4 research outputs found

    A Genetic Programming Approach for Computer Vision: Classifying High-level Image Features from Convolutional Layers with an Evolutionary Algorithm

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceComputer Vision is a sub-field of Artificial Intelligence that provides a visual perception component to computers, mimicking human intelligence. One of its tasks is image classification and Convolutional Neural Networks (CNNs) have been the most implemented algorithm in the last few years, with few changes made to the fully-connected layer of those neural networks. Nonetheless, recent research has been showing their accuracy could be improved in certain cases by implementing other algorithms for the classification of high-level image features from convolutional layers. Thus, the main research question for this document is: To what extent does the substitution of the fully-connected layer in Convolutional Neural Networks for an evolutionary algorithm affect the performance of those CNN models? The proposed two-step approach in this study does the classification of high-level image features with a state-of-the-art GP-based algorithm for multiclass classification called M4GP. This is conducted using secondary data with different characteristics, to better benchmark the implementation and to carefully investigate different outcomes. Results indicate the new learning approach yielded similar performance in the dataset with a low number of output classes. However, none of the M4GP models was able to surpass the results of the fully-connected layers in terms of test accuracy. Even so, this might be an interesting route if one has a powerful computer and needs a very light classifier in terms of model size. The results help to understand in which situation it might be beneficial to perform a similar experimental setup, either in the context of a work project or concerning a novel research topic

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so
    corecore