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ABSTRACT 

Computer Vision is a sub-field of Artificial Intelligence that provides a visual perception component to 

computers, mimicking human intelligence. One of its tasks is image classification and Convolutional 

Neural Networks (CNNs) have been the most implemented algorithm in the last few years, with few 

changes made to the fully-connected layer of those neural networks. Nonetheless, recent research has 

been showing their accuracy could be improved in certain cases by implementing other algorithms for 

the classification of high-level image features from convolutional layers. Thus, the main research 

question for this document is: To what extent does the substitution of the fully-connected layer in 

Convolutional Neural Networks for an evolutionary algorithm affect the performance of those CNN 

models? The proposed two-step approach in this study does the classification of high-level image 

features with a state-of-the-art GP-based algorithm for multiclass classification called M4GP. This is 

conducted using secondary data with different characteristics, to better benchmark the 

implementation and to carefully investigate different outcomes. Results indicate the new learning 

approach yielded similar performance in the dataset with a low number of output classes. However, 

none of the M4GP models was able to surpass the results of the fully-connected layers in terms of test 

accuracy. Even so, this might be an interesting route if one has a powerful computer and needs a very 

light classifier in terms of model size. The results help to understand in which situation it might be 

beneficial to perform a similar experimental setup, either in the context of a work project or concerning 

a novel research topic. 
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1. INTRODUCTION 

1.1. COMPUTER VISION 

Computer Vision (CV) is a sub-field of Artificial Intelligence (AI) that started in the early 1970s and it 

provides a visual perception component to computers, mimicking human intelligence and providing 

them with intelligent behavior (Szeliski, 2021). Last years have seen incredible advances in the 

performance and reliability of CV algorithms, brought in part by the shift to Machine Learning (and 

more specifically Deep Learning) combined with the training on very large sets of real-world data. 

Moreover, there are various tasks in CV, the most common being image classification, with others 

shown in Figure 1.1, including semantic segmentation, classification with localization, object detection, 

and instance segmentation. 

 

Figure 1.1 – Other CV tasks, from Li et al. (2017) 

This document will focus on algorithms applied to image classification, in which the goal is to assign 

the input image a label from a fixed set of categories (Konushin & Artemov, 2021). 

Convolutional Neural Networks (CNNs) have been tremendously successful in practical applications 

and have played an important role in the history of Deep Learning (DL), namely in the task of image 

classification (Goodfellow et al., 2016). CNNs were also some of the first neural networks to solve 

important commercial applications and remain at the forefront of commercial applications of DL today. 

The first published CNN (i.e., LeNet-5) was developed by LeCun et al. (1998). LeNet-5 was applied by a 

large telecommunications company in alphanumeric character recognition, to read checks 

automatically. Its architecture is shown in Figure 1.2. 

 

Figure 1.2 – Architecture of the first published CNN, LeNet-5, from LeCun et al. (1998) 
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CNNs were also used to win many contests. The current intensity of interest in DL began when 

Krizhevsky et al. (2012) won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), one of 

the most notorious object recognition challenges. At the time, AlexNet outperformed traditional 

approaches in the classification and localization tasks. 

CNNs are, in fact, a specialized kind of neural network for processing data that has a known, grid-like 

topology, such as image data, which can be thought of as a 2D grid of pixels (Goodfellow et al., 2016). 

The name “Convolutional Neural Network” indicates that the network employs a mathematical 

operation called convolution, which is a specialized kind of linear operation used in place of general 

matrix multiplication. 

 

1.2. GENETIC PROGRAMMING 

Genetic Programming (GP), on the other hand, is a field of Computer Science that was popularized in 

the early 1990s (Willis et al., 1997). GP began as an attempt to discover how computers could solve 

problems without being explicitly programmed to do so, using an evolutionary algorithm very similar 

to genetic algorithms. 

Koza (1992, 1994) was largely responsible for the popularization of GP. His algorithm was applied to 

symbolic regression, control, robotics, games, and classification (Willis et al., 1997). To solve a problem 

using GP, Koza (1992) states that it is necessary to specify the following (Willis et al., 1997): 

▪ Terminal set: A set of input variables or constants 

▪ Function set: A set of domain-specific functions used in conjunction with the terminal 

set to construct potential solutions to a given problem. This could consist of a set of 

basic mathematical functions or Boolean and conditional operators 

▪ Fitness function: Fitness is a numeric value assigned to each member of the population 

to provide a measure of the appropriateness of a solution to the problem in question 

▪ Control parameters: This includes the population size and the crossover and mutation 

probabilities 

▪ Termination criterion: This is generally a predefined number of generations or an error 

tolerance on the fitness 

It should be noted that the first three components determine the algorithm search space, while the 

final two components affect the quality and speed of the search. 

Furthermore, the GP paradigm breeds computer programs to solve problems by executing the 

following three steps (Koza, 1992): 

1. Generate an initial population of random compositions of the functions and terminals 

of the problem (i.e., computer programs) 

2. Iteratively perform the following sub-steps until the termination criterion has been 

satisfied: 

a. Execute each program in the population and assign it a fitness value according 

to how well it solves the problem 
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b. Create a new population of computer programs by applying the following two 

primary operations. The operations are applied to computer programs in the 

population chosen with a probability based on fitness 

i. Copy existing computer programs to the new population (also, 

mutation can be done instead of reproduction) 

ii. Create new computer programs by genetically recombining randomly 

chosen parts of two existing programs (crossover) 

3. The best computer program that appeared in any generation (i.e., the “best-so-far” 

individual) is designated as the result of GP. This result may be a solution (or an 

approximate solution) to the problem 

Figure 1.3 has a visual representation of the process described above, which is performed by 

evolutionary algorithms, including GP. 

 

Figure 1.3 – Workflow of GP, from Bakurov (2018) 

This thesis will focus on M4GP, which is a classification algorithm presented by La Cava et al. (2019) 

that learns multidimensional feature transformations using GP. M4GP uses a stack-based program 

representation that simplifies the construction of multidimensional solutions if compared to a tree-

based representation, making its evolutionary process efficient and the final solutions more 

expressive, readable, and easy to understand (La Cava et al., 2019). It also incorporates a multi-

objective parent selection and survival technique. Moreover, an archiving strategy was introduced to 

maintain a set of optimal trade-off solutions based on complexity and accuracy; the final model is 

selected from this archive using an internal validation set to reduce overfitting. An in-depth 

explanation of this algorithm will be given in Chapter 3. 

 

1.3. PURPOSE OF THE THESIS 

As Janke et al. (2019) said in the Conclusion of their paper, “the set of benchmark classification 

algorithms can be enlarged to include more classification algorithms to evaluate their predictive 

capability on high-level image features, i.e., the benchmark in this paper did not look at evolutionary 

algorithms”. Therefore, there is a gap in the current literature that justifies the research topic of this 
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document: the classification of high-level image features from convolutional layers with an 

evolutionary algorithm. 

The research question for this thesis is: 

“To what extent does the substitution of the fully-connected layer in Convolutional Neural Networks 

for an evolutionary algorithm affect the performance of those CNN models?” 

Also, this research has five main objectives. First, to conduct a literature review that scientifically 

justifies the research topic. Second, to analyze the proficiency of fully-connected neural networks in 

the classification of digital images. Third, to assess if the usage of a state-of-the-art evolutionary 

algorithm for multiclass classification like M4GP improves the performance of CNNs. Fourth, to 

determine if the implementation of M4GP improves the performance of CNNs in specific cases and not 

in others, and to formulate in which situations it may (or may not) be beneficial to opt for M4GP. And 

fifth, finally, to ensure the generalizability of this work and the possibility of comparing the achieved 

results with previous (and future) research. 

There will be five main methods to achieve all research objectives. First, to highlight the research gap 

found in the literature. Second, to swap the fully-connected layer in CNNs by an evolutionary 

algorithm, but only after the network trains, to enhance the process. Third, to benchmark the M4GP 

algorithm within Python, to reach the appropriate conclusions regarding this possible architecture. 

Fourth, use secondary data with different characteristics, to better benchmark this implementation 

and to carefully investigate the different situations and highlight them. Fifth, finally, to use only 

secondary data from well-known datasets in the field of CV (e.g., CIFAR). 

The tested CNN architecture might yield better performance when compared to a vanilla CNN, as 

M4GP became one of the state-of-the-art GP-based algorithms for multiclass classification. Thus, there 

is a possibility that the substitution of the fully-connected layer in CNNs for M4GP will positively affect 

their performance. Nonetheless, one of the most important objectives of this research is to accurately 

describe in which conditions it might be beneficial to adopt the novel CNN architecture. 

This thesis is intended to contribute to science by filling the gap in the current literature referred to 

above. By analyzing the results (described in Chapter 6), one can conclude if it might be beneficial to 

experiment using an evolutionary algorithm to classify high-level image features from convolutional 

layers, either in the context of a work project or concerning a novel research topic. 

 

1.4. OUTLINE OF THE THESIS 

The thesis has 9 chapters. Chapter 2 introduces concepts related to artificial neural networks, CNNs 

and it also presents some of the most important and well-known CNN architectures in the field of 

image classification1. Chapter 3 presents four GP-based classification algorithms, among which M4GP. 

Chapter 4 highlights existing research projects that created GP approaches for Computer Vision. 

Chapter 5 describes the methodology choices to test the research question. Chapter 6 displays the 

results of this thesis, while also comparing them to some of the literature covered in the literature 

 
1 Still, to follow this thesis it is necessary to have prior knowledge of CNNs and Machine Learning 
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review. Chapter 7 has the conclusions. Chapter 8 describes limitations and avenues for future research. 

Finally, Chapter 9 cites the sources of information used in this thesis. 
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2. ARTIFICIAL NEURAL NETWORKS IN COMPUTER VISION 

“Artificial neural networks (ANNs) provide a general, practical method for learning real-valued, 

discrete-valued, and vector-valued functions from examples. Algorithms such as backpropagation use 

gradient descent to tune network parameters to best fit a training set of input-output pairs. ANN 

learning is robust to errors in the training data and has been successfully applied to problems such as 

interpreting visual scenes, speech recognition, and learning robot control strategies” (Mitchell, 1997). 

In fact, for certain types of problems (including image classification in the field of Computer Vision), 

ANNs are among the most effective algorithms. 

In this Chapter, artificial neural networks will be described in 2.1. In 2.2, CNNs and some CV challenges 

will be briefly explained. Finally, in 2.3, some of the most important CNN architectures from past years 

will be highlighted, including AlexNet, ZFNet, GoogLeNet, VGG-16, and ResNet. 

 

2.1.  ARTIFICIAL NEURAL NETWORKS  

There is a biological motivation for ANNs, as their study has been inspired in part by the observation 

that biological learning systems are built on very complex webs of interconnected neurons. The human 

brain, for example, is estimated to contain a densely interconnected network of approximately 1011 

neurons, each connected, on average, to 104 others. Neuron activity is typically excited or inhibited 

through connections to other neurons (Mitchell, 1997). 

In the late 1950s, Rosenblatt (1958) developed the perceptron, which is frequently regarded as the 

first modern ANN and one of the foundations for AI. Neural networks have had a tremendous evolution 

over the last decades, as they went all the way from Rosenblatt’s perceptron to DeepMind’s AlphaGo 

(Silver et al., 2016), a computer program that used deep neural networks and tree search to beat Lee 

Sedol in Go2, who at the time was considered the best player in the world. 

2.1.1. Perceptron 

The perceptron is a single-layer neural network. The author inspired himself by the way neurons work 

together in the human brain (Rosenblatt, 1958). It is a binary classifier, so it is a function that decides 

whether an input (i.e., a vector of numbers) belongs to some specific class. The algorithm makes a 

prediction (to classify input) and if it is wrong, tweaks itself to make a more informed prediction next 

time, while it becomes more accurate over thousands or millions of iterations. Figure 2.1 illustrates 

the perceptron. 

 
2 Go is one of the oldest board games in the world; it is popular in China, Korea, and especially Japan 
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Figure 2.1 – Perceptron, from Mitchell (1997) 

From the figure above, we can visualize that: {𝑥0 … 𝑥𝑛} are the inputs of the model, {𝑤1 … 𝑤𝑛} are 

the weights, 𝑤0 is the bias, Σ represents a summation (weighted sum of inputs), the chart inside the 

circle represents the activation function (converts inputs to outputs) and the empty circle represents 

the outputs. Topics related to activation functions and the way to find values for the weights will be 

discussed more deeply in 2.1.2. 

After a perceptron takes a vector of real-valued inputs, it outputs: 

 {
1 if 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 > 0

−1 otherwise
 (2.1) 

Learning a perceptron involves choosing values for the weights {𝑤0 … 𝑤𝑛} (Mitchell, 1997). Also, we 

can view the perceptron as representing a hyperplane decision surface in the n-dimensional space of 

points. The perceptron outputs a 1 for instances lying on one side of the hyperplane and outputs a -1 

for instances lying on the other side. The equation for this decision hyperplane is: 

 ∑ 𝑤𝑖𝑥𝑖 = 0𝑛
𝑖=0 , with 𝑥0 = 1 (2.2) 

There are some sets of positive and negative examples that cannot be separated by any hyperplane. 

Those that can be separated are called linearly separable sets. 

Figure 2.2 illustrates the representational power of a perceptron. 

 

Figure 2.2 – The decision surface is represented by a two-input perceptron, from Mitchell (1997). (a) 
A set of training examples and the decision surface of a perceptron that classifies them correctly (b) 

A set of training examples that is not linearly separable. 𝑥1 and 𝑥2 are the perceptron inputs. Positive 
examples are indicated by “+”, negative by “-“ 
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2.1.2. Multilayer Perceptron 

A multilayer perceptron (MLP) is a perceptron with two or more trainable weight layers, thus being 

more powerful than a single perceptron (Kriesel, 2007). MLPs have the advantage of being able to 

represent every Boolean function. 

Neural network architectures have several parameters and properties which will now be described. 

2.1.2.1. Layers 

Apart from the input and output layers, MLPs also have one or more hidden layers, as can be seen in 

Figure 2.3. 

 

Figure 2.3 – Three-layer MLP, from Mohamed et al. (2015) 

The three-layer MLP in the figure has one input layer (which in this case can be defined as a one-

dimensional array of size 4), one hidden layer with 5 neurons, and one output layer of 1 neuron. 

2.1.2.2. Learning 

Backpropagation is a training algorithm that allows the adjustment of the weights in a multi-layer 

feedforward neural network. This is where weights in the network are tweaked over several iterations 

to minimize the error between the value predicted by the network and the true value. Generally, more 

weights lead to more flexibility in predicting complex patterns. 

One of the main learning algorithms used to adjust weights and minimize error is Stochastic Gradient 

Descent (SGD). 

Thus, neural networks are generally trained (i.e., optimized) with SGD, using backpropagation as a 

gradient computing technique. 

2.1.2.3. Error and Error Surface 

The error is calculated as the difference between the output and target, while the error surface is the 

change in the error for different weights (illustrated in Figure 2.4). 
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Figure 2.4 – Error surface with weight space and a global minimum, from Iman et al. (2021) 

2.1.2.4. Activation Functions 

The activation function3 transforms the network input, as well as the previous activation state, into a 

new activation state (Kriesel, 2007). It is often defined globally for all neurons or at least for a set of 

neurons and only the threshold values are different for each neuron. 

Essentially, an activation function transforms inputs into outputs, and it is needed for the introduction 

of nonlinearity into the network. 

The simplest activation function is the threshold function, which can only take on two values: if the 

input is above a certain threshold, the function changes from one value to another, but otherwise, it 

remains constant (Kriesel, 2007). This implies that the function is not differentiable at the threshold 

and for the rest, the derivative is 0. It is generally represented as: 

 𝑓(𝑥) = {
0 if 𝑥 < 0
1 if 𝑥 ≥ 0

 (2.3) 

Another two options are the sigmoid function4, which maps to the range of values (0, 1), and the 

hyperbolic tangent which maps to (-1, 1) (Kriesel, 2007). The sigmoid function is represented as: 

 𝑓(𝑥) =
1

1 + 𝑒𝑥
 (2.4) 

And the hyperbolic tangent as: 

 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2.5) 

The three previously discussed functions can be visualized in Figure 2.5. 

 
3 Also called transfer function 
4 Also called logistic function 
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Figure 2.5 – Three of the most popular activation functions for MLPs, left-to-right: threshold function, 
sigmoid function, and hyperbolic tangent; from Kriesel (2007) 

2.1.2.5. Loss Function 

Typically, when training neural networks, we seek to minimize the error. As such, the objective function 

is often referred to as the loss function and the value calculated by the loss function is referred to as 

simply loss (Goodfellow et al., 2016). 

In fact, “the cost function reduces all the various good and bad aspects of a possibly complex system 

down to a single number, a scalar value, which allows candidate solutions to be ranked and compared” 

(Reed & Marks, 1999). 

The two main types of loss functions are the mean squared error (MSE) and cross-entropy.  

MSE is commonly used in regression problems where a quantity is being predicted, and it can be 

viewed as the cross-entropy between the distribution of the model predictions and the distribution of 

the target variable (Goodfellow et al., 2016). Its formula is: 

 𝑀𝑆𝐸 =
1

𝑛
Σ𝑖=1

𝑛 (𝑦𝑖 − 𝑦�̃�)
2 (2.6) 

Where 𝑛 is the number of sample data points, 𝑦 represents the actual values and �̃� the predicted 

values. 

The cross-entropy loss function is often used for classification problems when outputs are interpreted 

as probabilities of membership in an indicated class (Reed & Marks, 1999). Its formula for multiclass 

classification problems is: 

 𝐿𝑜𝑠𝑠 = −Σ𝑖=1
𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑦𝑖 × log 𝑦�̂� (2.7) 

2.1.2.6. Epochs 

The epochs refer to the number of iterations of backpropagation to be performed over the network. 

 

2.2. CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION 

“ANN learning is well-suited to problems in which the training data corresponds to noisy, complex 

sensor data, such as inputs from cameras” (Mitchell, 1997).  
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A CNN is a class of artificial neural networks applied in the field of CV, specifically for image 

classification, for example, to recognize everyday objects, humans, and animals. The idea of CNNs was 

popularized by LeCun et al. (1998), where the LeNet-5 network was introduced for digit recognition. 

When a computer takes an image as input, it only gets an array of pixel values. Depending on the 

resolution and size of the image, it will take, for example, a 32 × 32 × 3 array of numbers (the 3 refers 

to RGB values, indicating it is a color image). Each of these numbers is given a value from 0 to 255, 

which describes the pixel intensity at that point. The idea is that the computer is fed an array of values 

to then output numbers that describe the probability of the image being a certain class. The general 

structure of a CNN can be seen in Figure 2.6. 

 

Figure 2.6 – Main operations in a CNN – convolution, nonlinearity, pooling, and classification; from 
Kaplanoglou (2017) 

A CNN can perform image classification by looking for low-level features such as edges and curves, to 

then build up to more abstract concepts through a series of convolutional layers. The most crucial 

component of this type of deep network is, in fact, the use of trainable multi-layer convolutions 

(Szeliski, 2021). 

Instead of connecting all the units in a layer to all the units in a preceding layer, the convolution 

operation leads CNNs to organize each layer into feature maps (Szeliski, 2021). In convolutional 

network terminology, the first argument to the convolution is often referred to as the input and the 

second argument as the kernel or feature detector, while the output is usually referred to as the 

feature map or activation map. The input is usually a multidimensional array of data, and the kernel is 

usually a multidimensional array of parameters (i.e., tensors) that are adapted by the learning 

algorithm. Feature maps can be considered parallel planes or channels. 

In the convolution step, a filter slides over the input image to produce a feature map. The convolution 

of another filter over the same image gives a different feature map, so different filters generate 

different feature maps from the same original image. Thus, the greater the number of filters, the more 

image features get extracted and the better the network becomes at recognizing patterns in unseen 

images. It is also important to note that the convolution operation captures the local patterns in the 

original image (like edges, curves, or textures). Figure 2.7 illustrates the process of learning local 

patterns in CNNs. 
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Figure 2.7 – The convolution operation – in this example, hyperlocal edges combine into local objects 
such as eyes or ears, which combine into the high-level concept of “cat”; from Chollet (2017) 

In conclusion, the main purpose of convolution is to extract features from the input image while 

preserving the spatial relationship between pixels by learning image features using small squares of 

input data. 

2.2.1. Computer Vision Challenges 

In the field of Computer Vision, CNNs or other image classification algorithms might face challenging 

hurdles. These challenges are (Grauman & Leibe, 2011): 

▪ Occlusion 

▪ Scale Variation 

▪ Deformation 

▪ Background Clutter 

▪ Over-illumination or Lack of Illumination 

▪ Viewpoint Variation 

▪ Object Pose 

These are associated with difficult scene conditions (Figure 2.8). Instances of the same image class can 

generate very different images, depending on confounding variables like partial occlusions, unrelated 

background clutter, illumination conditions, camera viewpoint, and object pose. Different instances of 

objects from the same class can also exhibit significant variations in appearance. 
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Figure 2.8 – Visual understanding of Computer Vision challenges, from Grauman & Leibe (2011) 

Another challenge is the within-class variation. The concepts represented by image classes can be too 

broad, leading to several within-class variations. Figure 2.9 exemplifies how the class “chair” in an 

image dataset might have challenging differences in its instances. 

 

Figure 2.9 – Example of within-class variation, from Fei-Fei et al. (2005) 

Hence, image classification methods must be robust to the challenging conditions described above. 

Some image preprocessing techniques can be used to surpass them, even though the “within-class 

variation” challenge might be hard to surpass just by applying the referred techniques. 

 

2.3. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES 

As previously said, LeCun et al. (1998) created the LeNet-5 network for digit recognition, the first 

published CNN, which was already discussed in Chapter 1. Still, it was only in 2012 that CNNs grew to 

prominence when AlexNet (Krizhevsky et al., 2012) won the ILSVRC-2012 competition in the 

classification and localization tasks. 

ILSVRC has become, in fact, the standard benchmark for large-scale object recognition. The dataset 

used in the competitions comes from ImageNet, which is a dataset of over 15 million labeled high-
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resolution images belonging to roughly 22 000 categories (Krizhevsky et al., 2012). The images were 

collected from the web and labeled by human labelers. ILSVRC uses a subset of ImageNet with roughly 

1 000 images in each of the 1 000 categories. Overall, there are roughly 1.2 million training images, 50 

000 validation images, and 150 000 testing images. 

Usually, the solutions competing in ILSVRC deploy an ensemble of networks, using different learned 

states of the same model, or completely different CNN architectures trained on the same images. 

The competition has been active since 2010. In past years, several CNN architectures have won it, each 

one representing the state-of-the-art of that time. Some of the most important ones will be presented. 

2.3.1. AlexNet 

In 2012, AlexNet won the classification task with a top-5 test error rate of 15.3%, while the second-

best entry achieved 26.2%.  

This CNN was a breakthrough that showed the practical application of DL and the clear advantage of 

CNNs for image classification problems. 

Its architecture is similar to the one from LeNet-5: it contains 8 layers, where 5 are convolutional layers 

and 3 are fully-connected layers. It used the ReLU activation function to add nonlinearity and improve 

the convergence rate. Also, its 60 million parameters made AlexNet susceptible to overfitting, so the 

creators adopted a method of data augmentation and dropouts to avoid it. Moreover, AlexNet made 

use of overlapping pooling to reduce the error. The architecture is illustrated in Figure 2.10. 

 

Figure 2.10 – AlexNet architecture, with a delineation of responsibilities defined for training on two 
GPUs, from Krizhevsky et al. (2012) 

Over the years, AlexNet was frequently considered a reference architecture for many implementations 

that use CNN models. 

2.3.2. ZFNet 

The winner on ILSVRC-2013 was ZFNet (Zeiler & Fergus, 2014). A combination of six ZFNets got a top-

5 test error rate of 14.8%, while the same metric for an ensemble of seven AlexNets was 0.5% higher.  

The contribution of ZFNet was the visualization method used in its design. A depiction of the learned 

features helped the authors understand the inner functionality of the convolutional layers. 



15 
 

ZFNet’s architecture is identical to AlexNet’s (Figure 2.11). ZFNet is considered an extended version of 

AlexNet, with some modifications to filter size to achieve better accuracy. The idea was to use smaller 

filters in the convolutional layer, thus avoiding the loss of pixel information, even though the network 

was not able to decrease its computational cost. 

 

Figure 2.11 – Architecture of ZFNet, an 8-layer CNN model, from Zeiler & Fergus (2014) 

It is important to note that from 2013 on, the ILSVRC training dataset remained the same, so 

comparisons can be made. 

2.3.3. GoogLeNet 

ILSVRC-2014 had two contenders that presented significant changes to the previous CNNs’ structure. 

The first highlight goes to GoogLeNet (Szegedy et al., 2015), the winner, which achieved a top-5 error 

of 6.67%, showing deeper CNN architectures can reach better performance. It is a 22-layer network 

without fully-connected layers at its end and its main contribution was the Inception module. Thus, 

GoogLeNet is also known as Inception-v1. 

This was an important milestone in the development of CNNs, since in previous years the most popular 

CNNs just stacked convolution layers deeper and deeper, trying to get better performance. The 

Inception module was, however, engineered to improve performance, both in terms of accuracy and 

speed. 

The premise for creating this new architecture was the large variation in the location of information in 

an image. As an example, an object may occupy most of an image, a part of it, or very little space. 

Because of this, choosing the right kernel size for the convolution operation becomes difficult. 

The solution brought by the Inception architecture (Figure 2.12) was to have filters with multiple sizes 

operating on the same level, essentially increasing the wideness of the network instead of its deepness. 

In the naïve Inception module, convolution is performed on input with three different sizes of filters 

(1 × 1, 3 × 3, 5 × 5). Additionally, max-pooling is performed. The outputs are concatenated and sent 

to the next Inception module. 

To make the deep neural network less computationally expensive, the authors limited the number of 

input channels by adding an extra 1 × 1 convolution before the convolutions with greater spatial sizes. 
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Figure 2.12 – Inception module, from Szegedy et al. (2015) 

GoogLeNet’s architecture (Figure 2.13) starts with the input layer and the first layers in the network. 

Then, three stacks of Inception modules are found before a global average pooling layer, a fully-

connected layer with dropout (40%), and the softmax output layer. 

 

Figure 2.13 – GoogLeNet network, from Szegedy et al. (2015) 

If we consider GoogLeNet as a deep network that gradually increases its width, its geometry can be 

imagined as an inverted pyramid. 

2.3.4. VGG-16 

VGG-16 (Simonyan & Zisserman, 2014), the main runner-up on ILSVRC-2014, reached a top-5 error of 

7.3%. 

Despite not winning the competition in 2014 (as said previously, GoogLeNet was the winner), the main 

contribution of the Visual Geometry Group (VGG) was to increase the network’s depth using an 

architecture with very small (3 × 3) convolution filters. 

The architecture depicted in Figure 2.14 is VGG-16. The input to the first layer (conv1) is a fixed-size 

224 × 224 RGB image. The image is passed through a stack of convolutional layers, where filters with 

a very small receptive field (3 × 3) were used. One of the configurations also utilizes 1 × 1 convolution 

filters, which can be seen as a linear transformation of the input channels (followed by non-linearity). 

The convolution stride is fixed to 1 pixel. Spatial pooling is carried out by five max-pooling layers, which 

follow some of the convolutional layers. Max-pooling is performed over a 2 × 2 pixel window, with 

stride 2. Finally, three fully-connected layers follow a stack of convolutional layers, and the last layer 

is the softmax layer. Also, all hidden layers have ReLU non-linearity. 
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Figure 2.14 – VGG-16 network architecture, from Ferguson et al. (2017) 

VGG’s results confirmed the importance of depth in visual representations. 

It is also relevant to mention the difference between VGG-16 and VGG-19, another well-known model. 

The concept of the VGG-19 model is the same as the VGG-16, except that it is deeper and supports 19 

layers. The “16” and “19” refer to the number of layers that have weights in the architecture, meaning 

VGG-19 has 3 more layers than VGG-16. 

2.3.5. ResNet 

ResNet (He et al., 2016) was the winner on ILSVRC-2015 with a top-5 test error rate of 3.57%, turning 

into the first model to beat human performance. Models in the past had already used numerous 

hidden layers and extremely deep neural networks, although those led to a problem of vanishing or 

exploding gradients. To counter this problem, Deep Residual Networks (i.e., ResNets) use residual 

blocks and skip connections to significantly increase the count of hidden layers. Essentially, the 

networks preserve the information that was obtained through learning in the form of residuals. 

Adding more layers to a model leads its accuracy to saturate, then rapidly decay. It also generates 

higher training errors. This is the degradation problem, and it is not caused by overfitting. Thus, due to 

the problem of vanishing or exploding gradients, learning better networks is not as easy as stacking 

more layers (Figure 2.15). 

 

Figure 2.15 – Training error (left) and test error (right) on the CIFAR-10 dataset with 20-layer and 56-
layer “plain” networks: the deeper network has higher training error, and thus test error; from He et 

al. (2016) 
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A residual block is a stack of layers set in such a way that the output of a layer is taken and added to 

another layer deeper in the block (see Figure 2.16). Instead of learning the output 𝐻(𝑥) of a given 

input 𝑥, the network learns 𝐻(𝑥) as a function:  

 𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (2.8) 

Therefore, the network is only required to fit the residual: 

 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 (2.9) 

This is smaller and easier to learn than the whole representation of 𝐻(𝑥) (Janke et al., 2019). This 

change helps the gradient flow between layers. A ResNet is formed by stacking several of these residual 

blocks together. 

 

Figure 2.16 – Two types of residual blocks, from He et al. (2016)  

Residual blocks enabled the evolution from a 22-layer CNN, such as GoogLeNet, to a very deep neural 

network like ResNet-152, which has 152 layers. 

The best Residual Network’s architecture included 152 layers with no dropout, a weight decay of 

0.0001, batch normalization after each convolution, and the ReLU activation function. After the last 

residual block, there is a global average pooling layer, followed by a fully-connected layer. A ResNet is 

depicted in Figure 2.17. 

Even though the depth of a ResNet could increase drastically, the number of needed parameters was 

still much lower if compared to those calculated for a corresponding VGG architecture. 

 

Figure 2.17 – A Residual Network with 34 parameter layers, from He et al. (2016) 

Ultimately, residual blocks were the solution to train deeper networks. 
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3. MULTICLASS CLASSIFICATION WITH GENETIC PROGRAMMING 

Several works about GP-based classification algorithms have been presented in the last two decades, 

although they have had poor performance when compared to state-of-the-art classifiers. However, 

M2GP was an exception which got introduced by Ingalalli et al. (2014). This multidimensional GP 

approach revealed competitive results in multiclass classification problems. 

Classification problems are very important in the field of Machine Learning for various types of 

applications. Nevertheless, GP was never considered a state-of-the-art method for multiclass 

classification problems with a high number of classes, which was changed by M2GP. 

The main goal of this chapter is to discuss M4GP, which is the newest algorithm from a “family” that 

includes three previous iterations: M2GP (3.1), M3GP (3.2), and eM3GP (3.3). M4GP, explained in 3.4, 

is the most relevant in our context for two reasons; first, because it is currently the state-of-the-art 

evolutionary algorithm for multiclass classification, and second, because it will be an integral part of 

this thesis. Nonetheless, its previous iterations will also be briefly described. 

 

3.1. M2GP: A MULTIDIMENSIONAL GP APPROACH FOR MULTICLASS CLASSIFICATION PROBLEMS 

Essentially, M2GP is a tree-based GP algorithm that finds “a transformation, such that the transformed 

data of each class can be grouped into unique clusters” (Silva et al., 2016). Still, the number of 

dimensions in which the clustering is performed is completely independent of the number of classes. 

This method has two phases: training and testing (Ingalalli et al., 2014). 

3.1.1. Training Phase 

One of the first steps is to represent solutions similarly to regular tree-based GP, although the root 

node in the tree exists only to define the number of dimensions (𝑑) for a new space, as the algorithm 

represents the input sample in a 𝑑-dimensional solution space (Silva et al., 2016).  

The genetic operators are the regular subtree crossover and mutation, with the exception being that 

the root cannot be chosen as a crossing or mutation node. Also, fitness is based on classification 

accuracy.  

The individuals can be evaluated after the 𝑑-dimensional solution space is mapped. Each individual is 

evaluated through the following process: 

1. For each of the 𝑀 classes in the data, the covariance matrix and the cluster centroid are 

calculated from the samples belonging to that class 

2. The Mahalanobis distance between each sample and each of the 𝑀 centroids is 

calculated 

3. Each sample is then assigned the class whose centroid is closer  

Figure 3.1 has a clustering example. 
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Figure 3.1 – On the left, the clustering is obtained by an individual with low accuracy, while the one 
on the right has very high accuracy, from Muñoz et al. (2015); the large circles represent the class 

centroids 

3.1.2. Testing Phase 

To classify unseen data, the tree is used to map the new samples into the new space, and then the 

covariance matrices and the cluster centroids are used to calculate the minimum Mahalanobis distance 

between each sample and each centroid (Silva et al., 2016). 

3.1.3. Downside 

The main downside of using M2GP is the fact the number of dimensions 𝑑 is fixed at the beginning of 

each run, and that 𝑑 may be the wrong number for a specific problem (Silva et al., 2016).  

M2GP cannot add or remove dimensions during its evolution. 

 

3.2. M3GP: M2GP WITH MULTIDIMENSIONAL POPULATIONS 

M3GP (Muñoz et al., 2015) was created to tackle the greedy approach used by M2GP to find the 

number of dimensions the evolved solutions should have. Hence, M3GP evolves a population that may 

contain individuals of several different dimensions. This algorithm can be simplified as being “M2GP 

with multidimensional populations” (Muñoz et al., 2015). 

This method will now be described in more detail, according to Muñoz et al. (2015). 

3.2.1. Initial Population 

The evolution starts with a random population where all the individuals only have one dimension, thus 

ensuring M3GP starts by looking for simpler solutions. 

3.2.2. Mutation 

This is the only way of adding or removing dimensions. One of three actions is executed with equal 

probability: 
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▪ A randomly created new tree replaces a randomly chosen branch of the parent tree 

(standard subtree mutation) 

▪ A randomly created new tree is added as a new branch of the root node, effectively 

adding one dimension to the parent tree 

▪ A complete branch of the root node is randomly removed, effectively removing one 

dimension from the parent tree 

3.2.3. Crossover 

One of two actions is executed with equal probability: 

▪ A random node, excluding the root, is chosen in each of the parents and the respective 

branches are swapped (standard subtree crossover) 

▪ Swapping of dimensions, where a random complete branch of the root node is chosen 

in each parent and swapped between each other, effectively swapping dimensions 

between the parents 

3.2.4. Pruning 

Although increasing the number of dimensions may be beneficial to the performance of this method, 

it may also degrade an individual’s fitness. Thus, the best individual in each generation can get pruned, 

i.e., its detrimental dimensions may get removed.  

The pruning procedure removes the first dimension and reevaluates the tree. If the fitness improves, 

the pruned tree replaces the original and goes through pruning of the next dimension. Otherwise, the 

pruned tree is discarded, and the original tree goes through pruning of the next dimension. The 

procedure stops after pruning the last dimension. This shifts the distribution of the number of 

dimensions to lower values, without harming fitness. 

3.2.5. Elitism 

The best individual of any generation is always copied to the next one5. 

3.2.6. Downsides 

There are three main downsides to using M3GP (Silva et al., 2016).  

Firstly, the method assumes that a single transformation will simplify the classification problem for all 

the classes; however, this might not be the case. The optimal data transformation may be, in fact, 

class-dependent. Also, M3GP seemed to suffer from bloat at the dimension level. Finally, it seemed to 

suffer from overfitting. 

 

 
5 This individual is already optimized, as it went through pruning 
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3.3. EM3GP: ENSEMBLE M3GP 

To address M3GP’s drawbacks, ensemble M3GP (or eM3GP for short) was proposed. In this algorithm, 

the classification is done using 𝑀 different transformations, one for each class, in a multiclass problem 

with 𝑀 classes (Silva et al., 2016). 

The improvements included in eM3GP will now be discussed (Silva et al., 2016). 

3.3.1. Specialized Class Transformations 

First, we are interested in identifying the best transformation for each class and in building a set of 

specialized class transformations (𝑆). At the beginning of the search, when the first individual is 

evaluated, 𝑀 copies are stored in 𝑆 (𝑀 represents the number of classes). For all subsequent 

transformations evolved during the search, we compute the number of True Positives (TP) and False 

Positives (FP) it produces for each class. If at least one of these numbers improves (TP gets higher or 

FP gets lower) and neither value deteriorates relative to the best transformations, then the new tree 

replaces the previous within 𝑆.  

This is done for every individual evaluated during the run – Figure 3.2 illustrates this process. 

 

Figure 3.2 – Identification of the best transformation for each class based on TP and FP, from Silva et 
al. (2016) 

3.3.2. Ensemble Classifier 

This proposal builds an ensemble of transformations for each new individual, by combining it with the 

transformations stored in 𝑆. Each one represents a 𝑑-dimensional transformation, such that given a 

data point the transformation is used to compute the distance to the 𝑖𝑡ℎ class cluster. After computing 

the distance to each class cluster, the minimum distance determines the class label assigned. 

3.3.3. Ensemble Construction 

Finally, an ensemble 𝐸 is constructed for each tree and used to assign fitness.  
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First, every element in the ensemble is set equal to 𝑘 (𝑘 is each tree). Then, the accuracy of 𝐸 is 

computed. Afterward, in a random order, we replace each element with its corresponding specialized 

transformation in 𝑆. After each replacement, we compute the accuracy of the ensemble 𝐸. If the 

accuracy improves then the change is kept, otherwise, it is reversed. 

 

3.4. M4GP: THE STATE-OF-THE-ART ALGORITHM 

M4GP is a significant improvement over its three predecessors, although it is inspired by them, thus 

their importance. 

The main changes and improvements in M4GP include its program representation, parent selection, 

survival technique, and archiving strategy (La Cava et al., 2019). 

3.4.1. Program Representation 

Instead of the typical tree-based GP representation, M4GP uses a novel stack-based representation. 

M4GP’s predecessors used special nodes to allow for multiple outputs at the root, which introduced 

unnecessary complexity. Thus, the state-of-the-art algorithm simplified the encoding. 

Programs are evaluated by stack operations. For example, the program Φ(𝑥) = [𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, 𝑥1𝑥2] 

can be constructed as follows: 

 𝑖 = [𝑥1 𝑥2 𝑥1 𝑥1 ∗ 𝑥2 𝑥2 ∗  𝑥1 𝑥2 ∗] (3.1) 

This is because the evaluation proceeds left to right, pushing and pulling instructions to and from a 

single stack. “Arguments such as 𝑥1 are pushed to the stack, and operators such as ∗ pull arguments 

from the stack and push the result. At the end of a program’s execution, the stack state is interpreted 

as the multi-dimensional transformation” (La Cava et al., 2019). 

This program representation makes the evolutionary process of the algorithm more efficient and the 

final solutions more expressive, readable, and easy to understand. 

3.4.2. Initialization 

M4GP initializes a population of programs of various sizes and dimensionality. Each equation in a 

program is initialized recursively in an analogous fashion to the grow method but limited by the 

number of nodes rather than depth. 

The grow method, used to generate the initial random population, encompasses growing trees that 

are variably shaped. “The length of a path between an endpoint and the root is no greater than the 

specified maximum depth” (Koza, 1992). 

3.4.3. Selection 

The authors tested three population selection methods: tournament selection, lexicase selection, and 

age-fitness Pareto selection. 
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3.4.3.1. Tournament Selection 

Selects two individuals from the current population and choose the one with better fitness as a parent 

for the next generation. 

3.4.3.2. Lexicase Selection 

This technique rewards individuals in the population for performing well on unique combinations of 

fitness cases (i.e., samples). Each parent selection begins with the entire population in the selection 

pool. The fitness cases are shuffled randomly, and the first case is considered. Any programs in the 

pool that do not have exactly the best fitness in the first case are removed from the selection pool. If 

more than one individual remains in the pool, the removal process is repeated with the next case. This 

process continues with additional fitness cases until either: 

▪ Only one individual remains in the selection pool, in which case that individual is 

selected as a parent 

▪ No more fitness cases are left, in which case a parent is selected from the remaining 

pool 

This process is repeated for each parent selection. The selected parents are Pareto-optimal concerning 

the fitness cases. 

The test cases can be thought of as filters, and each parent selection represents a random path through 

these filters. 

This selection promotes individuals with diverse performances observed in previous experiments. 

3.4.3.3. Age-Fitness Pareto Selection 

Each individual is assigned an age equal to the number of generations since its oldest ancestor 

appeared. In each generation, one new individual is added to the population to provide a small amount 

of random restart. Selection for variation is random rather than guided, and during breeding, several 

offspring equal to the overall population size is created. Afterward, the set 𝑃 consisting of the current 

population and the newly created individuals is culled to the original population size, 𝑁, using their 

accuracy and their age. In this case, a lower age is preferred, and the fitness is inverted so that a lower 

fitness is also better.  

Program survival is based on the environmental selection scheme of the Strength Pareto Evolutionary 

Algorithm 2 (SPEA2), described in Zitzler et al. (2001). 

3.4.4. Variation 

The mutation and crossover operators are the same as in M3GP, which was already explained in 3.2.2. 

and 3.2.3., respectively. 

3.4.5. Classification Strategy 

In M4GP, the nearest centroid classifier is the used strategy, although it is not the traditional approach 

in GP. 
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The nearest centroid classifier works by partitioning the attributes into subsets {𝑋1 … 𝑋𝑘}, such that 

𝑋𝑘 is the subset of 𝑥 with class label 𝑘. To classify a new sample 𝑥′ ∈ ℝ𝑝, the distance of 𝑥′ to each 

subset {𝑋1 … 𝑋𝑘} is measured and the class label corresponding to the minimum distance is assigned 

as: 

 �̂�(𝑥′) = 𝑗, where 𝑗 = arg 𝑚𝑖𝑛𝑘  𝐷(𝑥′, 𝑋𝑘),   𝑘 = 1, … , 𝐾 (3.2) 

𝐷 is the Mahalanobis distance between 𝑥′ and the centroid of 𝑋𝑘, which is defined as follows: 

 𝐷𝑀(𝑥′, 𝑋𝑘) =  √(𝑥′ − 𝜇𝑘)Σ𝑘
−1(𝑥′ −  𝜇𝑘)𝑇 (3.3) 

With 𝜇𝑘 ∈ ℝ𝑝 being the centroid of 𝑋𝑘 and Σ𝑘 ∈ ℝ𝑝×𝑝 the within-class covariance matrix. 

This strategy assumes the within-class samples to be normally distributed about their centroid and 

separated from the distributions of other classes. 

Two other classification methods were tested: ‘bool’ and ‘float’, which make use of M4GP’s stack-

based system. The first approach, ‘bool’, includes Boolean operators (𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑇, >, <, ≥, ≤, =

, 𝐼𝐹 − 𝑇𝐻𝐸𝑁, 𝐼𝐹 − 𝑇𝐻𝐸𝑁 − 𝐸𝐿𝑆𝐸) to evolve classification rules and interpret the result as a bitstring 

for classification. The second one, ‘float’, evolves a set of mathematical expressions, with the 

classification being made according to the index that has the highest value in the stack output. For 

example, if Φ(𝑥) from 3.4.1. produced the output [1.5, 3, 2.25, 9, 4.5], class 4 would be assigned to 

the sample. 

3.4.6. Archiving Solutions 

In GP, typically, the individual with the highest training accuracy is chosen as the final model, to then 

be evaluated on the test set. Still, given the importance of interpretability, an archive of solutions that 

represent the best trade-offs of training accuracy and complexity is maintained on subsequent 

problems. 

To choose a final model, a small validation set is split from the training set before the run. At the end 

of the run, the archive is evaluated on the validation set, and the individual with the best score is 

selected as the final model. This approach should also reduce overfitting and produce simpler models. 

The entire archive can also be studied by experts to get a better sense of the building blocks of good 

solutions to their problems, which can offer important insights. 

3.4.7. Discussion about M4GP 

In contrast to M2GP and M3GP, M4GP uses a stack-based representation that removes the need for 

explicit root nodes, preserves multidimensionality, and allows dimensionality to change. Also, it has 

multi-objective selection strategies and a Pareto archive for model selection and better 

interpretability.  

In La Cava et al. (2019), the authors prove the algorithm performs significantly better than its 

predecessors across all benchmark problems, according to a Friedman test of rankings for test 

accuracy. Furthermore, advanced evolutionary selection methods (like lexicase selection and age-
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fitness Pareto survival), were proved to perform better than tournament selection in producing 

accurate classifiers. 

All these features foster M4GP as the state-of-the-art multiclass classification method with GP. 
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4. IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS AND 

GENETIC PROGRAMMING 

In the last decade, several authors have investigated the usage of DL (i.e., CNNs) to perform feature 

extraction, which is the first phase of image classification. 

Chen et al. (2014) was one of the first studies to do it, although nowadays some design choices might 

seem obsolete. In this work, the authors proposed a hybrid approach to image classification. The 

framework combined Principal Component Analysis (PCA), a DL architecture, and Logistic Regression. 

Specifically, stacked autoencoders were implemented as a DL architecture to extract features. The 

experimental results revealed the proposed framework produced competitive results on well-known 

datasets. 

Chen et al. (2016) was a study where the use of different feature extractors and classifiers was 

motivated by the lack of training data. In this paper, a deep feature extraction method was presented 

for hyperspectral image (HSI) classification using a CNN. To study the potential of a CNN to be a feature 

extractor, that network was compared with PCA, Factor Analysis (FA), and Locally Linear Embedding 

(LLE). Three deep feature extraction architectures based on CNNs were proposed to extract the 

spectral, spatial, and spectral-spatial features of HSI. The classification task is performed with a 

traditional fully-connected layer. Support Vector Machines, K-Nearest Neighbors, and Logistic 

Regression are also considered to evaluate the classification performance achieved by using PCA, FA, 

and LLE as feature extractors. The authors proved the CNN was able to effectively extract features, 

which led to good performance results. 

In Ayinde et al. (2019), the authors wanted to better understand the features extracted by a CNN. 

Particularly, the authors showed how size, choice of activation function, and weight initialization 

impact redundant feature extraction of deep neural network models. The results attained on well-

known datasets showed the wider and deeper a network becomes, the higher its tendency to extract 

redundant features. In this paper, CNNs were used as universal feature extractors for transfer learning, 

so only the final classifier needed to be retrained. 

Several previous works related to our research problem will be presented in 4.1. 

 

4.1. RELATED WORK 

Existing works that introduce GP approaches for Computer Vision will now be presented. The studies 

described below have combined CNNs and GP to perform image classification tasks, similarly to the 

method proposed in this thesis. 

Young et al. (2015) is one of the first studies to combine CNNs with evolutionary algorithms. The 

authors trained a vanilla CNN, although they used an evolutionary algorithm to optimize some 

hyperparameters like the kernel size and the number of filters for the convolutional layers. A similar 

approach is presented by Bakhshi et al. (2020), where a conventional Genetic Algorithm (GA) was used 

to evolve optimized CNN architectures and to find the best combination of hyperparameters for 

multiple image classification tasks. This was implemented in hopes of reaching the optimized CNN 
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model automatically. The proposed GA optimized the number of convolutional blocks, the number of 

convolutional layers in each block, the size of feature maps for each block, and other training-related 

hyperparameters such as dropout rate, learning rate, weight decay, and momentum. Recently, C. Li et 

al. (2021) also applied a GA, this time to automatically select trainable layers of a transfer CNN model. 

The main idea was to encode the number of the trainable layers as a gene of individuals and update 

the population by genetic operations to obtain the best transfer CNN networks. 

Fernando et al. (2016) proposed differentiable pattern-producing networks (DPPNs) to optimize the 

weights of a denoising autoencoder. It focused on the effectiveness of indirect coding for weight 

optimization, that is, the general structure of the network should be predefined. 

In Zhu et al. (2018) a GP framework is introduced to automatically search for optimal CNN 

architectures, abbreviated as GP-CNAS. GP-CNAS encodes CNNs as trees where leaf nodes (GP 

terminals) are selected residual blocks and non-leaf nodes (GP functions) specify the block assembling 

procedure. One of its advantages is that the desired CNN architecture, with balanced depth and width, 

can be found within limited trials. 

Suganuma et al. (2017), Banerjee & Mitra (2020), and Suganuma et al. (2020) presented methods to 

construct CNN architectures that were based on Cartesian Genetic Programming (CGP). In Suganuma 

et al. (2017), the approach adopted functional modules, such as convolutional blocks and tensor 

concatenation, as the node functions in CGP. The CGP encoding method was optimized to maximize 

the validation accuracy. Similarly, in Banerjee & Mitra (2020), the authors developed an algorithm that 

introduces crossover to standard CGP, to generate an optimal CNN architecture for a given dataset. 

The method was found to converge relatively faster than other related methods. Another similar 

approach is in Suganuma et al. (2020), where the method generated the CNN architectures based on 

the CGP encoding scheme with highly functional modules and used the evolutionary algorithm to 

efficiently find good architectures. It could find competitive architectures with a reasonable 

computational cost compared to other automatic design methods. Furthermore, McGhie et al. (2020) 

presented the first research into the use of tree-based GP to automate the architecture design of CNNs. 

While the approach did not outperform state-of-the-art hand-crafted CNN architectures, it showed 

that using tree-based GP was a viable approach. The intent of using GP was to reduce the amount of 

knowledge required to design a CNN for a given problem domain by automatically searching for the 

optimal architecture. 

In Evans et al. (2018), another GP-based method was proposed. It combined key characteristics of 

CNNs (like convolution and pooling), with GP in a deep structure for image classification. The proposed 

method successfully utilized the flexibility of GP representations to automatically evolve a program 

that learned convolution filter coefficients, detected useful regions of an image, extracted features 

from those detected regions, and built a classifier. In terms of performance, it was unable to beat 

CNNs, although it had a much faster testing time and it evolved interpretable models (unlike CNNs). 

Moreover, Bi et al. (2019) had the goal of developing a GP-based evolutionary DL method for feature 

learning and image classification. The framework uses GP trees to transform each image in the training 

set into features (with the help of convolution and pooling layers). The transformed training set was 

normalized using min-max normalization and was fed into a linear SVM to perform classification. The 

experimental results showed it achieved significantly better performance in most comparisons and 

revealed the good interpretability of the evolved programs. 



29 
 

Chu & Chu (2019) presented a fusion method based on GP to integrate information extracted from 

multiple layers of a CNN. The preliminary results demonstrated the potential of this GP fusion scheme. 

Sun et al. (2019) developed a new evolutionary approach to automatically evolve architectures and 

weights of CNNs for image classification problems. The model optimized by EvoCNN had fewer 

parameters, yet it could reach the best classification performance. At the time, the goals were achieved 

by proposing a new representation for the weight initialization strategy, a new genetic operator, and 

an efficient fitness evaluation method, among others. 

Real et al. (2019) used an evolutionary algorithm to discover image classifier architectures. The authors 

evolved an image classifier – AmoebaNet-A -, which had comparable accuracy to existing state-of-the-

art ImageNet models discovered with more complex architecture-search methods. Evolution was 

found to be a simple method to effectively discover high-quality architectures. At its large size, it set a 

new state-of-the-art accuracy. 

Recently, Wendlinger et al. (2021) and Pinos et al. (2021) worked on Neural Architecture Search (NAS), 

which aims to automate the design process of neural network architectures. In Wendlinger et al. 

(2021), the authors stated that, in general, the method was difficult to reproduce due to differences 

in frameworks, hidden hyperparameters, and a large number of hyperparameters. Still, it was a valid 

approach for applications that require inductive transfer learning. A similar method is in Pinos et al. 

(2021), which proposed a multi-objective NAS method based on CGP for evolving CNNs. During this 

process, a suitable CNN architecture is evolved together with approximate multipliers to deliver the 

best trade-offs between accuracy and network size. 

Pretorious & Pillay (2020) implemented a methodology that is very similar to what is going to be 

performed in this thesis, thus its relevance. The proposed hybrid approach combined a CNN for feature 

extraction and GP for classification. First, VGG-19 was used to extract features, as the CNN got trained 

on the initial dataset. The dense layers of the CNN were then removed up until the layer that 

represents the flattened feature maps. The goal was to generate a new dataset where each image was 

represented only by a 1D feature vector. In the end, GP was trained to produce a classifier that could 

predict the class of an image represented by its feature vector. The final objective was to evolve a 

classifier that categorized each frame in a movie or series as a good or bad thumbnail. 

The approach presented by Pretorious & Pillay (2020), which combined a CNN for feature extraction 

and GP for classification, was outperformed by a ResNet-50 CNN, but it was still an important 

assessment. Perhaps if a state-of-the-art algorithm like M4GP is used for classification, the 

performance of a hybrid approach can be better than that of a vanilla CNN. This is the premise of this 

thesis. 

Janke et al. (2019) developed a very important study proposing a two-step approach to assessing the 

possibility of improving the performance of CNNs by using different classification algorithms on high-

level image features. The reason for the relevance of this paper in the context of this thesis was already 

highlighted in Chapter 1: the authors identified a research gap in current literature that should be filled 

by this thesis. The methodology implemented in this thesis is, in fact, very much related to the one in 

Janke et al. (2019). In the paper, initially, different CNN configurations were trained on several 

benchmark datasets. In the second step, the fully-connected layer that made the final prediction was 

removed from the CNN, such that the last remaining layer produced a flattened output from the last 
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layer of image filters. On this intermediate output, multiple classification algorithms were 

benchmarked. Even so, that benchmark did not test evolutionary algorithms like M4GP, which might 

lead to better performance when compared to MLP models and other multiclass classification 

algorithms (i.e., Logistic Regression, Support Vector Machine, XGBoost, Random Forest Classifier, K-

Nearest Neighbors). 



31 
 

5. METHODS 

This chapter describes the experimental setup used to test the research question: 

“To what extent does the substitution of the fully-connected layer in Convolutional Neural Networks 

for an evolutionary algorithm affect the performance of those CNN models?” 

The training process of each CNN model on each dataset benchmark was completed on a cloud 

computing UI6, while the classification algorithm was run on commodity hardware7, which limits the 

number of tested hyper-parameters to a reasonable degree. Nevertheless, all elements of the scientific 

procedure presented in this thesis are scalable and subject to computational means. 

The procedure of this thesis assumes time is not a constraint in the training of the algorithms, as it will 

inevitably take longer to train than a vanilla CNN, so it only focuses on improving the accuracy and/or 

interpretability of the final model solutions. The proposed method comes at the cost of longer training 

time. On the other hand, the stored classifiers will be lighter-weight when compared to fully-connected 

layers (i.e., MLPs), because the latter are very complex and the GP-based classification algorithm 

implemented in this thesis makes use of a fairly lightweight nearest centroid classifier (La Cava et al., 

2019). 

Many novel implementations of neural networks have had a biological origin. This procedure does not, 

although it returns to the origins of Computer Vision when the classification of high-level image filters 

was not limited to MLPs and could be done with other classification algorithms. 

After Chapter 4 highlighted previous work in this research area, the current chapter will describe the 

scientific procedure in 5.1, the dataset benchmarks in 5.2, the CNN model architectures in 5.3, the 

techniques applied for image preprocessing in 5.4, the classification algorithm and evaluation metrics 

that were chosen in 5.5 and 5.6, respectively, and the software framework in 5.7. 

 

5.1. SCIENTIFIC PROCEDURE 

The focus of this thesis is not to directly replace the fully-connected layer in the learning process of the 

CNNs, but rather to enhance this process. Firstly, a given CNN architecture is trained (including the 

fully-connected layer), so that the convolutional layers learn image features from the inputs. 

Afterward, the fully-connected layer is replaced with a different classification algorithm (i.e., M4GP), 

thus training the algorithm based on the high-level image features produced in the first step of this 

method. 

The procedure that will be explained more thoroughly below might be similar to transfer learning8, but 

it is rather more of a learning enhancement. This is because the dataset to train the model on is the 

 
6 Google Colaboratory: up to 12 GB of RAM, GPU used, accessible at colab.research.google.com/ 
7 Windows 10, Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz, 8 GB of RAM 
8 Transfer Learning exists when a model developed for a task is reused as the starting point for a model 

on a second task (Yosinski et al., 2014) 

https://colab.research.google.com/
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same as the one to further train the classification algorithm9. Still, pre-trained models from transfer 

learning can be used to perform this possible enhancement of the learning process. 

The first script of the procedure serves to generate the intermediate datasets from well-known 

Computer Vision datasets: CIFAR-10 and CIFAR-100, as described in 5.2. Before passing the input 

images to the CNN architectures (5.3 goes into detail on each chosen model), some transformations 

are applied to them, which are described in more detail in 5.4 (Image Preprocessing). After training, 

the CNNs are cut so that the fully-connected layers are removed and only the flattened output of the 

convolutional layers remains. The high-level image features come from the learning process on the 

convolutional layers. These features describe the output of the image filters present on the last 

convolutional layer of several tested CNN architectures. Moreover, by “intermediate datasets” we are 

referring to the combination of the flattened output from the trained convolutional layers with the 

correct classification (i.e., class label) of the input image. The first stage of our procedure can be 

visualized in Figure 5.1. 

 

Figure 5.1 – This stage encompasses the creation of intermediate datasets, which can be considered 
as the flattened outputs of the convolutional layers on a CNN architecture 

The networks were applied to generate good image filters, although the fine-tuning of its 

hyperparameters is not the focus of this thesis. The main goal is to discover if classifying image features 

with M4GP helps improve the image classification task of CNN models with an increased accuracy score 

and/or with better interpretability of results. Thus, the performance on the first step of the procedure 

will not have a significant influence on the results of the second step. 

The second script serves to apply M4GP to classify the high-level image features in the intermediate 

datasets from the first stage (described above). This is done to understand if this classification stage 

can get better results and performance when compared to the vanilla CNN. The hyperparameters 

tested on M4GP are indicated in 5.5 (including the number of generations, population size, selection 

 
9 In fact, to be more precise, it is a “subset” of the original dataset representing high-level image features 
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method, and elitism, among others). For the sake of making comparisons, the performance of the 

initially trained CNNs is also disclosed. The second stage of our procedure can be visualized in Figure 

5.2. 

 

Figure 5.2 – This stage encompasses the classification of the intermediate datasets with M4GP 

To ensure the quality and statistical significance of the results, some measures need to be applied. 

Firstly, the procedure is tested in more than one dataset. This is done to evaluate if there are certain 

aspects in the datasets (e.g., size and number of classes) that make M4GP perform better. Also, 

multiple M4GP hyperparameters are tested and explored. Furthermore, the train-test split on CIFAR 

data is 5:1, with 50 000 images for training and 10 000 for testing. Thus, the CNN models from the first 

stage learn from the training dataset. The intermediate datasets for both the training and the test 

dataset are then generated from those trained CNN models. 

In the second stage, when training M4GP on intermediate data, its hyperparameters are obtained from 

the training dataset. Also, 10-fold cross-validation is applied, so 10% of the training data is used as 

validation data on each cross-validation run, which means all validation data comes from the training 

dataset of the first stage. M4GP’s performance is evaluated on test data on which the algorithm was 

not trained. This method enables the comparability and statistical significance of results. 

 

5.2. DATASETS 

Two well-known datasets in the field of Computer Vision were chosen for this thesis: CIFAR-10 and 

CIFAR-100. 

5.2.1. CIFAR-10 

The CIFAR-10 dataset consists of 60 000 tiny color images (32 × 32 pixels), 50 000 for training, and 10 

000 for testing, classified into 10 categories (Krizhevsky & Hinton, 2009). The dataset is balanced, thus 

having 6 000 examples for each of its 10 classes. The classes are mutually exclusive. 

An overview of CIFAR-10 images for all 10 classes can be found in Figure 5.3. 



34 
 

 

Figure 5.3 – Image examples for each one of the CIFAR-10’s classes; going left to right and top to 
bottom, the image classes are: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, 

“ship” and “truck” 

Figure 5.4 has 6 images, which represent examples for the class “automobile” on CIFAR-10. 
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Figure 5.4 – Examples for class “automobile” on CIFAR-10 

The Python version of the CIFAR-10 dataset has a size of 163 MB. 

5.2.2. CIFAR-100 

CIFAR-100 is an image dataset for fine-grained classification problems, compiled to contain 60 000 tiny 

color images distributed into 100 classes with superclasses (Krizhevsky & Hinton, 2009). Each class 

contains 600 images, 500 for the training phase and 100 for testing. As in CIFAR-10, the images have a 

size of 32 × 32 pixels and the classes are mutually exclusive. 

Its classes come in 20 superclasses of 5 classes each. For example, the superclass “fruit and vegetables” 

consists of five classes “apples”, “mushrooms”, “oranges”, “pears”, and “sweet peppers”. The idea is 

that classes within the same superclass are similar (and thus harder to distinguish) than classes 

belonging to different superclasses. 

An overview of CIFAR-100 images for 10 of the 100 classes can be found in Figure 5.5. 
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Figure 5.5 – Image examples for 10 of CIFAR-100’s classes. Going left to right and top to bottom, the 
image classes are: “apples”, “aquarium fish”, “baby”, “bear”, “beaver”, “bed”, “bee”, “beetle”, 

“bicycle” and “bottles” 

Figure 5.6 has 6 images, which represent examples for the class “apples” on CIFAR-100. 
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Figure 5.6 – Examples for class “apples” on CIFAR-100 

The Python version of the CIFAR-100 dataset has a size of 161 MB. 

 

5.3. CNN MODEL ARCHITECTURES 

For the CIFAR-10 and CIFAR-100 datasets, the same CNN model architectures were implemented, 

because the images on these two datasets have the same input shape of 32 × 32 pixels. The only 

difference lies in the fully-connected layer since CIFAR-10 expects 10 output neurons and CIFAR-100 

expects 100. 

The models selected for CIFAR are two custom CNNs and VGG-16. 

5.3.1. CNN 1 

This model was created by Janke et al. (2019) for the CIFAR datasets. 

CNN 1 can be seen in Figure A.1. Its architecture is a 10-layer CNN with a final fully-connected output 

layer. The convolutional layers use windows of 3 × 3. 

It has 6 convolutional layers, 3 max-pooling layers (1 following each pair of conv layers), and 2 dense 

layers (the last one being a softmax layer). 

As the model gets deeper, the convolution filters also have an increasing depth. The two first 

convolution layers have a depth of 128, the two that come next have 256, and, finally, the last two 

have 512. Regarding these convolution layers, we can also say padding is used with strides being (1, 

1); thus, the outputs have the same size as the inputs. 

All hidden layers have ELU activation functions. 

Additionally, it is important to note dropout layers are employed after each pair of conv layers and 

before the softmax layer. The rate on these layers increases as CNN 1 gets deeper, starting at 0.1, then 

0.25, and, finally, 0.5. 
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All max-pooling layers used in this architecture have a 2 × 2 pooling window. 

After flattening, the fully-connected layer starts with a dense layer with 1024 units, ELU activation, and 

dropout with a rate of 0.5. Finally, the model ends with a softmax layer with 10 or 100 units, depending 

on which of the two CIFAR datasets is being used. 

CNN 1’s architecture produces 2048 high-level intermediate features as input to the fully-connected 

layer. Also, it has 6 684 810 parameters, all of them being trainable. 

5.3.2. CNN 2 

This model was also created by Janke et al. (2019) for the CIFAR datasets. 

CNN 2 can be seen in Figure A.2. It is constructed to be smaller than CNN 1 and it only has 7 hidden 

layers. Similarly to CNN 1, this has 2 convolutional layers followed by 1 max-pooling layer. The 

convolutional layers also use windows of 3 × 3. 

It has 4 convolutional layers, 2 max-pooling layers (1 following each pair of conv layers), and 2 dense 

layers (the last one being a softmax layer). 

As the model gets deeper, the convolution filters also have an increasing depth. The two first 

convolution layers have a depth of 32 and the last two have 64. Regarding these convolution layers, 

we can also say padding is used with strides being (1, 1); thus, the outputs have the same size as the 

inputs. 

All hidden layers have ReLU non-linearity. 

Additionally, it is important to note dropout layers are employed after each pair of conv layers and 

before the softmax layer. The rate on these layers increases as CNN 2 gets deeper, starting at 0.25, and 

then 0.5. 

All max-pooling layers used in this architecture have a 2 × 2 pooling window. 

After flattening, the fully-connected layer starts with a dense layer with 512 units, ReLU activation, and 

dropout with a rate of 0.5. Finally, the model ends with a softmax layer with 10 or 100 units, depending 

on which of the two CIFAR datasets is being used.  

CNN 2’s architecture produces 2304 high-level intermediate features as input to the fully-connected 

layer. Also, it has 1 250 858 parameters, all of them being trainable. 

5.3.3. VGG-16 

This architecture was already explained in 2.3.4 and it can be visualized in Figure 2.1410. As said 

previously, VGG-16 was the main runner-up on ILSVRC-2014. The model implemented in this thesis is 

adapted to be used with the CIFAR datasets. This CNN is deeper than the ones from previous ILSVRC 

competitions, and it has small convolution filters (always 3 × 3). 

 
10 The architecture implemented in our project is essentially equal to the one on the figure, although the 

fully-connected layer has some slight modifications 
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It has 13 convolutional layers, 5 max-pooling layers following some of the convolutional layers, and 2 

dense layers (the last one being a softmax layer). 

As the CNN gets deeper, the convolution filters also have an increasing depth. The two first convolution 

layers have a depth of 64, the two that come next have 128, the three that come next have 256, and, 

finally, the last six have 512 (VGG-16 will produce 512 high-level image features as input for the 

subsequent classifier). Regarding these convolution layers, we can also say padding is used with strides 

being (1, 1); thus, the outputs have the same size as the inputs. L2 regularization is also applied to 

decay weights with a regularization factor of 0.0005.  

All hidden layers have ReLU non-linearity.  

Afterward, batch normalization is applied to normalize the outputs of the convolution layers. 

Additionally, it is important to note dropout layers are employed after many of the convolution layers, 

after the last max-pooling layer, and before the softmax layer. The rate on these layers increases as 

VGG-16 gets deeper, starting at 0.3, then 0.4, and, finally, 0.5. 

All max-pooling layers used in this architecture have a 2 × 2 pooling window. 

After flattening, the fully-connected layer starts with a dense layer with 512 units, an L2 regularization 

factor of 0.0005, and ReLU activation, followed by batch normalization and dropout with a rate of 0.5. 

Finally, the model ends with a softmax layer with 10 or 100 units, depending on which of the two CIFAR 

datasets is being used.  

VGG-16’s architecture has 15 001 418 parameters, among which 14 991 946 are trainable and 9 472 

are non-trainable.  

It is important to note that VGG-19 could have been used instead of VGG-16, although the CIFAR input 

images would need to be resized from 32 × 32 pixels to, for example, 48 × 48. This is because the 

images from CIFAR are too small to be passed to VGG-19. 

 

5.4. IMAGE PREPROCESSING 

Image preprocessing involves the transformations done to an input image before passing it to a 

classifier. If raw data is passed to a classification algorithm, the accuracy of results might not be as 

good. Some of these preprocessing techniques can be mean normalization11 (the training set is turned 

into organized data, normalized for each dimension), standardization12 (the raw data gets organized 

for both mean and standard deviation of each of the dimensions on the training set), among others. 

Image preprocessing techniques are mainly used to help surpass Computer Vision challenges. These 

challenges are described in 2.2.1. 

 
11 Mean normalization is calculated as: 𝑋′ = 𝑋 − 𝜇, where 𝑋′ is the normalized data, 𝑋 is the original data 

and 𝜇 is the mean vector across all features of 𝑋 
12 Standardization is calculated as: 𝑋′ =

𝑋−𝜇

𝜎
, where 𝑋′ is the normalized data, 𝑋 is the original data, 𝜇 is 

the mean vector across all features of 𝑋 and 𝜎 is the standard deviation vector across all features of 𝑋 
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For CIFAR-10 and CIFAR-100, the images were preprocessed with standardization. The mean and 

standard deviation for CIFAR-10 are 120.707 and 64.15, respectively. As for CIFAR-100, the mean and 

standard deviation are 121.936 and 68.389, respectively. 

Figure 5.7 demonstrates the method, with examples for classes “horse” and “ship” with their 

respective preprocessed versions. 

 

 

Figure 5.7 – Raw images for classes “horse” and “ship” (on the top) and their preprocessed versions 
(on the bottom) 

These preprocessed versions of the CIFAR images were the ones used to train the CNN model 

architectures from 5.3. 

 

5.5. CLASSIFICATION ALGORITHM: M4GP 

After getting the intermediate datasets, M4GP (introduced in 3.4) was implemented to do 

classification. We will now discuss the hyperparameters tested using grid search. 

Some different configurations are tested. For the number of generations 𝑔, each model uses 100 or 

200. In terms of population size, 50 and 100 individuals are tested. The selection method can be 

Lexicase selection or Age-Fitness Pareto selection; Tournament selection was initially tested but did 

not lead to good results13. Elitism can be integrated or not (i.e., True or False). The probabilities of 

crossover and mutation are also explored: for crossover, it can be 50 or 80%, and for mutation, it can 

be 20 or 50%. 

Also, we carried out some preliminary tests to understand which hyperparameters and parameter 

values should be included in the grid search. We concluded that, for this image classification problem, 

 
13 Also, La Cava et al. (2019) proved that Tournament selection performs worse when producing accurate 

classifiers 
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the operator list and tournament size (if Tournament selection was applied) either caused the models 

to underperform or slowed down computation significantly. 

Besides, some hyperparameters receive fixed values, namely: the algorithm is set to apply M4GP for 

classification (classification, class_m4gp), the fitness metric is set as the F1 score, the random state is 

used for reproducibility, and verbosity is activated. Also, it was necessary to set the fitness threshold 

for stopping execution as 0.01 to speed up the execution time. Without this setting, the algorithm 

would need an unreasonable amount of time to run, and we believe this setting did not have a 

substantial negative effect on the results, even though it is likely they could be improved if this 

threshold was not set. Finally, the constants (represented by the letter 𝑛) are not added to the list of 

operators, as previously we noticed several program representations included only constants, which 

was unreasonable in the context of the problem, leading to subpar results. 

This classification algorithm is directly compared to the CNN’s fully-connected layer (i.e., multilayer 

perceptron). 

 

5.6. EVALUATION METRICS 

The main evaluation metric used for this research is accuracy in the context of a multiclass classification 

problem. 

We would have liked to use top-n-accuracy (top-2 and top-5, for example), which is the standard 

accuracy of the true image class being equal to any of the 𝑛 most probable classes predicted by a 

classification model like M4GP. However, Python’s implementation of M4GP used for this thesis does 

not have a predict_proba method14 (contrary to scikit-learn’s classifiers), so it is not possible to 

calculate top-n-accuracy, only standard accuracy (i.e., top-1-accuracy). 

Besides, the time taken to train the M4GP models on the intermediate datasets is calculated. It is 

important to note that, in terms of training time, it will always take longer to implement the approach 

from this thesis than to train a vanilla CNN. 

The complexity of the models is generally measured in terms of the size of the produced models. 

 

5.7. SOFTWARE FRAMEWORK 

All the code used to test the research question of this thesis was written in Python, using various 

libraries. The key libraries used include: 

▪ Keras15 (Chollet & others, 2015), which acts as an interface for TensorFlow16 (Abadi et 

al., 2016). This was mainly utilized to create, implement, and train Deep Learning 

models. 

 
14 This scikit-learn method predicts the class probabilities for each data point 
15 keras.io/ 
16 tensorflow.org/ 

https://keras.io/
https://www.tensorflow.org/
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▪ ANN Visualizer17, to create graphs for CNN models built on Keras. This enables us to 

visualize an architecture and all its layers. 

▪ ellyn18 (La Cava et al., 2019), which is a GP system for regression and classification. This 

is a Python-wrapped version of ellen, a C++ library that does most of the computation. 

ellyn is used to implement M4GP (introduced in Chapter 3), a state-of-the-art GP-based 

classification algorithm needed to perform the stage described in 5.5. It is important to 

emphasize ellyn’s compatibility with scikit-learn because it can be used as a scikit-learn 

estimator, which makes it easy to do cross-validation and hyperparameter optimization. 

▪ scikit-learn19 (Pedregosa et al., 2011), to implement cross-validation methods and 

evaluation metrics. 

The framework is divided into two Jupyter Notebooks, as explained in 5.1. The first notebook is used 

to do data exploration (check the shape of the datasets and print image examples for each class), data 

transformation (apply an image preprocessing technique and one-hot encode the target values), 

neural network training (build CNN models – including the data augmentation step, the compile, and 

the training -, afterward we check the number of parameters and the test loss/accuracy) and, finally, 

we remove the fully-connected layers of each CNN model to create the intermediate datasets. 

The second notebook is used to perform the final classification of images. Initially, the intermediate 

datasets from the first notebook are loaded, and then we train M4GP models on that data, thus 

producing the final models. The notebook also saves the models for future reuse and stores the 

evaluation metric results in a file. 

This project can be found on GitHub at github.com/rfmmonteiro99/classify-img-features-with-gp. 

 
17 github.com/RedaOps/ann-visualizer 
18 cavalab.org/ellyn/ 
19 scikit-learn.org/stable/ 

https://github.com/rfmmonteiro99/classify-img-features-with-gp
https://github.com/RedaOps/ann-visualizer
https://cavalab.org/ellyn/
https://scikit-learn.org/stable/
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6. RESULTS AND DISCUSSION 

This chapter will present the results obtained from the implementation of the methodology presented 

in Chapter 5. 

In 6.1, the results from creating the intermediate datasets are described. Then, the results from the 

classification task on these intermediate datasets are described in 6.2. The interpretations, analyses, 

and general conclusions from those results are described in 6.3. Finally, the discussion will be 

presented in 6.4. 

 

6.1. CREATION OF INTERMEDIATE DATASETS 

We will now analyze the training process behind the creation of intermediate data. To accomplish 

this, we trained CNNs on the initial datasets: CIFAR-10 and CIFAR-100. 

The set of CNNs chosen for this step of the research was already explained in 5.3. It includes two 

custom architectures (CNN 1 and CNN 2) and a famous and commonly used architecture (VGG-16). 

CNNs 1 and 2 were trained for 80 iterations, and they seem to have converged for both the train and 

test datasets. For VGG-16 we used pre-trained weights. Therefore, this model did not need to be 

retrained20. 

6.1.1. CIFAR-10 

The results can be found in Table 6.1. The two custom CNNs took approximately 45 minutes to train21 

(38 minutes for CNN 1 and 7 for CNN 2). 

Table 6.1 – CIFAR-10 intermediate dataset results 

Architectures 
Train 

Accuracy 
Test 

Accuracy 
# 

Parameters 

# 
Intermediate 

Features 

Model Size 
(MB) 

CNN 1 0.982 0.833 6 684 810 2 048 25.5 

CNN 2 0.912 0.798 1 250 858 2 304 4.8 

VGG-16 0.936 0.936 15 001 418 512 57.3 

 

By analyzing the two charts from Figure 6.1, we can visualize the training process from CNN 1 on CIFAR-

10 over 80 iterations. We can see that both accuracy and loss change very rapidly until the 10th 

iteration, with accuracy increasing to almost 0.8 in both the train and test sets and loss decreasing to 

approximately 0.65 (also in both sets). As for the accuracy on the train set, we can see it continually 

increases to a very high result of 0.98, stalling at around the 40th iteration. However, the same did not 

 
20 The VGG-16 pre-trained weights for CIFAR were retrieved from github.com/geifmany/cifar-vgg 
21 Completed on Google Colaboratory: up to 12 GB of RAM, GPU used, accessible at 

colab.research.google.com/ 

https://github.com/geifmany/cifar-vgg
https://colab.research.google.com/
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happen on the test set, which stalled in accuracy at around 0.8, with some fluctuating values from the 

10th iteration to the end of the training process. As for the loss values on the train set, there is a 

persistent decrease until a value of 0.05, stalling at around the 40th iteration, in a similar way to the 

accuracy. Still, once again, the same did not happen on the test set, which fluctuated between a value 

of 0.8 until the final iteration, even registering a slight increase in loss after the 20th iteration. There is 

a significant gap between training and test accuracy, while the test loss also registers a slight increase 

along training, although this is not completely detrimental to the quality of the architecture. CNN 1 is 

a model with 6 684 810 parameters, which produces 2 048 high-level image features for the 

intermediate dataset and has a size of 25.5 megabytes. 

 

Figure 6.1 – CNN 1 training process (accuracy and loss) on CIFAR-10 

By analyzing the charts from Figure 6.2, we can visualize the training process from CNN 2 on CIFAR-10 

over 80 iterations. Until the 21st epoch, the accuracy and loss on both sets are very similar, similar to 

the training process of CNN 1. Afterward, the accuracy on the train set keeps increasing until it reaches 

0.91 by the end of training and the loss keeps decreasing until it reaches 0.25. As for the test set, we 

see a shift after the 22nd epoch, with the accuracy stalling at around 0.79, finishing at 0.798, and the 

loss also stalling at around 0.63, finishing at 0.662. CNN 2 is a model with 1 250 858 parameters, which 

produces 2 304 high-level image features for the intermediate dataset and has a size of 4.8 megabytes. 

 

Figure 6.2 – CNN 2 training process (accuracy and loss) on CIFAR-10 

As stated previously, pre-trained weights were used for VGG-16. This architecture reached the highest 

accuracy on the CIFAR-10 test set, with a score of 0.936. It is also the biggest model by a large margin, 
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having 15 001 418 parameters and a size of 57.3 megabytes, which is more than double compared to 

CNN 1. It produces 512 high-level image features. 

Finally, we can compare the performance of CNNs 1 and 2. CNN 1 was able to reach slightly better test 

accuracy, with an extra 3.5 percentage points compared to CNN 2. The latter is a lighter model, which 

explains the worse performance on unseen data. These two CNNs have signs of possible overfitting, 

although the results on the test data did not worsen significantly, in some cases, they even slightly 

improved, so we can consider them for further analyses. VGG-16 has a much more complex 

architecture when compared to CNNs 1 and 2, which might explain why it was more proficient in 

observing patterns in unseen image data. VGG-16 got a test accuracy with an extra 10.3 and 13.8 

percentage points compared to CNNs 1 and 2, respectively. As stated previously, the scope of this 

thesis is not to reach the best possible performance at this stage, so these results will be used for the 

next phase of the research. 

6.1.2. CIFAR-100 

The results can be found in Table 6.2. The two custom CNNs took approximately 46 minutes to train22 

(38 minutes for CNN 1 and 8 for CNN 2). 

Table 6.2 – CIFAR-100 intermediate dataset results 

Architectures 
Train 

Accuracy 
Test 

Accuracy 
# 

Parameters 

# 
Intermediate 

Features 

Model Size 
(MB) 

CNN 1 0.923 0.567 6 777 060 2 048 25.8 

CNN 2 0.638 0.484 1 297 028 2 304 5.0 

VGG-16 0.705 0.705 15 047 588 512 57.5 

 

By analyzing the two charts from Figure 6.3, we can visualize the training process from CNN 1 on CIFAR-

100 over 80 iterations. This model’s train accuracy continually increases until reaching 0.923 at the end 

of training. As for test accuracy, we see it increases together with train accuracy until the 11th epoch. 

Afterward, the test accuracy flattens at values around 0.50, as it does not accompany the strict increase 

in train accuracy, finishing at 0.57. As for loss, we also see similar values between train and test until 

the 10th epoch. Afterward, the test loss does not decrease as much when compared to train loss. The 

latter continually decreases until 0.24, although test loss starts slightly increasing (the lowest value 

was 1.79 at the 23rd epoch and it finishes with a value of 2.59). Even though this might indicate the 

model is overfitting (losing generalizability) after 20 epochs, we do not see any major negative effects 

in terms of test accuracy. CNN 1 is a model with 6 777 060 parameters, which produces 2 048 high-

level image features for the intermediate dataset and has a size of 25.8 megabytes. 

 
22 Completed on Google Colaboratory: up to 12 GB of RAM, GPU used, accessible at 

colab.research.google.com/ 

https://colab.research.google.com/
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Figure 6.3 – CNN 1 training process (accuracy and loss) on CIFAR-100 

By analyzing the charts from Figure 6.4, we can visualize the training process from CNN 2 on CIFAR-

100 over 80 iterations. Train and test accuracy increased in similar ways until the 30th epoch. 

Afterward, the training accuracy keeps increasing until it reaches 0.638, although test accuracy starts 

to flatten at values around 0.45, finishing at 0.484. As for loss, we also see similar behavior in the train 

and test sets until the 30th epoch. Then, train loss keeps decreasing until 1.24, even though test loss 

starts to flatten at values of approximately 2.1, finishing at 2.08. CNN 2 is a model with 1 297 028 

parameters, which produces 2 304 high-level image features for the intermediate dataset and has a 

size of 5 megabytes. 

 

Figure 6.4 – CNN 2 training process (accuracy and loss) on CIFAR-100 

As it was said previously, and similarly to CIFAR-10, pre-trained weights were used for VGG-16. This 

architecture reached the highest accuracy on the CIFAR-100 test set, with a score of 0.705. It is also 

the biggest model by a large margin, having 15 047 588 parameters and a size of 57.5 megabytes, 

which is more than double compared to CNN 1. It produces 512 high-level image features. 

Finally, comparing CNNs 1 and 2, we can see CNN 1 reached better test accuracy, with an extra 8.3 

percentage points compared to CNN 2. CNN 2 ended with much lower accuracy scores, probably 

because it has a less complex architecture. Even so, both CNNs converged on the test set. VGG-16 has 

a much more complex architecture when compared to CNNs 1 and 2, which might explain why it was 

more proficient in observing patterns in unseen image data. VGG-16 got a test accuracy with an extra 

13.8 and 22.1 percentage points compared to CNNs 1 and 2, respectively. As stated previously, the 
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scope of this thesis is not to reach the best possible performance at this stage, so these results will be 

used for the next phase of the research. 

 

6.2. M4GP CLASSIFICATION ON INTERMEDIATE DATASETS 

The results from M4GP will be shown in tables, highlighting the classification accuracy on the test sets, 

run-time23, and the size of the resultant classifiers, among others. In addition, some data about the 10-

fold cross-validation will be displayed (95% confidence interval for the mean accuracy on the validation 

set). The hyperparameters on the best models will be reviewed. Finally, M4GP’s program 

representations will also be discussed. 

6.2.1. CIFAR-10 

The results can be found in Table 6.3. 

Table 6.3 – M4GP final classification results on CIFAR-10 

Intermediate 
Data 

Train 
Accuracy 

Validation Accuracy 
- Confidence Interval 

Test 
Accuracy 

Run-time 
Model 

Size (MB) 

CNN 1 1 95% CI [1, 1] 0.830 
33450.292 sec 

(9.29 hr) 
44 

CNN 2 0.995 
95% CI [0.9949, 

0.9967] 
0.791 

35663.360 sec 
(9.91 hr) 

44 

VGG-16 0.999 
95% CI [0.9996, 

0.9998] 
0.926 

36012.507 sec 
(10.0 hr) 

40 

 

By analyzing the previous table, in terms of accuracy, we can see that M4GP seems to be overfitted on 

training data. On CNN 1’s intermediate dataset it got perfect training accuracy, on CNN 2’s it got 0.995, 

and on VGG-16’s it got 0.999 (almost perfect as well). Still, if we analyze the confidence intervals from 

validation accuracy on the 10-fold cross-validation, we can see the results with a significance level of 

0.05 are also very high, which indicates the models consistently reached good performance on images 

that were not used on the training stage. Finally, on the test set’s unseen images, we can say the results 

are very satisfactory. These accuracies are not as high as in the training set, but M4GP still reached 

0.830 in CNN 1’s intermediate dataset, 0.791 in CNN 2’s, and 0.926 in VGG-16’s. 

We can also see the M4GP’s run-times are comparable, all between 9 and 10 hours approximately. 

Additionally, model sizes are very similar. We can say these are very light models, with a size of much 

less than a megabyte (M4GP for CNNs 1 and 2 is 44 kilobytes and for VGG-16 it is 40 kilobytes). 

The hyperparameters for the best-performing M4GP models in each intermediate dataset from CIFAR-

10 will now be presented. It is important to mention three of them were the same on all intermediate 

datasets after the grid search was performed. The number of generations could be 100 or 200, but all 

 
23 Obtained with Windows 10, Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz, 8 GB of RAM 
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grid searches selected 100. The population size could be 50 or 100, but all grid searches selected 100. 

As for the mutation rate, it could be 0.2 or 0.5, but all grid searches selected 0.5. Now, we can discuss 

three other hyperparameters that had different results depending on the dataset (elitism could be true 

or false, crossover rate could be 0.5 or 0.8, selection method could be Lexicase selection or Age-Fitness 

Pareto selection): 

▪ CNN 1: On CNN 1’s intermediate dataset, grid search integrated elitism, chose a 0.8 

crossover rate, and Age-Fitness Pareto selection 

▪ CNN 2: On CNN 2’s intermediate dataset, grid search integrated elitism, chose a 0.5 

crossover rate, and Lexicase selection 

▪ VGG-16: On VGG-16’s intermediate dataset, grid search did not integrate elitism, chose 

a 0.8 crossover rate, and Lexicase selection 

Furthermore, M4GP does not have the typical tree-based GP representation, using stack-based 

representations instead, as said in Chapter 3. For these program representations (which can be seen 

in the verbose output of M4GP’s grid search), in CIFAR-10, the classification algorithm seems to do a 

feature selection during the evolution of populations. This is likely because the features coming from 

CNN’s filters are already very good discriminators, so the algorithm does not need to add 

transformative and novel equations to the stack. Similar results were obtained over all intermediate 

datasets. It is interesting to note it is extremely rare for M4GP to use arithmetic operators24, which 

means it does very little “feature engineering” with the different high-level image filters. One of the 

most applied operators is 𝑠𝑞𝑟𝑡 (square root), although 𝑠𝑖𝑛 (sine), 𝑐𝑜𝑠 (cosine), 𝑒𝑥𝑝 (exponential), and 

𝑙𝑜𝑔 (logarithm) are also found. As an example, in CNN 2, some equations are just ‘𝑥_3’, which means 

the algorithm chose this high-level image feature without changing it, but there is also 

‘𝑒𝑥𝑝(𝑠𝑞𝑟𝑡(|(𝑥_6 ∗ 𝑥_4)|))’, which is a more complex equation that multiplies feature 𝑥_4 by feature 

𝑥_6, gets the square root, and calculates the exponential of that result. Finally, in terms of features, 

M4GP explores all 10 features in CNN 1’s intermediate dataset, and CNN 2’s. In VGG-16’s intermediate 

dataset, M4GP has many more to choose from (512 features), but it is clear the algorithm explores 

hundreds of options. 

6.2.2. CIFAR-100 

For the CIFAR-100 intermediate datasets, it was not possible to reach any results. 

The Python framework presented previously was run in commodity hardware25 to implement the 

methodology explained in Chapter 5. However, after running for approximately 150 hours26, no results 

were obtained regarding the grid search with 10-fold cross-validation for CIFAR-100. This highlights a 

significant limitation of this thesis, coming from a combination of the low specifications of the used 

 
24 Addition (+), subtraction (−), multiplication (∗) and division (/) 
25 Once again, these are the PC hardware specifications: Windows 10, Intel(R) Core(TM) i7-7500U CPU @ 

2.70GHz 2.90 GHz, 8 GB of RAM 
26 In 6.2.1., for CIFAR-10, we can see the total run-time for the three intermediate datasets was only 29.2 

hours 
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hardware and the possible low efficiency of ellyn, the Python package used to implement M4GP. This 

limitation will be explained more thoroughly in Chapter 8. 

Consequently, there will be no reference to CIFAR-100 in 6.3 (Analysis of Results) and 6.4 (Discussion). 

 

6.3. ANALYSIS OF RESULTS 

We now have the information we need to evaluate the results from 6.1 and 6.2, meaning we can make 

a comparison between the vanilla CNNs and the methodology applied in this thesis, which includes 

M4GP for the classification of high-level image features. 

It is important to note there was not a considerable decrease in performance by running the 

classification algorithm separately (after training the vanilla CNNs). This indicates the separate learning 

process is valid, and it will not yield poor performance just because of this extra stage. 

It is also important to mention that CIFAR-10’s intermediate datasets have a low number of output 

classes (10), while CIFAR-100’s have a high number of output classes (100), so we can draw conclusions 

and make comparisons between these two types of image classification task. 

We will now provide the main conclusions regarding CIFAR-10. 

6.3.1. CIFAR-10 

None of the three M4GP models was able to surpass the results of the fully-connected layers from 

vanilla CNNs in terms of test accuracy.  

Still, train accuracy increased considerably. For CNN 1, it increased to perfect accuracy (1.8 percentage 

point increase). As for CNN 2, it increased by 8.3 percentage points. Finally, for VGG-16 it increased by 

6.3 percentage points. These increases could indicate the three models had a better understanding of 

the train dataset’s high-level image features when compared to the fully-connected layers. As 

discussed previously, it could also indicate there was an overfit on training data, due to such high (and 

almost maximum) train accuracy. However, none of these theories is true. 

In fact, for CNN 1, the test accuracy with M4GP decreased by 0.3 percentage points. As for CNN 2, it 

decreased by 0.7 percentage points. Finally, for VGG-16 it decreased by 1 percentage point. The 

decreases were minimal, although highest with VGG-16, which is the architecture with the most 

intermediate features (512) and the highest test accuracy in the initial training stage. Therefore, all 

architectures have almost the same performance, with none of the CNN+M4GP models from 6.2 being 

able to improve on the pre-existing test accuracy values. 

In terms of run-times, these were all very lengthy on commodity hardware, adding more than 29 extra 

hours to the training time of our benchmark. If training is performed on a powerful computer, the run-

times will, of course, diminish. 

Furthermore, the M4GP models are very lightweight (less than 50 kilobytes each), which might be 

important if we need light classifiers for the image classification task we are tackling. 
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Thus, if performance is the sole importance in an image classification task like the one presented here 

(low number of output classes), we conclude that M4GP is not a good option for a separate 

classification training stage. On CIFAR-10, a dataset with a low number of output classes, the fully-

connected layers from the vanilla CNNs are more proficient for the image classification task than 

M4GP. Thus, it is not beneficial to add the extra stage of creating an M4GP classifier, although it might 

be an interesting route if one has a powerful computer and needs a very light classifier in terms of 

model size. 

 

6.4. DISCUSSION 

At this point, we have the results needed to give an answer to the research question posed in 

Introduction and to reveal the main findings from this research in the next and final chapter, 

Conclusions. However, first, it is relevant to place these results in context by comparing them with the 

literature covered in the literature review. 

The research project that is most comparable to this thesis is Janke et al. (2019), which was previously 

mentioned in the Introduction and Chapter 4. In their journal article, the authors answered the 

following research question: “Is it possible to improve the performance of the computer vision 

classification model by using different classification algorithms on high-level image features?”. It was 

proven that, overall, “other classification algorithms are usually more proficient than MLPs if the 

intermediate dataset has many input features or if the classification problem has many output classes”. 

Also, the authors concluded that it is “good practice to benchmark as many different classification 

algorithms and setups as possible, subject to time and computational constraints”. In terms of 

methodology, the referenced study is very similar to this thesis, although it did not investigate the 

usage of evolutionary algorithms to perform the classification of high-level image features, which ours 

did with M4GP. Thus, in a way, these two studies complement each other and are comparable on many 

levels. 

We will now join the results from this research and Janke et al. (2019) in tables, to further compare 

the performance of different classification algorithms in CNN’s high-level image features27. 

Tables 6.4, 6.5, and 6.6 include the results for CIFAR-10’s intermediate data28. 

 

 

 
27 In reality, it is not possible to make a direct comparison between the two studies, because neural 

networks are stochastic, as they make use of randomness during learning. Thus, even if the CNN architectures 
are the same on both research projects, most results on the intermediate datasets are slightly different. Still, we 
do not have access to the exact CNNs’ weights obtained on Janke et al. (2019), so we will compare both studies 
without focusing on this matter. 

28 The classification algorithms on the first column of each table are: Support Vector Machine (SVM), 
Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest (RFE), AdaBoost (ADB), Gradient Boosting 
(GBC), XGBoost (XGB) and, lastly, M4GP 
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Table 6.4 – Comparison of CNN 1’s intermediate data on CIFAR-10 (Janke et al., 2019) 

Model Test Accuracy 
Avg. 

Validation 
Accuracy 

Avg. 
Training 
Accuracy 

Model Size 
(KB) 

SVM 0.8454 0.9819 1.0000 497 200 

LR 0.8469 0.9998 0.8130 191 

KNN 0.7369 0.8245 0.8691 1 300 000 

RFE 0.8120 0.9254 1.0000 1 990 000 

ADB 0.7967 0.9119 0.9614 843 

GBC 0.8175 0.9722 1.0000 1 200 

XGB 0.8182 0.9527 0.9985 2 400 

M4GP 0.830 1.000 0.99998 44 

 

Table 6.5 – Comparison of CNN 2’s intermediate data on CIFAR-10 (Janke et al., 2019) 

Model Test Accuracy 
Avg. 

Validation 
Accuracy 

Avg. 
Training 
Accuracy 

Model Size 
(KB) 

SVM 0.7952 0.7851 1.0000 724 600 

LR 0.7622 0.7750 0.8130 191 

KNN 0.6170 0.5789 1.0000 1 460 000 

RFE 0.6994 0.6962 1.0000 206 300 

ADB 0.6446 0.6456 0.6616 844 

GBC 0.7022 0.7015 0.7818 1 300 

XGB 0.7353 0.7331 1.0000 22 100 

M4GP 0.791 0.996 0.996 44 
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Table 6.6 – Comparison of VGG-16’s intermediate data on CIFAR-10 (Janke et al., 2019) 

Model Test Accuracy 
Avg. 

Validation 
Accuracy 

Avg. 
Training 
Accuracy 

Model Size 
(KB) 

SVM 0.9349 0.9999 0.9999 3 500 

LR 0.9346 0.9999 0.9999 46 

KNN 0.9350 0.9999 0.9999 324 800 

RFE 0.9350 0.9999 1.0000 868 

ADB 0.9330 0.9998 1.0000 844 

GBC 0.9318 0.9996 1.0000 1 100 

XGB 0.9327 0.9998 1.0000 273 

M4GP 0.926 0.9997 0.9998 40 

 

In terms of similarities, we can see that M4GP’s performance on CNNs 1 and 2 (Tables 6.4 and 6.5, 

respectively)29 is very comparable to the pool of algorithms existent in Janke et al. (2019). In terms of 

average training accuracy, on CNN 1, M4GP was only surpassed by Support Vector Machine, Random 

Forest, and Gradient Boosting. On CNN 2, by Support Vector Machine, K-Nearest Neighbors, Random 

Forest, and XGBoost. In both contexts, the referred classification algorithms reached perfect accuracy 

(100%), but M4GP also reached very high accuracy values (99.998% on CNN 1 and 99.6% on CNN 2), 

thus we can say performances are comparable. 

As for average validation accuracy, we can see in Tables 6.4 and 6.5 that M4GP reached the best 

results. On CNN 1’s intermediate data, the only algorithms that achieved similar results were Support 

Vector Machine and Logistic Regression, with 98.19% and 99.98%, respectively, while M4GP got 100%. 

On CNN 2’s intermediate dataset M4GP won by a large margin of 99.6%. None of the other classifiers 

reached similarly high results. Finally, considering test accuracy, we can see that M4GP was the 3rd best 

algorithm in Table 6.4, after the Support Vector Machine and Logistic Regression, and it was the 2nd 

best in Table 6.5, only after the Support Vector Machine. 

In terms of differences between both studies, we can say the evolutionary algorithm, M4GP, has very 

small model sizes. The only classification algorithm that gets close to M4GP in this regard is Logistic 

Regression, which in Table 6.6 has a size of 46 kilobytes for VGG-16’s intermediate data. Still, M4GP 

has a model with 6 kilobytes less even for this intermediate dataset. As said previously, these light 

classifiers might be useful if the model size is important for a specific image classification task. Random 

Forest, for example, generated a classifier with 1.99 gigabytes of size, as seen in Table 6.4, which is, 

approximately, 44 227 times larger than its M4GP counterpart (which is 44 kilobytes, the equivalent of 

4.4 × 10−5 gigabytes). Another difference is M4GP’s performance on VGG-16’s intermediate dataset 

for CIFAR-10 (Table 6.6). This evolutionary algorithm was the worst performing in a pool of eight 

algorithms. It reached the lowest average training accuracy, average validation accuracy, and test 

accuracy. Its values are not very far from the results of Support Vector Machine, Logistic Regression, 

 
29 These intermediate datasets have the least amount of high-level image features (only 10 each) 
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K-Nearest Neighbors, Random Forest, AdaBoost, Gradient Boosting, and XGBoost, although we can see 

M4GP had weaknesses when dealing with this intermediate dataset, which had many more high-level 

image features than CNNs 1 and 2. 
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7. CONCLUSIONS 

CNNs have been the most implemented algorithm in the image classification field of AI. The thesis’ 

main objective was to analyze the proficiency of fully-connected neural networks. This was 

accomplished by assessing if the usage of a state-of-the-art evolutionary algorithm for multiclass 

classification like M4GP (Chapter 3) improved the performance of CNNs. The research question was 

formulated as: 

“To what extent does the substitution of the fully-connected layer in Convolutional Neural Networks 

for an evolutionary algorithm affect the performance of those CNN models?” 

To test this question, the experimental setup from Chapter 5 included two steps: the generation of 

intermediate datasets, and the classification of high-level image features in the intermediate datasets 

with M4GP. 

In the first stage, the intermediate datasets were generated from two well-known image datasets: 

CIFAR-10 and CIFAR-100. Each consists of 60 000 colored images, while the classes are mutually 

exclusive. Before passing the input images to the CNN architectures (two custom architectures and 

VGG-16), some image preprocessing transformations were applied to them, namely standardization. 

After training, the CNNs were cut so that the fully-connected layers are removed and only the flattened 

output of the convolutional layers was returned. By “intermediate datasets” we refer to the 

combination of the flattened output from the trained convolutional layers with the correct class label 

of the input image. 

As for the second stage, the high-level image features in the intermediate datasets were classified with 

M4GP to compare results with a vanilla CNN. The hyperparameters tested on M4GP using grid search 

included the number of generations, population size, selection method, elitism, and the probabilities 

of crossover and mutation. Accuracy was mainly used as the evaluation metric. 

This approach was implemented in Python with Jupyter Notebooks, using libraries like Keras, ANN 

Visualizer, ellyn, and scikit-learn. 

The results were reported in Chapter 6 and enabled us to compare vanilla CNNs with our methodology. 

The results on CIFAR-10’s intermediate datasets revealed none of the M4GP models was able to 

surpass the results of the fully-connected layers from vanilla CNNs in terms of test accuracy. 

Nevertheless, the decreases were almost negligible: for CNN 1, the test accuracy with M4GP decreased 

by 0.3 percentage points; for CNN 2, it decreased by 0.7 percentage points; finally, for VGG-16 it 

decreased by 1 percentage point. Therefore, all architectures had almost the same performance. The 

run-times were very lengthy on commodity hardware, adding more than 29 extra hours to the training 

time. Still, all M4GP models were very lightweight (less than 50 kilobytes each), which might be 

important if one needs light classifiers for an image classification task. 

When compared to other classification algorithms30, M4GP had some similarities and differences on 

CIFAR-10’s intermediate datasets. In fact, on CNNs 1 and 2, M4GP’s performance was very similar to 

 
30 Support Vector Machine, Logistic Regression, K-Nearest Neighbors, Random Forest, AdaBoost, Gradient 

Boosting and XGBoost 
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the pool of classifiers. Considering test accuracy, M4GP was the 3rd best algorithm on CNN 1, after the 

Support Vector Machine and Logistic Regression, and it was the 2nd best on CNN 2, only after the 

Support Vector Machine. As for differences, we can say M4GP always produced models with smaller 

sizes. Also, on VGG-16’s intermediate dataset, M4GP was the worst-performing classifier. 

As for CIFAR-100’s intermediate datasets, no results were achieved due to a strong limitation of this 

study. This will be further analyzed in the next Chapter. 

To answer our research question, we can conclude that if performance is the sole importance in an 

image classification task like the one discussed above (low number of output classes – CIFAR-10), then 

M4GP is not a good option for a separate classification training stage. On CIFAR-10, the fully-connected 

layers from the vanilla CNNs were more proficient for the image classification task than M4GP. It might 

be beneficial to add the extra stage of creating an M4GP classifier only if one has a powerful computer 

and needs a very light classifier in terms of model size. 
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8. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

As with most studies, the design of the current study was subject to limitations. The main one is related 

to an image dataset selected for the study, CIFAR-100, which was intended to have a high number of 

output classes (100 classes). This was chosen to make comparisons with CIFAR-10 (10 classes) 

concerning the methodology applied in this thesis. Nonetheless, ellyn, the Python library used to 

implement the M4GP algorithm, was unable to return any output from an M4GP grid search on CIFAR-

100’s intermediate datasets. In fact, after a very lengthy run-time of 150 hours in commodity 

hardware, no results were obtained, so it was not possible to keep the Python kernel running longer. 

This came from a combination of the low specifications of the used hardware and the possible low 

efficiency of ellyn. This also negatively affected the run-time for M4GP on CIFAR-10’s intermediate 

datasets, which summed up to more than 29 hours. 

For future studies, it is suggested to use more image datasets, especially ones with a higher number of 

output classes, to better benchmark the applied methodology. It would be relevant to make a broader 

benchmark, with more image datasets, CNN architectures, and maybe even new GP-based classifiers 

if any research paper has introduced another state-of-the-art algorithm apart from M4GP. 

It would also be important to improve the ellyn library and increase its efficiency when implementing 

M4GP in a large multiclass classification task. 
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APPENDIX 

A. VISUALIZATION OF CUSTOM CNN ARCHITECTURES 

 

Figure A.1 – CNN 1’s architecture 
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Figure A.2 – CNN 2’s architecture 
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