteness of negation-by-failure which has led to much
criticism of the implementation of negation within PROLOG
systems. For example. Turner [89] has pointed out that NOT
NOT P, which in standard logic is identical to P, is
different from P in the PROLOG interpretation because the
success of a goal NOT NOT P cannot generate bindings for
variables (on account of the failure of the intermediate
goal NOT P). Consequently, negative conditions 'become
almost impossible to understand, especially when
backtracking must be considered'. He proposes a scheme in
which, in effect, variables range over a set of values which
is declared explicitly to the program executor, so that
solutions to negated conditions can be computed directly. A
similar criticism of PROLOG is made by Wise [90], who
describes the differing binding treatments (of negated as
against un-negated atoms) as introducing 'a fundamental
asymmetry'. Wise suggests that a partial solution to the
problem is to add to the program a set of 'virtual items'
which can be interpreted as negative facts.
An interesting question concerns the extra conditions which
must be satisfied to ensure the completeness of
negation-by-failure under the closed world assumption. This
problem has recently been addressed by Lloyd (op. cit.), who
proposes a proof credited to Jaffar, Lassez and Lloyd [91]
of completeness in the rather special case where
negation-by-failure is restricted to variable-free goal
atoms (variables in negated goal atoms are not allowed, and
literals in clause bodies must be positive). As yet no more
general completeness result for negation-as-failure is
known, and this appears to be a priority task for future
research.

PAGE 50

There are grounds for hope that a version of negation can be
found for logic programming which corresponds to a larger
fragment of classical negation than negation-by-failure
whilst being tolerably efficient to implement. A recent
proposal which appears promising is that of
negation-as-inconsistency by Gabbay and Sergot [132]. They
propose a scheme in which negative facts and rules, from
which negative information could be explicitly computed,
would be added to the database. It is argued that
negation-as-inconsistency is always logically sound, and
that relative to negation-by-failure it provides greater
expressiveness (through the ability to represent negative
information explicitly) and greater completeness (negated
calls which succeed through negation-as-inconsistency can
return solutions). Another significant claim for
negation-as-inconsistency is that, like classical logic, it
is monotonie: all previous results continue to hold when the
set of clauses is enlarged (this is not a property of
negation-by-failure, since new clauses may cause a
previously failed call to succeed). The researchers, who
admit that the implementation of this form of negation will
be less efficient than that of negation-by-failure, propose
to incorporate 'a fragment' of negation-as-inconsistency
within their N-PROLOG logic programming system.

2.1.7.2 Lists of Solutions
Early users of Horn Clause programming systems discovered a
difficulty in combining elements of information which
originated in different parts of the search tree. As an
illustration, Warren [93] notes that from a database of
assertions such as

drinks(david, beer)
drinks(david, milk)
drinks(jane, water)

finding the answer to the question 'How many people drink
milk?' seems to require that the solutions to the goal
drinks(x, milk) should be somehow accumulated, in order that
their enumeration could then give the required result. Early
PROLOG systems required the programmer to employ ad hoc
devices, usually making use of the assert primitive for
adding a clause to the database, to accomplish the
accumulation. These devices were typically tedious to
program, difficult to understand and inefficient.
In addressing the problem, Warren (op. cit.) argues in
favour of the introduction of set expressions to denote the
set of all (provable) solutions to some goal. Consequently,
more recent versions of his DECIO-PROLOG [73] incorporate a

PAGE 51

new-built in procedure setof. The goal
setof(X, P, S)

(to be read declaratively as 'the set of instances of X such
that P is provable is S') attempts to construct a list S
containing all solutions for the variable X which make the
goal P succeed. The goal statement

<- setof(X, drinks(X, milk), S) & size(S, N)
(assuming the existence of a program size for computing the
length of a list) illustrates how the milk-drinking problem
can be solved with the new construct. Because the setof
predicate takes an atomic formula (P) as an argument, it
qualifies as a meta-predicate (Warren calls it a
'higher-order' extension).
One measure of the appeal of setof is the appearance of
similar set-constructor primitives in other PROLOG systems.
For example:-

DECIO-PROLOG setof(X, P, S)
IC-PROLOG S = {X: P}
micro-PROLOG (ISALL S X P)

It is evident that setof makes the closed world assumption
for P. Under this assumption there seems no reason why the
construct should not be sound. Its completeness, however, is
a different matter and there are significant, but different,
operational restrictions which affect each version. The
IC-PROLOG [75] version cannot be called with S bound to a
non-variable term (so that it cannot be used to check
whether a list satisfies some condition) whereas the others
can; although at least in the case of micro-PROLOG [94],
this is generally unsafe since ISALL computes only one list
S, the ordering of which is not always easy to predict. Only
the DECIO implementation represents sets as lists without
duplicated elements (the others are liable to return lists
with multiple copies of terms which were computed as
solutions more than once in the evaluation). Only the
DECIO-PROLOG primitive is 'backtrackable', generating
alternative lists if the list expression contains variables:
however Warren (op. cit.) explains that implementation of
this capability required that the meaning of setof be
restricted so as to exclude empty sets.

2.1.7.3 Other logic extensions
A number of other extensions to Horn Clause logic have been
proposed for logic programming systems and several have been
implemented. Three of these are outlined below.

PAGE 52

2.1.7.3.1 Disj unctions
The Horn clauses

P <- Q
P <- R

can be expressed as a single clause in the standard form of
logic, by forming the disjunction of conditions:-

P <- Q V R
A disjunction operator is provided in several PROLOG systems
under various syntactical forms. The DECIO-PROLOG [73] user
writes:-

P <- Q ; R
whereas the micro-PROLOG [94] programmer expresses the same
clause as:-

((P) (OR (Q) (R)))
Disjunction is easy to implement and it is efficient to use.
It should entail no loss of either soundness or
completeness. Used with restraint it can provide a welcome
economy of expression, but there is a danger (especially
where disjunctions and conjunctions are mixed within the
same clause) of reducing readability. Clocksin and Mellish
[95] recognise this in their tutorial guide to DECIO-PROLOG
where they advise: 'You should always consider whether it
may be worthwhile avoiding a ; by defining extra clauses'.
2.1.7.3.2 Conditional Alternatives

The clauses in the standard form of logic
P <- Q & S
P <- - I Q & T

can be translated straightforwardly into the language of
Horn clauses augmented with negation-as-failure. However,
this introduces a source of inefficiency in that the same
goal Q is sometimes evaluated twice. The use of conditional
alternatives can avoid this inefficiency. Again, the syntax
is prone to variation:-

micro-PROLOG ((P) (IF Q (S) (T))
DECIO-PROLOG P :- (Q -> S ; T)
IC-PROLOG P if Q then S else T

It will be noted that the use of conditional alternatives
obviates the need for negation-by-failure. The construct is

PAGE 53

easy to implement (the micro-PROLOG definition of IF
requires two simple clauses which make use of the 'cut'), is
clearly sound and appears to preserve completeness. However,
Clark, McCabe and Steel have pointed out that the efficiency
advantage may be marginal in practice, because the single
clause which uses the conditional alternative must be headed
by an atom which is the 'most general' version of the heads
of the two clauses which it replaces: hence less use can be
made of unification to distinguish terms within the single
clause [94]. Also, some reservation about the effect of such
a construct upon readability appears as valid here as with
the disjunction operator described above.

2.1.7.3.3 Implication conditions
In standard first-order logic, the definition of the subset
relation can be given as:-

X subset-of y <- Vz [z member-of x -> z member-of y]
Kowalski [45] shows how this can be expressed in the form of
Horn clauses augmented with negation-by-failure:-
X subset-of y <- not 3z [z member-of x & not z member-of y]

In effect, the standard form clause employs an implication
as a condition and the re-written clause attempts to capture
the meaning by two applications of negation-by-failure
(sometimes referred to as equivalent double negation).
Clark and McCabe have provided a primitive, the FORALL
primitive, for expressing implication conditions directly
within their micro-PROLOG system [96]. A clause such as

((subset-of X y)
(FORALL ((member-of z x)) ((member-of z y))))

illustrates its use to define the subset relation. The
construct is implemented directly via equivalent double
negation; for interest, its actual defining clause is:-

((FORALL X Y) (NOT ? ((? X)(NOT ? Y))))
(where '?' is the micro-PROLOG meta-predicate which succeeds
if its arguments succeed as goals). The micro-PROLOG
reference manual [94] describes FORALL as 'a very high level
concept, and can often replace explicit recursions in a
program'. It is clearly more transparent to express
implication conditions with FORALL than by the use of the
equivalent double negation. On the other hand, this
implementation of implication conditions inherits the
weaknesses of negation-by-failure as discussed earlier.

PAGE 54

Programmers who use it are implicitly accepting the closed
world assumption for the predicates involved. The
micro-PROLOG implementation of NOT is not sound (it omits
the check on variable bindings) and, of course, the use of
negation-by-failure risks a loss of completeness.

2.1.7.3.4 Metalanguage
In the presentation of clausal logic which was outlined
earlier, variables implicitly range over a universe of
discourse (the so-called Herbrand universe) comprising all
variable-free terms which can be constructed from a
language's constant and function symbols. The arguments of
predicates are either variables, constants or functional
expressions. The sets of predicate, constant, function and
variable symbols are all mutually disjoint. Intuitively, a
set of clause formulae expresses relationships between the
objects which are named within the clauses.
However, a willingness to go beyond pure first-order logic
enables the restrictions mentioned here to be relaxed. For
example, variables can be allowed to represent predicates,
atoms and clauses, and predicates can be permitted to take
predicates, atoms and clauses as arguments. The sentences of
this form of language, sometimes called the metalanguage to
distinguish it from the object language described above, can
express relationships between objects which are the formulae
of the object language.
The metalanguage concept has been explored since the
earliest days of logic programming. Significantly, the
original Marseille PROLOG interpreter was developed
specifically to support work in natural language processing,
where the ability to name a whole sentence in one language
(French) by means of a single variable in another (PROLOG)
was found to be invaluable (an account of this is given by
Colmerauer [97]). Kluzniak has noted that the core of the
Marseille interpreter was itself a PROLOG program, and that
subsequent PROLOG interpreters generally followed this lead:
it became common to use PROLOG as a means to implement
PROLOG (via bootstrapping) and the fact that clauses, atoms
and functional expressions shared the same essential
syntactical structure meant that they could all be
manipulated by unification, so that the natural way to
process PROLOG programs was through other PROLOG programs
[98].
However, exploitation of the metalanguage potential of logic
programming appears to have been somewhat haphazard, at
least until recently. A variety of facilities are to be
fpund in different PROLOG systems which are evidently
intended to encourage some form of metalogical programming.
For example, shown below are some primitives available under
DECIO-PROLOG, together with brief explanations:-

PAGE 55

clause(X, Y) succeeds when (the bindings
of) X and Y can be matched with the head
and body respectively of a database
clause.
assertz(X) succeeds by appending X to
the database. retract(X) removes the
clause.
functor(T, F, N) holds when T is a
functional expression having function
symbol F and number of arguments N.
arg(N, T, A) holds when A is the N-th
argument within the structured term T.
call(X) holds when X succeeds as a goal.

Most of these primitives have special restrictions, such as
that X should be sufficiently instantiated to make the
predicate symbol known in a call to clause(X, Y) .
The question of how, and when, the metalanguage should be
used is still relatively open. It is clear that metalanguage
facilities such as those of DECIO-PROLOG can make programs
very opaque; a striking example being the use of call(X)
where it can often be difficult even to determine the
identity of the procedure which is being called. Warren [93]
has argued that allowing variables to represent function and
predicate symbols adds nothing to the power of PROLOG, and
notes that 'if predicate variables are used in more than
small doses, the program becomes excessively abstract and
therefore hard to understand'. Several authors have pointed
out that the use of assertz (for example) creates a
side-effect which makes programs difficult to follow. It
also contradicts the simple conceptual basis of logic
programming, which is deduction from a central fixed theory.
However, some of the benefits of metalanguage applications
to date have been substantial. A recent illustration is
given by the micro-PROLOG system, which has relied heavily
on the use of its metalanguage capability to implement a
variety of software tools including PROLOG interpreters,
editors and various debugging utilities [94]. Although the
core of micro-PROLOG is written in assembly language, many
of the primitives which implement the extensions to Horn
Clause logic (such as the negation-by-failure, disjunction,
and alternative condition extensions which are discussed
above) are defined by PROLOG clauses which make use of
metavariables.
Clark and McCabe have suggested analogies from other
programming languages to the three main forms of
metavariable use which are supported by the micro-PROLOG
system [96]. A metavariable which represents a predicate is
likened to a function or procedure being passed as a

PAGE 56

parameter in Pascal, except that the Pascal parameter is not
a 'first class' data object which can be processed
arbitrarily (say, stored in a data structure) as can the
metavariable representing a predicate in micro-PROLOG.
Metavariables representing atoms are linked to the
call-by-name mechanism of Algol 60, and metavariables
representing argument lists are compared to the mechanism
giving access to the arguments of a call as a list of items
within 'C ' or BCPL. Clark, McCabe and Steel [94] report
that:-

'The meta-variable is very important to
the usability of micro-PROLOG: it
enables many of the second-order
programs found in LISP (say) to be
expressed succinctly in micro-PROLOG.'

It appears that what is needed is some means of exploiting
the power of the metalanguage which at the same time
preserves the clarity of logic programs and which also
protects their clean semantics. A proposal which may well
lead to progress in this direction has been presented by
Bowen and Kowalski [92]. They argue that the object language
of a logic programming system should be extended to include
that part of a metalanguage which deals with the provability
relation of the object language. This can be accomplished by
the definition of a metalanguage predicate Demo, where
Demo(prog, goals) can be derived in the metalanguage
whenever the goals named by goals can be derived from the
clauses named by prog in the object language. Having defined
Demo, any direct execution in the object language can then
be simulated by a Demo computation in the metalanguage. In a
sense, the definition of Demo generalises the metarule
schemes, such as that of Gallaire and Lasserre [72] outlined
earlier, which are directed towards the control of logic
programs. Bowen and Kowalski suggest that the language
produced by amalgamating the object language with this form
of metalanguage will have greater expressive and
problem-solving power whilst the standard semantics of logic
will be preserved. They show how their scheme could provide
a device for the local definition of predicates within logic
programs, and how it could be used to implement a 'lists of
solutions' procedure (as discussed in section 2.1.7.2).
Elsewhere, Kowalski has successfully applied this
amalgamation of object language and metalanguage to the
problem of database management in logic [66]. The object
language is used to describe and query databases, whilst the
metalanguage is used to construct and manipulate them. A
metalanguage formulation comprising a set of four rules is
given for assimilating new information into the database.
The example appears to be a powerful illustration of the
value of a systematic exploitation of metalanguage.

PAGE 57

2.1.7.4 Subsidiary Features
In addition to providing a language for expressing
relationships as logical formulae, together with some means
of arranging deduction from those formulae, all practical
logic programming systems have certain subsidiary features.
This section considers two of the most important categories
of those features, namely those which are concerned with
arithmetic primitives and input/output provision, and it
identifies some of the issues which seem to arise from
experiences to date.

2.1.7.4.1 Arithmetic Primitives
Logic assigns no special meanings to terms such as product
and to symbols such as '+’. However, there are good reasons
for pre-defining such identifiers within logic programming
systems consistently with their usual arithmetic roles: one
reason is to provide a convenience for the programmer, and
another is to attempt an efficient implementation by
building the definitions at a suitably low level into the
system.
The majority of PROLOG systems, including DECIO-PROLOG, the
UNIX PDP-11 PROLOG system, and the DEC LSI-RTll PROLOG
system, have pre-defined the predicate for the purpose of
arithmetic evaluations. A goal of the form:-

X is Y
is legal if X is uninstantiated and Y is instantiated to an
expression which evaluates to an integer, and the goal will
succeed by binding X to the integer. (It is also legal for X
to be instantiated to an integer, in which case the goal
succeeds if the integer is identical to the result for Y).
The expression may include the operators '+', , ’/'
and 'mod', which have their usual interpretations. The other
main arithmetic facility is the provision of six predicates
used for comparing integers, as follows:-

X = Y (equality)
X \= Y (inequality)
X > Y (greater than)
X < Y (less than)
X >= Y (greater than or equal)
X =< Y (less than or equal)

where the usual restriction is that both X and Y must be
instantiated to integers (DECIO-PROLOG permits them to be
expressions which evaluate to integers).
An significant criticism of these facilities is that they do
not fully support a logical view of the relations which are

PAGE 58

represented. For example, the primitive can almost be
characterised as implementing a conventional function, which
here delivers to the variable on its left the integer result
of evaluating the expression on its right. The
characterisation would be a precise one were it not for the
possibility that the left argument may be already
instantiated, which may be regarded as a very small
concession to the invertibility of programs that is such a
central feature of logic programming. Even this concession
is missing in the predicates, however, and a goal such as

X > 0
with X uninstantiated will return an error message on these
systems. This is not because no integers exist which are
larger than zero, of course; it is simply a consequence of
'>' having been implemented as a boolean function which
takes two call-by-value parameters.
The justification for such an approach to arithmetic
provision within logic programming systems rests on the
grounds of efficiency. It is reasonable to expect that a
purely deterministic, functional implementation of
arithmetic will by and large be less costly to implement and
will run more efficiently than a non-functional
implementation. However, it can also be argued that the
functional approach is too narrow to fit well into the
relational world of logic programming. The restrictions on
the input/output patterns force the programmer’s attention
away from the specification of relationships and onto the
instantiation states of variables. The positioning of
arithmetic conditions relative to other conditions within
the bodies of clauses becomes critically important. In other
words, considerations of control are necessarily brought to
the fore. Furthermore, experience has shown that such
restrictions on the use of primitives tend to have
repercussions which spread beyond the clauses in which they
appear and outwards into the program beyond.
Some implementers have tried to construct systems which
provide support for arithmetic in a manner which is more in
keeping with the spirit of logic programming. Exeter PROLOG
[99] for example does not insist that the right hand
argument of evaluates fully to an integer: given a goal
such as : -

7 is Y + 3
with Y uninstantiated, it is capable of discovering the
solution Y = 4 . Micro-PROLOG [94] takes the relational
approach further, abandoning the i^ in favour of individual
predicates such as SUM and TIMES where, for example,

SUM(5 X 20)
(with X uninstantiated) succeeds with the binding x = 15.

PAGE 59

Thus, SUM can be used for subtraction as well as having its
expected use in addition. Clark and McCabe, writing about
the arithmetic primitives in their tutorial guide to
micro-PROLOG [96], explain that

'Although each arithmetic relation is
implemented by a machine code program,
so as to make use of the hardware
operations of the machine, we can think
of each relation as being defined by an
implicit data base of facts.'

The idea of implementing arithmetic predicates as
simulations of the relations which they compute appears to
offer a promising alternative to the functional approach. In
general, of course, an infinite number of tuples will lie in
each relation: in the case of SUM, an infinitity of triplets
(X Y Z) solve the equation X + Y = Z and so satisfy the
relationship SUM(X Y Z). A call to SUM should succeed in as
many ways as its arguments can be instantiated so as to lie
in the addition relation. Thus a call of SUM(X Y 10) with X
and Y unbound should generate pairs of numbers which add up
to ten; a call X LESS 0 should generate negative numbers;
and so on.
In fact, micro-PROLOG does not go as far as this. It insists
that the arguments of calls to arithmetic primitives are
sufficiently instantiated to ensure that a deterministic
computation is all that is required to solve the call (for
example, any SUM call must have at least two of its three
arguments bound). The justification which is offered for
this restriction is based on considerations of efficiency.
IC-PROLOG [74], however, does have genuine non-deterministic
arithmetic, albeit restricted to the natural numbers. It
implements three primitives TIMES, PLUS and LESS which have
no instantiation restrictions on their use, so that for
example TIMES(x, y, 36) with x and y unbound will return
pairs of factors of 36. Clark, McCabe and Gregory have shown
how this enables elegant arithmetic programs to be written
which are just the obvious definitions of the relations
which they compute [100]. For instance

X divides z <- TIMES(x, y, z)
defines the divides relation and can be used for testing (x
and z instantiated), finding divisors (only z instantiated)
and finding multipliers (only x instantiated). Similarly

has-divisor(z) <- s(s(x)) divides z & ^s(s(x)) = z
defines the has-divisor relation (where -, represents
negation by failure and s is an IC-PROLOG primitive defining
the successor relation for natural arithmetic, so that
s(s(X)) denotes any integer greater than one). The IC-PROLOG
query

PAGE 60

{z: has-divisor(z)}
will now generate the sequence 4, 6, 8, 9, ___ of properly
divisible natural numbers, terminating when interrupted or
when overflow occurs in the host computer.
It is clearly highly desirable that the algorithms which
implement non-deterministic arithmetic can recognise
opportunities for termination. As a simple example, the
IC-PROLOG program for TIMES recognises that the search for
solutions to the goal TIMES(x y 12) can be limited to pairs
of natural numbers up to twelve. Unfortunately the execution
of the conjunction

LESS(1, x) & LESS(x, 9)
as a goal will not terminate upon generating the solutions
2, 3, .. , 8. Under the standard backtracking control
strategy (which is the default strategy of IC-PROLOG) the
first call to LESS will continue to generate numbers greater
than one even though none of them can satisfy the second
condition.
It is clear that a non-deterministic implementation of
arithmetic gives the programmer scope for introducing an
arbitrary level of inefficiency. Nevertheless it enables the
specification of relations to proceed from purely logical
considerations and it guarantees that these specifications
will be executable, however inefficiently, from the first
stages of development. This is consistent with the view of
logic programming software development which will be
discussed in Part Three.
Non-deterministic arithmetic needs further investigation.
The question of whether it can be extended over the whole of
integer arithmetic, and of whether there exists a worthwhile
extension to real arithmetic, should be explored. The
relationship between non-deterministic arithmetic and the
control of logic programs is also of interest.
Although the relational notation has made possible
non-deterministic arithmetic, it is recognised that
functional notation can be more natural and more compact.
Kowalski [101] quotes as an example the (non-Horn) clause
defining the relation of orderedness for a sequence of
terms : -

X is ordered ^ for all i (xi <= xi+1)
A functional notation is used here to name the items of the
sequence (xi, xl+1) and the integer successor of i (i+1).
Exchanging the functional for a relational notation gives
something like:-

PAGE 61

X is ordered if for all i, j, u, v
(u <= V if Plus(i, 1, j) and
u is the i-th item of x and
V is the j-th item of x),

The relationship between functional and relational notation
has been described elsewhere by Kowalski [40]. He suggests
a method whereby functional equations, provided they are
first-order (that is, functions may not take functions as
arguments), can be transformed into Horn clauses. In
consequence, logic programming can exploit the convenience
of functional notation whilst retaining the semantics of
relations.
In practice however most PROLOG systems have given little or
no support to the functional notation beyond the 1^
predicate for simple arithmetic. One of the exceptions is
micro-PROLOG (when augmented with the required library
procedures) in which a clause such as

related(x y) if
1inked#((double x) yl) &
y = (3 + (cube y1I)

is permitted (this example is rather contrived). Here, the
terms (double x) and (cube yl)are functional expressions
which will be evaluated by applying the programmer-defined
functions double and cube to the respective arguments,
(Unfortunately, micro-PROLOG does not have the functor
syntax for data constructors common to most other PROLOG
systems, so that functional expressions must be written in
list form). Functions of n arguments are defined first as
n+1 -place relations, for example

double(x y) if TIMES(x 2 y)
A subsequent command function double then adds a control
clause (in effect, a metarule) to the database which tells
the interpreter to recognise double in expressions as a
function. The result returned by the function for a given
input is obtained from the relation"s second argument when
the relation is evaluated with its first argument replaced
by the input. The "#* which follows linked is a control
annotation warning the interpreter that some of the
arguments which follow this predicate are expressions which
need to be evaluated. The predefined equality predicate is
similar to the of traditional PROLOG, except that both
arguments may be expressions, and (as the example shows)
these may include programmer defined functions in addition
to the usual arithmetic operations.
Although the mlcro-PEOLOG Implementation of functions can be
criticised (on the grounds of its .syntactic inelegance, for
example) it does show that logic programming systems can
support the functional notation as a practical proposition.
The main benefit should be the convenience of this notation.

PAGE 62

although there should also be efficiency advantages to be
exploited. However, if the selection of a functional
notation implies an implicit control decision on the part
of the programmer, then there is a risk of losing
completeness even although the predicate involved might
later be implemented as a totally invertible relation; this
seems to be undesirable. More experience of the use of
functional notation within practical logic programming
systems should cast more light on this aspect.
Some researchers have criticised the relatively meagre
mathematics facilities of existing logic programming
systems. Clearly the limitation of traditional PROLOG to
integer numeric data and the basic operations of arithmetic
reflects its origins in artificial intelligence. Fogelholm
[99] has suggested that in order to support a broader range
of applications, PROLOG systems should provide
floating-point arithmetic and ’a reasonable set of
transcendental functions'. Some more recent systems, such as
the hybrid POPLOG system which is embedded within POP-11
[102], have managed to provide some such facilities by
inheriting the primitives of the host environment. Again,
micro-PROLOG is surprisingly good in this respect
notwithstanding the limitations of an underlying
microprocessor architecture: it provides full floating point
arithmetic, up to the limits of the hardware. Micro-PROLOG
does not, however, offer transcendental functions.

2.1.7.4.2 Input/Output provision

Logic programs must communicate with the outside world. They
produce output which must be directed onto some appropriate
output device, and frequently they require input which must
be gathered from some input device. Obviously then, logic
programming systems are required to make suitable provision
for organising input and output.
The standard input and output mechanisms are the query and
the answer extraction facilities respectively. These
facilities are natural and unobtrusive and they are built
into logic programming systems in a variety of forms. For
example, a typical query/answer interaction with the DEC-10
PROLOG system might be:-

?- likes(X, mary).
X=john^
X=paul2
no

(where the user's input is shown underlined). The
corresponding interaction with the micro-PROLOG SIMPLE
interpreter of is:

PAGE 63

whichÇX: likes(X mary))
john
paul
No (more) answers

This ’default' input/output provision can be made more
flexible, for example by providing query mechanisms which
arrange for formatted or graphical output, or which enable
the selection of different output devices, and so on.
Facilities of this kind are commonly provided by relational
database systems, for example. Existing logic programming
systems also offer some extensions of this type, and this
seems to be a desirable area for further developments. The
query/answer mechanism is the form of input/output provision
which fits most naturally into the logic programming view
of computation as controlled deduction, and it obviates the
need for programmers to introduce explicit input and
output-handling procedures into their programs.
However, the need to write sub-programs specifically to
manage input and output cannot always be avoided.
Interactive programs must generate run-time interactions
with users; many programs require access to data held on
secondary storage devices; and output requirements are
sometimes so specialised that 'custom' programming is the
only realistic choice. Hence, logic programming systems have
provided specific input/output primitives which are
independent of the basic query/answer mechanism. The read(X)
and write(X) primitives of DECIO-PROLOG, which read into X a
term from the current input stream, and which write the term
X into the current output stream respectively, are typical
examples. To select an arbitrary file as the input or output
stream, the primitives see and tell are provided (the
keyboard and screen are defaults). Calls to these primitives
may be incorporated into program clauses as with any other
atomic formulae.
The input/output primitives of PROLOG systems have caused
much discussion. The following observation by Sergot [103]
seems fairly representative:-

'... the writing of interactive PROLOG
programs has remained a problem.
Input-output facilities are notoriously
non-logical. Read and write commands are
used only for the side-effects they
cause, so interactive PROLOG programs
cannot be understood without knowing how
they will behave.'

It is interesting to compare this with an observation by
Kowalski that interactive logic programs can exhibit
declarative input/output [40]. He quotes (from a medical
expert system program) the clause:-

PAGE 64

y is unsuitable for x if y aggravates z
and X has condition z

Kowalski suggests that the definition of x has condition z
can be provided dynamically by the user. He argues that:-

'This makes input-output declarative in
the sense that it can be understood
entirely in logical terms: the output is
a logical consequence of the information
initially contained in the system
together with any information provided
by the user ... The input can be given
in any order, provided it does not
affect the logical implication of the
output.'

Whilst accepting the importance of the logical reading of
the clause, many programmers would probably argue that the
procedural interpretation is also highly significant here.
The need to constrain the type of interaction generated by
the program forces attention onto the order in which the two
calls in the body of the clause will be executed. At a lower
level of definition (and especially at the level at which
read and write calls, or their equivalents, must be inserted
directly), the logical interpretation often disappears and
only the procedural reading is meaningful.
An obvious partial solution to the input/output problem is
to apply a disciplined style of programming which isolates
low-level input/output calls from the rest of the program.
Some researchers, including Sergot (op. cit.) and Ennals,
Briggs and Brough [104] have suggested that logic
programming systems should assist by providing higher-level
facilities for input and output. As one example, Sergot
describes a query-the-user system for logic programming in
which the format of the user’s queries to the system mimics
that of system's queries to the user. The facilities he
describes, which are implemented in micro-PROLOG using
metalogical programming, are available as part of a package
of tools designed to support expert systems development. The
package is known as APES [105]. Another example of
high-level input/output 'packaging' is provided by the
SIMPLE front end to micro-PROLOG which includes, in addition
to the primitives R and P which correspond to the read and
write of DECIO-PROLOG, a primitive is-told which enables a
complete input/output interaction to be programmed by a
single call. An illustration, based on an example given by
Clark and McCabe [96], is the clause:-

Smith sells-electrical x if
Smith sells x and
(X electrical) is-told

A call of (say) (light-bulbs electrical) is-told will cause

PAGE 65

the prompt light-bulbs electrical ? to be displayed. The
call will succeed or fail depending on whether the user
responds yes or no respectively. The is-told primitive can
also cope with arguments containing uninstantiated
variables, and micro-PROLOG's backtracking can be
conditioned by the user's response. Clauses which use this
primitive generally have a good logical reading, as
illustrated by the example shown here.
Notwithstanding the worth of higher-level primitives such as
is-told, it seems likely that there will always be occasions
when requirements are sufficiently unusual to necessitate
that programmers create their own input/output procedures.
This is particularly true in realistic applications where
input must incorporate error-trapping and, indeed, where the
man-machine interface may require sophisticated screen
displays incorporating, possibly, icons and windowing. If it
is agreed to approach applications of this type purely
within a logic programming framework (and as Part Three will
show, some researchers would doubt the wisdom of this) then
a highly modular implementation of the required procedures
seems to be called for. The provision of suitable module
facilities within logic programming systems will be
discussed later.
To date, it seems that relatively little attention has been
given to questions relating to the generation of graphical
output by logic programming. A collection of (machine
dependent) graphics primitives is to be found in the various
implementations of micro-PROLOG (such as those for the
Sinclair Spectrum [106] and the BBC microcomputer [107]):
the M.Sc. thesis of Julian [108] discusses micro-PROLOG
graphics at length. An interesting short contribution to the
use of graphics within logic programming is offered by
Kowalski [109], who uses the relationship x names y to
relate a 'picture-plan' x, which is a sequence of actions
(coded in a style similar to the 'turtle geometry' of the
programming language LOGO [110]) denoting a picture, to the
name of the picture y . Kowalski then shows how a predicate
draws can be defined such that a call to x draws y will
construct a screen image of the picture. He argues that the
specification of pictures as picture-plans by means of Horn
clauses which can be interpreted as procedures to actually
construct the pictures has advantages both in proving
properties of programs and in reasoning about the pictures
themselves.

PAGE 66

2.2 Logic Programming Systems
This section reviews some existing logic programming
systems. Since PROLOG systems of various kinds have so far
dominated the practical aspects of logic programming, they
have a predominant place here. First, however, consideration
is given to some basic aspects of implementation.

2.2.1 Implementation aspects

The great majority of logic programming systems which have
been implemented to date have been PROLOG systems. Until
quite recently very little had been published on the
technical aspects of implementation, but the situation has
now changed. The book edited by Campbell [111] contains a
large collection of papers on PROLOG implementation and
represents a significant source of information. Hogger [87]
provides a thorough introduction to implementation, and the
collection of papers edited by Clark and Tarnlund [112]
includes three papers on the subject. It may be helpful here
to briefly sketch the mechanism of logic program
interpretation which is most commonly documented. Note,
however, that the description given here is a somewhat
idealised abstraction of many variations.
The essential task of a Horn clause logic interpreter is to
construct and store the search tree which corresponds to the
user's program and the goal. However, it would be wasteful
to store a concrete representation of the goal statement
obtained at each node, since this would involve making a
fresh copy of the body of a procedure each time the
procedure is used. Instead, only one copy of each clause
need be stored in an area of memory known as the heap. The
construction of the search tree is usually represented by a
stack of frames, known as the execution stack. Each frame
(or activation frame as it is sometimes known) is a record
of a single unification, and it contains a system of
pointers to parts of the heap and to other parts of the
stack which together represent the current state of control.
In addition, each frame contains pointers which enable the
substituting value for each variable involved in the
unification to be retrieved. The device whereby many calls
to a procedure can all 'share' the same representation of
the procedure is known as structure sharing and is due to
Boyer and Moore [113]. As it happens, the same principle of
structure sharing can be applied to the representation of
the values of variables: a structured value (functional
expression or list) can be represented by a 'skeleton' which
yields its structure together with an 'environment' which
yields the values which are to be applied. In this scheme,
the value of a structured variable can be represented within
an activation frame by a pair of pointers (known as a

PAGE 67

molecule) to the corresponding skeleton and environment. The
actual skeletons and environments can be stored on the heap.
Implementations which use this system for representing data
are known as structure-sharing implementations. However,
non-structure sharing implementations have also been
developed: these implementations compute the value of a
structured term directly (with pointers to other values
where necessary) and store this value on the heap.
Discussions of the respective merits of structure-sharing
versus non-structure sharing implementations are to be found
in Mellish [114], Bruynooghe [115], and Kahn and Carlsson
[116], but the outcome is far from clear-cut and both
machine architecture and intended applications are proposed
as factors which should influence future choices.
At least two interpreting algorithms for PROLOG programs
using the stack-frame representation for unifications have
appeared. Both Hogger [87] and van Emden [117] have
published interpreting algorithms in an Algol-type language:
these appear to be very similar and quite straightforward. A
crucial component of any interpreter is the unification
mechanism itself, and this has been the object of much
investigation. Robinson [118] has noted that

'The unification algorithm started its
existence as one of the most inefficient
algorithms ever proposed. It was
exponential in space and time. Now we
have progressed so far that, rather than
being exponential, it is now nearly
linear'.

Recently a new unification algorithm has been presented by
Martelli and Montanari [123], who claim that their version
compares favourably with the more established algorithms of
Huet and of Paterson and Wegman. The researchers claim that
the new algorithm can achieve an exponential saving of
computing time in a resolution-based theorem prover. It is
also claimed to perform well in detecting those illegal
cases in which variables may become bound to structures
which include occurences of themselves (for example, x to
f(x)): many existing PROLOG interpreters omit this so-called
occur-check entirely. The justification for the omission of
the occur check is usually given in terms of efficiency (it
is only very rarely required), but the saving is known to be
potentially unsafe and it can actually destroy the soundness
of SLD-resolution. Lloyd [119] for example presents several
examples in which a PROLOG system without the occur check
will give wrong answers. The problem has been studied by
Plaisted [120] who suggests that a preprocessor could
identify the program clauses which might cause problems so
that appropriate action can be taken (for example, full
unification could be invoked for these clauses).
Methods of improving the efficiency of PROLOG interpreters
have also been studied. Bruynooghe [115] for example has

PAGE 68

described the opportunities presented by deterministic
procedure calls, and by tail recursion, to conserve memory.
Elsewhere he has written about PROLOG garbage collection
[121]. Substantial gains in execution speed are offered by
compilation, which at present is only available in Warren's
DECIO-PROLOG system; a major source of increased efficiency
stems from the machine-code unification routines which the
compiler generates specifically to match the formal
parameters of each program clause (this gain can be improved
further if the programmer is willing to provide so-called
mode declarations corresponding to a procedure's intended
pattern of use). Warren [122] has compared the execution
performance of his compiler with the Stanford DECIO-LISP
compiler, which is recognised to produce quite fast code:
he reports that for simple list-processing examples, PROLOG
is slower than LISP by a factor of about 0.6, but that in
other examples PROLOG can be faster than LISP by a factor of
two or more. Warren also points out that his compiler is
optimised for space rather than for speed and he has hopes
of a further speed improvement by a factor of two.
PROLOG systems have been developed using several
implementation languages, including ALGOL, FORTRAN, PASCAL,
'C, PROLOG and various assembly languages. However, it has
become common to implement at least the logic extensions to
Horn clause logic in PROLOG itself.

2.2.2 Features of Existing Systems
This section outlines the main features of some existing
logic programming systems. It is hoped that the systems
selected will suggest the variety of facilities which have
been documented to date. A short overview is provided for
each system, following which attention is given to the
language syntax, the logic interpreter's control strategy,
the language's logic extensions to Horn clause form, and the
language's subsidiary features. Finally, a note is included
which briefly documents the main implementation aspects of
the system.
It should be noted that this section attempts to express the
general 'flavour' of the systems covered. An effort has been
made to avoid excessive detail. References have been given
to sources of further information.

PAGE 69

2.2.2.1 Micro-PROLOG

Overview
Micro-PROLOG [96, 94, 106, 107] is a microprocessor-based
implementation of PROLOG running under the CP/M and MS-DOS
operating systems, as well as a number of individual machine
operating systems. It has been developed by Logic
Programming Associates, which is led by the two well-known
logic programming researchers, Keith L. Clark and Frank G.
McCabe. Notwithstanding its microprocessor architecture, the
micro-PROLOG system has incorporated some innovative
features. The core of micro-PROLOG itself is small with a
LISP-like language syntax. However, it provides full support
for metalogical programming and (unusually for PROLOG
systems) there are facilities for constructing modules.
Among the modules which are provided with the system are
editors, debuggers, translators, and various other tools,
all of which are actually PROLOG programs in which
metavariables feature prominently. Notable among them are
the SIMPLE translator, which provides a convenient syntax
and a pleasant set of facilities for PROLOG programming, and
another translator which implements a large subset of the
facilities of the DECIO-PROLOG system. Either of these
translators can act as 'front ends' which overlay the basic
micro-PROLOG system.

Syntax
The Horn clause

Grandparent(X, y) <- Parent(x, z) & Parent(z, y)
could be expressed in core micro-PROLOG as

((Grandparent x y)(Parent x z)(Parent z y))
A micro-PROLOG clause is a list of atoms. Each atom is a
list of terms, where the head term denotes the predicate.
Terms may be numbers (integers or floating point), constants
(sequences of characters beginning with a letter, such as
Grandparent), variables (which are limited to x, y, z, X, Y,
Z, xl, yl, zl, XI, Yl, Zl, ...), and lists of terms. The
list notation (x|X) is available which denotes a list having
X as its first term and X as the list of all remaining
terms. Lists in fact are used to the exclusion of the
functor-prefixed structures which are provided by most other
PROLOG systems. A query is expressed by '?' followed by a
list of atoms which are interpreted as conjoined goals, for
example:-

?((Grandparent x y)(male y))

PAGE 70

The system response to such a query indicates only success
or failure: if further information, such as answer bindings,
is required then it must be explicitly programmed into the
query. The SIMPLE translator offers a 'sugared-up' syntax in
which the clause above would appear as

Grandparent(x y) if
Parent(x z) and
Parent(z y)

The SIMPLE equivalent of the query above would be:-
is(Grandparent(X y) and male(y))

In addition to the standard prefix atomic form, SIMPLE
provides an alternative postfix notation for unary atoms and
an alternative infix notation for binary atoms. Micro-PROLOG
does not provide an operator precedence grammar (as
described below) as do many other PROLOG systems.

Control
The micro-PROLOG system interprets logic programs using the
standard control strategy as described earlier. That is, the
computation rule is the selection of goals on a last-in
first-out left-to-right basis. The search strategy is
depth-first (backtracking) with clauses investigated
textually top-to-bottom.
Programmers may limit the extent of the backtracking by
means of the cut (/) and the single-solution annotation (!).
Both of these were discussed in an earlier section.

Logic Extensions
Micro-PROLOG incorporates primitives corresponding to
negation by failure (NOT), lists of solutions (ISALL),
disjunctions (OR), conditional alternatives (IF), and
implication conditions (FORALL). These extensions were all
discussed in section 2.1.7.
Metalogical programming is supported. A variable may be used
to name a predicate symbol, an atom in the body of a clause,
or the tail of the body of a clause. Various primitives are
provided which take atoms or clauses as arguments, such as
the logical operators mentioned above and there are various
database-modifying predicates such as ADDCL and DELCL.

Subsidiary Features
Several important subsidiary aspects of micro-PROLOG,
including its arithmetic primitives, the facility for

PAGE 71

defining functions (which in most versions is actually
accessed through a utility module), and certain input/output
facilities have already been mentioned. Among other features
of the system, the module construction facilities and the
external database provision are especially interesting.
A micro-PROLOG module is a named collection of clauses. A
module may communicate with other modules, and with the
un-modularised or 'workspace' clauses, via import and export
lists. The form of a module is:-

<module name>
<export list>
(import list>
{collection of clauses}
CLMOD.

A module's import list contains the constants which arise
outwith the module but which must be recognised inside it:
these constants include predicates defined outside the
module, and also 'data constants' (such as the constant
arguments of relations) which must be recognised by the
module's clauses. A module's export list contains all the
predicates defined inside the module which are to be made
available outside (that is, they will be available to the
workspace and also to other modules which mention them in
their import lists). Constants which appear within a module,
but which are not included in the import/export lists, are
'local' to the module and these constants can be used
elsewhere without fear of a clash of names. Micro-PROLOG
maintains an independent dictionary for the (import, export
and local) names of each module, and it also maintains a
dictionary for the workspace clauses: by this means, the
clauses defining module relations are 'invisible' to the
user from the point of view of his workspace clauses.
The external database provision of micro-PROLOG makes it
possible to extend the apparent workspace available for
clauses beyond the limits of the microcomputer's direct
access memory. It does this by storing part of the database
on a disk file, the clauses of which however can
nevertheless be utilised with the same generality as those
which occupy the main memory. From the programmer's
viewpoint, the extension (which involves the use of a system
utility module called EXREL) is almost completely
transparent. Of course, the programmer's decision to make
use of the external database provision represents a
trade-off of execution speed against main memory space.

Implementation
Most of the micro-PROLOG system is implemented in assembly
language, although parts (including most of the logic

PAGE 72

extensions) are defined by PROLOG clauses. It is a non
structure-sharing system. The interpreter, which omits the
occur check on unification, has the capability to exploit
the space saving opportunities which are offered by
deterministic procedure calls and by tail recursion. In
addition to providing 'extensibility from above* through the
module construction facility, micro-PROLOG provides
'extensibility from below' in the form of a machine-level
interface which permits new predicates to be defined through
assembly-language programs.

2.2.2.2 IC-PROLOG

Overview

The IC-PROLOG system [74, 75, 100, 124] was developed at
Imperial College and is established on IBM-370 and CDC-6000
mainframe computers. The main motivation behind its
construction appears to have been experimental with special
emphasis on PROLOG control provision. It has also been used
for the purpose of teaching a variety of programming
concepts, including those of lazy evaluation and
communicating processes.

Syntax
The basic syntax of IC-PROLOG is very close to the standard
syntax of Horn clause logic. For example,

grandparent(x, y) <- parent(x, z) & parent(z, y)
is a valid procedure in IC-PROLOG and

parent(John, Mary)
is a valid assertion. Variables are Identifiers which begin
with lower-case letters. Functional terms are permitted. The
system provides a form of operator precedence grammar which
enables functors and predicates to be declared by the
programmer as infix, prefix or postfix, with a specified
associativity (either RIGHT, LEFT, MOT or ASSOCIATIVE) and a
relative precedence (from 0 to 100): this provides some
syntactical flexibility from the prefix normal form. As an
illustration, IC-PROLOG pre-defines the Cons functor symbol
which can be used for lists as in LISP so that the list (A B
C) can be written as

Cons(A, ConsCB, ConsfC, MIL)))

PAGE 73

Alternatively, with the declaration of the symbol ’.’ as a
list functor using the IC-PROLOG system directive

$oper(’.', 0, INFIX, RIGHT)
the dot subsequently becomes a right associative infix
functor with precedence zero, and the same list can now be
written as

A.B.C.NIL
IC-PROLOG has three forms of query. The most general is

{t: LI & .. & Lk}
where t is a term and the Li are literals: this requests the
set of all values of t which make the goals Li succeed.

Control
The default control strategy of IC-PROLOG is the standard
strategy. However, the system does not provide a 'cut' and
most of the other commonly found metalogical features (such
as isvar and assert) are absent. In compensation a rich set
of control annotations are available, some of which (such as
the bracketing of procedures which are search control
alternatives) have already been described. The three
examples below, which are taken from a fuller account
written by Clark et al [100], illustrate the facilities for
non-sequential evaluation of procedure calls. Each example
refers to the classic problem of checking that two given
tree structures have the same leaf profile.
1) Unsynchronised Parallel Evaluation
The '//' symbol in the procedure

sameleaves(X, y) <- w profile-of x // w profile-of y
has the declarative meaning 'and', but with the control
effect of executing the two calls as pseudo-parallel
processes. The processor timeshares between them, giving
each process at least enough time for a single resolution
step. It is not possible for more than one process to bind
the same variable at the same time. If one process adds a
leaf label to w which is not then matched by the other
process, the parallel evaluation ends.
2) Parallelism with Directed Communication
The ' ' variable annotation in the procedure

PAGE 74

sameleaves(x, y) <- w profile-of x // w" profile-of y
specifies that the second call is the so-called producer of
the variable w. Only this call is allowed to generate a
binding for w; the other call, which is suspended if it
tries to bind w, acts like a so-called consumer in that it
is confined to checking bindings which are passed by the
consumer.
3) Data Triggered Coroutining
By reverting back to the connective, the procedure
sameleaves(x, y) <- w profile-of x & w" profile-of y

becomes one in which evaluation alternates between the two
calls. The second call acts like a so-called lazy producer
for w. As soon as it generates a label for w, the first call
is activated to check that the profile of x agrees with this
label. If it does not then the evaluation fails.
These control annotations, together with others which are
described by Clark et al (op. cit.), can be mixed to specify
a variety of different control strategies.

Logic Extensions
IC-PROLOG provides negation-by-failure (^A), lists of
solutions (X = {t: A}), and conditional alternatives (P THEN
Q ELSE R).

Subsidiary Features
The invertible arithmetic relations of IC-PROLOG have been
discussed previously. Two other interesting features are
stream input/output and system directives. Stream input is
implemented via the READ(x) primitive which binds its
argument to the entire stream of characters typed at the
terminal. The stream is processed as a list which is lazily
produced. The corresponding WRITE(x) primitive can also be
used with its argument generated as a stream. An example of
a system directive was given above. All directives appear
syntactically as assertions for predicates which commence
with the character and they either relate to the way in
which the system processes the input set of clauses or else
they provide control information to the interpreter. Some
examples are : -

PAGE 75

$EDIT ((Relation name>)
(Invoke inbuilt editor for relation)

$SAVE (File)
(Save program in File)

$TRACE
$FUNCTION

SOCCUR

(Turn on interpreter's trace facility)
((Relation>, (List of argument positions>)
(Tell interpreter that Relation
is a function of given arguments,
enabling space optimisations)
(Invoke occur check on unification)

Implementation
The IC-PROLOG system was written in Pascal. It uses a
unification procedure which omits the 'occur check' by
default, although as indicated above the programmer can use
a directive to change this.

2.2.2.3 DECIO-PROLOG

Overview
The DECIO-PROLOG system [73, 122, 125] was developed in
Edinburgh by Warren, Pereira and Pereira. It is
well-documented by the standard of logic programming
systems; this is the system on which is based the well-known
PROLOG tutorial text by Clocksin and Mellish [95]. This is
the best known PROLOG system and it has produced many
offshoots. DECIO-PROLOG is particularly respected for the
quality of its implementation, which includes an option for
program compilation.

Syntax
Basic DECIO-PROLOG syntax is close to that of IC-PROLOG. The
clauses

grandparent(X, Y) : - parent(X, Z), parent(Z, Y).
parent(john, mary).

are examples of a DECIO-PROLOG rule and an assertion
respectively. Variables are marked by upper-case initial
letters.The system must be explicitly told by the command
[user], to accept such clauses from the terminal: in its
'default state' it expects queries. An example of an
interaction involving a query is

PAGE 76

?- likes(X, Y).
X = john,
Y = alfred_^
X = alfred,
Y = john£
X = david,
Y = bertrand2_
no

Here, the underlined text denotes the user's input. In
response to each semi-colon DECIO-PROLOG attempts to
discover a further solution to the goal and finally it
prints no when this is impossible.
Functional terms are permitted, and as with IC-PROLOG an
operator precedence grammar enables the programmer to
specify some flexibility of syntax from the prefix normal
form for functors. This is accomplished by executing a goal
of the form op(Prec, Spec, Name) which specifies that the
operator Name is to have the associativity corresponding to
Spec and the precedence level Prec. To illustrate, the usual
dot functor for lists could be declared by means of the goal
op(51, xfy, '.') which declares the dot as a right
associative infix operator with precedence level 51. In
fact, DECIO-PROLOG by default provides programmers with an
alternative notation for lists which is very similar to that
of micro-PROLOG: the list [XÎY] denotes a list of which X
represents the first member and Y represents the list of all
other members.

Control
The control strategy is the standard strategy. The 'cut'
(symbol '!') is available to control the extent of
backtracking. Another pre-defined control predicate (and one
which suggests that DECIO-PROLOG encourages a rather
pragmatic view of PROLOG programming) is repeat which is
defined as follows:-

repeat.
repeat :- repeat.

Logic Extensions
Negation-by-failure (not), disjunction (Q ; R) and
conditional alternatives (Q -> R; S) are all provided. A
list-of-all-solutions primitive has been incorporated into
later versions.

PAGE 77

DECIO-PROLOG makes available a large assortment of
metalogical primitives and several of these (including
clause, assertz, functor, arg and call) were described
earlier. These primitives provide considerable scope for
metalogical programming. However this appears to be
restricted in comparison to other systems such as
micro-PROLOG in that DECIO-PROLOG does not permit predicates
to be treated as 'first class' data objects. (Warren has
resisted this extension, arguing that it would add nothing
to the power of the language [93]).

Subsidiary Features
The DECIO-PROLOG provision for arithmetic (which is
integer-only) and for input/output have already been
outlined. A large number of other features are available and
these have been documented by Byrd et al [125].

Implementation
The current DECIO-PROLOG system comprises an interpreter and
a compiler (as described earlier) which co-resides with the
interpreter in main store. Its implementation has been
described by Warren [126, 127]. Much of the system has been
developed in PROLOG with the aid of the bootstrapping
technique. Many optimisations have been incorporated to
conserve execution speed and (especially) memory
consumption. An example is indexing: in storing clauses
DECIO-PROLOG automatically constructs an index to memory
locations based on the first arguments, in addition to the
predicates, of clauses. This can provide substantial
efficiency gains, especially when a large set of assertions
for some predicate must be searched. The system (which omits
the 'occur check') uses a special two-stack version of
structure-sharing which facilitates space-saving.

2.2.2.4 LOGLISP

Overview
LOGLISP [70, 128] is an implementation of logic programming
within LISP. It was developed by Robinson and Sibert at
Syracuse University with the following main aims:-

1. To provide LISP users with a logic
programming facility within the LISP
environment with which they were highly
familiar.

PAGE 78

2. To demonstrate that logic programming
need not be synonymous with bactracking
execution in the style of PROLOG (and
PLANNER).

LOGLISP is based on the procedural interpretation of Horn
clauses using LUSH resolution and hence falls clearly within
the logic programming computational view. Unlike traditional
PROLOG systems however, it uses a breadth-first search
strategy. Because of this and its relationship to LISP, it
is of considerable interest. Unlike the three PROLOG systems
described above however, LOGLISP appears to have no
substantial community of users and indeed Robinson has
described it as a 'laboratory device' [129]. The developers
have described the system as providing 'a rich setting for
logic programming' and they are now working on a new
language which has the name 'Super LOGLISP'.

Syntax
LOGLISP consists of LISP together with a set of logic
programming primitives implemented in LISP which are
collectively referred to by the name LOGIC. In LOGIC all
procedures, queries and other logic programming constructs
are represented as LISP data-objects. For example the
procedure which appears in Horn clause logic as

B (— A1 Gt ... & An
is entered into the LOGLISP system by typing the LISP
procedure call

(: - B A1 ... An)
thereby invoking the LOGIC function which has been
programmed to store the procedure (with indexing) in the
user's database. (Robinson and Sibert [70] use a somewhat
different terminology). The atoms B and Ai are written in
LISP syntax, as exemplified by

(Likes X y)
with the convention that variables begin with lowercase
letters. An example of a LOGLISP query form is

(ALL (xl ... xt) Cl & ... & Cn)
which is actually a call on the LOGIC defined procedure ALL,
which returns as its value a list of all the tuples (xl ...
xt) which satisfy the goal statement Cl & ... & Cn.

PAGE 79

Control
LOGLISP computes solutions using LUSH resolution. The
computation rule selects goals on a last-in first-out
left-to-right basis, as in traditional PROLOG. The search
strategy is breadth-first, with branches of the search tree
being developed in quasi-parallel.
Several control mechanisms are provided by the system over
the LOGLISP breadth-first search. They are provided in order
to truncate execution where (for example) search trees have
one or more branches of infinite length. The mechanisms take
the form of a set of parameters which the authors of LOGLISP
call the 'deduction window'. Each parameter enables a bound
to be set on the search tree, such as the maximum branch
length, the total number of nodes which may be developed,
the maximum number of subgoals which may correspond to each
node, the number of times in any one branch that rules are
applied, and the number of times in any one branch that
assertions are applied. Default values are provided for the
deduction window, but programmers can overide these by
annotating queries accordingly, as exemplified by

(ALL X PI ... Pn RULES: 5 TREESIZE: 1000)

Logic Extensions
LOGLISP does not appear to provide any extensions to Horn
clause logic. In compensation, the system's developers
stress that in consequence of the embedded implementation
the full power of LISP (very nearly) is available to users
and LISP procedures can be invoked from within the user's
programs. By illustration, negation-by-failure could be
defined, if so desired, by

(NOT p) <- (NULL (ANY 1 T p))
which provides the LISP primitive NOT with the extra meaning
of negation-by-failure. Here, ANY is a LOGIC-defined query
primitive and NULL is the LISP predicate which tests for an
empty list. It is a feature of the LOGLISP deduction cycle
that LISP expressions are replaced by their reductions
according to their LISP meanings.

Subsidiary Features
LOGLISP users inherit the facilities of LISP, including its
arithmetic and input/output capabilities. In particular the
answer to a query is a LISP data object and as such it can
be arbitrarily processed.

PAGE 80

Implementation
LOGLISP is a structure-sharing system, although the
implementers describe some specialisation of the basic
Boyer-Moore technique which was necessitated by the
requirement for rapid access to variable bindings arising
from the quasi-parallel execution strategy [70]. The
unification algorithm appears to omit the occur check. The
system is claimed to achieve an execution speed of around
150 unifications per second, or roughly one-sixth of the
speed of DECIO-PROLOG running in its interpretive mode, but
the developers believe that they will be able to improve
this by a factor of at least ten. Unfortunately, no
documented statistics on the memory consumption of LOGLISP
are known.

PAGE 81

3 LOGIC PROGRAMMING FOR SOFTWARE DEVELOPMENT

Part One of this thesis identified some major current
problems of software development. It was argued that
programs in traditional languages suffered from referential
opacity, that the predominance of informal development tools
and methods has impeded the efficient development of
verifiable software, that programming languages have been
insufficiently problem-oriented and are becoming
over-complex, and that imperative programming styles lack
scope for exploiting parallel computer architectures. This
section considers what logic programming might have to offer
to the solution of these problems. Where logic programming
in its present state appears inadequate, an attempt is made
to suggest what if anything can be done to close the gap.

3.1 Logic as a uniform software formalism

The multiplicity and informality of the commonly used tools
and methods for software development were identified earlier
as serious problems. The utilisation of different languages
and notations at each of the specification, design and
implementation stages of development was recognised to
introduce sources of error: instead of being a coherent
single process, software production depends on a sequence of
stages each having its own methods and tools. In consequence
fracture points are created. Uniform formal methods, which
should assist with the development and verification of
software, are seldom applied.
An important claim made for logic as a language is its
versatility as a formalism. Hogger [87] argues that

'Logic can be used to represent data,
programs, specifications and the
relationships between them; it can be
used for both object-level and metalevel
descriptions; it can be used to describe
the management of software as well as
the software itself.

Lloyd [119] also emphasises the versatility of logic:-
',..logic thus provides a single
formalism for diverse parts of computer
science. Logic provides us with a
general-purpose, problem-solving
language, a concurrent language suitable
for operating systems and also a
foundation for database systems.*

PAGE 82

Kowalski [101] argues in particular that:-
'The suitability of logic for expressing
both programs and their specifications
make it especially useful for program
development'.

Thus, logic is proposed as a uniform formalism tool for
software development. In what follows, this proposal is
considered in detail.

3.1.1 The development process with logic

The development process as outlined by Kowalski (op. cit.)
has two essential stages

1. (Specification stage) The problem to
be solved and the information which is
needed for the solution are specified.
The final specification obtained should
be in formal logic, although successive
formulations starting from imprecise
natural language may be required to
achieve this.
The specification should now be tested
using a suitable logic interpreter. An
incomplete or incorrect specification
can be altered and tried again.
2. (Efficiency stage) Inefficiencies
apparent in the specification are
identified and removed, producing an
effective program.

In comparison with the complexity of traditional 'structured
programming' development methodologies, this process appears
rather straightforward. It seems that the only difference
between specifications expressed in logic and finished
programs rests with efficiency! Elsewhere, Kowalski confirms
that this is his conclusion:-

PAGE 83

'Logic sufficiently blurs the
distinction between program and
specification that many logic programs
can just as well be regarded as
executable specifications. On the one
hand, this can give the impression that
logic programming lacks a programming
methodology; on the other, it may imply
that many of the software engineering
techniques that have been developed for
conventional programming languages are
inapplicable and unnecessary for logic
programs'.[40]

3.1.2 Logic specifications

One possible criticism concerns the requirement that
specifications should be expressed in formal logic. It might
be argued that, since specifications originate (at least
partly) from users, logic is not sufficiently natural and
that it is too difficult to use. To some extent this
criticism is answered by the derivation of the logic version
of the specification by successive formulations starting
from natural language. Although formal methods cannot be
used to ensure the correctness of the early (pre-logical)
formulations, there is the advantage that as soon as a logic
version is written it can be executed and tested against
expectations. Should the specification turn out to be
incorrect, either in the sense of containing inconsistencies
or else in the sense that it does not specify a solution to
the problem which needs to be solved, then it can be
remedied at that stage. Arguably this is a big improvement
over a more conventional software life cycle which fails to
test specifications operationally until finished programs
have been implemented.
The suggestion that specifications should be expressed in
formal languages, including logic, is not new. Sommerville
[16] notes several formal notations (such as PSL/PSA, RSL
and SADT) which have been developed for the purpose of
expressing specifications. In some of these languages
statements are machine-processable, but of course they are
not programming languages. Logic has been used as a
specification language quite commonly, for example by Floyd
[24], Manna [133], Hoare [134] and Dijkstra [135]. It is
worth noting also that logic has been used as a language for
formal description by mathematicians for a very long time.
Logic specifications can only be executable, however, in the
presence of logic programming systems which can interpret
the form of logic used. As Part Two of this thesis has
shown, most current logic interpreters can cope only with a

PAGE 84

fairly small subset of logic based on Horn clauses. An
example of a Horn clause specification of a significantly
complex application is presented by Davis [136], who shows
how a graphical display interface can be specified by means
of Horn clauses. Her specification is both highly readable
and directly ’runnable’, enabling it to be easily debugged.
More commonly, however, it is argued that Horn clauses are
not expressive enough for representing specifications and
that something nearer to the syntactic freedom and
expressiveness of full first-order logic is required. Thus,
specifications are provided in the formal language of logic,
but the advantage of being able to execute them directly is
lost, at least with current logic programming systems.
This observation may suggest the goal of building logic
interpreters which support a larger fragment of logic.
Indeed, some progress has been made towards this end, as
illustrated by the discussion in Part Two of extensions to
Horn clause form. Today the majority of PROLOG systems
augment the language of Horn clauses at least to the extent
of implementing some form of negation and, generally, sets
of solutions. However, implementing even these modest
extensions has been problematic (as was shown earlier). The
great assets of the procedural interpretation of Horn
clauses through SLD-resolution lie in its soundness and
(with a fair search rule) its completeness: implementing
extensions whilst preserving those assets has been shown to
be no easy task. Fortunately, the efficiency with which such
an extended logic system would execute specifications
written in this enlarged language would not be of too great
a concern from a specifications-testing point of view.
As an alternative (or rather, as a complement) to building
logic interpreters which can process logic at a high enough
level to execute specifications, researchers have
investigated means of transforming specifications into a
form of language compatible with existing interpreters. From
a specification written in full first-order logic, the aim
is to use logical implication to derive an executable (say,
Horn clause) program. This method, which is sometimes called
the synthesis of a logic program from its specification,
guarantees the soundness of the derived program.
(’Soundness’ here is intended to mean the property whereby
every relation which holds in the program also holds in the
specification: this property is often referred to as partial
correctness. Note that soundness is a property of the logic
only and is independent of any control which an actual logic
interpreter might use). Synthesis of logic programs has been
investigated by Clark [137], by Clark and Sickel [138] and
by Hogger [139, 140]. Clark (op. cit.) describes the aim of
synthesis as being to derive from the specification the set
of computationally useful Horn clauses, that is, those
clauses which can be used to generate all the instances of
the relation which is to be computed. He shows in particular
how recursive programs can be derived from non-recursive
specifications, and how tail recursive programs can be

PAGE 85

derived. If the synthesis is directed such that the
definition of a relation in the specification is fully
equivalent to the relation’s definition in the derived
clauses, then in addition to soundness the synthesised
program has the property of being complete with respect to
that relation. (A program which is both sound and complete
with respect to its specification is often termed totally
correct).
Generally, the logic specifications presented in the
literature describe relatively simple relations. For
example, Clark discusses examples of a list membership
predicate, a relation describing ordered insertion with
binary trees, the factorial relation, and so on. In each
example it is straightforward to present logic
specifications and the synthesis of Horn clause programs
from them is fairly easy. However, it can be perceived that
the gap between such examples and the kind of problems
typically encountered in production programming is rather
large. It seems much less likely that with a large and
complex problem, which is possibly poorly perceived
initially, a satisfactory full set of specifications in
formal logic can be so easily developed. Even if this could
be accomplished, however, the synthesis into executable
programs would presumably require a further non-trivial
effort before any testing could becomae possible. Note that
this potentially concedes a major inefficiency, in that
weaknesses in the specification may now go undetected until
a point long after they have been introduced.
In the interests of detecting specification errors at the
earliest possible stage, the steps of program specification
(using formal logic) and program synthesis (deriving a
version in the executable subset of logic) should proceed
together. A methodology which follows this proposal, called
top-down logic programming, is described next.

3.1.3 Top-down logic programming

A top-down methodology for the development of logic programs
is (recursively) described in the following steps.

1. The required program is first
identified with some predicate r, say. A
(full first-order) logic specification S
of r is obtained in terms of a set of
predicates, say rl, r2, ..., rk.
However, rl, r2, — , rk are not
themselves formally specified at this
stage.

PAGE 86

2. A Horn clause (or other executable)
program P for r is synthesised from S
using the predicates rl, r2, ..., rk. At
this point, P is executed with ’dummy’
procedures set up to simulate the
expected meaning of these predicates,
enabling the specification S to be
tested and improved if necessary.
3. For each predicate ri,

a. The predicate ri is given a
formal logic specification Si in
terms of some set of predicates
ril, ri2, ..., rik, which are not
themselves formally specified at
this stage.
b. A Horn clause program for ri is
synthesised from Si using the
predicates ril, ri2, ..., rik.
This program is substituted in P
for the previous ’dummy’
procedures, enabling the expanded
specification (SuSlu...uSi) to be
tested and improved if necessary.
c. If k>0, then each predicate
ril, ..., rik is developed by
top-down logic programming.

The methodology closely resembles the ’stepwise refinement’
process of traditional structured programming [15]. A
crucial difference here, however, is that only the logic
component of the program is being developed. Consideration
of the control component (beyond the selection of an
autonomous control strategy to enable testing) is deferred
to the subsequent, efficiency-improving stage of program
development. Furthermore, the use of synthesis to derive
each predicate in the program from its specification
guarantees the soundness of the whole program, whilst the
use of ’dummy’ procedures permits the earliest execution and
testing of the specifications (effectively, this is top-down
development with top-down testing of specifications). A
comparable process for top-down programming has been
described (although not specifically in the context of logic
programming) in a paper by Hoare, who proposes that ’a
computer program can be identified with the strongest
predicate describing all relevant observations that can be
made of a computer executing the program’ [141]. This
’strongest predicate’ corresponds to the ’top-level’
predicate r in the description given above. In the context
of logic “programming, Hogger [87] has described a somewhat

PAGE 87

similar top-down development methodology, goal-directed
derivation, to the one given here: it may be observed that
the process described above is 'goal-directed' in the sense
that the implied use of the program will proceed from a call
to the top-level predicate.

3.1.4 Abstraction and modularity with logic

In Part One it was argued that abstraction and modularity
were the two major principles which the 'structured
programming' school contributed to the attempt to solve the
problem of software construction. It is interesting, then,
to consider the significance of these two concepts for logic
programming.

3.1.4.1 Abstraction

Dijkstra has argued that the fundamental key to effective
programming lies with the 'separation of concerns' [155],
and the structured programming methodology which he did much
to develop encourages this separation in various ways.
Programmers are encouraged to formulate a highly abstract
version of an algorithm in the first instance, and in a
modern imperative language this can be implemented as a
top-level procedure. Sub-procedures can be developed
separately from one another in hierarchies of abstraction.
Data structures can be separated from procedures, textually
as well as conceptually, and the methodology recommends that
they too should be developed in stages proceeding from an
initially abstract representation.
A significant claim which can be made for logic programming
is that it accepts the 'separation of concerns* philosophy,
but that it takes it much further in advocating that the
logic component of an algorithm should be separated from the
control component. A logic programmer's first version of a
program is merely a specification of the information which
is needed to solve the problem: it is more abstract than the
imperative programmer's first version because it does not
specify how the computer should actually use the
information. This argument is made by Kriwaczek, for
example, who suggests that, although efficiency
considerations can often demand a pragmatic approach.

' it still remains true that the
final specification, written in the form
of a PROLOG program, deals with the
subject area of the problem. A program

PAGE 88

in Pascal, BASIC or COBOL deals with the
workings of a machine, however abstract
it may be. In this sense, PROLOG can be
seen as a further step in the evolution
of programming languages from low-level
machine orientation to higher-level
problem and user orientation.’ [146]

Kowalski has presented the case for the separation of logic
from control by likening it to the arguments (which are
already generally accepted) for the separation within
conventional programming of procedures from data structures
[45]. He points out that the latter separation enables the
functions which the data structures perform to be
distinguished from the manner in which they perform them.
Furthermore, the separation facilitates the improvement of
algorithms by replacing inefficient data structures with
efficient ones. Similarly, when logic is separate from
control it is possible to distinguish what the algorithm
does, as determined by the logic component, from the manner
in which it is done, as determined by the control component.
An algorithm can be improved by replacing an inefficient
control strategy with a more efficient one.
The utility of logic as a language for abstracting and
expressing relationships between objects has long been known
to mathematicians. If computer programs are predicates, as
has been argued recently by Hoare [141], then predicate
logic would seem to be an obvious means by which to
represent them. Furthermore, variables in logic programming
appear to offer a powerful tool of abstraction, as Warren
[147] notes in the context of using PROLOG for compiler
writing. The ability to 'name' arbitrary PROLOG data
structures (which may be constants, numbers, lists, or
functional terms) with a single logical variable, and to use
variables to both construct and dissect data structures with
total flexibility, is certainly valuable. Furthermore, data
structures can be manipulated using unification without the
need for programmers to consider the instantiation states of
the variables which the structures contain. These advantages
appear to accrue from a realisation of variables which is
conceptually close to their intuitive mathematical meaning,
as opposed to their implementation as named storage
locations in imperative programming languages.
In some minor ways however, modern imperative languages give
support for abstraction which is not always equalled by
existing logic programming systems. A trivial example is the
freedom to use full-length names as identifiers, which is
offered by almost all high-level programming languages in
current use. The importance of this elementary facility is
widely recognised, and so it is disappointing to find that
the micro-PROLOG system limits variable names to a single
letter possibly followed by a sequence of digits.

PAGE 89

a convention which is even more impoverished than some
versions of BASIC. Another freedom which is almost taken for
granted in imperative languages is that of expressing
relationships in functional notation, where appropriate: the
absence of this freedom in most current PROLOG systems can
hinder the expression of abstract relationships in a
suitably natural form.

3.1.4.2 Modularity
Modularity was discovered by the 'structured programming'
school to be a crucial concept for effective programming,
particularly of large systems. The use of abstraction
facilitated the development of programs by a succession of
refinements into a (possibly large) number of component
procedures. In order that the components functioned
correctly within the overall program, without interfering
with one another, it was essential that they could be
implemented as secure independent modules, each with a
well-defined interface to its exterior. The interface served
to document the allowable uses of the component and it
enabled the program compiler or executor to detect and
diagnose illegal uses. Such modularity also benefited the
management of the program's conceptual complexity, for
individual modules could be used by referring only to their
interface descriptions without the need to know how the
module worked. The main implementation unit of modularity in
modern programming languages has been the procedure, the
heading of which provides the interface description. In some
languages there is also provision for a 'lower' level of
modularity (an example is the textual nesting of procedures
in Pascal) whilst others facilitate a 'higher' level (for
example, the modules and packages of Modula-2 and Ada
respectively).
It can be observed that a degree of modularity is inherent
within the language of logic. A Horn clause for example is a
modular component insofar as it can be read declaratively,
and its procedural interpretation can be grasped, without
reference to any other Horn clause. Furthermore, the
variables of a Horn clause are entirely 'local' to it and
the same variable names can be re-used within different Horn
clauses without fear of any clash. The interface between a
Horn clause and its exterior is specified by the clause
head, and the unification mechanism provides a form of check
that the clause will not be used to solve goals which are
ill-matched it.
Although the modularity inherent within Horn clause logic is
valuable, it is limited in several ways which, whilst they
may be unimportant with small programs, are likely to be
significant when logic is used for sizeable software
projects. A critical weakness would seem to be that
predicate symbols are 'global': the meaning of a predicate

PAGE 90

symbol is determined by the set of clauses which give its
definition, and therefore to ascertain the meaning
potentially requires an inspection of the entire program.
Consequently, as many PROLOG programmers have found to their
cost, to accidentally re-use a predicate symbol within a
logic program can be disastrous. Likewise, constant and
functor symbols have global scope and clashes can occur when
they are passed between clauses by unification.
Unfortunately, it is also true that the mechanism of
unification has a number of characteristics which make
clause heads alone inadequate as interfaces for truly
modular components. First, unification provides only a
syntactic and not a semantic check. It does not prevent the
standard definition of the list concatenation relation

append(() X X)
append((x|X) Y (x|Z)) if append(X Y Z)

from allowing the goal append(() 3 3) to succeed, for
example, even although this involves a mis-use of the append
program which (as its second clause indicates) expects the
type of its arguments to be lists. Second, and indeed as the
append example shows, the mechanism is not explicit: to
determine the allowable uses of a clause, it is not usually
sufficient just to inspect its head. And third, unification
does not provide information on causes of failure: a goal
which has been observed to fail may either have done so
because it failed to unify with any clause, or alternatively
it may have unified but produced only unsolvable sub-goals.
Hence, scrutinised by the criteria of modularity, logic
programs appear to have an interface which is insecure and
opaque, and their run-time behaviour is unhelpful.
More positively, however, it can be argued that the Inherent
modularity of logic is useful for small programs but that it
needs to be enhanced by some explicit module construction
facility for larger projects. It seems reasonable to look
for a module facility which would offer logic programmers
much the same kind of benefit that modules currently offer
to users of Modula-2 or Ada. Unfortunately, modules appear
not to have been much discussed within the context of logic
programming. Two of the few PROLOG systems that do make any
provision for them are the Hungarian M-PROLOG [148] system
and micro-PROLOG [94]. The facility for module construction
in micro-PROLOG has already been described: it will be
recalled that a micro-PROLOG module is a named collection of
relation definitions which communicates with other programs
via import/export lists. A system of local dictionaries
ensures that names which are used in the module but which
are not in the import/export lists are local to the module.
Although the micro-PROLOG module facility has proved to be
of great practical worth (certainly, in the experience of
this researcher), at least three significant criticisms of
it can be made. First, the interface between a micro-PROLOG
module and its exterior does not document the allowable uses

PAGE 91

of the module's exported relations. To discover that
information, it is necessary to examine the inner
functioning of the module and to some extent this defeats
the purpose of having modules. Second, unless the programmer
has incorporated suitable checks explicitly, modules are not
secure against incorrect usages and these will not generally
be detected by the system. The third criticism, and perhaps
the most serious, is that any construction of this kind,
which makes the truth of certain relationships dependent on
their textual locations, appears to have no obvious logical
foundations. However worthwhile the facility may be in
pragmatic terms, it appears to complicate the semantics of
logic programs in a way which lacks a logical justification.
An implementation of modules which is perhaps less
problematic semantically may however follow from the
proposals of Bowen and Kowalski for the amalgamation of
object language and metalanguage [92]. They touch on the
topic of modularity at the end of their paper. Instead of
directly executing a goal for a relation which is defined
within a constructed module, they propose that a
metapredicate would be called with the goal and the
collection of defining clauses named as parameters. The
logical basis of this is the view of the defining clauses as
comprising a specific 'theory' which may be invoked for some
arguments but not for others. In this scheme therefore,
modules would comprise named groups of clauses each denoting
distinct theories. Kowalski and Bowen suggest that their
proposal bears much fuller investigation. A recent report
by Cuadrado and Cuadrado claims that Bowen has made
substantial progress in implementing the idea and says that
'he has painstakingly avoided straying outside the realms of
logic' [149].

3.1.4.3 Typing and mode information

The considerations above suggest that a secure
implementation of modules in logic programming may require
that types be attributed to data and to predicates. This is
a question with significant implications and it will be
appropriate to consider it here.
The example of PROLOG is useful. PROLOG is an untyped
language in the sense that there are no type declarations
and each variable in a clause can potentially become bound
without restriction to any term. Syntactically a term can be
either a variable, a number or a constant, which are the
unstructured terms, or a functor term or a list, which are
the structured terms. Functor terms are usually interpreted
as records of the type given by the functor (an interesting
discussion on the relationship between list and record data
in PROLOG is offered by Campbell and Hardy [150]).
Predicates are 'untyped' also in that the types of their
arguments are not declared, although an implicit typing is

PAGE 92

usually discernible from an inspection of the defining
clauses.
It could be said that in lacking types, PROLOG continues the
tradition of languages associated with artificial
intelligence applications. LISP, POP-2 and APL are all
(generally) interpreted and untyped languages. On the other
hand, as Davies [83] points out the tradition is already
broken because POPLER 1.5, PLANNER and SAIL are all typed
languages. Davies describes how the introduction of typed
variables in POPLER 1.5 accompanied the development of an
interpreter for the language and observes that the issue
cannot be simply decided on the grounds that a requirement
of a language is that it be incrementally interpreted.
(Recall that PROLOG is usually interpreted but that Warren’s
DECIO implementation has demonstrated that compilation is a
useful and feasible option). Davies reports that, in some
cases, the addition of typing to POPLER improved efficiency
and increased program understandability but he adds that
'the issue of whether to type variables is potentially
controversial'.
Both Davies (op. cit.) and Hogger [87] point out that
programmers are free within untyped languages to construct
their own explicit type checks where necessary. An example
might be to re-write the first append clause as

append(() x x) if list(x)
where the definition of list might be

list(())
list((x|X))

A check of this kind will prevent a goal such as append(() 3
3) from succeeding, although it will not by itself generate
an error message and the subsequent failure could be
difficult to diagnose. In any case, the efficiency of the
append program will be worsened. Furthermore, a compiler
cannot use this sort of type-check to catch errors, which
will go untrapped until the program is run.
It is significant that the trend in conventional software
engineering has been towards typed languages. Pascal,
Modula-2 and Ada are compiled languages which are all
strongly typed, and the consensus of opinion among software
engineers favours typing because it improves the discipline
and expressiveness of programmers. Typing also enhances the
readibility of programs and makes reasoning about programs
easier. Furthermore, in most cases typing provides program
compilers with information which facilitates compilation and
improves execution performance. Two points which are
stressed most frequently are that typing benefits program
security and assists the efficient development of software.
By increasing the range of errors which can be trapped at
compile-time, users are protected from harmful consequences
and fault-finding in the maintainance stage of the software

PAGE 93

life-cycle, where it is usually more expensive, is lessened.
Essentially, although typing places restrictions on what
programmers can do and although there are administrative
overheads in the need to make type declarations in programs,
the experience of software developers appears to be that
typing is well worthwhile. (It has been said that the
restrictions are on what mistakes can be legally made, which
seems to be a useful sort of restriction).
However, the example of Pascal has shown that it is possible
for typing be over-restrictive. A Pascal function which
computes the sum of two integers is of no use for finding
the sum of two real numbers. Instead of being able to define
one function which can operate with different parameter
types (a so-called polymorphic function), the Pascal
programmer must define one function for each choice of
parameter types. (It is not the point that the problem can
sometimes be circumvented). Recently, however, it has been
shown that the problem of polymorphism can be largely
overcome by the introduction of type variables each of which
can represent a single, but unspecified, data type. An
example of a language which permits the definition of
polymorphic functions through the use of type variables is
the functional language HOPE [151] . A theoretical
interpretation of polymorphism has been published by Milner
[152].
Recently a detailed proposal has been advanced by Mycroft
and O'Keefe for a type system for PROLOG [153]. They argue
that untyped PROLOG is useful for learning PROLOG and for
rapid prototype construction, but that the lack of typing is
a serious deficiency for building large systems. A PROLOG
with typing will enable many errors to be trapped and will
facilitate the secure representation of modules. The
researchers argue that theorem provers which reason about
PROLOG programs could be made more powerful with the aid of
type information and that an efficiency gain could be
achieved. Finally, type declarations provide documentation
which facilitates human understanding of programs. It can be
observed that these arguments are very similar to the
arguments for typing within conventional languages.
The Mycroft/0'Keefe scheme is polymorphic. Types are defined
by

Type ::= Tvar | Tcons(Type)
where Tvar denotes a type variable and Toons denotes a type
constructor. Thus, assuming that Tvar includes the A, B and
C as type variables, and that Tcons includes the nullary
constructor int and the unary constructor list, example
types are

A, int, list(A), list(int), list(list(int))
A PROLOG program will be supplied with declarations giving
the types of each predicate and of each functor. The type of

PAGE 94

the functor list could be declared by
type list(A) --> [] J [A list(A)]

and the type of the standard predicate append could be declared by
Pred append(list(A), list(A), list(A))

Variables do not need to be typed explicitly because their
types can be determined by the type information supplied for
functors and predicates. The researchers show that their
scheme has the essential property that in a well-typed
program, no predicate is ever applied during execution to
arguments of unsuitable types. They have implemented the
system in the form of a DECIO-PROLOG program and they
observe that a satisfying consequence of the invertibility
of logic programs is that, in addition to its expected use
of verifying that a program is well-typed, it can also
determine the type of a given program.
The proposals of Mycroft and O ’Keefe have several attractive
features. In particular it can be noted that the only
additions to the PROLOG language itself are type
declarations, and that, since a well-typed program will
behave identically with or without these declarations
present, the effect on programming style is slight and there
is no loss of program portability. However, their
implementation cannot improve the efficiency of a compiled
program, since the DECIO-PROLOG compiler is independent of
the type-checking program: efficiency considerations
strongly suggest that type checking should be built into the
compiler. Nor can it cope with metalanguage, although the
authors indicate possible extensions both in this direction
and towards the provision of abstract data types. (An
abstract data type is a type definition along with a
collection of routines that may be used to manipulate
details of the type. The implementation of this is hidden
from the user. Ada and HOPE are examples of languages which
provide this kind of facility).
It seems appropriate at this point to consider the provision
of mode information within logic programs. The idea of
supplying mode information for a given procedure is to
specify which of the procedure's parameters will supply
input data to the call, and which will as a result of the
call become instantiated with output data. (It can be noted
that unlike type information, mode information does not
attempt to describe the actual composition of the data). The
possible relevance of mode information arises from the fact
that although the logic which defines a predicate makes no
commitment as to the predicate’s mode of call, in practice
control considerations may severely constrain the modes
which are computationally useful. In fact PROLOG programmers
frequently write definitions which they know to be
intolerably inefficient, or even quite inapplicable, beyond

PAGE 95

one specific intended mode of use. A typical underlying
cause is the inclusion within the definition of negation by
failure, an arithmetic predicate, an input/output primitive,
or some other system primitive with procedural restrictions.
It seems highly unrealistic to expect that programmers
should always supply such definitions for predicates as can
support every possible mode of call. However, the situation
in which PROLOG programmers can write programs which make
undocumented mode assumptions (and where the system is
unable to diagnose errors which arise from breaches of those
assumptions) is surely highly undesirable.
One proposed solution to the problem requires that mode
information be given explicitly for each predicate which
specifies the expected forms of use. There are already
several logic programming precedents for this proposal. The
DECIO-PROLOG compiler recognises mode declarations (although
it makes them optional) such as:-

mode subset(+, -)
which says that every call to the subset procedure will have
a non-variable term in the first, and a variable in the
second, argument place. The compiler uses this information
to optimise code for efficiency. The IC-PROLOG system
permits annotations to be written on the head of a clause,
as exemplified by

subset(x?, y ") if
which also provides a form of mode information, and this
generates a run-time check, although of course since an
IC-PROLOG program is interpreted and not compiled there is
no efficiency advantage. The PARLOG parallel logic
programming language [218] expresses mode information in the
form

mode subset(x?, y")
which looks like a hybrid of the other two constructs.
The case for enabling both mode and type information to be
provided explicitly within logic programs is strong. In the
case of type information, the arguments in its favour are
essentially the same as those for imperative languages. Mode
information is less significant for imperative languages,
the deterministic procedures of which support only one mode
of use (although a form of security against mode abuse is
present in that, for example, a Pascal compiler will detect
errors where a variable formal parameter is passed a
constant value). However it seems likely that in logic
programming systems, explicit mode information can improve
program transparency, security and efficiency. It is
tempting to wonder whether the two forms of declaration can
be combined, perhaps in some scheme

PAGE 96

exemplified by:
type subset(+list(A), -list(A))

(following from the type proposal of Mycroft and O ’Keefe and
the mode declarations of DECIO-PROLOG). More research is
needed to investigate this question and others, such as the
issue of how to employ type and mode information to provide
a secure and logically justifiable module facility for logic
programming systems.

3.1.5 Realising efficiency
A logic program which has been synthesised from logic
specifications is guaranteed to be sound (because the
specification then logically implies the program). If the
synthesis has been such as to ensure also that the program
implies the specification, then the program will also be
complete with respect to the specification. The soundness
and completeness of (for example) the SLD-resolution
inference procedure then ensures that the program, when
executed by a logic interpreter which fairly implements
SLD-resolution, will deliver all the answers which are
required of it (completeness), without producing any wrong
answers (soundness). Hence, having developed sound and
correct logic, it should be possible to concentrate wholly
on the problem of realising adequate efficiency.
Unfortunately, as Part Two has shown there are several
reasons why existing logic interpreters can behave with such
’extreme inefficiency’ that no answers are produced at all
by its execution, even when the program being executed is
proven to be sound and complete with respect to its
specification and even when logically computable solutions
to the goal do exist. In particular,
1. Many logic interpreters do not implement SLD-resolution
fairly. For example, those which (like PROLOG) have an
unfair depth-first search strategy lose completeness when
execution descends down an infinite branch of the search
tree before solutions on other branches have been
discovered.
2. Completeness is sometimes lost when logic extensions to
the Horn clause form, such as negation, are executed by
logic interpreters which implement only a limited version of
these extensions.
There is no doubt that these are serious problems, and in
fact they have led some programmers to conclude that logic

PAGE 97

programming in any true sense is simply not practical at the
present time. Some of these continue to use PROLOG whilst
abandoning its logical foundations, treating it merely as a
convenient high-level, procedural language in which
extra-logical features for instance can be used quite
pragmatically (see for example, McDermott [142]). However, a
more hopeful view is presented by Kowalski [40] who suggests
that logic programs which execute inefficiently under PROLOG
(including those which exhibit extreme Inefficiency) should
be transformed in a correctness-preserving way so that
efficient behaviour is realised without recourse to the
extralogical features of the language. The resulting program
will still be logically defensible. Kowalski also recalls
the longer-term aim of developing better logic programming
languages than PROLOG, and the previous sections have
described much that is relevant to this aim.
One question which arises concerns how early in the
development of a logic program should the inadequacies of
the intended actual logic interpreter be recognised. It
seems unwise to wait until the entire development is
complete before considering what logic transformations are
required for acceptable efficiency with the control strategy
which is to be used, since it may transpire that major
changes are needed to avoid extreme inefficiency. Instead,
it may be better to include efficiency as a factor which
influences the development of each part of the program.
Thus, the synthesis of each predicate from its specification
could be steered towards deriving the Horn clause programs
which are computationally useful and which can be executed
with acceptable efficiency by the intended interpreter with
goals of the type that the programs will be expected to
solve.
In addition to seeking efficiency gains by transforming the
logic of a program, it is possible to improve efficiency by
transforming the control. As Kowalski [45] has pointed out,
different algorithmic behaviours can result by applying
different control strategies to the same logic, but
(providing that the control is always sound and complete)
the algorithms are equivalent in the sense that they solve
the same problems with the same results. Symbolically:-

If A1 = L + Cl and
A2 = L + 02

then A1 and A2 are equivalent

An impressive demonstration of the practical utility of this
relationship has been provided by Clark, McKeeman and Sickel
[59]. They define a logic program for numerical integration
which is then paired with several different control
strategies, so that several equivalent algorithms fi®
problem-solving capability) are formed with different
behaviours. They then show how to transform each pairing of

PAGE 98

logic with control into a new pairing, in which the logic is
elaborated in order that the control can be simplified to
one which is easily available on the IC-PROLOG interpreter.
An interesting example of improving efficiency by a logic
transformation alone is provided by Hansson and Tarnlund,
who show how to transform a logic program which manipulates
simple lists into an equivalent program which manipulates
difference lists [143],
In the longer term, the general efficiency of logic
programming systems will depend on advances in the solution
of the control problem, and this is discussed next. Separate
consideration will be given later to the issue of parallel
control strategies, since many logic programming researchers
now see these as being especially Important. It is
certainly true that some impressive performances have been
acheived by PROLOG implementations to date, especially by
Warren’s DECIO-PROLOG and the more recent Quintus PROLOG
system running on DEC VAX machines [145], and PROLOG
efficiency has been sufficient to enable its use in some
significant applications, as will be described later. In
general, however, it is believed that logic programs cannot
really expect (with current hardware) to match the
efficiency which can be obtained by using an imperative
language, since as Part One showed these languages are much
more tightly geared to the low-level operations of the von
Neumann computing machine.

3.1.6 The Control Problem

At this point, a more general consideration of the control
problem for logic programming will be useful. Control can be
considered in the two categories of autonomous control and
programmer-specified control respectively and these are
treated separately below.

3.1.6.1 Autonomous control

As described in Part Two, the main control strategy which is
used for executing Horn clauses as programs is
SLD-resolution. The PROLOG implementation of SLD-resolution
uses a last-in first-out left-to-right computation rule and
a depth-first top-to-bottom search rule, but this is only
one choice. The previous section considered various ways In
which better computation and search strategies might be
obtained, and it also identified the opportunities fox
parallel execution. Discussion of parallelism will be left

PAGE 99

until later and the discussion below relates primarily to
sequential control strategy.
It will be recalled that the computation strategy specifies
the order of calls in a conjunctive goal statement. As has
been noted previously, there is substantial scope for
implementing an interpreter with a sophisticated strategy
for selecting goals which would behave better in the
majority of cases than the standard fixed strategy. A
drawback would be that its behaviour might be
correspondingly more difficult to understand. Furthermore,
even with this more efficient hypothetical interpreter there
would presumably remain some cases where execution
efficiency could be improved by programmer-specified
control: but it can be anticipated that the more complex
default strategy would hinder this effort. These objections
may be pessimistic, however, and practical test-bed
implementations of different strategies would be worthwhile.
Speculatively, a compromise may be to provide systems which
have a compiler switch which can set the computation-rule
either to 'clever' or 'standard'.
The second aspect of autonomous control is the search
strategy. The choice of the standard depth-first strategy is
usually defended on efficiency grounds, but as has been seen
above it can suffer disastrously from 'extreme inefficiency’
when infinite branches are encountered. It should be
possible to reduce some of the milder forms of inefficiency
of the depth-first approach with some form of intelligent
backtracking, as described previously: this would make
execution a little harder to predict, but the price should
be small and there is no threat to completeness. More
radically, a breadth-frist strategy could be substituted for
a depth-first one. Unlike depth-first interpreters, a
breadth-first system does not suffer loss of completeness
on account of infinite branches and the LOGLISP system
described earlier surely indicates that the breadth-first
search strategy merits further investigation. However,
infinite branches still present breadth-first systems with
the problem of detecting when to terminate execution. As
Kowalski has pointed out [45], Church's result on the
undecidability of logic [46] implies that no logic
interpreter can recognise all situations in which a goal is
insolvable, so that logic programming will never banish the
termination problem without paying some price. More
positively however. Church's result can be viewed as saying
that there is no 'best' theorem-prover and there is no limit
to the extent to which the ability by which a logic
interpreter can detect infinite branches may be improved. An
example of a recent success using this result is reported by
Brough and Walker [144]. They describe two modified
depth-first interpreters which, using different checking
criteria, will terminate a branch of the search tree on
which a loop is detected. They show that both interpreters
are better than standard PROLOG, in the sense that they both
produce the correct solutions and halt for a larger class of

PAGE 100

simple problems than does PROLOG, but that neither is better
than the other. They conclude that interpreters with a
bottom-up inference component appear promising.
Where logic systems implement extensions to Horn clause
logic, it is obviously desirable that these extensions can
be properly and efficiently executed within programs. In the
case of negation, this problem has yet to be solved for, as
has been shown, negation-by-failure whilst efficient
operationally incurs the risk of losing completeness.
Nevertheless, most programmers would probably agree that a
negation operator is worth having even at this price because
the gain in expressiveness outweighs the disadvantage of
having to be aware of its control limitations. Similar
considerations have been applied to other extensions, such
as implication conditions, sets of solutions and arithmetic
primitives. A problem for the future must be to eliminate
the control limitations on these extensions as far as
possible, so that they implement with acceptable efficiency
a much closer representation of the logical relationships
which they compute.

3.1.6.2 Programmer-specified control
Part Two has described various mechanisms which have been
developed to date whereby programmers can condition the
control of logical inference. To an extent programmers must
rely upon these mechanisms to obtain acceptable efficiency
from their programs. The difficulty is to determine which
mechanisms should be made available in logic programming
systems, and how programmers should make use of them.
Whilst the importance of the problem should not be
underestimated, neither should it be exaggerated. Lloyd
[119] provides a useful reminder that although logic
interpreters are resolution theorem proving systems, they
generally do not face anything like the computational
complexity that a theorem prover in, say, group theory has
to contend with. He suggests that many logic programs are
almost determinate. However, it seems to be the case that
some indisciplined programmers look to control mechanisms to
restrain their excessively non-deterministic logic programs.
Hogger [87] for example notes that, instead of thinking
carefully about how to describe the relation which is really
desired, programmers can be tempted into writing a possibly
much easier description of a super-relation of it with
subsequent use of control (in PROLOG, generally the ’cut')
to achieve the desired results. There is a worse possible
abuse of control mechanisms, however: it is possible to
write unsound logic but with the use of such control as to
suppress the production of incorrect answers. In spite of
the possibility of abuse, however, it is generally
recognised that logic programming systems have to provide

PAGE 101

some form of programmer-specified control mechanisms to
compensate for the deficiencies of existing autonomous
default control strategies.
The four main forms of control are recalled below. Each
mechanism is identified with an example, and a discussion of
its positive and negative features is provided.
1. Pragmatic control: programmers tailor their program to
the known control strategy of the interpreter. A notable
example is the textual ordering of conditions and clauses to
exploit the PROLOG control strategy. Thus control is made
implicit within the logic.
On the positive side, this form of control is easy to
implement and programmers seem to find it reasonably natural
to use. Furthermore, it does not introduce any additional
risk to completeness. Three main criticisms can be made.
First, because pragmatic control is implicit the efficiency
derived depends on the continued use of the target
interpreter. Second, pragmatic control is known to tempt
programmers into non-logical approaches. Third, and most
serious perhaps, is the criticism that pragmatic control is
simply not flexible enough to produce the desired
algorithmic behaviour from a fixed logic program.
2. Control primitives: these usually appear syntactically as
atoms within clauses, but their sole purpose is to modify
control. The best known example is the PROLOG 'cut'.
Control primitives provide a form of control which is
explicit within the logic. On the positive side, the 'cut'
is easy to implement and certainly it can be used to improve
the efficiency of certain programs. There are several
significant drawbacks. First, although it is possible to
argue that the out can be used without affecting the logical
reading of programs, as a form of syntactic pollution it can
hardly be said to help. Second, like pragmatic control the
cut is known to tempt programmers into non-logical
approaches. Third, the experience of PROLOG has shown that
the cut is difficult to use effectively. Fourth, it provides
only a very limited type of control. Fifth, programs which
make use of such an operator appear to make the assumption
of a depth-first sequential logic interpreter. Finally,
arguably the most serious criticism is that the cut can
cause a loss of completeness (where successful branches of
the search tree are pruned away accidentally).

PAGE 102

3. Control annotations: these are syntactic markings on the
program text to indicate control requirements. They have
been introduced into logic programming chiefly by the
IC-PROLOG system, as described earlier.
Control annotations provide a form of control which is
explicit in the logic. The IC-PROLOG system has demonstrated
the feasibility of implementing several types of annotation,
and it has shown that they can be used flexibly to produce
sophisticated algorithmic behaviour, including coroutining.
They appear to support the methodology of logic programming
which was outlined earlier, in that programs can be
developed and tested as executable specifications and later
'marked up' with annotations to improve efficiency.
Furthermore, it can be hoped that the annotations which are
implemented can be such that program completeness is never
worsened by their application. On the negative side, control
annotations can hardly be said to improve the appearance of
programs. Furthermore, their effective deployment presumably
demands a fair amount of skill. Finally, it is not really
clear how to decide which set of annotations should be made
available, and it must be doubtful that these annotations
will be appropriate for a logic interpreter which uses some
form of parallel execution.
4. Metarules : these are special rules which give control
information to the logic interpreter. The metarule proposals
of Gallaire and Lasserre [72] were outlined in the previous
section.
Metarules provide a form of control which is explicit and
separate from the program text. They can be seen as a
special application of metalogical programming as described
earlier. As yet, no existing logic programming system is
known which implements this form of control. Nevertheless it
appears promising for several reasons. One is that it offers
the total separation of a logic program from its control,
which is consistent with logic programming as a whole.
Another is that the control provided can be extremely
general, as illustrated by the Gallaire and Lasserre
proposals. Furthermore, since metarules are written in logic
the programmer would not be required to learn another
formalism. There is the question, however, of whether such a
scheme could be implemented efficiently. Furthermore, the
same problem arises as with control annotations in
identifying which set of metarule primitives should be
provided. Finally, it is not certain how easy such a scheme
would be for programmers to use in practice, nor indeed
whether they would resist the requirement to manage 'two
programs' instead of one.

PAGE 103

3.1.7 Program verification

The use of logic for verifying programs is not new, and in
fact clausal logic was used by Chang and Lee for verifying
conventional programs [51]. It is claimed that the
verification problem is easier to solve, however, when logic
is used to verify programs which themselves are written in
logic. This is analagous to the problem of deriving
(synthesising) correct programs from specifications, which
is simplified when the specifications are composed in logic
and the program to be derived is a logic program. Indeed, it
has become common for researchers to treat the two problems
(of program verification and synthesis) together.
At least two methods of program verification have been
described, both of which assume the existence of some formal
logic specifications of the main relation which is to be
computed. Following Hogger [87], this relation can be termed
the principal specified relation (PSR). The method of
verification described by Clark, which is known as
consequence verification, consists of showing that each of
the statements of a logic program can be proved as theorems
from the specifications, which are taken as axioms for the
PSR. Examples of consequence verification are given in the
paper by Clark [137]. A technique which is based on a proof
by induction over the length of the computation is
illustrated by Kowalski [40]. His method proves that any
instance of the PSR which is computed by the program is also
an instance according to the specifications.
The form of verification offered by the consequence
verification and the induction techniques is the
establishment of the property of soundness or, as it is
often called, partial correctness. However, verifying that a
program has the partial correctness property is often not
enough. Informally, it only provides a guarantee against
wrong answers. It can be observed that a program which
computes a null set of solutions to the PSR is partially
correct, even although many solutions may be implied by the
specifications. The further property of completeness is
usually desirable: a program is complete with respect to its
principal specified relation if every specified instance of
the PSR is also a computed instance. Intuitively, a complete
program is one which computes every correct answer.
Verification of completeness with respect to the PSR can be
established by reversing the direction of the arguments for
partial correctness. It can be done by showing that the
specification of the PSR is a logical consequence of the
program clauses, or alternatively it can be done by showing
that every specified instance of the PSR is also a computed
instance.
Hogger [87] describes a program as totally correct if it is

PAGE 104

both partially correct and complete. Hence, the total
correctness of a program with respect to its principal
specified relation can be established by showing that the
set of specified instances of the relation is the same as
the set of computable instances. Hogger demonstrates a
technique, definiens transformation, which proves total
correctness by transforming the specifications into program
clauses in an equivalence-preserving way.
It should be noted that the total correctness of a logic
program is independent of the control strategy exercised by
the program executor. The separation of logic from control
makes verification of the logic much more straightforward.
However, a verification of logic alone is limited to proving
the computability of solutions; this may differ from their
producibility in an actual execution. The relevant
condition, for the set of computed solutions to be the same
as the set of produced solutions, is that the proof
procedure be sound and complete. Unfortunately, as has been
shown earlier, the standard (PROLOG) execution strategy does
not meet this requirement because it can happen that
infinite computations are entered before finite ones which
contain solutions can be investigated. When this does
happen, some computable solutions will not be produced. The
presence in a PROLOG program of non-Horn clause features
such as negation-by-failure and control primitives threatens
completeness of producibility in a different way, for as
described earlier these features can render computable
solutions unproducible even where the search space is
totally finite. Hence, although in a theoretical logic
programming system - say, one with a fair implementation of
SLD-resolution and without any completeness-threatening
extensions to the language of Horn clauses - producibility
is the same as computability and is a property which can be
verified from the logic alone, in a PROLOG system (say)
producibility requires a specific analysis of the algorithm
which is determined by the application of the control
strategy to the logic.
For a pure Horn clause program, the total correctness of a
logic algorithm with respect to some principal specified
relation can be established by proving that the logic
program is totally correct with respect to the PSR and that
the algorithm terminates in the sense that the entire
execution process halts after some finite time period.
Termination indicates that the search space is finite so
that any SLD-resolution strategy (even an unfair one such as
that of PROLOG) is certain to produce all computable
solutions eventually. Methods for proving the termination of
logic algorithms have been investigated by Clark and
Tarnlund (whose formulation of total correctness differs
from that given here) [156] but it is clear that this is an
area which requires further work.
It can be observed that the published examples of
verification are of very small programs. Even so, the
verifications are typically much longer than the programs

PAGE 105

themselves. Realistic applications would presumably require
proportionally more steps in verification: if the steps are
all human-directed, then verifications will surely
themselves be at risk due to error. Turner has commented
that ’Program proving is just a game until the proofs are
computer-based and machine checked' [157] and, although his
view is expressed in the context of functional programming,
it seems to apply to logic programming with equal force.
Some progress has in fact been made in the direction of
mechanical verification. Cunningham and Zappacosta-Amboldi
for example have developed a suite of modular software tools
for manipulating first order logic [158]. They report that
by concatenating suitable modules and interacting with
them, humans can obtain useful machine assistance in
performing verification of programs and related such tasks.
Balogh has described an implementation of a human-assisted
verification system for PROLOG programs [159].
It is clear that verification can be in principle an
arbitrarily hard task of theorem-proving, as the chain of
inference connecting program clauses to logic specifications
can be arbitrarily long and subtle. However, logic programs
are generally much closer to their specifications than are
the theorems which a genuine theorem-proving system attempts
to derive from its axioms. Although large logic programs may
require many steps of verification, each step should be
relatively trivial by automatic theorem-proving standards
and this gives hope to the practical utility of future
verification systems. One known limitation, which follows
from the theorem of Church on the undecidability of
first-order logic [46], is that no automatic verification
system can be produced which is infallible for all logic
programs. A more immediate barrier to progress (and in many
ways it seems more serious) is that almost all realistic
logic programs in current use include features such as
negation-by-failure and control primitives which are likely
to make the verification of logic algorithms much more
difficult.

PAGE 106

3.2 Aspects of logic as a computer language

In this section, a number of aspects of logic as a computer
language are discussed. The emphasis is on those topics
which were identified in Part One as being matters of major
concern for traditional software development methodologies.
As has been shown, the term 'software crisis' arose from the
early attempts to construct sizeable packages of software
with inadequate languages, tools and methods. The short
history of logic programming has documented a record of
implemented projects and a brief survey of these experiences
is offered in the first part of this section. The second
part relates to the criticism that conventional languages
offer little scope for exploiting new parallel computer
architectures: an account in this section describes the
prospects which seem to be offered for parallel execution by
logic programming. In the third part, it is recognised that
along with logic programming a significant challenge to
imperative computing comes from functional programming
languages. It is appropriate then to include here a section
which briefly compares logic and functional programming. The
final topic which is discussed here is the human perception
of logic as a computer language, focussing particularly on
the claims that logic is problem-oriented, since the
absence of this quality in conventional imperative
languages is a major complaint of programmers.
It will be clear that all the issues treated here could
easily be (and indeed have been) the subject of major
researches in their own right. Hopefully however it will
still be worthwhile to try to identify here some of the main
points relevant to each theme; in all cases references are
given to sources of further information.

3.2.1 The record of applications

It is clear that the number of significant applications of
logic programming which have been undertaken is already
large and that the list is diverse in the type of projects
covered. Furthermore, it is growing rapidly. The
overwhelming majority of projects have been with some
version of PROLOG. Interesting applications have been
described on symbolic integration by Bergman and Kanou [160]
and by Belovari and Campbell [161]; on natural language
processing by Coelho [162], by Colmerauer [163], by Dahl
[164] and by McCord [165]; on expert systems by Clark and
McCabe [166], by Hammond and Sergot [167], by Brough and
Parfitt [168], by Yazdani [169] and by Hardy [170]; on
mechanics problems by Bundy at al [171]; on 1aw
representation by Sergot [172] and by Cory et al [173]; on
compiler construction by Warren [127, 147];

PAGE 107

ori chess end-game advice by van Emden [174]; on critical
path analysis by Kriwaczek [146, 175]; on game-playing by
Clark and van Emden [176]; on database systems by Gallaire
and Minker [177]; and on spreadsheets by Kriwaczek [175]. A
compilation of small PROLOG applications has been edited by
Coelho [186].
Unfortunately, many applications have been described without
specific reference to the experience of logic programming or
to the advantages and disadvantages of PROLOG relative to
its competitors as the implementation language. Since the
main aim of many projects is to investigate specific issues
rather than to reflect more generally on software
development experience, this is of course understandable.
However, it is the wider question of software experience
with which this section is concerned; therefore, the
applications described below are selected from those which
do make specific such comment.

3.2.1.1 The Hungarian Experience

A remarkable range of PROLOG applications have been
developed in Hungary. An overview of these is given in a
paper by Santane-Toth and Szeredi who also supply some very
valuable comment [178]. The applications include systems for
research management, drug-interaction prediction, air
pollution control, chemical information retrieval,
architectural planning, COBOL program generation, network
modelling and symbolic differentiation. These applications
have all been developed since 1975 on various mainframe
computers, including an ICL-1905, an IBM-370/145 and a
SIEMENS 4004.
The authors report that:

... many problems have been solved
using PROLOG; problems previously either
unsolvable (in traditional programming
languages) or solvable only by applying
complex algorithms and considerable
effort.’

A list of reasons for the success of PROLOG in Hungary is
given which, the authors add, 'does not include the well
known advantages of PROLOG programming'. The list comprises
the following explanations:

1. No other artificial intelligence
languages were available in Hungary.

PAGE 108

2. The PROLOG interpreter (the same one
was used for most of the applications)
was fast and highly portable.
3. Systems programmers produced useful
tools and generally cooperated well with
applications programmers.
4. Two 'pilot' applications were
successful and these served as a basis
for subsequent applications.
5. Most of the people involved in PROLOG
programming had little traditional
programming background and this allowed
them to learn PROLOG easily.
6. The installation of PROLOG on a large
SIEMENS machine with an interactive
environment aided the development of
existing applications and the
introduction of new ones.
7. The symbolic manipulation facilities
of PROLOG led to the development of new
application areas.

On the negative side, several problems with the PROLOG
applications are noted:

1. Memory management was problematic.
Even on the largest computer, the
SIEMENS 7.755 with 3 Mbytes of stack
space, there were some occurences of
stack overflow. Programmers were forced
into 'tricks' to recover space.
2. Several times the demand arose for an
interface with algorithmic languages
(mostly with FORTRAN). An experimental
PROLOG was developed which allowed
FORTRAN subroutines to be called from
PROLOG, but 'the real solution is still
lacking'.
3. The need for handling large
databases, which would be held on
external disk files, arose.
4. The naive backtracking mechanism
caused problems in some programs, and in
these cases special search strategies
had to be programmed in PROLOG itself.

PAGE 109

5. Some applications ran too slowly.
6. There was the lack of a textbook with
which to introduce people trained in
traditional computer programming to
PROLOG.

Partly in response to these problems, the Hungarian workers
have developed the MPROLOG system. They describe the
essential new features of MPROLOG as being module
construction facilities, improved programming aids and a
better execution mechanism. A compiler for the language is
under construction. Concluding their account, Santane-Toth
and Szeredi are optimistic:

'In fact in the new MPROLOG system,
some of the listed problems are already
settled. Hopefully the others will be
solved in the near future, also in the
framework of PROLOG.'

3.2.1.2 Chess end-game advice

Van Emden has conducted a study of chess
knowledge-representation and utilisation by computer [174].
A PROLOG program was developed which can solve chess
end-game problems: on being given a description of the board
state, the program is capable of finding winning sequences
of moves. The application was designed particularly with a
view to appraising PROLOG'S suitability for this type of
project.
The application was completed successfully. Using the
Waterloo PROLOG system [179] on an IBM 4331, the program
played games in which mating positions were found within
nine, twenty-four and twenty-nine moves respectively. The
corresponding average CPU times per move were 0.48, 0.80 and
0.72 seconds.
Van Emden identifies several factors which make logic
programming attractive for knowledge engineering
applications of this type. He notes that Horn clauses can be
viewed as production rules, which have emerged
(independently of logic programming) as the favoured
formalism of knowledge engineering. Furthermore, clauses
encompass as a special case the relational data base model:
consequently, the usual distinction between program and
database disappears, which is 'especially attractive for
knowledge engineering'. The researcher compares PROLOG with
the 'advice language' approach proposed by Michie [180], in

PAGE 110

which knowledge is encoded within tables using the advice
language AL/1 and special-purpose interpretive procedures
are written in POP-2. The choice of PROLOG avoids the need
for two separate formalisms. In addition, PROLOG clauses are
more general than AL/1 rules, since AL/1 (sub-) rules may
not have conditions attached to them. On the other hand, it
is noted that the chess application has what would be
considered an uncharacteristically simple advice table in
AL/1, and moreover, advice in AL/1 contains in general
several advice tables. The completed program in Waterloo
PROLOG is described as, on the whole, compact and readable.
The distinctive features of PROLOG which proved useful in
the application were its rule-based, pattern-matching and
automatic backtracking aspects.
Three adverse points are identified. First, the
representation of arithmetic expressions by conjunctions of
relations hinders program readibility. In remedy, the author
points to the development currently of PROLOG systems which
offer a functional representation of arithmetic. Second, the
Waterloo PROLOG system is criticised as being inefficient in
its use of storage. In fact the twenty-nine move game quoted
above produced a stack overflow after the twenty-eighth move
and the game was completed by restarting with the last
position on an empty stack. Third, the researcher laments
the absence within Waterloo PROLOG of a sets-of-solutions
primitive, since the need to gather a list of solutions
occurs for example in the development of forcing trees.
In summary. Van Emden concludes that:

'Waterloo PROLOG is probably a good
(compared to other implemented
alternatives) tool for this type of
application, in fact surprisingly good
for an early, experimental realisation
of logic programming'.

3.2.1.3 Representation of law

A PROLOG implementation of a fragment of British law has
been undertaken by a team at Imperial College, London. The
particular law chosen was the British Nationality Act
(1981). The project was developed using the APES (A PROLOG
Expert System Shell) system [181] running on a
microcomputer. A system has been produced which is capable
of interactively determining the validity of British
citizenship in a large number of frequently occuring cases.
Descriptions of the work are given by Cory et al [173], by
Sergot [172] and by Kowalski [182].
The main concern of the project has been to study the
problems of knowledge representation. Sergot (op. cit.)
points out that logic programming would appear to be a

PAGE 111

natural formalism for a computer treatment of law, since
.. law treats large sets of complex

rules that have long seemed suitable for
logical analysis, and once the law is
expressed in some appropriate subset of
predicate logic, that formulation can
function as a program which interprets
the law.'

He identifies two general kinds of law which require
different treatments in logic. The first kind can be viewed
simply as high-level descriptions which more or less
precisely define legal relationships, such as the property
of citizenship: this kind of law can be relatively easily
formalised as logic programs. The second kind of law is the
body of 'norms’ which state what must or must not be done
under certain circumstances: this includes unwritten law
such as case law and the 'general legal principles' (such as
'No man may profit by his own wrong-doing') which guide
judges. A logic representation of this kind of law poses
problems such as establishing what the norms are, what they
mean, and how they can be used. Sergot, taking a very
simple example of 'norm' type law (actually, hypothetical
library regulations), outlines a general approach which
attempts to model the norms by logic programs. An important
problem for future work is the use of norms to constrain
database updates. As with the general problem of logic
programming database maintenance, the most promising
direction for a solution seems to lie with some amalgamation
of object language and metalanguage such as that proposed by
Bowen and Kowalski [92].
Many law texts contain references which are bound by time.
In the PROLOG representation, a time parameter can be
incorporated into the corresponding relations. Other texts
include statements which are not readily translatable into
Horn clause form: Kowalksi [182] quotes the example

A person is a citizen if
and his mother is a citizen
or would have been a citizen if she were male.

A PROLOG translation of the 'or would have been..’ phrase
uses negation-by-failure. In general, there are many legal
texts which express 'knowledge about knowledge'. These can
be viewed as expressing metalevel information and
metalogical programming is suggested for their translation.
Kowalski notes that PROLOG has facilities which can
accomplish this, although they are not always consistent
with classical logic. He restates his belief that the
incorporation of correct and powerful metalevel facilities
within practical logic programming systems 'would go a long

PAGE 112

way toward meeting both the critics of logic programming and
the critics of logic'.
Sergot compares PROLOG with LEGOL, a legal computing system
which is regarded as the most general legally oriented
system available. LEGOL is based on relational algebra. It
has found a number of practical applications, in spite of
its inadequacy for expressing certain types of legal rules.
However Sergot suggests that LEGOL could usefully be viewed
instead as a logic programming language tailored for
specific applications areas. He considers that the power of
PROLOG offers interesting opportunities for more general
work in legal computing [183].
The Imperial College project appears to have highlighted
some advantages in the explicit representation of legal
knowledge which Michie [184] has described as a general
by-product of expert systems developments: that through
efforts to make knowledge explicit, it becomes better
understood and 'refined'. Kowalski has answered an
interesting criticism of his work, to the effect that rules
which affect human beings need a more flexible
interpretation than should be expected from a computer, by
saying:

'... by making rules explicit it is
easier to see where they might be
inadequate and how they might be
improved. The expert systems technology
of knowledge ... offers the prospect of
extending the use of rules in human
organisations. It suggests new and more
powerful ways of making rules explicit,
of applying them more consistently and
of refining and improving them.' [185]

Perhaps the most encouraging outcome of the project has been
the realisation of how much can be achieved even with
existing PROLOG. Kowalski remarks that

'It is remarkable that despite PROLOG'S
simple problem-solving strategy and
except for a few loops removed manually
by program-transformation techniques,
the rules extracted declaratively from
the act behave reasonably efficiently as
a logic program.' [182]

PAGE 113

3.2.2 Progress in implementing parallelism

It should be possible for logic programs to exploit a
parallel processing capability at both a 'fine' and a
'coarse' level of grain. At the 'fine' level for example,
the unification algorithm might be reformulated as a
parallel algorithm, and this possibility has in fact been
investigated by Tarnlund [215]. The greatest benefit however
is believed to be obtainable at the 'coarse' level in a
parallel interpretation of logic itself, and this is the
level which will be discussed here.
As described in Part Two, logic programs potentially support
two forms of parallel interpretation. The first form, known
as and-parallelism, concerns the possibility of executing
concurrently the goals of a conjunction (such as the
conditions in the body of an invoked clause). The second
form, or-parallelism, refers to the possibility of
investigating concurrently the clauses which potentially
respond to a given call. These two forms are sometimes
referred to as the conjunctive and disjunctive forms of
parallelism respectively. Lloyd [130] has referred to the
process interpretation of logic as one in which a goal
statement

<- G1, ... , Gn
is regarded as a system of concurrent processes, where each
step in the computation reduces a process to a system of
processes (given by the body of the activated clause) and
where shared variables act as communication channels between
processes.
Much research effort has recently been aimed at developing
logic programming systems which support concurrent
programming. As yet however no proposals have been advanced
which incorporate both and-parallelism and or-parallelism in
full unrestricted forms. For reasons of efficient
implementation, existing proposals place various limitations
on the allowed forms of parallelism and some introduce new
semantic restrictions, such as that only a single solution
to a goal will be produced rather than a complete set of
solutions. Furthermore, almost all proposals give the
programmer a large amount of control over the extent of the
parallelism. (This seems to answer the criticisms of
Kluzniak and Szpakowicz [213], who have argued that any
multiplicity of processors will be defenceless against the
anticipated combinatorial explosion of 'unbounded
parallelism').
Two of the earliest systems supporting some form of
parallelism were IC-PROLOG and LOGLISP, both of which were
described in Part Two. IC-PROLOG provided and-parallelism
with annotations on variables in clause bodies specifying
data-triggered communication between processes. A process
which acted as the producer of data for a variable was

PAGE 114

indicated by annotating the variable with and consumer
processes were indicated with the variable annotation ’?'. A
consumer process which required data to continue became
suspended until the data was made available by a producer.
LOGLISP provided or-parallelism implemented by means of a
breadth-first search strategy. Neither system offered the
form of parallelism provided by the other, and since both
systems were implemented using conventional single-processor
computers, the 'parallelism' was actually simulated by
time-slicing.
Superficially at least, or-parallelism appears to pose fewer
implementation problems than the conjunctive form. With one
complication, a set of or-parallel computations are
essentially independent of each other since they correspond
to investigations of different branches of the search tree.
The complication is that the computations may begin with a
shared unbound variable which may become bound during one of
the computations. Special storage mechanisms would be needed
to preserve the independence of the computations.
Hogger [216] has shown how the data-flow annotations of
IC-PROLOG can be used to describe concurrent algorithms
which require communication between processes. He describes
the principles whereby problems are reformulated with the
introduction of shared variables to act as the vehicles of
communication. Since IC-PROLOG does not possess the
capability of disjunctive parallelism, a conjunctive
formulation of the problem is required. As an example,
Hogger quotes the the problem of finding whether a given
element E belongs to either of two given sets A and B. An
initial (sequential) conjunctive formulation of the problem
is with the goal statement

<- ra(E, A, al) & m(E,B, a2)
where al and a2 are 'answer' variables which will eventually
become bound to either YES or NO. Assuming a suitable
definition for m, a conventional evaluation of this will
compute one of the answer pairs (NO, NO), (NO, YES), (YES,
YES), (YES, NO), where any answer apart from (NO, NO)
indicates that the answer to the problem is positive.
Alternatively, a more efficient parallel execution from
which the same set of solutions is computable is

<- m(E, A, al) // m(E,B, a2)
which uses IC-PROLOG*s parallel annotation Efficiency
can be improved still further however by arranging that when
one process succeeds, it communicates its success to the
other thereby enabling the unfinished process to terminate
with its answer variable being bound to (say) DONTKNOW. This
can be done by defining a suitable four-place predicate ra*
and executing the goal statement

<- m*(E, A, al, a2) // m*(E, B, a2, al)

PAGE 115

Each process now shares the answer variable of the other and
is thus sensitive to its outcome. Answers such as (DONTKNOW,
YES) can be computed which indicate that the problem has
been answered positively, and furthermore these answers are
more efficiently computable than an answer such as (YES,
YES).
The absence of disjunctive concurrency and other
deficiencies in IC-PROLOG has however provided a challenge
for logic programming researchers. Probably the most
important response to these deficiencies has been the
Relational Language of Clark and Gregory [217]. In the
Relational Language, the global backtracking evaluation
strategy of IC-PROLOG was abandoned for two main reasons:
first, it it was felt to be viable only for
single-processor architectures; and second, the cost
associated with the failure of a process was considered to
be too high. (On the failure of a process, it was necessary
to undo every evaluation step that had taken place after the
choice point of the failed process.) The Relational
Language incorporated conjunctive concurrency in a manner
similar to IC-PROLOG, with variable annotations to designate
the consumer and producer processes of a parallel
computation, but it also introduced a special form of
disjunctive concurrency: the program 'candidate' clauses
which might respond to a call were tested in parallel and
the first clause to pass the test was the one that was used.
There was no backtracking on this choice. The test for
candidacy included a mode check and a check that a subset of
the conditions in the body of a clause (known as the guard
sequence) succeeded. The effect was to implement a special
version of the or-form of logic programming non-determinism
which Clark and Gregory describe as 'committed choice'
non-determinism. They liken it to Dijkstra's language of
guarded commands [135].
More recently three further language proposals have been
published, all of which appear to be derived from the
Relational Language: these are Clark and Gregory's PARLOG
[218], Shapiro's Concurrent PROLOG [219] and Ueda's Guarded
Horn Clauses [220]. It is clear that whilst they have
significant differences, these proposals also have a
considerable amount in common. Only PARLOG will be described
in what follows.
PARLOG divides relations into two types: single-solution
relations and all-solution relations. A conjunction of
single-solution relation calls can be evaluated in parallel
with shared variables acting as communication channels for
the passing of partial bindings. Each single-solution
relation is defined by a guarded clause program with a mode
declaration which specifies constraints on the allowed form
of call; each argument of the relation is annotated in the
mode declaration with either a '?', to indicate that a call
must supply some input for that argument, or '"' to indicate
that the corresponding argument in the call must be an

PAGE 116

unbound variable (i.e., one which will receive output). If a
call does not satisfy an input constraint, it becomes
suspended. As in the Relational Language, PARLOG also
supports disjunctive concurrency in the form of committed
choice non-determinism. This eliminates the need for
backtracking and as might be expected, it is reported to
greatly simplify the implementation of PARLOG. However, as
with the Relational Language, it also means that only one
solution can be computed to a conjunction of single-solution
relation calls. In recognition of the need to support
applications where all solutions are required, PARLOG also
incorporates the all-solutions type of relation. A relation
of this type is defined by a normal PROLOG program, with no
guards and no mode declarations. A conjunction of
all-solutions relation calls is evaluated sequentially
left-to-right, as in PROLOG, although the defining clauses
may be investigated in or-parallel fashion. An interface
between the two types of relations is provided in the form
of a set constructor.
The first implementation of PARLOG is a simulation which
runs on top of a conventional PROLOG system [221]. A fast
portable version written in the language 'O' is also under
construction. A pilot implementation on the parallel
computing machine ALICE [222] has been undertaken and
Gregory has described how it should be straightforward to
compile PARLOG to the ALICE CTL (Compiler Target Language)
[223].
It is clear that PARLOG at least represents a substantial
step towards the realisation of highly concurrent logic
programming. (It is also beyond dispute that PARLOG marks a
radical departure from PROLOG, and as such it should help to
underline the distinction - which sometimes seems to be
underplayed in the literature - between logic programming on
the one hand and its early realisation in the form of PROLOG
on the other.) The language's use of mode declarations
appears to have rendered the full run-time application of
unification unnecessary, so that PARLOG programs should be
efficiently compilable. It is uncertain however what effect
such features as the committed-choice non-determinism and
the separation of relations into two types will have on the
usability of PARLOG as a logic programming language. It is
noticeable that the developers have avoided the temptation
of elaborating the language beyond those extensions which
are required for parallelism, even although some extensions
such as augmenting the mode declarations to incorporate
type-checking information appear to be quite straightforward
and attractive. (Gregory has confirmed in a private
communication that a single-minded pursuit of the parallel
aspects lie behind this decision). Happily, it appears that
in general PARLOG programs do have a good declarative
reading and it may be hoped that the suggestion of Hogger
[216] that the introduction of concurrency does not require
departure from the usual way of developing logic programs
will prove to be correct.

PAGE 117

3.2.3 Relationship to functional programming

In Part One it was argued that all imperative languages are
alike in the sense that they are geared to the architecture
of the von Neumann computer. Logic on the other hand is a
machine-independent formalism. However, it would be false to
suggest that logic programming is alone in its departure
from the imperative mould. Functional programming represents
another alternative, one which is also based on a
mathematical formalism. But where logic programming owes its
origins to first-order logic, functional languages originate
from the lambda calculus and recursion equations [187, 188].
A program in a functional language defines an expression
which is the solution to a set of problems: the program
executor finds the solution to a particular problem by
evaluating the corresponding expression. The earliest
functional language, LISP, was introduced by McCarthy in
1958 [189]. The record of LISP applications is extensive and
it is still widely used today, especially in the United
States where LISP is the main language of artificial
intelligence. However, such a wide range of extensions have
been attached to the language (some of which, such as PROG
and GO, are distinctly imperative in character) in its
various implementations that functional programming
proponents are highly dubious about its functional status.
Turner for example has gone so far as to state his suspicion
that 'the success of LISP set back the development of a
properly functional style of programming by at least ten
years' [190]. Examples of modern, pure functional languages
are KRC, Miranda, ML and HOPE. Broad treatments of
functional programming are provided by the books of Glaser
et al [23], Henderson [191], and Darlington et al [192].
The term 'declarative' is now often used to cover both logic
and functional programming languages. It is taken to refer
to the self-evident, execution-independent interpretation
property which programs in these languages can possess.
Growing interest in declarative languages has led to
increased attention on the relationship between them. A
recent study by Darlington, Field and Pull [193] has
discussed the differences between the two approaches and has
proposed a possible form of unification. Observations from
this study and others will be drawn upon in the two sections
which follow.

3.2.3.1 Major differences

The following points identify major characteristic
differences between logic and functional languages.

PAGE 118

1. Relational versus functional semantics
Logic programs define relations which specify many-to-many
transformations. Functions on the other hand specify
many-to-one transformations. Hence a functional program is
generally limited to the output of a single solution to a
problem, where logic programs may output multiple solutions.
It should be noted that the single-solution property of
functional programs does not preclude the possibility that
the solution computed might be a set. Nevertheless, it is a
mathematical property that functions are special cases of
relations. In particular, it seems reasonable to allow
program specifications to be expressed as relations, at
least in the first instance, even although some of these
relations may later be identified as functional. (Hoare's
observation that programs are predicates [141] is relevant
here.) Hence, the arguments in favour of executable
specifications would appear to support logic as the
formalism of choice for this stage, although other
considerations (such as those of efficiency) may become
dominant in the later stages of software development. In
fact this is one of the conclusions reached by Darlington et
al. (op. cit.).

2. Execution mechanism
Where logic programs are executed by applying top-down
resolution inference, functional programs are executed by
expression reduction. For instance, the following is a HOPE
program which calculates the length of a given list:-

dec length : list alpha -> num;
 length(nil) <= 0 ;
 length(x::l) <= 1 + length(l) ;

An execution to calculate the length of the list [1, 2, 3]
would go through the following rewrites:-

length([l, 2, 3])
-> 1 + length([2, 3])
-> 1 + (1 + length([3]))
- > 1 + (1 + (1 + length([])))
— > 1 + (1 + (1 + 0))
-> 3

The standard way to implement functional languages has been
with the SECD-Machine, which is based on Landin's design of
an automaton for the mechanical evaluation of mathematical
expressions [194]. More recently Turner has shown a
remarkable implementation technique whereby functional

PAGE 119

programs can be compiled by the use of a small group of
elementary lambda-calculus functions known as 'combinators'
into variable-free code [195]. The new technique, known as
the SK-Reduction Machine, should have efficiency advantages.
Overall, however, the problem of obtaining acceptable
efficiency has been as serious for functional programming as
for logic programming. Henderson has recently written that

'Functional languages cannot compete
with conventional languages on
conventional machines in terms of
efficiency if that is an absolute
requirement.' [191]

However, Turner quotes a study by Meira [166] which shows
that for each known imperative sorting algorithm, there
exists a functional sorting algorithm of the same
fundamental time complexity [190]. He goes on to conjecture
that for time complexity, there is no fundamental difference
between imperative and applicative programming. But Turner
also notes that the question of space complexity is much
less clear, and in fact it has been shown that for some very
simple problems it is surprisingly difficult to construct
functional solutions with a reasonable space behaviour.
Ultimately, researchers in both logic and functional
programming look to the development of non-Von Neumann
computer architectures which can execute their programs with
greater efficiency, particularly by exploiting the scope for
parallelism which is inherent in both formalisms. Glaser et
al have outlined a scheme for running functional programs on
a data-flow architecture [23]. The main scope for parallel
execution of functional programs appears to lie in the
parallel evaluation of sub-expressions: Kowalski has
compared this with the and-parallelism of logic programs (as
described earlier) [40]. Logic programs, however, also
provide (as was noted earlier) an opportunity for
or-parallelism. Whether in practice this means that logic
programs can be executed more efficiently on parallel
architectures than functional programs is not yet certain.

3. Typing
Logic programming languages are usually untyped. Most modern
functional languages are strongly typed and the typing
includes polymorphism.
As noted earlier, the experience of software engineering
provides strong support for typed programming languages.
There seems no fundamental reason why logic programming
languages should not be typed and proposals for adding
typing to PROLOG were discussed earlier. Development in this
area appears to be a priority.

PAGE 120

4. Notation
The contrast between the two notations, one functional and
the other relational, is obvious.
Since relations include functions, logic programming should
be able to utilise functional notation. It was noted earlier
that such notation is sometimes more natural and that it is
in fact provided by some existing logic programming
languages.
5. Invertibility
Logic programs make no commitment as to which variables of a
relation are to be considered inputs and which are to be
outputs. Hence, a logic program defining (say) the append
relation for lists can be used to find splittings of a list
as well as to concatenate lists. Functional programs on the
other hand have fixed input/output semantics, and a
functional definition of append could only have one form of
use.
As Darlington et. al. (op. cit.) recognise, the
invertibility property makes logic programs more expressive
than functional ones in that one logic program can represent
many functional ones. This is particularly advantageous in
the early specification stage of program development. It was
noted earlier, however, that many practical logic programs
are written to support only one mode of use and that they
can support other modes only inefficiently or not at all.
Consequently, it seems desirable that logic programming
systems should support mode declarations or some other means
of indicating the allowed forms of call. Functional
languages do not require such mechanisms, since the single
mode of use of a function is implicit in its declaration.

6. Logical variables
Function applications may return only constants or
functional applications to constants. In contrast, the
output of a logic program may be a data structure which
includes uninstantiated variables. For example, in
micro-PROLOG the call

which(Z: append((l 2) Y Z))
will produce the answer (1 2|x). Darlington et al. (op.
cit.) have noted that this capability has on several
occasions led to programs which are more abstract and more
efficient than would otherwise be possible.

PAGE 121

7. Determinism
Functional languages are deterministic. The output of a
functional program is completely determined by its input and
can be obtained without any searching. Logic programs
however are non-deterministic in that searching for
solutions (which may be multiple, as already noted) is
generally unavoidable and furthermore the search can be
conducted in many different ways.
Turner has noted that if functional languages are to be
applied to such problems as the construction of operating
systems, a form of non-determinism appears to be a
prerequisite [190]. Unfortunately, the implementation of
non-determinism in functional languages would seem to
destroy their referential transparency. This point is
accepted by Glaser et al [23]. Henderson, in describing a
possible implementation of non-deterministic primitives
within his LISPKIT LIST system, notes the price which is to
be paid in the reduced transparency of programs and suggests
that the programmer must use his experience in deciding
whether to use them [191]. Turner (op. cit.) expresses the
hope that further research will produce simplifications in
this aspect.

8. Higher-order expressions
A distinction between the two approaches which is cited by
several authors concerns the higher order application of
functions and relations. For example. Turner states that

'Functional programming ... has the
important advantage of being higher
order, i.e. it permits the manipulation
of functions as data objects, in a way
that respects the principle of
extensionality, whereas nothing quite
equivalent to this exists in logic
programming.' [190]

Evidently the analogue in logic programming is metalogical
programming, in which relations describe relationships
between other relations. A discussion of metalogical
programming appeared earlier: it will be recalled that,
whilst it is true that the metalogical facilities of most
PROLOG systems have been problematic, recent work in this
area such as that by Bowen and Kowalski [92] appears to hold
considerable promise for logic programming.

PAGE 122

3.2.3.2 Future directions
As the above discussion shows, there are significant
differences between the two approaches. However, they are
both declarative and well-rooted mathematically and this
reflects iteself in many similarities. In particular, the
functional programming view of software development is
strikingly similar to that of logic programming as described
earlier, where executable but possibly inefficient
specifications are mathematically transformed into a correct
and efficient program. A recent informal account of the
development methodology for declarative languages in general
is given by Darlington [197].
A number of proposals have been advanced for some form of
unification between the two approaches. One direction is to
provide facilities for both, together with an interface
betwen the two within the same general programming
environment; this is exemplified by systems such as LOGLISP
[70], FUNLOG [198], and POPLOG [199]. A different direction
is to attempt to subsume one approach within the other,
possibly by making extensions to the subsuming language. An
inspection of the differences listed above might suggest
that a satisfactory subsumption of functional programming
within logic programming is more likely than the reverse,
but proposals have in fact been advanced in both directions.
Thus McCabe's Lambda PROLOG [200] is reported to fully
support functional equations within a logic programming
framework and Darlington et al [193] have proposed an
extension of functional programming to incorporate
unification and non-determinism.

3.2.4 Human perceptions of logic programming

All the theoretical benefits of logic programming may be of
little practical value if the human mind is in some
fundamental way ill-suited to it. It is useful then to
consider the evidence which relates to the human perception
of logic programming.
A recent review of behavioural research into the effects of
programming languages and programming methods in general on
programmer performance has been conducted by Sheil [201].
Unfortunately, the results are far from conclusive. Shiel
suggests that much of the research suffers from the lack of
an adequate understanding of the programming process.
Consequently, claims for the superiority of one method over
another should be treated with caution. Similarly, a paper
by Brooks [202] on the problems of experimentally studying
programmer behaviour concludes that models of the cognitive
processes involved in programming must be developed before
any substantial progress can be made.

PAGE 123

In the absence of firm experimental evidence from research
psychologists, some informal observations might still be
useful notwithstanding their somewhat anecdotal flavour. The
first of the following sections describes some of the
reactions of learners to (invariably, some version of)
PROLOG. The second presents some more fundamental criticisms
which have been made of the problem-solving capabilities of
logic programming.

3.2.4.1 Experiences of PROLOG learners
Learners can be conveniently grouped into two categories:
non-programmers and experienced programmers who are
approaching PROLOG from a background of imperative
programming.
A major project at Imperial College, London, known as the
'Logic as a Computer Language for Children' project, has
been aimed at introducing logic programming to children aged
ten to thirteen [203]. Using a subset of the SIMPLE
interpreter for micro-PROLOG running on microcomputers,
children have been taught to construct and query elementary
logic databases expressing their knowledge of history and
other subjects. Programs have been viewed declaratively,
virtually to the exclusion of any procedural interpretation.
Essentially, this has been possible because the
(computationally) trivial nature of the problems has usually
guaranteed PROLOG's good behaviour.
The Imperial College project suggests that the separation of
logic from control which is central to logic programming is
helpful to learners, in that they can concentrate on
specifying the logic of their problems and rely solely on
the control provided by the logic interpreter for their
execution. PROLOG can be initially presented as though it
was some kind of relational database language. It can be
noted in passing that relational database languages have
generally been found quite accessible to naive users (a
survey of them is provided by Pirotte [204]).
For non-trivial problem-solving, however, learners must know
at least something of the procedural semantics and the books
which introduce PROLOG programming by Clark and McCabe [96],
by Clocksin and Mellish [95], by De Sarem [205] and by this
author [206] all make some attempt to explain the PROLOG
execution mechanism. The explanations vary in both method
and extent and a clear consensus on the optimum pedagogical
strategy has yet to evolve. Although Kowalski suggests that
the presentation of the procedural interpretation can be
limited to three points [203], it is clear that a
backtracking execution in particular is a potential source
of confusion. Ennals et al. point to further difficulties
which PROLOG'S strategy may cause to learners over the order
of conditions in left recursion and in negation-by-failure
[207]. Indeed, virtually all the extensions to Horn clause
logic are potential snares in that, whilst they provide

PAGE 124

expressive power which could especially benefit learners,
these extensions typically have special operational
restrictions, as noted earlier.
The inadequacies of PROLOG as a logic programming language
are a source of frustration for instructors. An extreme
response, of which De Sarem's text (op. cit.) is an example,
is to virtually abandon the logical view in favour of a
presentation of PROLOG as an imperative programming language
with a highly unusual execution strategy. Thus, all the
ambitions of logic programming are dismissed. More usual and
more constructive, however, has been an instructional
approach which in the words of Sergot 'recognises PROLOG'S
close relationship with logic, and views it as a primitive
but efficient implementation of the logic programming ideal'
[103]. This approach presents learners with the logical
reading of program clauses first, but also provides the
PROLOG control reading, drawing attention where necessary to
any restrictions. In this researcher's experience of
teaching PROLOG programming to beginners, both adults and
children, this approach is quite feasible.
As this thesis has shown, there is a great deal of scope for
developing logic programming languages with an execution
strategy which is different from standard PROLOG'S. Kahn has
warned that these languages might actually be inferior from
the learner's viewpoint, because a more sophisticated
execution strategy may be more difficult to predict [208].
Presumably, however, the extent to which a new strategy will
be judged successful will be determined at least partly by
the decline in the practical need to predict its behaviour.
Morever, a more sophisticated execution mechanism than a
depth-first implementation of SLD-resolution is not
necessarily less comprehensible, as the LOGLISP example has
indicated. However, Kahn's point stands as a valid warning
against an over-complex autonomous execution strategy since,
as was shown earlier, no matter how much it is improved
there will always be problems which it cannot solve and
hence there will always be a requirement for human beings to
understand its behaviour. More intriguing is the question of
whether human beings will trust, or indeed should trust, a
machine which delivers solutions by a process which it is
difficult or even impossible to explain. Of course, this
anxiety applies also to solutions delivered by imperative
programs: in fact, arguably more so, because the controlled
assignment method of computing solutions is arguably less
penetrable to human intelligence than the controlled
inference method of logic programming.
It is in the problem-solving applications of logic that some
of the greatest benefits should be seen, and this is where
imperative languages are particularly inadequate. Hogger's
recollection: '... as a science undergraduate in an
introductory FORTRAN course, being able to accept
descriptions of the effects of individual statements upon
the machine but uncertain as to how they should be knitted
together in a manner consistent with the problem's logical

PAGE 125

structure' [87], seems quite typical and it illustrates well
the lack of a clear problem-orientation in traditional
programming. The theory of logic programming program
development permits the specification of a problem in logic
to be executed directly, with subsequent
correctness-preserving transformations to remove
inefficiencies, as described earlier. Unfortunately, it is
noticeable that most PROLOG texts, including those by Clark
and McCabe and by Clocksin and Mellish mentioned above,
provide little or no explicit guidance on program
development methodology, relying instead mainly on the
presentation of examples. This researcher has published an
informal framework to assist learners in the development of
PROLOG programs starting with English language
specifications [206]. Although presented to learners under
the title of 'top-down description', it is actually based on
the top-down logic programming methodology which was
described earlier. English specifications of relations are
translated into PROLOG clauses the bodies of which generally
introduce new relations which are in turn themselves
specified and translated. After each stage of decomposition
comes an efficiency check: the procedural interpretation of
the new clause under the PROLOG control strategy is checked
for its problem-solving capability against the anticipated
goal. Experience with learners using the methodology is
favourable: it seems likely that something like this will be
a useful complement to the more formal, verifiable and
(hopefully) automatable methods of program development which
are now being investigated.

3.2.4.2 Criticisms of logic for problem-solving
Potentially some of the most serious criticisms of logic
programming have concerned the adequacy of logic itself for
representing some of the problems which need to be solved.
One example is the criticsm formulated by Minsky concerning
the monotonicity of logical consequence [209]. Another is
the more recent criticism by Hewitt of the choice of logic
programming for the Japanese Fifth Generation project on the
grounds that logic does not adequately distinguish action
from description and does not cope with inconsistent
information [210]. Conceptually, these and other criticisms
can be regarded as implying that the model of computation
which is (currently) offered by logic programming, which is
intuitively that of deduction from a fixed and
self-consistent theory, is inadequate for certain cases of
problem-solving. Campbell mentions as examples those
problems in which relationships are time-dependent; those
which involve cause and effect; and those which require
reasoning about uncertain or incompletely described
relationships [211].

PAGE 126

Unfortunately, no detailed study is known which has
identified and analysed the problematic categories. Research
reports sometimes suggest that the difficulty lies with
finding the appropriate logical formulation of a problem,
rather than denying that any such formulation is possible.
For example, Mellish and Hardy introduce their account of
the Exeter POPLOG system by writing

’Although PROLOG undoubtedly has its
good points, there are some tasks (such
as writing a screen editor or network
interface controller) for which it is
not the language of choice. The most
"natural computational concepts" for
these tasks are hard to reconcile with
PROLOG’S declarative nature. Even if
some way could be found to view these
tasks as naturally declarative,
programming in PROLOG could still be
wasteful because of the existing
expertise in writing these kinds of
programs in procedural languages.’ [102]

In fact, PROLOG has been used to write editors. For example,
the impressive structure editor which is part of the
micro-PROLOG system is itself a PROLOG program, and this
researcher has published a PROLOG software package which
includes some quite extensive interactive input/output
facilities [212]. However, in the latter case at least it is
true that the top level of the task was specified in
procedural terms. An algorithm was written which was then
implemented in PROLOG under the assumption of the standard
control strategy. It can be fairly said that this approach
to some extent sacrifices the advantages of separating logic
from control which are central to the claims made for logic
programming.
The question of whether it is more ’natural’ to express a
particular specification in procedural or in declarative
terms is frequently touched upon but seldom discussed in
depth. The first page of Clark and McCabe’s text on PROLOG
programming contains the somewhat bald statement: 'While
undoubtedly we sometimes think behaviourally, most often we
do not' [96]. Kluzniak and Szpakowicz on the other hand
state that 'programmers often find operational terms more
natural' [213]. They argue morever that successful
programming lies in the programmer's ability to rapidly
alternate between the operational view of a problem and the
formal logical view while developing the program, and that
the benefit of PROLOG lies in its provision of a common
notation for both viewpoints. Clearly this claim requires
investigation by psychologists. It is interesting to note
that the pioneer developmental psychologist Jean Piaget,

PAGE 127

whose theory of cognitive development stresses that concrete
operational thought gives rise during adolescence to formal
abstract thought, has recently been criticised by other
psychologists for concentrating too much on the
psychological significance of abstract logical structure
while tending to ignore the effect of concrete content and
context [224].
The informal introductory book on problem-solving with
PROLOG written by this author implicitly concedes that for
some problems an algorithmic specification may be simpler to
formulate [206]. It suggests that learners should attempt to
classify a problem initially as either a 'problem-to-prove’,
a 'problem-to-find' or a ’problem-to-do', where the latter
category (alone) is characterised as comprising
’non-logical' problems which are primarily concerned with
controlling the computer's behaviour. The specification
which is formulated for a 'problem-to-do' is a procedural
one. However, it is worth noting that although the top-level
specification of a 'problem-to-do' is non-declarative, it is
typically the case that lower levels of the problem are in
fact straightforwardly specifiable in logic so that there
are still clear benefits to be had in a logic programming
approach. Other researchers have also supported an approach
to PROLOG programming which admits to breaches of
declarative purity. For example, Kluzniak and Szpakowicz
have written:-

'... the stress is on the dynamics of
programming and on the local validity of
dual interpretation. It is not as
important to maintain the purity of
uniform - declarative reading throughout
a big program. The problems of
programming as a whole are better dealt
with in terms of modularisation and
abstraction ...' [213]

But there seem to be two main objections to adhering to a
language such as PROLOG whilst taking recourse to
procedurally based problem specifications. The first is that
PROLOG lacks the imperative expressiveness of a modern
procedural language, so that procedural specifications do
not always find a convenient PROLOG translation. (On the
other hand, the fact that it actually can be done seems to
support Kowalski's point, made in [203] for example, that
logic programming reconciles the old conflict between the
procedural and the declarative representations of
knowledge). The second is that the logic programming
software development methodology is subverted: the problems
associated with the development of correct, reliable,
maintainable software by procedural methods are to some
extent re-introduced.
Some researchers have tried to resolve the difficulties by
using forms of logic which either extend standard predicate

PAGE 128

calculus or which actually replace it altogether. A review
of these non-standard logics is given by Turner [214]. The
category of logics which extend predicate calculus includes
modal logic, in which the truth value of relationships takes
account of different possible 'worlds', and temporal logic,
in which truth values take account of different possible
times. The category of logics which essentially rival
predicate calculus include multi-valued logic, which permits
more than two truth values, fuzzy logic, which introduces
'vague' predicates and which interprets 'true' and 'false'
as themselves imprecise, and intuitionist logic, which is
based upon the constructivist view of mathematics. Turner
points out that much is known about these logics and he
suggests that for AI, in particular, they provide formal
tools with which to develop theories of knowledge
representation and plausible inference. He predicts that
although they are as yet not understood by most AI
researchers, the use of non-standard logics will become a
very commonplace phenomenon.
If Turner is right about the significance of the
non-standard logics then some important issues are raised
for logic programming. An obvious question concerns what
control mechanism would be required (if indeed any were
possible) to supplement or substitute for top-down
resolution in order to interpret a logic program which made
use of a non-standard logic. So far, however, the
non-standard logics have largely been ignored by logic
programming researchers. Hogger for example recalls that
Horn clauses have been shown to be a universal computing
formalism, one which posseses equivalent computational
potential to the other formalisms normally studied in the
theory of computability, and he concludes that:-

'Because of this, and because logic
programming is now so well-established
in both theory and practice, it is
strictly unnecessary - and possibly of
no particular benefit - to deploy
non-standard logics (such as fuzzy,
temporal or modal logics) for
computational purposes; it is more
worthwhile to seek first to achieve
their desired function by formulating
and implementing them in standard
logic.' [87]

However, it might be said that in the 'strict' sense of what
can be computed, FORTRAN (say) is no less adequate than
logic. It is surely relevant to seek any route towards a
more problem-oriented programming technology, and one which
could perhaps be accomodated into a (suitably extended)
logic programming framework must merit serious
investigation.
Certainly however there is evidence that at least some

PAGE 129

problems in the areas which are difficult for standard logic
can be formulated so as to be tractable for existing logic
programming. For example, the papers by Clark and McCabe
[166] and by Hammond [167] both indicate ways in which
PROLOG can cope with some forms of uncertainty in expert
systems applications. Kowalski has shown how time and event
information can be dealt with in the problem of database
maintainance [66]. Although no specific study from a logic
programming perspective of the problems associated with such
applications as screen editors or network interface
controllers is known, computer graphics has been the subject
of contributions by Kowalski [109] and by Julian [108].
At a recent meeting of the Royal Society held to discuss
programming languages, Kowalski was invited to reply to the
following contribution to the discussion:-

’Many people are reluctant to discard
procedural programming concepts; perhaps
this is because they see the execution
of a program as primarily a simulation
of a succession of events in the world,
rather than as a process of deduction
about what holds in one particular state
of the world.' [40]

In response, Kowalski said that this identified what is
probably the most important, unresolved problem in logic
programming. In fact, however, it seems that there are two
unresolved problems here rather than one: there is the
problem of how human beings 'most naturally' interpret the
world, and there is the further problem of whether and how
logic programming can be applied to problems which appear to
go beyond the model of deduction from a fixed
self-consistent theory. It can readily be anticipated that
both problems will require considerable research for their
solutions.

PAGE 130

3.3 Conclusions

Logic programming represents a major departure from
traditional methods and it is to be expected that the
response of many computing professionals will be one of
suspicion. It is appropriate then to repeat that, as was
shown in Part One, the traditional methods have failed to
solve the software crisis. This message is underlined in a
recent report on the 'state of the art’ in programming
technology, in which Wasserman concludes of current
practices that

'Software design and development is the
weakest link in the system development
process. It has become extraordinarily
and prohibitively expensive, and remains
unpredictable in terms of economically
and dependably producing processes that
run reliably, correctly and
efficiently.' [225]

In logic, computing science has a well-founded and versatile
software formalism, one which can be used to express
specifications, programs, and proofs of programs. As a
declarative language its programs have the highly desirable
property of referential transparency. Formal methods of
development, which may be machine-assisted and perhaps
ultimately automated, are much more easily applied, as the
existing research on program synthesis, transformation and
verification has shown. The potential contribution of logic
programming towards the consistent, efficient development of
totally correct and verifiable software seems likely to be
substantial.
The record of experience of PROLOG applications is
encouraging. However, it has also shown that there are
problems which have not yet been satisfactorily solved. The
inadequacies of PROLOG'S autonomous control strategy and of
its control primitives have been exposed. In addition to the
control problems there are problems with the language of
logic, such as those associated with the provision of
satisfactory Horn clause extensions and of metalanguage
facilities. Furthermore, there is a need to establish a
logic programming perspective of those types of problems
which seem not to fit so naturally within the framework of
deduction from a fixed theory. It should be recognised too
that logic programming has something to learn from the
experience of the structured programming school, for example
in the implementation of modularity.
The development of new computer architectures will be of
major significance. It can be speculated that the current
situation in which logic and functional languages are
generally at a disadvantage in efficiency terms relative to

PAGE 131

imperative languages will be changed by the advent of
parallel processing hardware. The development of languages
such as PARLOG shows that logic programming has credibility
as a technology for the 'fifth generation' of computing
machines. Furthermore, it demonstrates conclusively that
logic programming specifies not one but an entire family of
programming languages, and that PROLOG should rightfully be
seen as but the first realisation of the logic programming
concept. In this sense, the description of PROLOG as 'the
FORTRAN of logic programming' represents not so much an
adverse criticism of PROLOG as an astute perception of the
development of computing itself.

PAGE 132

REFERENCES

1 Backus, John Can programming be liberated from the
von Neumann style? A functional style and its algebra of
programs.
CACM August 1978 pp 613 - 640.

2 Burks, A. D ., Goldstine H. H., von Neumann, J
Preliminary discussion of the Logical design of an
electronic instrument
Princeton, 1946.

3 Booth, A. D ., Britten, K. H. V. General considerations
in the design of an all-purpose electronic digital
computer.
Princeton, 1947.

4 von Neumann, J. The computer and the brain.
Yale University Press, 1958.

5 Report of the Ad-Hoc Committee on Universal Languages:
The problem of programming communication with changing
machines - a proposed solution.
CACM Aug 1958, pl2.

6 Dijkstra, E. W. A primer of Algol 60 programming.
Academic Press 1962.

7 CODASYL COBOL: Final Report.
U.S. Government Printing Office, June 1960.

8 Wulf, William A. Languages and Structured Programs.
In: Raymond T. Yeh, (Ed), Current Trend in Programming
Methodology. Prentice-Hall 1977.

9 David, E. E. The Production of Software for Large
Systems.
Infotech State of the Art Reports, 1971.

10 McKeag, R. M. Operating Systems.
In: R. H. Perrott, (Ed), Software Engineering. Academic
Press 1977.

11 Brooks, F. P. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley 1975.

12 Hoare, C. A. R. Software Engineering: A Polemical
Prologue. In: R. H. Perrott, (Ed), Software
Engineering. Academic Press 1977

PAGE 133

13 Dijkstra, E. W., Dahl and Hoare Structured Programming
Academic Press 1972.

14 Mills, H. D. Top-Down Programming in Large Systems.
In: Debugging Techniques in Large Systems Prentice-Hall
1971, pp 41 - 55.

15 Wirth, N. Programming Development by Stepwise
Refinement.
CACM 14, 4 (April 1971) pp 221-227.

16 Sommerville, I. Software Engineering. Addison-Wesley
1983.

17 Dijkstra, E. W. Goto Statement Considered Harmful.
CACM 11, 3 (March 1968) pp 147 - 148.

18 Bohm and Jacopini. Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules.

CACM, May 1966.
19 Wirth, N., Jensen, K. Pascal User Manual and Report.

Springer-Verlag 1974.
20 Woodward, P., Bond, S. G. Algol 68-R Users Handbook.

HMSO, London, 1974.
21 Bohl, M., Walter, A. Introduction to PL/1 Programming

and PL/C.
Science Research Associates, 1973.

22 Jackson, M. A. Principles of Program Design.
Academic Press 1975.

23 Glaser, H., Hankin, C. and Till, D. Principles of
Functional Programming.
Prentice/Hall 1984.

24 Floyd, R. W. Assigning Meaning to Programs.
Proc. Symp. in Applied Maths, Vol 19. Americam
Mathematical Society 1967, pp 19 - 32.

25 Hoare, C. A. R. Proof of a Program: FIND.
CACM 14, 1 Jan 1971 pp 39 - 45.

26 Manna, Z., Waldinger, R. J. Towards Automatic Program
Synthesis..
CACM 14, 3 March 1971 pp 151 - 165.

PAGE 134

27 Liskov, B., Zilles, S. An Introduction to Formal
Specifications of Data Abstractions.
In: Yeh, R.T. (Ed) Current trends in Programming
Methodology. Prentice-Hall 1977.

28 Burstall, R.M., Darlington, J. Some Transformations
for Developing Recursive Programs.
Proc. Int. Conf. on Reliable Software, Los Angeles,
Californmia pp 465 - 472.

29 Hoare, C. A. R. The Emperor's Old Clothes.
CACM 24, 2 Feb 1981 pp 7 5 - 8 3 .

30 U.S. Department of Defense. Requirements for Ada
Programming Support Environments: 'Stoneman' 1980

31 Dijkstra, E. W. The Humble Programmer.
CACM 15, 10 Oct 1972 pp 859 - 866.

32 Wirth, N. Programming Languages: How To Assess Them.
In: R. H. Perrott, (Ed), Software Engineering. Academic
Press 1977.

33 Treleaven, P. C., Brownbridge, D.R., Hopkins, R. P.
Data-driven and Demand-driven Computer Architecture.
ACM Computing Surveys 14, 1 pp 93 - 143 1982.

34 Gurd, J., Watson, I., Glauert, J. A Multilayered Data
Flow Computer Architecture.
Department of Computing Science, Univ. of Manchester
1980.

35 Dijkstra, E. W. Co-operating Sequential Processes.
In: Genuys, F., (Ed) Programming Languages. Academic
Press, 1968.

36 Hoare, C. A. R. Communicating Sequential Processes.
CACM 21, 8 pp 666 - 677 1978.

37 Brinch-Hansen, Per The Programming Language Concurrent
Pascal.
In: Bauer, F. L ., Samelson, K. (Eds) Language
Hierarchies and Interfaces. Springer-Verlag, 1976.

38 Campbell, R. H., Kolstad, R. B. Path Expressions in
Pascal.
In: Forth International Conference on Software
Engineering, pp 212 - 215 1979.

39 Chamberlin, D. D. The 'Single-Assignment' Approach to
Parallel Processing.
In: Fall Joint Computer Conference p 263 - 269 1971.

PAGE 135

40 Kowalski, R. The relation between logic programming and
logic specification.
In: Hoare. C.A.R., Sheperdson. J.C (Eds) Mathematical
Logic and Programming Languages. Prentice/Hall 1985.

41 Robinson, J.A. A machine oriented logic based on the
resolution principle. Journal of ACM 12, 23 - 41,
1965.

42 Hodges, W. H. Logic. Penguin Books 1977.
43 Nilsson, N. J. Problem-Solving Methods in Artificial

Intelligence.
McGraw-Hill, New York 1971.

44 Horn, A. On sentences which are true of Direct Unions
of Algebras.
Journal of Symbolic Logic 16, pp 14-21, 1951.

45 Kowalski, R. Logic for Problem Solving.
Academic Press 1979.

46 Church, A. A Note on the Entscheidungsproblem.
Journal of Symbolic Logic 1, pp 40-41 (correction ibid.
plOl-102), 1936.

47 Robinson, J. A. Automatic Deduction with
Hyper-Resolution. International Journal of
Computer Math. 1, pp 227-234. 1965.

48 Robinson, J. A. Logic: Form and Function.
Edinburgh University Press 1979.

49 Bundy, A. The Computer Modelling of MAthematical
Reasoning.
Academic Press 1984.

50 Robinson, J.A. Computational Logic: The Unification
Computation.
Machine Intelligence 6, Edinburgh University Press, pp
63 - 72 1971.

51 Chang, C. L ., Lee, R. Symbolic Logic and Mechanical
Theorem Proving.
Academic Press 1973.

52 Tarski, A. Truth and Proof.
Scientific American 220(6), 63-77, 1969.

53 Herbrand, J. Researches in the theory of Demonstration.
In: van Heijenoort, Ed. From Frege to Godel: a
sourcebook in mathematical logic 1879 - 1931. pp 525-81.
Harvard Univ. Press, 1930.

PAGE 136

54 Godel, K. Uber Formai Unentscheidbare Satze der
Principia Mathematica und verwandter System 1.
English translation in: van Heijenoort, Ed. From Frege
to Godel: a sourcebook in mathematical logic 1879 -
1931.
Harvard Univ. Press pp 596-616, 1930.

55 Sheperdson, J. C. The Calculus of Reasoning.
In: Michie (Ed), Intelligent Systems.
Ellis-Horwood 1984.

56 Kowalski, R ., Kuehner, D. Linear Resolution with
Selection Functiion.
Artificial Intelligence Vol 2, pp227 - 260, 1971.

57 Loveland, D. W. A Linear Format for Resolution.
Symposium on Automatic Demonstration, Lecture Notes in
Math 125.
Springer-Verlag ppl-162 1970.

58 Siekmann, J., Stephan, W. Completeness and Soundness of
the Connection Graph Proof Procedure.
Innterner Bericht Nr 7/76, Inst, fur Informatik I,
Universtat Karlsruhe. 1976.

57 Kuehner, D. Some Special Purpose Resolution Systems.
In: Meltzer & Michie (Eds), Machine Intelligence 7,
Edinburgh University Press, pp 117-128. 1972.

58 Bledsoe, W. W. Non-resolution Theorem Proving.
Artificial Intelligence, vol 9, 1977.

59 Clark, K. L., McKeeman, W. M., Sickel, S. Logic
Program Specification of Numerical Integration.
In: Clark, K. L ., Tarnlund, S. (Eds) Logic Programming.
Academeic Press 1982.

60 Gilmore, P. C. A Proof Method for Quantification
Theory.
IBM Journal Res. Dev. 4:28-35, 1960.

61 Wang, H. J. Towards Mechanical Mathematics.
IBM Journal Res. Dev. 4:28-35, 1960.

62 Robinson, J. A. Logical Reasoning Machines.
In: Michie, D ., (Ed) Intelligent Systems.
Ellis-Horwood 1984.

63 Prawitz, D. An Improved Proof Procedure.
Theoria 26, pp 102-139, 1960.

PAGE 137

64 Sickel, S, A Search Technique for Clause
Interconnectivity Graphs.
IEEE Trans. Comptrs. (Special issue on automatic theorem
proving) Aug. 1976.

65 Reiter, R. Two Results on Ordering for Resolution with
Merging and Linear Format.
J. ACM 18 pp 630-646, Oct 1971.

66 Kowalski, R. A. Logic as a Database Language.
Research Report DoC 82/25, Dept of Computing, Imperial
College, London. Revised May 1984.

67 Brand, D. Analytic Resolution in Theorem Proving.
Artificial Intelligence Vol 7 pp 285-318, 1976.

68 Kowalski, R. Predicate Logic as Programming Language.
Proc IFIP 74, North-Holland Publishing Co. Amsterdam,
PP569-574, 1974.

69 Roussel, P. PROLOG: Manuel de Reference et
d'utilisation.
Groupe d'intelligence Artificielle, Université
d'Aix-Marseille, Luminy, Sept 1975.

70 Robinson, J.A., Sibert, E.E. LOGLISP: Motivation,
Design and Implementation.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming.
Academic Press, 1982.

71 Nilsson, N. J. Problem-Solving Methods in Artificial
Intelligence.
McGraw-Hill, 1971.

72 Gallaire, H., Lasserre, C. Metalevel Control for Logic
Programs.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming.
Academic Press, 1982.

73 Pereira, L ., Pereira, F., Warren, D . User's Guide to
DECsystem-10 Prolog.
DAI Occasional Paper 15, Department of Artificial
Intelligence, University of Edinburgh. 1979.

74 Clark, K. L ., McCabe, F. Programmer's Guide to
IC-PROLOG.
CCD Report 79/7, Imperial College, University of London
1979.

75 Clark, K. L ., McCabe, F. The Control Facilities of
IC-PROLOG.
In: Michie, D (Ed) Expert Systems in the
Micro-Electronic Age.
Edinburgh University Press 1979.

PAGE 138

76 Hill, R. LUSH Resolution and its Completeness.
DCL Memo No. 78, School of Artificial Intelligence,
August 1974.

77 Dowson, M. A Note on Micro-PLANNER.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

78 Sussman, G., Winograd, T., Charniak, E. Micro-PLANNER
Reference Manual (Revised).
MIT AI LAB Memo 203A. 1971.

79 Bruynooghe, M., Pereira, L. M. Deduction Revision by
Intelligent Backtracking.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

80 Cox, P. T. Finding Backtrack Points for Intelligent
Backtracking.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

81 Pereira, L. M., Porto, A. Selective Backtracking.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming
Academic Press, 1982.

82 McDermott, D ., Sussman, G. The CONNIVER Reference
Manual.
MIT AI LAB Memo 259A, January 1974.

83 Davies, J. POPLER - Implementation of a POP-2 based
PLANNER.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

84 Davies, J. POPLER 1.5 Reference Manual.
TPU Report no. 1, Edinburgh, 1973.

85 Griswold, R. E., Poage, J. F., Polansky, I. P. The
SN0B0L4 Programming Language.
Prentice-Hall International (Second Edition) 1971.

86 Dijkstra, E. W. A Discipline of Programming.
Prentice-Hall International, 1976.

87 Hogger, C. J. An Introduction to Logic Programming.
Academic Press 1984.

88 Clark, K. L. Negation as Failure.
In: Gallaire, H., Minker, J. (Eds) Logic and Data
Bases.
Plenum Press, New York, pp 293-322. 1978.

PAGE 139

89 Turner, S. J, W-Grammars for Logic Programming.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

90 Wise, M. J. EPILOG: Re-Interpreting and Extending
PROLOG for a Multiprocessor Environment.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

91 Jaffar, J., Lassez, J-L, Lloyd, J. W. Completeness of
the Negation as Failure Rule.
Proc. 8th Int. Joint Conf. on Artificial Intelligence,
Karlsruhe, Germany, 1983.

92 Bowen, K. A., Kowalski, R. Amalgamating Language and
Metalanguage in Logic Programming.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming.
Academic Press, 1982.

93 Warren, D. H. D. Higher-order Extensions to PROLOG: Are
They Needed?
In: Michie, D. (Ed) Machine Intelligence 10. pp
441-453. Ellis-Horwood, 1983.

94 McCabe, F. G., Clark, K. L., Steel, B. D. micro-PROLOG
3.1 Programmer's Reference Manual.
Logic Programming Associates Ltd, Fourth Edition. 1984.

95 Clocksin, W. F., Mellish, C. S. Programming in PROLOG.
Springer-Verlag 1981.

96 Clark, K. L ., McCabe, F. G. micro-PROLOG: Programming
in Logic.
Prentice-Hall 1984.

97 Colemerauer, A. PROLOG - The Fifth-Generation Language.
Interview in: Europa Management Report, June 1985.
Digital Equipment Corporation, Europe.

98 Kluzniak, F. The 'Marseille Interpreter' - A Personal
Perspective.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

99 Fogelholm, R. Exeter PROLOG - Some Thoughts on PROLOG
Design by a LISP User.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

100 Clark, K. L., McCabe, F. G., Gregory, S. IC-PROLOG
Language Features.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming.
Academic Press, 1982.

PAGE 140

101 Kowalski, R. Logic as a Computer Language.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming.
Academic Press, 1982.

102 Mellish, C., Hardy, S. Integrating PROLOG in the POPLOG
Environment.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

103 Sergot, M. A Query-the-User Facility for Logic
Programming.
In: Yazdani, M. (Ed) New Horizons in Educational
Computing. Ellis-Horwood 1984.

104 Ennals, R., Briggs, J., Brough, D. What the Naive User
Wants from PROLOG.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

105 Hammond, P. APES: a User Manual.
Department of Computing Report 82/9, Imperial College,
London University. 1983.

106 McCabe, F. G., Clark, K. L ., Brough, D. R. ZX Spectrum
micro-PROLOG Programmer's Reference Manual. Sinclair
Research, Cambridge, 1984.

107 McCabe, F. G., Clark, K. L ., Brough, D. R. BBC Micro
micro-PROLOG Programmer's Reference Manual. Acornsoft
Ltd, Cambridge, 1985.

108 Julian, S. Graphics in micro-PROLOG.
M.Sc. Thesis, Dept, of Computing, Imperial College.
London University 1982.

109 Kowalski, R. Logic as a Computer Language for Children.
In: Yazdani, M. (Ed) New Horizons in Educational
Computing. Ellis-Horwood 1984.

110 Ross, P. LOGO Programming.
Addison-Wesley 1984.

111 Campbell, J. A. (Ed) Implementations of PROLOG.
Ellis-Horwood 1984.

112 Clark, K.L., Tarnlund, S. (Eds) Logic Programming.
Academic Press, 1982.

113 Boyer, R. S., Moore, J. S. The Sharing of Structure in
Theorem Proving Programs.
In: Machine Intelligence 7, Edinburgh University Press.
1972

PAGE 141

114 Mellish, C. S. An Alternative to Structure Sharing in
the Implementation of a PROLOG Interpreter.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming,
Academic Press, 1982.

115 Bruynooghe, M. The Memory Management of PROLOG
Implementations.
In: Clark, K.L., Tarnlund, S. (Eds) Logic Programming,
Academic Press, 1982.

116 Kahn, K. M., Carlsson, M. How to Implement PROLOG on a
LISP Machine.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

117 van Emden, M. H. An Interpreting Algorithm for PROLOG
Programs.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

118 Robinson, J. A. Logical Reasoning in Machines.
In: Michie, D. (Ed) Intelligent Systems. Ellis-Horwood
1984.

119 Lloyd, J. W. Foundations of Logic Programming.
Springer-Verlag 1984.

120 Plaisted, D. A. The Occur-Check Problem in PROLOG.
Int. Symp. on Logic Programming, Atlantic City, pp
272-280. 1984.

121 Bruynooghe, M. Garbage Collection in PROLOG
Interpreters.
In: Campbell, J. A. (Ed): Implementations of PROLOG.
Ellis-Horwood 1984.

122 Warren, D. DEC-10 PROLOG Efficiency.
In: Michie, D. (Ed) Expert Systems in the
Micro-Electronic Age. Edinburgh University Press 1979.

123 Martelli, A., Montanari, U. An Efficient Unification
Algorithm.
In: ACM Transactions on Programming Languages and
Systems, Vol 4 No 2, April 1982.

124 McCabe, F. G., Gregory, S. Getting Started with
IC-PROLOG.
DOC 81/29, Dept of Computing, Imperial College, London.
January 1981.

125 Byrd, L., Pereira, F., Warren, D. A Guide to Version 3
of DECIO-PROLOG and Prolog Debugging Facilities.
DAI Occasional Paper 19, Dept of Artificial
Intelligence, University of Edinburgh. 1980.

PAGE 142

126 Warren, D. An Improved PROLOG implementation which
Optimises Tail Recursion.
Proc. of Int. Workshop on Logic Programming, von Neumann
Comp. Sci. Soc., Debrecen, Hungary. July 1980.

127 Warren, D. Implementing PROLOG - Compiling Predicate
Logic Programs.
Research Reports 39 and 40, Department of Artificial
Intelligence, University of Edinburgh. 1977.

128 Robinson, J. A, Sibert, E. Logic Programming in LISP.
School of Comp, and Inf. Sci., Syracuse University.
1980.

129 Durham, T. The Best of Both Worlds?
Article in: Computing the Magazine, May 23, 1985.

130 Lloyd, J. W. Foundations of Logic Programming.
Springer-Verlag 1984.

131 Naish, L. An Introduction to MU-PROLOG.
Technical Report 82/2, Dept of Computer Science,
University of Melbourne.

132 Gabbay, D. M., Sergot, M. J. Negation as Inconsistency.
Research Report DoC 84/7, Imperial College. 3rd Draft
December 1984.

133 Manna, Z. The Correctness of Programs.
J. Computing and System Science, Vol. 3 pp 119-127,
1969,

134 Hoare, C. A. R. An Axiomatic Basis for Computer
Programming.
CACM, Vol 4, pp 321, 1969.

135 Dijkstra, E. W. A Discipline of Programming.
Prentice-Hall 1976.

136 Davies, R. E. Runnable Specification as a Design Tool.
In: Clark, K. L ., Tarnlund, S. A. (Eds) Logic
Programming.
Academic Press 1982.

137 Clark, K. L. The Synthesis and Verification of Logic
Programs.
Research Report DoC 81/36, Imperial College, University
of London. Revised Sep. 1981.

138 Clark, K. L ., Sickel S. Predicate Logic: a Calculus for
Deriving Programs.
Proc. 5th Int. Joint Conf. on Artificial Intelligence,
Cambridge, Massachusetts, 1977.

PAGE 143

139 Hogger, C. J. Derivation of Logic Programs.
Ph. D. Thesis. Imperial College, University of London.
1979.

140 Hogger, C. J. Derivation of Logic Programs.
Journal of the ACM 28(2), 372-422, 1981.

141 Hoare, C. A. R. Programs are Predicates.
In: Hoare, C. A. R, Shepherdson, J. C. (Eds)
Mathematical Logic and Programming Languages.
Prentice-Hall, 1985.

142 McDermott, D. The PROLOG Phenomenon.
SIGART Newsletter 72, July, pp 16-20, 1980.

143 Hansson, A., Tarnlund, S. A. Program Transformation by
Data Structure Mapping.
In: Clark, K. L ., Tarnlund, S. A. (Eds) Logic
Programming.
Academic Press 1982.

144 Brough, D. R., Walker, A. Some Practical Properties of
Logic Programming Interpreters.
Research Report 83/34, Department of Computing, Imperial
College. University of London December 1983.

145 Warren, D. H. D. Natural Language the PROLOG way.
Interview with Tony Durham in: Computing The Magazine,
April 11th 1985.

146 Kriwaczek, F. A Critical Path Analysis Program.
In: Clark, K. L ., McCabe, F. G. Micro-PROLOG:
Programming in Logic.
Prentice-Hall International, 1984.

147 Warren, D. H. D. Logic Programming and Compiler
Writing.
Software Practice and Experience, 10, 2. 1980.

148 Bendl, J., Koves, P., Szeredi, P. The MPROLOG System.
Proc. of Int. Workshop on Logic Programming, von Neumann
Comp. Sci. Soc., Debrecen, Hungary, July 1980.

149 Cuadrado, C. Y, Cuadrado, J. L ., PROLOG Goes to Work.
Byte Magazine, pp 151-158, August 1985.

150 Campbell, J. A., Hardy, S. Should PROLOG be List or
Record Oriented?
In: Campbell, J. A. (Ed) Implementations of PROLOG.
Ellis-Horwood 1984.

PAGE 144

151 Burstall, R. M., McQueen, D., Sannella, D. T. HOPE: An
Experimental Applicative Language.
Report CSR-62-80, Dept, of Computer Science, University
of Edinburgh. 1980.

152 Milner, R. A Theory of Type Polymormhism in
Programming.
Journal of Computer and System Sciences 17(3), pp
348-375. December 1978.

153 Mycroft, A., O ’Keefe, R. A Polymorphic Type System for
PROLOG.
DAI Research Paper No. 211, Department of Artificial
Intelligence, University of Edinburgh. 1983.

154 Clark, K. L ., Gregory, S. PARLOG: Parallel Programming
in Logic.
Research Report DOC 84/4, Department of Computing,
Imperial College, University of London. Revised June
1985.

155 Dijkstra, E. W. A Discipline of Programming.
Prentice-Hall International 1976.

156 Clark, K. L ., Tarnlund, S. A First-order Theory of Data
and Programs.
Proc. of IFIP-77, Toronto, pp 939-944. North-Holland
Publ., Amsterdam, 1977.

157 Turner, D. An Admired Combination.
Interview in: Computing the Magazine, May 10th, 1984.

158 Cunningham, R. J., Zappacosta-Amboldi, S. Software
Tools for First-order Logic.
Research Report DOC 82/19, Department of Computing,
Imperial College, London University 1982.

159 Balogh, K. On an Interactive Program Verifier for
PROLOG Programs.
Proc. of Colloquium on Mathematical Logic in
Programming. Republished North-Holland Publ., Amsterdam,
1981.

160 Bergman, M., Kanoui, H. Application of Mechanical
Theorem-Proving to Symbolic Calculus.
Third Int. Symp. on Advanced Methods in Theoretical
Physics. C.N.R.S., Marseille, 1973.

161 Belovari, G., Campbell, J. A. Generating Contours of
Integration: An Application of PROLOG in Symbolic
Computing.
Proc. 5th Conf. on Automated Deduction. Lecture Notes in
Computer Science, Springer-Verlag 1980.

PAGE 145

162 Coelho, H. A Program Conversing in Portugese Providing
a Library Service.
Ph.D. Thesis, University of Edinburgh. December 1979.

163 Colmerauer, A. Metamorphosis Grammars.
In: Natural Language Communication with Computers. No.
63, Lecture Notes in Computer Science, Springer-Verlag
pp 133-189, 1978.

164 Quantification in a three-valued Logic for Natural
Language Question-Answering Systems.
Proc. 6th IJCAI, Tokyo, pp 182-187, 1979.

165 McCord, M. L, Using Slots and Modifiers in Logic
Grammars for Natural Language.
Technical Report 69A-80. Department of Computer Science,
University of Kentucky. 1980.

166 Clark, K. L ., McCabe, F. G. PROLOG: A Language for
Implementing Expert Systems.
In: Michie, D. (Ed) Machine Intelligence 10.
Ellis-Horwood 1983.

167 Hammond, P., Sergot, M. A PROLOG Shell for Logic Based
Expert Systems.
Dept, of Computing, Imperial College, London. 1983.

168 Brough, D., Parfitt, N. An Expert System for the Ageing
of a Domestic Animal.
Logic Programming Group, Department of Computing,
Imperial College, London. 1984.

169 Yazdani, M. Knowledge Engineering in PROLOG.
In: Forsyth, R. (Ed) Expert Systems. Chapman and Hall,
1984.

170 Hardy, S. PROLOG for Knowledge Engineers.
Tecknowledge Internal Memo. 1983.

171 Bundy, A., et al. MECHO: A Program to Solve Mechanics
Problems.
DAI Working Paper No. 50. University of Edinburgh, 1979.

172 Sergot, M. Prospects for Representing the Law as Logic
Programs.
In: Clark, K. L ., Tarnlund, S. A. (Eds) Logic
Programming.
Academic Press 1982.

173 Cory, H. T., et al. The British Nationality Act as a
Logic Program.
Logic Programming Group, Department of Computing,
Imperial College. 1984.

PAGE 146

174 Van Emden, M. H. Chess End-Game Advice: A Case Study in
Computer Utilisation of Knowledge.
In: Michie, D. (Ed) Machine Intelligence 10.
Ellis-Horwood 1983.

175 Kriwaczek, F. Some Applications of PROLOG to Decision
Support Systems.
M.Sc. Thesis. DoC Report 85/9, Dept of Computing,
Imperial College, London. (First pub. 1982), May 1985.

176 Clark, K. L ., Van Emden, M. H. The Logic of Two-person
Games.
In: Clark, K. L ., McCabe, F. G. micro-PROLOG:
Programming in Logic. Prentice-Hall International 1984.

177 Gallaire, H., Minker, J. (Eds) Logic and Data Bases.
Plenum Press, New York. 1978.

178 Santane-Toth, E ., Szeredi, P. PROLOG Applications in
Hungary.
In: Clark, K. L ., McCabe, F . G. micro-PROLOG:
Programming in Logic. Prentice-Hall International 1984.

179 Roberts, G. M. An Implementation of PROLOG.
M.Sc. Thesis, Department of Computer Science, University
of Waterloo. 1977.

180 Michie, D. (Ed.) Introductory Readings in Expert
Systems.
Gordon and Breach, New York. 1982.

181 Hammond, P. APES (A PROLOG Expert System Shell): A User
Manual.
DoC Report 82/9, Department of Computing, Imperial
College, London.

182 Kowalski, R. Logic Programming.
In: Byte Magazine, pp 161-177. August 1985.

183 Sergot, M. J. Programming Law: LEGOL as a Logic
Programming Language.
Logic Programming Group, Department of Computing,
Imperial College, London. 1980.

184 Michie, D. (Ed.) Intelligent Systems: the Unprecedented
Opportunity.
Ellis-Horwood 1985.

185 Kowalski, R. Letter in 'Computing' Newspaper. 13th
December 1984.

PAGE 147

186 Coelho, H., Cotta, J. C., Pereira, L. M. How to Solve
it with PROLOG.
Laboratorio Nacional de Engenharia Civil, Lisbon,
Portugal. 2nd Edition 1980.

187 Church, A. The Calculi of Lambda Conversion.
Princetown University Press, N. J. 1941.

188 Kleene, S. C. General Recursive Functions of Natural
Numbers.
Mathematical Annals 112, pp727-742, 1936.

189 McCarthy, J. et al. LISP 1.5 Programmer’s Reference
Manual.
MIT Press, 1962.

190 Turner, D. A. Functional Programs as Executable
Specifications.
In; Hoare, C. A. R, Shepherdson, J. C. (Eds)
Mathematical Logic and Programming Languages.
Prentice-Hall, 1985.

191 Henderson, P. Functional Programming: Applications and
Implementations.
Prentice-Hall International, 1980.

192 Darlington, J., Henderson, P., Turner, D. A. (Eds)
Functional Programming and its Applications.
Cambridge University Press, 1982.

193 Darlington, J., Field, A. J., Pull, H. The Unification
of Functional and Logic Languages.
Research Report DoC 85/3. Dept of Computing, Imperial
College, London University. Feb. 1985.

194 Landin, P. J. The Mechanical Evaluation of Expressions,
Computer Journal 6 (4), pp308-320, 1963.

195 Turner, D. A. A New Implementation Technique for
Applicative Languages.
Software Practice and Experience, 9, pp31-49, 1979.

196 Meira, S. R. L. Sorting Algorithms in KRC:
Implementation, Proof and Performance.
Computing Lab. Rep. no 14, University of Kent at
Canterbury.

197 Darlington, J. Program Transformation.
In: Byte Magazine, pp 201-216, August 1985.

198 Subrahmanyam, P., You, J. H. FUNLOG = Functions +
Logic.
Intern. Symp. Logic Programming, IEEE, pp 144-153, 1984.

PAGE 148

199 Hardy, S. The POPLOG Programming Environment.
Cognitive Studies Memo 82-05, University of Sussex,
1982.

200 McCabe, F. G. Lambda PROLOG.
Internal Report, Dept, of Computing, Imperial College,
London University. (In preparation, Feb. 1985).

201 Shell, B. A. The Psychological Study of Programming.
Computing Surveys vol 13 no 1 pp 101-120. March 1981.

202 Brooks, R. E. Studying Programmer Behaviour
Experimentally: The Problems of Proper Methodology.
Comms. ACM vol 23 no 4, pp207-213. April 1980.

203 Kowalski, R. A. Logic as a Computer Language for
Children.
Research Report no 82/23. Dept of Computing, Imperial
College, University of London. Feb. 1982.

204 Pirotte, A. High Level Data Base Query Languages.
In: Gallaire, H., and Minker, J. (Eds) Logic and Data
Bases. Plenum Press, New York, pp409-436, 1978.

205 De Sarem, H. Programming in micro-PROLOG.
Ellis-Horwood 1985.

206 Conlon, T. Start Problem-Solving with PROLOG.
Addison-Wesley 1985.

207 Ennals, R., Briggs. J., Brough, D. What the Naive User
Wants from PROLOG.
In; Campbell, J. A. (Ed) Implementations of PROLOG.
Ellis-Horwood, 1984.

208 Kahn, K. A Grammar Kit in PROLOG.
In: Yazdani, M. (Ed) New Horizons in Educational
Computing.
Ellis-Horwood 1984.

209 Minsky, M. L. A Framework for the Representation of
Knowledge.
In: Winston, P. (Ed) The Psychology of Computer Vision.
McGraw-Hill, New York, pp211-280, 1975.

210 Article by Hedley Vosey in 'Computing' newspaper, Sep.
29 1985.

211 Cambell, J. A. Three Uncertainties of A.I.
In: Michie, D., Hayes, P. (Eds) Intelligent Systems.
Ellis-Horwood 1985.

PAGE 149

212 Conlon, T. Expert Systems: A Resource Pack for Standard
Grade Computing Studies.
Department of Computer Education, Moray House College of
Education, Edinburgh. July 1985.

213 Kluzniak, F., Szpakowicz, S. PROLOG - A Panacea?
In: Campbell, J. A. (Ed) Implementations of PROLOG.
Ellis-Horwood, 1984.

214 Turner, R. Logics for Artificial Intelligence.
Ellis-Horwood 1984.

215 Tarnlund, S. A. Logic Information Processing.
Report TRITA-IBADB 1034, Dept of Information Processing,
University of Stockholm, Sweden. 1975.

216 Hogger, C. Concurrent Logic Programming.
In: Clark, K. L ., Tarnlund, S. A. (Eds) Logic
Programming.
Academic Press 1982.

217 Clark, K. L ., Gregory, S. A Relational Language for
Parallel Programming.
Research Report DOC 81/16, Dept of Computing, Imperial
College, London University. July 1981.

218 Clark, K. L ., Gregory, S. PARLOG: Parallel Programming
in Logic.
Research Report DOC 84/4, Dept of Computing, Imperial
College, London University. Revised June 1985.

219 Shapiro, E. Y. A Subset of Concurrent PROLOG and its
Interpreter.
Technical Report TR-003, ICOT, Tokyo. February 1983.

220 Ueda, K. Guarded Horn Clauses.
Technical Report TR-103, ICOT, Tokyo, June 1985.

221 Gregory, S. How to use PARLOG.
Unpublished Report, Dept of Computing, Imperial College,
Londin University.

222 Darlington, J., Reeve, M. J. ALICE: a Multi-Processor
Reduction Machine.
In: Proc 5th Conf. on Functional Programming Languages
and Computer Architecture, Portsmouth, NH, pp 65-75.
October 1981.

223 Gregory, S. Design, Application and Implementation of a
Parallel Logic Programming Language.
PhD Thesis (in Preparation), Dept of Computing, Imperial
College, London. 1985.

PAGE 150

224 Boden, Margaret A. Piaget.
Fontana Press 1979.

225 Wasserman, I. J. New Directions in Programming.
In: Wallis, P. J. L. (Ed) Programming Technology.
Pergamon Infotech State of the Art Reports. Pergamon
1982.

226 Turner, D. A. Prospects for Non-Procedural and Dataflow
Languages.
In: Wallis, P. J. L. (Ed) Programming Technology.
Pergamon Infotech State of the Art Reports. Pergamon
1982.

227 Tarnlund, S-A, Horn Clause Computability.
BIT 17, 215 - 226. 1977.

228 Andreka, H., Nemeti, I. The Generalised Completeness of
Horn Predicate Logic as a Programming Language.
Research Report 21, Dept, of AI, Univ. of Edinburgh.
1976.

229 Sebelik, J., Stepanek, P. Horn Clause Programs for
Recursive Functions.
In: Clark, K. L., Tarnlund, S. A. (Eds) Logic
Programming.
Academic Press 1982.

PAGE 151

