750 research outputs found

    A Boxology of Design Patterns for Hybrid Learning and Reasoning Systems

    Full text link
    We propose a set of compositional design patterns to describe a large variety of systems that combine statistical techniques from machine learning with symbolic techniques from knowledge representation. As in other areas of computer science (knowledge engineering, software engineering, ontology engineering, process mining and others), such design patterns help to systematize the literature, clarify which combinations of techniques serve which purposes, and encourage re-use of software components. We have validated our set of compositional design patterns against a large body of recent literature.Comment: 12 pages,55 reference

    Robustness to lighting variations: An RGB-D indoor visual odometry using line segments

    Full text link
    Abstract — Large lighting variation challenges all visual odometry methods, even with RGB-D cameras. Here we propose a line segment-based RGB-D indoor odometry algorithm robust to lighting variation. We know line segments are abundant indoors and less sensitive to lighting change than point fea-tures. However, depth data are often noisy, corrupted or even missing for line segments which are often found on object boundaries where significant depth discontinuities occur. Our algorithm samples depth data along line segments, and uses a random sample consensus approach to identify correct depth and estimate 3D line segments. We analyze 3D line segment uncertainties and estimate camera motion by minimizing the Mahalanobis distance. In experiments we compare our method with two state-of-the-art methods including a keypoint-based approach and a dense visual odometry algorithm, under both constant and varying lighting. Our method demonstrates su-perior robustness to lighting change by outperforming the competing methods on 6 out of 8 long indoor sequences under varying lighting. Meanwhile our method also achieves improved accuracy even under constant lighting when tested using public data. I

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Implications of Motion Planning: Optimality and k-survivability

    Get PDF
    We study motion planning problems, finding trajectories that connect two configurations of a system, from two different perspectives: optimality and survivability. For the problem of finding optimal trajectories, we provide a model in which the existence of optimal trajectories is guaranteed, and design an algorithm to find approximately optimal trajectories for a kinematic planar robot within this model. We also design an algorithm to build data structures to represent the configuration space, supporting optimal trajectory queries for any given pair of configurations in an obstructed environment. We are also interested in planning paths for expendable robots moving in a threat environment. Since robots are expendable, our goal is to ensure a certain number of robots reaching the goal. We consider a new motion planning problem, maximum k-survivability: given two points in a stochastic threat environment, find n paths connecting two given points while maximizing the probability that at least k paths reach the goal. Intuitively, a good solution should be diverse to avoid several paths being blocked simultaneously, and paths should be short so that robots can quickly pass through dangerous areas. Finding sets of paths with maximum k-survivability is NP-hard. We design two algorithms: an algorithm that is guaranteed to find an optimal list of paths, and a set of heuristic methods that finds paths with high k-survivability

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe

    DRAFT-What you always wanted to know but could not find about block-based environments

    Get PDF
    Block-based environments are visual programming environments, which are becoming more and more popular because of their ease of use. The ease of use comes thanks to their intuitive graphical representation and structural metaphors (jigsaw-like puzzles) to display valid combinations of language constructs to the users. Part of the current popularity of block-based environments is thanks to Scratch. As a result they are often associated with tools for children or young learners. However, it is unclear how these types of programming environments are developed and used in general. So we conducted a systematic literature review on block-based environments by studying 152 papers published between 2014 and 2020, and a non-systematic tool review of 32 block-based environments. In particular, we provide a helpful inventory of block-based editors for end-users on different topics and domains. Likewise, we focused on identifying the main components of block-based environments, how they are engineered, and how they are used. This survey should be equally helpful for language engineering researchers and language engineers alike

    Intelligence without Representation: A Historical Perspective

    Get PDF
    This paper reflects on a seminal work in the history of AI and representation: Rodney Brooks’ 1991 paper Intelligence without Representation. Brooks advocated the removal of explicit representations and engineered environments from the domain of his robotic intelligence experimentation, in favour of an evolutionary-inspired approach using layers of reactive behaviour that operated independently of each other. Brooks criticised the current progress in AI research and believed that removing complex representation from AI would help address problematic areas in modelling the mind. His belief was that we should develop artificial intelligence by being guided by evolutionary development of our own intelligence, and that his approach mirrored how our own intelligence functions. Thus the field of behaviour-based robotics emerged. This paper offers a historical analysis of Brooks’ behaviour-based robotics approach and its impact in artificial intelligence and cognitive theory at the time, as well as in modern-day approaches to AI

    Robotic Picking of Tangle-prone Materials (with Applications to Agriculture).

    Get PDF
    The picking of one or more objects from an unsorted pile continues to be non-trivial for robotic systems. This is especially so when the pile consists of individual items that tangle with one another, causing more to be picked out than desired. One of the key features of such tangling-prone materials (e.g., herbs, salads) is the presence of protrusions (e.g., leaves) extending out from the main body of items in the pile.This thesis explores the issue of picking excess mass due to entanglement such as occurs in bins composed of tangling-prone materials (TPs), especially in the context of a one-shot mass-constrained robotic bin-picking task. Specifically, it proposes a human-inspired entanglement reduction method for making the picking of TPs more predictable. The primary approach is to directly counter entanglement through pile interaction with an aim of reducing it to a level where the picked mass is predictable, instead of avoiding entanglement by picking from collision or entanglement-free points or regions. Taking this perspective, several contributions are presented that (i) improve the understanding of the phenomenon of entanglement and (ii) reduce the picking error (PE) by effectively countering entanglement in a TP pile.First, it studies the mechanics of a variety of TPs improving the understanding of the phenomenon of entanglement as observed in TP bins. It reports experiments with a real robot in which picking TPs with different protrusion lengths (PLs) results in up to a 76% increase in picked mass variance, suggesting PL be an informative feature in the design of picking strategies. Moreover, to counter the inherent entanglement in a TP pile, it proposes a new Spread-and-Pick (SnP) approach that significantly reduces entanglement, making picking more consistent. Compared to prior approaches that seek to pick from a tangle-free point in the pile, the proposed method results in a decrease in PE of up to 51% and shows good generalisation to previously unseen TPs
    • …
    corecore