177,457 research outputs found

    Adding an ontology to a standardized QoS-based MAS middleware

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02481-8_12In a Multi-Agent system, middleware is one of the components used to isolate control and communications. The use of standards in the implementation of an intelligent distributed system is always advantageous. This paper presents a middleware that provides support to a multi-agent system. Middleware is based on the standard Data Distribution Services (DDS), proposed by Object Management Group (OGM). Middleware organizes information by tree based ontology and provides a set of quality of service policies that agents can use to increase efficiency. DDS provides a set of quality of service policy. Joining quality of service policy and the ontology allows getting many advantages, among others the possibility of to conceal some details of the communications system to agents, the correct location of the agents in the distributed system, or the monitoring agents in terms of quality of service. For modeling the middleware architecture it has used UML class diagrams. As an example it has presented the implementation of a mobile robot navigation system through agents that model behaviors.The MAS architecture described in this article is a part of the coordinated project SIDIRELI: Distributed Systems with Limited Resources. Control Kernel and Coordination. Education and Science Department, Spanish Government. CICYT: MICINN: DPI2008-06737-C02-01/02.Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE. (2009). Adding an ontology to a standardized QoS-based MAS middleware. En Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Springer. 83-90. doi:10.1007/978-3-642-02481-8_12S8390Coulouris, G., Dollimore, J., Kindberg, T.: Distributed systems, concepts and design, 3rd edn. Addison Wesley, Reading (2001)Hapner, M., Sharma, R., Fialli, J., Stout, K.: JMS specification, vol. 1.1. Sun Microsystems Inc., Santa Clara (2002)Lewis, R.: Advanced Messaging Applications with MSMQ and MQ Series. Que Publishing (1999)OMG. Real-Time Corba Specification version 1.1. Document formal /02-08-02 (2002)FIPA. Specfication. Part 2, Agent Communication Language. Foundation for Intelligent Physical Agents (1997)Vogel, A., Kerherve, B., von Bochmann, G., Gecsei, J.: Distributed Multimedia and QoS: A Survey. IEEE Multimedia 2(2), 10–19 (1995)Smith, B.: Beyond concepts, or: Ontology as reality representation. In: Formal Ontology in Information Systems (FOIS 2004), pp. 73–84 (2004)Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal Human-Computer Studies 43(5-6), 907–928 (1995)Pardo-Castellote, G.: OMG Data-Distribution Service: architectural overview. In: Proceedings of 23rd International Conference on Distributed Computing Systems Workshops, Providence, USA, vols. 19-22, pp. 200–206 (2003)Object Management Group (OMG). Unified Modeling Language Specification, v1.4.2, ISO/IEC 19501 (2001)Poza, J.L., Posadas, J.I., Simó, J.E.: Distributed agent specification to an Intelligent Control Architecture. In: 6th International Workshop on Practical Applications of Agents and Multiagent Systems, Salamanca (2007)Poza, J.L., Posadas, J.l., Simó, J.E.: QoS-based middleware archi-tecture for distributed control systems. In: International Symposium on Distributed Computing and Artificial Intelligence, Salamanca (2008

    Design and implementation of a fault management service for heterogeneous networks using Tina Network Resource architecture

    Get PDF
    Master of Science in Engineering - EngineeringFaults are unavoidable and cause network downtime and degradation of large and complex communication networks. The need for fault management capabilities for improving network reliability is critical to rectify these faults. Current communication networks are moving towards the distributed computing environment enabling these networks to transport heterogeneous multimedia information across end to end connections. An advanced fault management system is thus required for such communication networks. Fault Management provides information on the status of the network by locating, detecting, identifying, isolating, and correcting network problems thereby increasing network reliability. The TINA (Telecommunication Information Networking Architecture) standards define a Network Resource Architecture (NRA) that provides a framework of a transport network that is capable of transporting heterogeneous multimedia media information across heterogeneous networks. TINA also defines a Management Architecture that follows the functional area organization defined in the OSI (Open Systems Interconnection) Management Framework, namely fault, configuration, accounting, performance, and security management (FCAPS). The aim of this project is to utilise the TINA NRA and Management Architecture concepts and principles to design and implement a distributed Fault Management Service for heterogeneous networks. The design presented here utilises TINA’s fault management specifi- cations, together with UML modelling tools to developed this Fault Management Service. The design incorporates the use of CORBA and SNMP to provide a distributed management functionality capable of providing fault management support across heterogeneous networks. The generic nature of the fault management service is tested on the SATINA Trial platform which consists of both an ATM network as well as an IP MPLS network. The report concludes that the Fault Management Service is applicable to any connectionoriented network that is modeled using the TINA NRA specification and principles

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    Improving the Scalability of DPWS-Based Networked Infrastructures

    Full text link
    The Devices Profile for Web Services (DPWS) specification enables seamless discovery, configuration, and interoperability of networked devices in various settings, ranging from home automation and multimedia to manufacturing equipment and data centers. Unfortunately, the sheer simplicity of event notification mechanisms that makes it fit for resource-constrained devices, makes it hard to scale to large infrastructures with more stringent dependability requirements, ironically, where self-configuration would be most useful. In this report, we address this challenge with a proposal to integrate gossip-based dissemination in DPWS, thus maintaining compatibility with original assumptions of the specification, and avoiding a centralized configuration server or custom black-box middleware components. In detail, we show how our approach provides an evolutionary and non-intrusive solution to the scalability limitations of DPWS and experimentally evaluate it with an implementation based on the the Web Services for Devices (WS4D) Java Multi Edition DPWS Stack (JMEDS).Comment: 28 pages, Technical Repor

    [Subject benchmark statement]: computing

    Get PDF
    • …
    corecore