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Abstract

The picking of one or more objects from an unsorted pile continues to be non-trivial
for robotic systems. This is especially so when the pile consists of individual items that
tangle with one another, causing more to be picked out than desired. One of the key
features of such tangling-prone materials (e.g., herbs, salads) is the presence of protrusions
(e.g., leaves) extending out from the main body of items in the pile.

This thesis explores the issue of picking excess mass due to entanglement such as
occurs in bins composed of tangling-prone materials (TPs), especially in the context of
a one-shot mass-constrained robotic bin-picking task. Specifically, it proposes a human-
inspired entanglement reduction method for making the picking of TPs more predictable.
The primary approach is to directly counter entanglement through pile interaction with
an aim of reducing it to a level where the picked mass is predictable, instead of avoiding
entanglement by picking from collision or entanglement-free points or regions. Taking
this perspective, several contributions are presented that (i) improve the understanding
of the phenomenon of entanglement and (ii) reduce the picking error (PE) by effectively
countering entanglement in a TP pile.

First, it studies the mechanics of a variety of TPs improving the understanding of the
phenomenon of entanglement as observed in TP bins. It reports experiments with a real
robot in which picking TPs with different protrusion lengths (PLs) results in up to a 76%
increase in picked mass variance, suggesting PL be an informative feature in the design of
picking strategies. Moreover, to counter the inherent entanglement in a TP pile, it proposes
a new Spread-and-Pick (SnP) approach that significantly reduces entanglement, making
picking more consistent. Compared to prior approaches that seek to pick from a tangle-free
point in the pile, the proposed method results in a decrease in PE of up to 51% and shows
good generalisation to previously unseen TPs.

Keywords: Robotic bin-picking of tangling-prone materials, Entanglement reduction,
Robotics in Agriculture and Forestry, Agricultural Automation, Computer Vision for
Automation.
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Chapter 1

Introduction

Today, large scale industries such as agriculture and construction are facing acute con-
straints such as low production efficiency, human errors and labour shortages [1, 2].
Robotics and autonomous systems (RAS) are a vital tool for tackling such issues. However,
industry-specific complications pose further challenges, given the scale and variety of
materials involved, inhibiting automation.

Tangling-prone materials (TPs) such as salads, herbs, and staples are a special class
of materials appearing frequently in large-scale industries. Formally, granular materials
(GMs) are defined as large conglomeration of discrete solid, macroscopic particles that
interact through contact forces and flow as one when piled together [3]. Although, tangling-
prone materials (TPs) utilised in this research can display certain granular-like properties
such as flow and compaction, all of them cannot be strictly classified as GMs. The
definition of GMs is still a subject of research and lacks clear distinction [4]. However,
this research draws some inspiration from GMs. Labour-intensive and error-prone tasks
involving TPs such as herb/salad packaging requiring controlled dexterous manipulation
can benefit from the advancements in RAS. However, TPs exhibit a complex range of
physical properties such as entanglement, making the application of RAS for manipulating
such objects exceedingly challenging.

RAS have come a long way in emulating a human’s ability to grasp, grip and manipulate
different objects. Today, robots have learned to push [5], poke [6], pivot [7], slide [8] and
throw [9], just like humans. They have transformed from non-adaptive systems working
in a fully deterministic environment to adaptive systems that can recognise, choose and
manipulate objects from a highly stochastic environment such as an arbitrary unsorted
bin/pile. However, a contact-rich cluttered environment presents many challenges such as
object occlusion, gripper-object collision and object entanglement, making manipulation
in such environments non-trivial. These issues are further aggravated for a pile composed
of TPs, owing to the highly variable handling properties.

1



(a) (b) (c)

Figure 1.1: Handling fresh salads and herbs. (a) Plant material enters the packaging centre
as a tangled mass in crates or boxes. (b) Smaller, fixed-mass portions must be extracted
and fed via conveyor belt for packaging. (c) Tangling makes the mass lifted in a simple
pick operation difficult to predict.

Consider, for example, the task of processing a TP pile—fresh horticultural produce
consisting of many protrusions in the form of leaves, extending out from the main stem, as
shown in Figure 1.1. The word protrusion from the English vocabulary is derived from
the Latin word protrudere. In general, protrudere means an extension beyond the normal
line or surface [10]. For the purpose of this work, protrusion length PL is defined as
the length of these extensions. Specifically, this research utilises different objects with
protrusions in their natural form only and does not consider other notable factors such
as deformations. The suppliers of fresh herbs and salads grow stock under glass or in
fields and then must transport them to packaging stations and pack them as per the mass
requirements of retailers. The manual packaging process involved is not only costly in
terms of labour but also suffers from wastage, labour shortage, human errors and low
production efficiency. A more scalable approach could be automation through adaptive
RAS, however, their deployment presents several challenges. Fresh horticultural produce
can be highly variable in terms of its handling properties, even within a single plant variety,
making it difficult to design robotic controllers for their manipulation. Herbs and salads in
particular, tend to present as a highly stochastic, tangled mass (see Figure 1.1(a)), making
it difficult for a robotic system to extract a uniform quantity suitable to be fed via conveyor
belt for packaging (see Figure 1.1(b) and (c)). These problems are exacerbated when the
robot must adaptively handle multiple types of herbs (e.g., parsley, dill, coriander), and
do so in a way that does not damage them (herbs and salads are highly prone to bruising,
which adversely affects both shelf-life and appearance).

This thesis analyses a TP pile, specifically in the context of a one-shot mass-constrained
picking task. Given the inherent entanglement in a TP pile, the thesis focuses on entangle-
ment reduction before attempting the pick, with an aim of improving the picking accuracy.
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Chapter 1

Collected data
is used to train
a model

(c) Entanglement
Reduction

(a) Data Collection

Select a random pick action

Pick using the pick action

Record the picked mass and
pick action pair

(b) Model

Target Mass
input

Pick action

predicts

Perform pick

Figure 1.2: Example framework for learning a one-shot mass-constrained picking skill for
a tangle-prone material pile.

The objective of this work is to enable a robot to grasp multiple objects as per user-specified
mass simultaneously as opposed to a single object and the term "entanglement" in this work
only refers to ungripped objects getting attached to gripped objects (see Figure 1.1(c)).
Firstly, real robot experiments involving a variety of TPs are conducted to identify a com-
mon informative feature that could assist in developing generalised picking strategies. Then
it proposes a human-inspired method for entanglement reduction through pile interaction,
assisted by vision-based techniques. The proposed method is evaluated experimentally
involving a real robot and TPs to demonstrate its effectiveness in improving the picking
accuracy and a final evaluation through an industrial herb and salad picking task conclude
the thesis.

1.1 Motivation

The primary motivation of this thesis is to provide a method for entanglement reduction in
a TP pile, such that the challenging task of one-shot mass-constrained picking can be made
more predictable in terms of picked mass. It has vast potential applications in many sectors,
especially in the food and farming sector, where previously fruits, vegetables, and flowers
have been left to rot because of the declining availability of farm workers [11]. Thus, RAS
capable of manipulating bins of challenging food materials may play a considerable role
in safeguarding food security. However, to acquire a one-shot mass-constrained picking
skill, such systems should be able to effectively counter the entanglement present in bins
composed of TPs such as herbs and salads.

Learning such a skill would require data for training which can be obtained by running
picking experiments with the robot. Generally, the data collection process would consist
of three main steps: (i) selecting a random pick action, (ii) picking using the chosen pick

3



action and finally, (iii) recording the picked mass and picking action pair (see Figure 1.2
(a)). The collected training data can then be used to train a model (see Figure 1.2 (b)).
However, the entanglement in a TP pile leads to a high picking mass variance even for
a fixed pick action, introducing significant uncertainty in the training data, which can
considerably impact the prediction of any meaningful observation.

Alternatively, a target mass could be picked out from a tangled pile using approaches
that avoid picking from a tangled region. However, the tangle-prone nature of TPs makes
avoiding entanglement extremely challenging. Instead, countering the entanglement
through pile interaction is more effective in reducing it to a level where the picked mass
is predictable. To this end, this thesis demonstrates that the accuracy of a one-shot mass-
constrained picking skill can be improved using an entanglement reduction step (see
Figure 1.2 (c)) without directly estimating the overall degree of entanglement in a TP pile.

1.2 Contributions

The main goal of this thesis is to address the largely unexplored issue of picking excess
mass due to entanglement, such as occurs in bins composed of TPs. To this end, a human-
inspired entanglement reduction method is proposed. As it is not practical to design a
separate picking strategy for all individual TPs, a variety of TPs are studied to identify
a common informative feature necessary for developing generalised picking strategies.
Specifically, the main contributions of this work are as follows:

1. Protrusions play a crucial role in making picking inconsistent

In experiments where a 7-degree of freedom (DoF) robot with a parallel gripper is
used to pick pre-set quantities from tangled bins of TPs, a significant increase (76%)
in the picked mass variance is observed for TPs with protrusions, suggesting protru-
sions play an important role in causing tangling and making picking inconsistent.
This work is under peer review and available on arxiv [12].

2. PL is an informative indicator of entanglement

Results from picking experiments reported in this work characterise the propensity
of a TP to tangle in terms of a measurable quantity. Experimental results suggest
that PL is an informative feature for achieving better generalisation. Additionally, it
is observed that the interplay between the ability to pack and the ability to entangle
gives rise to a non-monotonic relationship between PL and entanglement in a TP
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Chapter 1

pile. This work is under peer-review and available on arxiv [12].

3. Picking accuracy can be improved by reducing tangling in a TP pile

A Spread-and-Pick (SnP) strategy is proposed to mitigate the effect of tangling
to achieve a level of predictability in robotic picking. Compared to the approach of
avoiding tangling by seeking to pick from a collision-free point in the pile, Spread-
and-Pick (SnP) results in a decrease in picking error (PE) of up to 51%, and shows
good generalisation to previously unseen TPs. This highlights the benefit of using
SnP as a practical tool for deploying RAS for a variety of challenging picking tasks
involving TPs, such as mass-constrained herb packaging. The proposed approach
does not require estimating the overall degree of entanglement in the pile, is ap-
plicable for use with a variety of different hand mechanisms, including parallel,
multi-finger and vacuum grippers and is unaffected by colour variation (that may
occur between different plants). This work has been published in [13, 14]. A part of
this work is under peer-review and available on arxiv [12].

1.3 Outline

The thesis is organised as follows:

– Chapter 2 formally defines the problem in the context of a one-shot mass-constrained
picking skill. It further presents details of the relevant background and the materials
used in this work. Intriguing insights from human pickers are discussed, considering
the human inspiration this research builds on. The detailed mechanics of the pro-
posed untangling manoeuvre is also presented. Additionally, it extensively discusses
the TPs considered in this thesis, providing details of the challenges, considerations
and assumptions respective to each TP.

– Chapter 3 provides a detailed review of the state-of-the-art in robotic bin-picking
and relevant works which consider the largely unexplored issue of picking excess
mass due to entanglement. Firstly, the current state of RAS in agriculture is dis-
cussed, with particular emphasis on how this work fits in the agri-tech space. It
then provides a comprehensive overview of relevant works that focus on robotic
manipulation in clutter. Finally, it discusses robotic bin-picking literature specifically
in the context of bins composed of (i) large objects, (ii) non-tangling materials and,
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(iii) tangle-prone materials.

– Chapter 4 explores the phenomenon of entanglement in a TP pile. It presents robot
picking experiments involving homogeneous pile of plastic herbs, identifying the
role protrusions play in causing entanglement in a TP pile. Picking experiments
involving homogeneous bins composed of staples with different PLs are reported,
characterising the tangling propensity of a TP in terms of a measurable quantity.

– Chapter 5 proposes a human-inspired method of entanglement reduction in a TP pile.
The effectiveness of the proposed SnP method in reducing the tangling in a TP pile
and consequently improving the picking accuracy is demonstrated through robotic
picking experiments. A robotic picking experiment with staples is presented to
evaluate the usefulness of SnP in reducing the entanglement in a TP pile and making
picking consistent. Furthermore, picking experiments involving plastic and real plant
materials evaluate the efficacy of SnP through an industrial herb and salad picking
task. The experiments specifically compare fixed-point (FP) and collision-free point
i.e., Graspability index (GI)-based picking strategies with picking following SnP.

– Chapter 6 provides the conclusions to this thesis with some limitations, future work
and directions of the research proposed in the thesis.

Appendices

– Appendix A presents the list of academic publications resulting of this thesis.

– Appendix B presents the data and software supporting this thesis.
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Chapter 2

Background and Materials

This chapter presents an overview of the background and materials relevant to this thesis.
Specifically, it discusses the human inspiration behind the untangling manoeuvre proposed
in this thesis. The detailed mechanics of the proposed manoeuvre is discussed. Additionally,
it describes the nature of TPs utilised in this thesis with a particular emphasis on the
challenges, considerations and assumptions associated with each TP.

2.1 Problem Definition

This work considers the problem of picking a target mass from a pile of TPs such as
L-hooks, cup hooks, staples and herbs. In the context of mass-constrained bin-picking, the
primary objective of the robot is to pick a target mass accurately. The picking error (PE) is
expressed as

PE = |mt −mn|, (2.1)

where mt is the target mass and mn is the picked mass for trial n. The objective is to learn
to pick in a way that minimises mean and standard deviation of (2.1) for any given mt . The
desired picking skill is expressed as

δ = f (mt), (2.2)

where f (mt) maps the target mass mt ∈ R>0 = {x ∈ R | x > 0} to pick parameter δ =

(r,w)⊤ comprising of a picking location r = (rx,ry,rθ )
⊤ with gripper orientation rθ

around the vertical (z) axis and gripper aperture w, enables the selection of δ such that
(2.1) is minimised for the target mass mt . However, the highly stochastic nature of pile
composed of TPs makes such minimisation non-trivial. For example, for a fixed pile mass,
container volume and pick parameter δ as estimated for a target mass mt , a consistent mass
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(mδ
1 = mδ

n ) is expected to be picked across trials but instead the pile entanglement leads to
a high PE.

Considering the simplest case of picking using a fixed picking parameter δ for a target
mass mt , (2.1) can be reduced simply by adjusting the gripper aperture w based on the
degree of pile entanglement. However, estimating the degree of entanglement in a TP pile
is non-trivial. Additionally, to improve the consistency and predictability of picking, PE
variance arising out of pile entanglement should be reduced as far as possible. A lower
degree of pile entanglement will reduce PE variance, making picking more predictable.
To this end, this work proposes a SnP strategy to effectively reduce PE without directly
estimating the degree of entanglement in a pile for efficient mass-constrained robotic
bin-picking for bins composed of TPs.

2.2 Insights from Human Pickers

The human body is a complex machine, able to carry out various complicated manipulation
tasks with dexterity. Research in robotics frequently draws inspiration from the human
way of manipulating objects [15, 16]. Specifically, human hands are a product of millions
of years of evolution and can perform highly dexterous skills such as precision gripping
and in-hand manipulation. The ability of human hands and fingers to work in synergy
makes us capable of achieving non-trivial objectives with relative ease and high precision.
A variety of grippers have been developed over the years, emulating the design of the
human hands [17]. However, no man-made gripper can currently achieve the full range of
abilities possessed by the natural human hand. This highlights the knowledge potential

grasp region

pressure ap-
plication for
easy extrac-
tion

fingers are
used to un-
tangle and
extract

(a) (b)

Figure 2.1: Human pickers can efficiently use (a) both or (b) just one hand for untangling
and extracting a smaller mass from a bigger pile of tangled plant material. The dashed
yellow and red circles represent the right and left hand respectively.
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Chapter 2

of human hands and the importance of drawing inspiration from the ultimate machine for
building truly cognitive robotic systems.

The ability to manipulate complex shaped objects in hand enables humans to perform
many tasks using just one hand. Consider, for example, the task of untangling and
extracting a small bunch of plant materials from a tangled pile, as shown in Figure 2.1.
Humans can efficiently perform this task using both or just one hand. In the case of
dual-hand manipulation, first, one hand is used to grasp the plant material to be extracted
based on factors such as ease of reach. Then, the other hand is utilised to apply pressure
on the area surrounding the grasp region assisting in untangling and easy extraction of
the grasped bunch (see Figure 2.1(a)). Dual-arm manipulators have been explored in the
context of challenging robotic tasks such as laundry [18], elderly care [19], cooking [20]
and space exploration [21]. A dual-arm manipulator might simplify performing complex
tasks, however, it adds further complexities and requires advanced system integration,
high-level planning and reasoning and efficient control approaches compared to single
manipulators [22]. Additionally, in terms of industrial automation, it leads to a higher
financial cost, inhibiting adoption.

As humans are able to perform a variety of tasks using just one hand in many instances,
single manipulators have also received great attention from the robotics research commu-
nity. When working with one hand, humans frequently use their fingers for reorienting or
repositioning different objects (see Figure 2.2) and decluttering (see Figure 2.3). Robotics

(a)

(b)

Figure 2.2: Example in-hand manipulation scenarios depicting (a) coin flipping for
acquiring a pinch grasp and (b) key reorientation.
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(a) (b) (c) (d)

Figure 2.3: Example decluttering scenario depicting (a) front view of the cluttered scene
consisting of two wine glasses. When working with one hand, (b) after grasping one of
the glasses, (c) humans generally use fingers to push (d) the other glass out of the way.

researchers have leveraged the usability of fingers for a variety of in-hand manipulation
tasks [23–26]. For the task of picking from a bin composed of tangled plant material, hu-
mans are also able to untangle and extract a smaller bunch by using just one hand—fingers
are frequently used in synergy for untangling and extraction of the grasped bunch (see
Figure 2.1(b)).

The untangling manoeuvre proposed in this thesis takes inspiration from this aspect
of the human hand. In the next section, an overview of the mechanics of the proposed
untangling manoeuvre is presented.

2.3 The Mechanics of Spreading

Picking a target mass or number of TPs is highly challenging due to the variability induced
by the tangling. Although some level of tangling is unavoidable in the materials considered
here, it is proposed to reduce this through a SnP strategy.

Figure 2.4 illustrates the mechanics behind the proposed approach. In the first step,
the location of a collision-free point is estimated from a RGB-D image of the grasping
scene as a picking location. When picking a target object from a bin, the collision-free
point refers to the point in the scene where there is no collision between the gripper and
the other objects in the bin. This helps to reduce the risk of damage to the plant material by
minimising contact with the gripper, but usually still leads to variable picking mass due to
tangling. Therefore, in the second step, the peak entanglement point is estimated and used
to perform a spreading action such that the target mass is separated from the rest of the
pile. Section 5.2 further describes how these points are estimated through a vision-based
approach.
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Entanglement Point

Collision-free Point

z
x

(a) (b)

(c) (e)

(d)

Figure 2.4: Overview of the proposed SnP approach. (a) Top view of the pile. (b) Front
view showing the gripper. The solid white line represents the initial orientation of the
x-axis of the gripper. The dashed white line represents the line of entanglement. The black
curved arrow represents the direction of rotation. Once the collision-free and entanglement
points are identified, the gripper is rotated around the z-axis before lowering down on the
pile such that it aligns with the line of entanglement. (c) Finally, gripper plates are opened
along the line of entanglement to spread the tangled pile. A pile of staples (d) before and
(e) after the spread manoeuvre.

2.4 Considered tangling-prone materials (TPs)

This thesis mainly considers materials that are tangle-prone in nature. For comparison,
picking experiments are also conducted for a pile composed of a non-tangling material.
One of the key features of TPs is the presence of protrusions extending out from the main
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body. Picking a target mass or number of TPs is highly challenging due to the variability
induced by the entanglement. This section presents the challenges, considerations and
assumptions associated with each TP considered in this work in the context of a one-shot
mass-constrained picking skill.

2.4.1 Staples

General-purpose office staples manufactured by Rapesco Office Products (923 type staples)
are chosen as one of the TP (see Figure 2.5). These are manufactured in different sizes and
thus provide the flexibility of varying the protrusion lengths (PLs) l in a controlled manner
while ensuring homogeneity (each staple in the pile is identical).

Challenges

– Gripper-object collision: Entanglement in the pile obstructs the gripper’s movement
leading to failure scenarios (e.g., gripper failing to penetrate the pile or gripper plates
failing to close completely).

– Formation of Heaps/Craters: Repeatedly picking and dropping from a pile of
staples for data collection leads to the formation of heaps/craters.

– Grasp instability: Instability of the picked mass causes some staples to fall back in
the container before the pick operation is complete.

d

l

(a) (b)

Figure 2.5: Considered TPs: Staples (a) with constant staple width d = 12mm and variable
PL l. (b) Tangling makes the mass lifted in a simple pick operation difficult to predict.
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Considerations and assumptions

Given the challenges associated with picking from a pile of staples, some considera-
tions and assumptions are required for designing robust experimental protocols. Firstly, for
a suitable container, pile mass is selected accordingly such that the pile is uniformly dis-
tributed and is not severely tangled, allowing the gripper plates to penetrate and close/open
without severe resistance. Additionally, a sufficiently large gripper aperture w is used and
the picking trial is discarded when the picked mass mn = 0 for any trial n. A coin micro
vibrator with rated voltage 3V and rotating speed 12000RPM is employed to vibrate the
pile of staples for a fixed duration after each trial to eliminate the formation of heaps/craters,
ensuring consistent packing across trials. Finally, to counter the loss of staples during the
pick, the picked mass is only recorded when the robot has reached a fixed height above the
pile after the pick operation. Detailed experiments involving staples with varying PLs are
presented in sections 4.4 and 5.3.1.

2.4.2 Plastic Herbs

Two varieties of plastic herbs: one having many protrusions of varied lengths extending
from a central stem and the other with no protrusions (see Figure 2.6(a) and (b), respec-
tively) are also selected as a TP. Compared to staples, plastic herbs allow the proposed
method for entanglement reduction to be evaluated in a more unstructured environment.
Additionally, they are a reasonable mock-up of real herbs/salads and offer some degree of
control against natural variations in the real plant material (see section 2.4.3).

(a) (b)

Figure 2.6: Considered TPs: Plastic herbs (a) with many protrusions of varied lengths
extending from a central stem and (b) the other with no protrusions. Inset show single
strand for each type of plastic herb.
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Challenges

– Restricted PL control: Reducing/Increasing PL is a manual and error-prone process.

– Uncontrolled variation in protrusions: Reducing/Increasing the number of protru-
sions is a manual and error-prone process.

– Deformable: The deformable nature of plastic herbs makes them susceptible to
wear-and-tear.

– Low vibration sensitivity: Compared to staples, plastic herbs respond less to vi-
brations produced by a coin micro vibration motor, making it difficult to maintain
consistent packing across trials.

– Gripper-object collision: Entanglement in the pile obstructs the gripper’s move-
ment leading to failure scenarios (e.g., gripper failing to penetrate the pile or gripper
plates failing to close completely).

– Grasp instability: Instability of the picked mass causes some herbs to fall back in
the container before the pick operation is complete.

Considerations and assumptions

Firstly, it is assumed that individual strands of respective plastic plant material are
identical, inline with the product information provided by the manufacturer. To ensure a
similar physical arrangement of the plant material between trials, any material picked is
returned to the picking area, and the entire quantity is transferred to a container of fixed
dimension before being returned to the picking area for the next pick. Similar to staples, to
counter the loss of herbs during the pick, the picked mass is only recorded when the robot
has reached a fixed height above the pile after the pick operation. Deformability of the
chosen plastic material introduces several other challenges. Although interesting, it falls
out of the scope of this thesis. Picking experiments involving plastic herbs are presented in
sections 4.3 and 5.3.4.
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2.4.3 Real Herbs/Salads

Finally, to evaluate the real-world effectiveness of the proposed method of entanglement
reduction, one commonly available herb (see Figure 2.7(a)) and a salad variety (see Fig-
ure 2.7(b)) are chosen. Both of the selected real plant material exhibit entanglement and
consists of many protrusions in the form of leaves extending out from the main stem.

Challenges

– Natural variations: Spurious effects arising from natural variations, or changes in
their physical properties (e.g., due to plant material drying out, or becoming damaged
over successive picks) contributes to the stochasticity of a herb/salad environment.
Additionally, the presence of moisture in the herb/salad pile often leads to strands
sticking to the gripper plates.

– Non-Homogeneity: Uncontrolled individual variation in mass, number of protru-
sions and PL inhibits designing controlled picking experiments. Reducing/Increasing
the PL and number of protrusions is a manual and error-prone process.

– Low vibration sensitivity: Similar to plastic herbs, real herbs/salads respond less to
vibrations produced by a coin micro vibration motor, making it difficult to maintain
consistent packing across trials.

– Gripper-object collision: Entanglement in the pile obstructs the gripper’s movement
leading to failure scenarios (e.g., gripper failing to penetrate the pile or gripper plates
failing to close completely).

(a) (b)

Figure 2.7: Considered TPs: (a) Flat-leaf parsley as a herb and (b) wild rocket as a salad
variety are chosen. Inset show single strand for each type of real plant material.

15



– Grasp instability: Instability of the picked mass causes some real plant material to
fall back in the container before the pick operation is completed.

Considerations and assumptions

When using real plant material, for each set of control factors, a fresh batch of herbs or
salad leaves is used to try to minimise effects occurring as a result of natural variations. To
ensure a similar physical arrangement of the plant material between trials, any material
picked is returned to the picking area, and the entire quantity is transferred to a container
of fixed dimension before being returned to the picking area for the next pick. Similar to
plastic herbs, to counter the loss of plant material during the pick, the picked mass is only
recorded when the robot has reached a fixed height above the pile after the pick operation.
An industrial herb and salad picking task involving real plant materials is presented in
section 5.3.4.
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Chapter 3

Literature Review

This chapter presents an overview of robotic manipulation in clutter, and specifically looks
at prior work that addresses the issue of object entanglement for bins composed of TPs. It
consists of six parts. (i) First, it provides a general overview of the application of RAS in
agriculture to help position the utility of the current research. (ii) Second is a review of
the issue of robotic manipulation in clutter, focusing on how it has been addressed in prior
work and how it affects object manipulation. (iii) Next is a review of work that specifically
consider the robotic bin-picking problem in the context of key issues. (iv) Approaches to
robotic bin-picking involving bins composed of non-tangle prone materials are discussed
next to provide insights into the primary challenges and how these have been addressed.
(v) A review of prior work that consider bins composed of TPs is discussed next to provide
details regarding the nature of challenges that have been considered. (vi) Finally, GM
studies from the natural sciences community are discussed to provide more insights into
the directions GMs have been explored in the past.

3.1 Robotics and autonomous systems (RAS) in Agricul-
ture

Robotics and autonomous systems (RAS) have transformed many industries in a short span.
Similar to other large-scale industries such as manufacturing, the need for collaborative

Land Preparation
Sowing and Planting
Crop Maintenance
Harvesting

Production
After harvesting,
fresh produce is

appropriately stored
before being packed

Storage
Produce is packaged

as per different
requirements of the

retailers

Packaging
Appropriate

transportation is
arranged to minimise

food wastage

Transport
Produce reaches the
retailer for trading
and finally reaches

the consumers

Trading

Figure 3.1: Primary components of the ASC.
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and robust RAS in agriculture is seen more evidently than ever before. World hunger is
becoming a global catastrophe—between 720 and 811 million people globally experienced
hunger in 2020 [27]. Reduction in available labour and arable land, with an increasing
population, is threatening global food security [28–31]. If not a panacea, RAS deployed
to assist in various activities in the agri-food supply chain (ASC) are seen as a potential
solution to some problems plaguing the agriculture sector and are expected to contribute
more than $50 billion to global gross domestic product [32].

In general, ASC can be categorised as supply chains for (i) processed food products
such as breakfast cereals, bread, and canned products and (ii) fresh agricultural produce
such as herbs, salads, and fruits. The latter, the focus of this research, suffers from
additional issues such as short shelf life, making a timely progression of the fresh produce
through the supply chain critical for minimising food wastage [33, 34]. Figure 3.1 presents
the main components of the ASC for fresh agricultural produces [35]. Different RAS
tailored to specific components of the ASC have been explored in the past. However, all
such systems are designed to cater to the production stage, and only 35.48% are equipped
with a robotic arm [36]. The application of RAS still remains effectively unexplored for
other manual intensive components of the ASC such as packaging where a robotic arm
with manipulation skills is generally necessary.

Today, commercially available RAS are able to carry out various land preparation
activities such as fertilising [37, 38], seeding and ploughing [39]. RAS have also been
designed for sowing and planting tasks [40–42]. Crop maintenance activities such as
weeding [43–49], pruning [50, 51] and disease identification [52, 53] along with the
laborious task of harvesting, have also received much attention from the robotics research
community. Specifically, RAS have demonstrated reasonable success in harvesting non-
tangling and large fresh produce such as strawberries [54–56], green asparagus [57],
lettuce [58], aubergines [59], apple [60], sweet pepper [61, 62] and coconut [63]. However,
in general, such fresh produces are identified and harvested one at a time and are not
encountered as granular materials (GMs) while being harvested. In contrast, for the task
of packaging, the harvested fresh produce is presented as a GM bin—after harvesting,
the fresh produce is generally collected in trailer bins and transported to the packaging
stations as a large mass. Picking from a container of fresh produce introduces non-trivial
challenges (e.g., object occlusion, gripper-object collision) for a robot. Furthermore, if the
harvested produce is tangle-prone in nature, pile entanglement leads to the issue of picking
excess mass, making packaging as per different requirements of retailers challenging.
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(a) (b)

Figure 3.2: Example manipulation scenarios in clutter. Extracting an object from a
(a) refrigerator shelf (planar manipulation) and (b) a drawer (top-down manipulation).

3.2 Robotic Manipulation in Clutter

The challenge of efficient grasping remains at the forefront of robotics research even after
many decades of interest [64]. Today, robots can grasp and manipulate many isolated and
previously unseen objects [65–71]. However, challenges arise when the environment is
cluttered—when the target object is close to or occluded by other objects [72, 73]. Based
on the task majority of robotic manipulation in clutter strategies approach the manipulation
surface in two primary ways: (i) planar and (ii) top-down manipulation [74]. Consider, for
example, the task of extracting an object from a refrigerator shelf as shown in Figure 3.2(a).
In this case, humans generally prefer approaching the shelf from a plane parallel to it.
However, for extracting cutlery from a drawer, approaching from a plane orthogonal to
the drawer is the most preferred trajectory (see Figure 3.2(b)). The latter, the focus of this
thesis, is frequently termed the bin-picking problem and has a long history in the robotic
automation literature.

Planar manipulation in clutter has also received significant attention from the robotics
community and offers essential inspirations for a bin-picking task considered in this thesis.
Early works considering planar manipulation in clutter focus on generating kinematically
feasible candidate grasps that avoid collision with objects in the clutter [75, 76]. However,
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in real world, a collision-free path to reach and grasp the target object is frequently not
available. In such cases, a prehensile action (e.g., grasping) is not enough, and the robot
should be able to execute a non-prehensile action (e.g., pushing) for manipulating the
environment without violating the safety constraints [77]. Omrčen et al. [78] explore the
utility of pushing actions in supporting robotic grasping. Through exploratory movements
on objects, the robot first gains manipulation knowledge related to the act of pushing.
The acquired manipulation knowledge is then used to support grasping when the target
object cannot be grasped without explicit rearrangement. Dogar and Srinivasa [79] utilise a
library of actions inspired by human strategies (e.g., push, pull, slide, sweep) for proposing
a push-grasping framework for manipulation in clutter. The authors demonstrate that using
more natural human-inspired strategies instead of traditional rigid robot grasps proves
advantageous for robotic operations in highly stochastic scenarios. Lindzey et al. [80]
propose a push-planning method for rearranging cluttered objects using multiple robots.
Dogar et al. [81] propose a computationally fast physics-based approach for grasping in a
cluttered environment. The authors leverage controlled pushing for clearing the path to
the target object in a constrained environment. Recently, Zeng et al. [82] propose learning
synergies between pushing and grasping to improve grasping success rates. Using a set
of primitive non-prehensile actions in a sequence has also been explored for achieving
long-term objectives [83, 84].

Because of the nature of TPs considered in this thesis, a collision-free grasping point
is not available in many instances. The SnP method proposed in this thesis counters
entanglement in a bin composed of TPs through pile interaction, taking inspiration from
the use of human-inspired non-prehensile actions in planar manipulation methods for
resolving clutter.

(a) (b) (c) (d)

Figure 3.3: (a) Traditional bin composed of non-granular (large) objects. (b) A granular,
non-tangling material (rice grains). Examples of TPs include (c) herbs (wild rocket) and
(d) staples.
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3.3 Traditional Robotic Bin Picking

Traditionally, bins composed of large, generally household objects (see Figure 3.3(a)) have
received much more attention than tangling-prone materials (TPs). With over ten decades
of research, learning to pick from a bin has led to the rise of various intriguing research
themes, such as scene analysis, object recognition, pose estimation, and grasp planning
[85]. A large number of methods tailored to specific themes have been developed, which,
when integrated, contribute to the central problem of robotic bin-picking. The bin-picking
process generally starts with acquiring the scene information in some form (e.g., vision,
tactile). Next, the target object is identified by applying object recognition methods to the
acquired scene data. Pose estimation methods are then used to estimate the orientation of
the target object, and finally, an optimal grasp strategy is approximated such that the target
object can be grasped and extracted without the robot colliding with other objects inside
or outside the bin. However, when the bin is cluttered, contact-rich interactions further
aggravate the complexity of the bin picking task. Additionally, when the bin is composed
of tangle-prone materials, the focus of this thesis, the issue of object entanglement, hinders
the successful extraction of the target object(s).

3.3.1 Gripper-Object Collision

The inability of robots to manipulate objects in a bin of mixed parts because of challenges
such as gripper-object collision has long been considered one of the main obstacles to the
broader application of robots in industry [86].

Approximately 39 years ago, Ikeuchi et al. [87] proposed a hand-eye robotic bin-
picking system capable of picking objects at the top of a bin composed of homogeneous
and fully deterministic (known shape and surface material) doughnut-shaped objects using
a photometric stereo system, LED sensors and a PUMA 600 arm. They first segmented a
scene into isolated regions using a needle map (i.e., surface normals) obtained from the
photometric stereo system. Target areas are then acquired from these isolated regions
using an object-specific heuristics-based decision-making module. Finally, a 3D grasping
point free of collision is estimated using a proximity sensor and the position of the target
region in the image. For extending the bin-picking methods to different objects, Schraft
and Ledermann [88] propose a collision avoidance method using an offline generated
database consisting of the relevant object information. However, this does not guarantee a
collision-free extraction, considering the objects not detected in the scene. Buchholz et al.
[89] present a bin-picking system for picking from a scrambled bin consisting of objects
(common industrial parts such as piston rods, plug gauge and joist hanger) with known
geometry. They use an expensive commercial laser scanner to obtain the scene information
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in 3D as a point cloud. Regions in the scene point cloud not in the gripper model are then
identified as collision-free regions. Experimental results demonstrate the usefulness of
the proposed approach, however, objects with complex geometries (e.g., herbs) will prove
challenging for such an approach.

Spenrath et al. [90] attempt to reduce the dependence of bin-picking methods on object
geometry by simplifying the use of computer-aided design (CAD) models of the objects.
Specifically, for improving computation time and generalising to different gripper types,
authors propose a manual simplification process for obtaining simplified CAD gripper
models. A gripper point calculation module generates and rates several potential gripping
solutions using the scene point cloud and the simplified CAD gripper model of the used
gripper. However, the method is challenging to configure and the exhaustive search through
possible gripping solutions can be time and memory intensive. This consequently led to
the proposal of a tree-based heuristic search instead of the exhaustive search [91]. For a
truly automated bin-picking method, it is necessary to deal with unknown objects quickly
and efficiently without depending on CAD models in any way. Domae et al. [92] propose
Graspability index (GI), a vision-based measure for evaluating candidate grasping poses,
which has proved useful in industrial pick and place settings. It uses a single depth map
of the scene to estimate the optimal gripper position and orientation for picking an object
without any collision. It can also be applied for use with different hand mechanisms,
including parallel, multi-finger and vacuum grippers. A vision-based algorithm is proposed
in [93] to resolve gripper-object collision by identifying and picking the topmost object
in a pile composed of surgical instruments. Schwarz and Behnke [94] propose a deep
learning approach for extracting large individual objects from a cluttered bin.

3.3.2 Object Entanglement

The issue of object entanglement has only received limited attention for bins composed
of large objects such as industrial parts. Kaipa et al. [95] use CAD models for estimating
a singulation plan for tangle-free extraction of individual objects from a heterogeneous
tangle-prone pile. Singulation plans encountering object entanglement are discarded. A
human-robot collaboration approach is proposed in [96] for resolving grasping errors due to
issues such as occlusion and random object postures, including entanglement. Moosmann
et al. [97] propose a method for increasing the robustness of bin picking by avoiding grasps
of entangled objects. Although the methods here consider tangling directly, their objective
is to extract a single individual object by avoiding entangled scenarios. Matsumura et al.
[98] explicitly consider entanglement when seeking ways to extract individual items from
a tangled pile. In their approach, a convolution neural network (CNN) is trained to detect
when the picking of individual items is likely to be unsuccessful due to entanglement.
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Their approach can be considered complementary to that considered here: while they
avoid picking objects where there is tangling, here it is acknowledged that entanglement is
unavoidable for the plant material considered. The aim instead is to reduce entanglement
to a level where the picked mass is predictable. Specifically, this work considers extracting
a uniform quantity of TPs consistently, especially when tangling cannot be avoided.

3.4 Robotic Bin Picking for non-tangling GMs

Non-tangling GMs (see Figure 3.3(b)) are ubiquitous in our daily lives. Humans frequently
and, in many instances, involuntarily use the knowledge of the mechanics of the GMs to
carry out complicated tasks such as pouring and scooping.

GMs have been studied by the robotics community in various scenarios (e.g., loco-
motion, manipulation, gripper design). Locomotion has received great interest compared
to manipulation [99–103]. In terms of robotic manipulation, non-tangling GMs have
been studied in the context of (i) scooping [104–106] and (ii) pouring [107–109]. Kanai
et al. [104] propose a disturbance observer module for autonomous scooping of rock
piles. Before and after pile insertion reaction forces are compared, enabling the robotic
system to adapt to various loads. Takei et al. [105] present a path planning algorithm for
optimising scoop and load operation for a mining wheel loader. Cakmak and Thomaz
[107] propose a human-robot interaction-based method for quickly programming new
robot skills such as adding salt. Yamaguchi and Atkeson [108] propose a model-based
reinforcement learning approach for pouring liquids. Schenck et al. [109] explore the
manipulation of a GM, specifically pinto beans, with the aim of extracting a small quantity
from a bigger pile and dropping it into a container. Kuriyama et al. [110] present a soft
pneumatic gripper for packaging non-tangling food materials such as kernel corn. The
authors report that although the amount (mass) of material picked using the gripper can be
controlled by varying the insertion depth, the variation among trials is significant—due
to the bending of the soft gripper material. The specific tasks considered by such studies
involve non-tangling GMs. However, the mechanics of the GMs is not the focus, and the
physics responsible for their complex behaviour remain unexplored.

Understanding the mechanics is critical for enabling tangible reasoning of how different
GMs may behave in stochastic scenarios while dynamically interacting with robots. Several
studies focus on understanding and leveraging the mechanics of GMs for automating
complex tasks involving robotic manipulation. Clarke et al. [106] study five different
non-tangling GMs (pellets, pasta, rice, coffee and soil) through shaking and pouring
robotic experiments. The authors demonstrate that when manipulated GMs produce audio-
frequency mechanical vibrations in air and structures. Additionally, experimental results
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identify audio as an informative sensor modality for accurately estimating flow and amount.
The mechanics of GMs have also been leveraged to design efficient robotic manipulators.
Brown et al. [111] note that when pressed against an object GMs tend to flow around it,
conforming to its shape. The authors utilise this property of a GM for enabling robotic
grasping of complex objects without the need of sensory feedback. Cianchetti et al. [112]
propose a soft and stiffness-controllable modular surgical manipulator that make use of
the jamming properties of GMs. Thompson-Bean et al. [113] utilise granular jamming
for developing a soft robotic exoskeleton. Along the same lines, this thesis investigates
the tangling properties of TPs. However, because of the intricacies of granular mechanics,
the robotics research community has preferred utilising simulation for modelling the
interaction between GMs and a robot.

Traditionally, researchers in physics have relied on discreet element method (DEM)
for simulating a variety of GMs [114–116]. These simulations allow observing hard-
to-measure physical parameters (e.g., frictional coefficient of a rice grain) from their
macroscopic behaviour as a GM. Robotics community has also leveraged DEM to study
GMs for a variety of robotic applications [101, 102, 117]. However, simulating a GM using
DEM is a manual and complicated process [118]. Matl et al. [119] propose a likelihood-
free bayesian inference method for resolving this bottleneck for robotic tasks. Real-world
depth images of GM piles and rings are first used to infer physical parameters (e.g., sliding
friction, rolling friction). The inferred parameters are then used to simulate the GM. Once
automatically calibrated, the proposed physics simulator is utilised to predict the behaviour
of a GM while performing complex robotic tasks such as pouring a GM in a bowl.

However, majority of studies in the context of robotic manipulation of GMs consider
non-tangling GMs. Currently, only a limited number of studies consider robotic manipula-
tion of TPs (see Figure 3.3(c) and (d)) explicitly. Specifically, robotic picking of TPs under
external constraints such as mass or number of items as considered in this thesis remains
largely unexplored.

3.5 Robotic Bin Picking for tangling-prone materials

In terms of objective, perhaps the closest work to the present study is that of Takahashi
et al. [120] where a pre-grasping motion is proposed for countering issues such as adhesion
and object entanglement in bins composed of food materials such as shredded cabbage and
bean sprouts. The pre-grasping motion consists of a sequence of actions where the food
is picked up and dropped before repeating the pick from the same point. The proposed
method to grasp a user-specified target weight of entangled foods such as shredded cabbage
and bean sprouts consists of the following main steps: (i) A mass estimation neural network
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is trained to predict the grasped mass for a cropped-patch of the RGB-D image and a
specific insertion depth. (ii) A grasp point selection process is used to select the best
grasping point from a set of candidate grasping points such that the mass as estimated by
the mass estimation network is close to or slightly more than the target mass. (iii) Once a
suitable point has been chosen, the pre-grasping step is used to reduce the entanglement
in the pile such that the amount picked can be easily adjusted to match the target mass
in the post-grasping step next. However, the work presented here specifically focuses on
entanglement reduction through a separation strategy without having to repeat the pick.

3.6 Insights from Natural Sciences

The diverse variety of object interactions have intrigued researchers in physics for a long
time. Specifically, knot formation has been extensively studied. Molecular biologists
study knotting and unknotting of living cells and virus DNA molecules [121], [122], [123].
Knot theory is also a well-established topic of research in the area of mathematics [124],
[125]. Spontaneous knotting and unknotting of a GM such as ball chains have also been
studied [126]. Dorian et al. [127] report a simple experiment on knot formation, where a
string was placed in a box and rotated at constant angular velocity. It was found that string
interpenetrated itself and complex knots were formed almost immediately. No knots were
formed for string length < 0.46m, but probability of knot formation increased sharply
for string length between 0.46m and 1.5m, and saturated at 50% when string length was
increased from 1.5m to 6m.

GMs have also been studied in the context of entanglement and pile stability. Barabási
et al. [128] propose stability criteria for calculating the maximum angle of stability for
homogeneous GMs composed of 3D spherical particles and 2D circular discs. Bocquet
et al. [129] explore the relationship between cohesion forces and maximum avalanche
angle for rough spherical beads. Penetration studies involving soil and sand also provide
valuable insights into the physical dynamics of GMs [130]. However, most studies involve
approximately spherical (convex) GMs, and the shape of the particles has not received
much attention [131].

3.7 Summary

The prior works relevant to the issues addressed in this thesis were presented in this chapter.
From the discussion of the ASC and its components, it is evident that some components
have received only limited attention from the robotics research community. The discussion
further highlights the need to develop efficient RAS targeting other critical components
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such as packaging. The majority of works considering robotic manipulation in clutter can
be classified as: (i) planar and (ii) top-down i.e., bin-picking manipulation. A detailed
overview of prior works countering the challenges arising from planar manipulation in
clutter demonstrates the benefits of human-inspired non-prehensile motions (e.g., push,
pull, slide). Prior works that propose methods for dealing with clutter in a traditional
bin-picking scenario are also discussed, specifically in the context of bins composed of
large objects, non-tangling GMs and TPs, respectively. It is observed that the majority of
traditional bin-picking studies consider large objects (e.g., screwdriver, cereal box, pen,
scissor). Several studies also consider bins composed of non-tangling GMs (e.g., coffee
beans, grains, soil). However, the mechanics of GMs important for developing more
efficient picking strategies, is not the focus. Only a small number of studies consider
robotic bin-picking of TPs (e.g., shredded cabbage, bean sprouts) and the issue of picking
excess mass due to entanglement such as occurs in TPs, has not received much attention.
This work is the first to (i) characterise the propensity of a TP to tangle in terms of a
measurable quantity, and (ii) present strategies to mitigate the effect of tangling to achieve
a level of predictability in robotic bin-picking of TPs such as herbs and salads.
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Entanglement in a TP pile

This chapter presents two experimental studies with an aim to (i) examines the role protru-
sions play in causing entanglement in a TP pile and (ii) identify a common informative
feature of TPs, necessary for developing generalised picking strategies. One of the dis-
tinctive features of such TPs is the presence of protrusions extending out from the main
body (see figs. 2.5 to 2.7). The first experiment studies the role protrusions play in causing
entanglement in a TP pile. The second experiment examines the propensity of a TP to
tangle in terms of a measurable quantity, i.e., the Protrusion length (PL).

4.1 Introduction

Bins composed of TPs are highly stochastic environments—entanglement in the pile leads
to excess picked mass making the mass lifted in a simple pick operation difficult to predict.

A picking model (see Figure 1.2 (b)) that can predict a pick action for a target mass
considering the inherent entanglement in a TP pile requires informative and discrimi-
nating features providing information pertaining to tangling propensity. However, the
phenomenon of entanglement in a TP pile remains largely unconsidered in the context of
robotic picking. To this end, two experimental studies, where a 7-DoF robot is used to pick
from bins composed of different TPs are presented to (i) examine the role protrusions play
in causing entanglement in a TP pile and (ii) characterise the propensity of a GM to tangle
in terms of a measurable feature—PL, common among a variety of TPs.

In the first experiment, separate homogeneous bins of plastic herbs (i) with many
protrusions (see Figure 2.6(a)) and (ii) without protrusions (see Figure 2.6(b)) are used.
Since plastic herbs offer restricted PL control (see section 2.4.2), the second experiment
utilises staples with varying PLs as separate homogeneous TP bins. Each experiment offers
insights into the role protrusions play in causing entanglement in a TP pile and highlights
the benefit of PL as an informative feature.
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Depth Camera

Picking Area

Weighing Device

Parallel Gripper

Figure 4.1: Overview of the experimental set up. Red, green and blue arrows represent x-,
y- and z-axes, respectively. The coordinate frame attached to the robot is used as the frame
of reference.

4.2 Setup

The experimental set up is a mock-up of the packaging workstation of a large fresh herbs
and salads producer equipped with a robotic manipulator (see Figure 4.1). As the robotic
platform, a 7-degree of freedom (DoF) Rethink Robotics Sawyer is used, with a maximum
reach of ±1260mm and precision of 0.1mm. For simplicity and lower cycle-time, 3-DoF
of the robot are used for picking movements. The robot is equipped with a parallel gripper
from Actobotics (product code: 637092) as its end-effector. The latter has maximum
opening aperture of w = 71.12mm and is controlled using a Hitec HS-422 Servo Motor
with operating voltage range 4.8V-6.0V. As the vision module, the platform uses an Intel
realsense d435i depth camera mounted on a stand at a fixed position and orientation with
respect to the robot. For simplicity of image processing, the camera position is chosen
such that its field of view exactly covers the picking area and it records depth data at a
frequency of 15Hz. The mass picked is recorded using a parallel beam type load cell with a
combined error of ±0.05% and maximum weighing capacity of 10kg. A HX711 amplifier
combined with an Arduino microcontroller is used for data acquisition from the load cell.
Using this experimental set up, a series of robotic picking operations are conducted.
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4.3 Protrusions and Entanglement

The first experiment considers a simple picking task to compare the picking mass variance
for TPs with and without protrusions. Two varieties of plastic herbs are chosen as the
TP for this experiment: one with no protrusions and the other having many protrusions
of varied lengths extending from a central stem. This experiment tests the following
hypothesis.

4.3.1 Hypothesis

H1 The presence of protrusions leads to entanglement.

Homogeneous bins of plastic herbs are chosen as the TP for this experiment. As
discussed in section 2.4.2 each herb strand is identical with (i) fixed number of protrusions,
(ii) fixed protrusion length and (iii) fixed volume, shape and density.

4.3.2 Procedure

During the experiment, a fixed mass of plastic herbs are placed in a pile in an open picking
area of dimension 30cm×25cm. Each picking operation consists of the robot reaching
into the pile as per the pick parameter δ , closing its gripper, and lifting what is grasped
free of the surface. In detail, in each pick, the gripper orientation is initialised to rθ = 90°,
target picking location (rx, ry) is fixed as the center of the pile and the insertion depth rz is
set such that the tips of the gripper just touch the surface of the picking area. The robot
moves its end-effector to a fixed position above the picking area, sets the gripper aperture
w to the chosen width and lowers it into the pile. There, it closes the gripper plates, moves
its end-effector vertically upwards to a fixed position, and drops what has been picked
into the weighing device to record the mass. To ensure a similar physical arrangement
of the plant material between trials, any material picked is returned, the entire quantity
is manually transferred to a 18cm×13.5cm×7cm cuboid container and then replaced
onto the picking area for the next pick. For each type of plant material used, picking is
conducted 30 times for gripper aperture w ∈ {20,30,40,50,60}mm and pile mass p = 30g.
The pile mass p is chosen such that the container is fully filled without any compaction.

4.3.3 Results

Figure 4.2 reports the picked mass as observed for the TP with and without protrusions.
As can be seen, average picked mass for the TP with protrusions is higher for all w as
compared to TP without protrusions. This is attributed to the fact the herbs with protrusions
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Figure 4.2: Results from fixed-point (FP) picking experiments involving plastic herbs
with pile mass p = 30g, reporting picked mass across 30 trials. Herbs with protrusion and
without protrusion weigh 1.08g and 0.68g respectively.

are heavier compared to the herbs without protrusions. Additionally, the picked mass
variance for the TP with protrusions is considerably higher, than for those without for all w,
confirming H1 as the presence of protrusion leads to higher pile entanglement introducing
a higher picking uncertainty.

4.4 Protrusion length (PL) and Entanglement

Results from the first experiment confirms that protrusions play a crucial role in causing
entanglement in a TP pile. To further examine the relationship between protrusions and
entanglement, the next experiment characterises the propensity of a TP to tangle in terms
of PL. This experiment tests the following hypothesis.

4.4.1 Hypothesis

H2 PL is an informative indicator of entanglement.

In this experiment, more precise control of the factors with a possible effect on tangling
is required, so staples with constant staple width d = 12mm and variable PL l (see
Figure 2.5 (a)) are chosen as the TP for this experiment: each staple is identical with
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(a)

(b)

(c)

Figure 4.3: Staples are placed in (a) a cuboid container mounted on (b) a weighing device.
(c) A micro vibrator is used to vibrate the pile before each pick.

Table 4.1: picked mass (mean±s.d.) of staples (over 60 trials) for protrusion length
l ∈ {6,8,10,12}mm, staple width d = 12mm, gripper aperture w = 40mm and pile mass
p = 60g.

l (mm) Picked Mass (g)
6 1.786±1.013
8 2.466±1.370

10 3.184±1.729
12 2.986±1.333

(i) only two protrusions, (ii) fixed protrusion length and (iii) fixed volume, shape and
density. The experimental procedure is as follows.

4.4.2 Procedure

A similar procedure to that outlined in section 4.3.2 is followed with two key differences:
instead of an open area, picking is performed directly from a cuboid container of dimension
12.8cm×10.6cm×2cm mounted on the weighing device, and the TP is vibrated for 10s
using a micro vibrator with rated voltage 3V and rotating speed 12000RPM prior to each
pick (see Figure 4.3). This eliminates the manual transfer of material in and out of the
container between picks and helps ensure consistent packing of the material across picks.
Similar to plastic herbs, the gripper orientation is initialised to rθ = 90°, target picking
location (rx, ry) is fixed as the center of the pile and the insertion depth rz is set such
that the tips of the gripper just touch the surface of the cuboid container. The procedure
is repeated 60 times for sets of staples with PLs l ∈ {6,8,10,12}mm, gripper aperture
w = 40mm and pile mass p = 60g.
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4.4.3 Results

Table 4.1 reports the picked mass as observed for staples with different PLs. The result
highlights an informative relationship between PL and the degree of entanglement in a TP
pile, confirming H2. It can be seen that the picked mass variance increases initially as PL
increases. However, the increasing trend reverses after an intermediate PL l = 10mm. A
similar trend can also be seen with the average picked mass.

4.5 Discussion

The results in sections 4.3.3 and 4.4.3 demonstrate that protrusions play a clear role
in causing tangling, and consequently decreasing picking consistency. Specifically, a
significant increase (76 %) in picked mass variance is observed in section 4.3.3 for TPs
with protrusions as compared to those without protrusions.

Results from the second experiment with TPs with varied PLs further suggest that PL
is an informative feature, especially in a mass-constrained robot picking task involving
a variety of TPs with protrusions. In case of no entanglement (see Figure 4.4 (a), (b)
and (c)), only the target object is expected to be picked despite the decreasing PL. In
case of entanglement (see Figure 4.4 (d), (e) and (f)), contact surface decreases as PL
decreases and undesired objects are more likely to fall off—suggesting a monotonic
relationship between overall degree of entanglement and PL l. However, surprisingly, in
section 4.4.3, a non-monotonic trend is observed. Both picked mass and variance increase
initially with the increasing PL. The increase in picked mass variance is attributed to

decreasing PL

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Without ((a), (b) and (c)) and with entanglement ((d), (e) and (f)) scenarios.
The red dot represents the target object.
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increasing entanglement ability with increasing PL. However, picking is observed to be
more consistent for PL l > 10mm—picked mass variance decreases, suggesting a decrease
in the overall entanglement in the pile. As reported in [132], this behaviour is attributed to
the interplay between the ability to pack and the ability to entangle in a TP pile.

4.6 Summary

This chapter has explored the role protrusions play in causing entanglement in a TP
pile. Protrusions play an important role in making robotic bin-picking inconsistent. The
presence of protrusions on an object improves its ability to entangle because of an increase
in the contact surface area. This is particularly relevant and problematic when the objects
in the bin are presented as a TP because of other relevant factors such as the ability to pack.
A significant increase (76%) in picking mass variance is observed for plastic herbs with
protrusions as compared to those without protrusions. The results suggest that protrusions
play a crucial role in causing entanglement in a TP pile, making picking inconsistent.

Furthermore, picking experiments with separate homogeneous bins of staples of varying
PLs are conducted. The results demonstrate that PL is an informative feature useful in
designing effective picking strategies that can counter entanglement for a wide range of
TPs. Interestingly, a non-monotonic relationship is observed between the picked mass
variance and PL. This highlights the importance of the ability to pack and the ability to
entangle in developing generalised picking strategies.

The presence of protrusions facilitates entanglement in a TP pile. TPs with protrusions
require special measures for overcoming the inherent resistance to separation resulting
from this entanglement. The next chapter addresses this issue through a human-inspired
non-prehensile (spread) manoeuvre designed to reduce entanglement in a TP pile by
separating the grasped bunch from the rest of the pile.
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Robotic Picking of TPs

This chapter presents the proposed method of entanglement reduction i.e., Spread-and-Pick
(SnP) in the context of a one-shot mass-constrained bin-picking task. First, the core
elements of the SnP method are presented in detail. A picking experiment with staples
is presented next to evaluate the usefulness of SnP in reducing the entanglement in a TP
pile and making picking consistent. Furthermore, picking experiments involving plastic
and real plant materials evaluate the efficacy of SnP through an industrial herb and salad
picking task. The experiments specifically compare fixed-point (FP) and collision-free
point i.e., GI-based picking strategies with picking following SnP.

This work has been published in [13, 14].

5.1 Introduction

As noted in chapters 2 and 4, TPs such as herbs and salads are generally difficult to
separate through traditional methods (e.g., shaking) and require special measures such as
pile interaction for de-tangling. This section outlines a human-inspired manoeuvre for
interacting with a TP pile in a way that reduces the inherent entanglement in the pile.

In general, the robotic picking of a target mass from a TP pile can be decomposed into
four main steps: (i) First, the picking point is identified. (ii) Gripper aperture is then set
accordingly based on the target mass. (iii) Next, the robot moves to the picking point in
the pile and closes the gripper plates. (iv) Finally, it moves above the pile lifting what has
been grasped. However, entanglement in the pile causes extra mass to be picked. One
approach of avoiding the extra picked mass could be to completely drop what has been
picked and then attempt the pick again. When picked the first time, the grasped bunch
is separated from the rest of the pile and the second pick after the drop is expected to
encounter a lesser degree of entanglement. However, an uncontrolled drop might introduce
more uncertainty with objects falling in different unexpected areas of the pile. Additionally,
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repeated picks increase the cycle time adversely affecting the packaging efficiency in
an industrial environment. Another viable method could be to avoid picking from an
entangled point. However, in the real world, entanglement-free scenarios are generally
scarce, especially for the bins composed of TPs considered in this thesis.

An alternative would be to leverage non-prehensile actions such as spreading to interact
with the pile. As discussed in section 2.3, when in the pile, instead of closing the gripper
plates to grasp, the gripper plates could be opened first to spread such that the target
mass in between the gripper plates can be effectively separated from the rest of the pile.
Once separated, the gripper plates can then be closed to grasp the entanglement-free target
mass. However, picking or spreading randomly is damaging for glsplTP, especially for
deformable TPs (e.g., herbs and salads) and is not an effective entanglement reduction
strategy. Instead, the approach can be decomposed into two primary steps: (i) collision-free
gripper pose and (ii) tangle reduction. In the first step, a collision-free point for the chosen
gripper is identified such that it can be inserted into the pile without causing any damage
to the TP. In the tangle reduction step, a peak entanglement point is identified around the
collision-free point. The gripper is oriented along the line intersecting the collision-free
and the entanglement points and finally opened to complete the spreading manoeuvre.
Figure 5.1 presents a simple example scenario with three wooden blocks to further discuss
the motivation behind the presented method. When the objective is to pick up the middle
block, any point on the target block chosen at random can be considered for a given gripper
orientation. However, since it is surrounded by other wooden blocks, it is essential to
estimate a collision-free point to avoid any collision between the gripper and other wooden
blocks. For example, the red dot represents an initial pick point on the target object chosen
at random. It can be observed that picking from this point would lead to a collision between
the gripper and a block. However, picking from the collision-free point (green dot) will
enable the picking of the target object without any collision. In the case of a tangle-prone
pile, picking from a collision-free point helps in avoiding damaging the pile and also
contributes to entanglement reduction indirectly as individual objects are expected to be
away from each other around the collision-free point. In the second step, pile entanglement
is countered directly through a spreading manoeuvre. The line of entanglement is estimated
and gripper plates are opened to complete the spreading manoeuvre.

Figure 5.2 presents a simple scene providing an overview of the operations done on the
acquired depth map. Figure 5.2(a) presents the scene and the system setup consisting of
cluttered objects with the middle block as the target object. A depth map of the scene is
first acquired using the depth camera. Cross-section A represents the region of the target
object that should lie between the gripper plates for a successful grasp. It is acquired by
thresholding the depth map using ht . Specifically, pixel values with a depth value > ht

(i.e., farther from the depth camera) are set to 0 (black) and =< ht (i.e., closer to the
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Figure 5.1: Example scenario with wooden blocks. The red and green dots represent the
initial pick-up point and collision-free point respectively. The dashed white line represents
the line of entanglement.

Depth camera

ht
Gripper

hg
A

B

Gripper mask A
Depth map of the scene

Cross section A

Cross section B
Gripper mask B

(a) (b)

Figure 5.2: Scene modelled by contacts and collision between a gripper and objects. (a)
Scene and system setup. Gripper masks A and B are generated using the chosen gripper
aperture and the lateral widths of the gripper plates respectively. (b) First a depth map of
the scene is acquired. The darker the shade farther the object is from the depth camera.
Cross-section A is obtained by thresholding the depth map using the height of the target
object ht . Cross-section B is obtained by thresholding the depth map using the depth hg to
which the gripper advances when grasping.

depth camera) are set to 255 (white). Similarly, cross-section B represents the region in
which a collision might occur while the gripper is moving downwards. It is obtained by
thresholding the depth map using the insertion depth hg to which the gripper advances
when grasping. Specifically, pixel values with a depth value > ht +hg are set to 0 (black)
and =< ht + hg are set to 255 (white). Gripper masks A and B are not obtained using
the depth map and are instead generated using the chosen gripper aperture and the lateral
widths of the gripper plates respectively. The next section further describes how these
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depth maps and gripper masks are utilised for estimating collision-free and entanglement
points.

5.2 Method

5.2.1 Collision-free Gripper Pose: GI

The GI [92] is a vision-based measure for evaluating candidate grasping poses that has
proved useful in industrial pick and place settings. It uses a single depth map of the
scene to estimate the optimal gripper position and orientation for picking an object. It can
be applied for use with different hand mechanisms, including parallel, multi-finger and
vacuum grippers. It is particularly suitable for the picking problem considered here since it
is unaffected by colour variation (that may occur between different plants) since only a
depth map and a 2D gray-scale image are needed to process the scene. It should be noted,
however, that its use of depth maps means it is most effective when a perpendicular view
of the scene is available.

For an insertion depth rz, GI estimates a point r in the bin such that the parallel plates
of the gripper could be inserted without colliding with the objects inside. A range of rθ is
evaluated using GI and for the optimal rθ , the best picking point (rx, ry) is estimated.

Figure 5.3 provides an overview of the GI method. First, a depth map of the cluttered
scene is acquired using vision (e.g., RGB-D camera). Oc (see Figure 5.3(b)) represents
the region of the target object that should lie between the gripper plates for a successful
grasp. It is obtained by thresholding the depth map by the depth value corresponding
to the highest point on the target object (middle block in Figure 5.3(a)). Oc′ represents
the region in which a collision might occur while the gripper is moving downwards. It is
obtained by thresholding the depth map by the insertion depth rz (see Figure 5.3(c)). Gc

and Gc′ (see Figure 5.3(d) and (e), respectively) represent the contact distance between the
parallel plates and collision regions (i.e., lateral width of the plates) for the gripper and are
obtained through millimetre-to-pixel unit conversion. They are recomputed whenever the
opening aperture of the gripper changes. The region where part of the target object lies
between the gripper plates (Figure 5.3(f)) is computed through the convolution1

Wc = Oc ∗Gc. (5.1)

Similarly, the region where the gripper plates could collide with the objects in the pile is
obtained as (see Figure 5.3(g))

Wc′ = Oc′ ∗Gc′. (5.2)

1Here, and throughout the thesis, ∗ represents the convolution operation.
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Figure 5.3: Estimating the grasping position (rx,ry) using GI for gripper rotation rθ = 90°.
The scene contains three wooden blocks. In this example, the highest object (middle block)
is the target object and the insertion depth rz is set such that the tips of the gripper just
touch the surface of the table. The collision-free pick-up point u is estimated from the peak
of the graspability map G.

The region of interest for successful picking is the area where contact between the
gripper plates and the target object is detected and there is no collision with other objects
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in the bin. Since Wc′ represents the region where collisions might occur the latter may be
expressed as (Wc ∩Wc′), where the notation A represents the NOT operation on A and ∩
denotes intersection (see Figure 5.3(i)). Finally, using a Gaussian X (see Figure 5.3(j)), the
graspability map G is computed as

G = (Wc ∩Wc′)∗X. (5.3)

convolution with a Gaussian X is used to smooth and reduce the noise in the graspability
map. The peak of G is obtained for a range of gripper orientations rθ to determine the
respective pick up point (rx, ry) by maximising

f (x,y,rθ ) =

(G)xy, if (Wc′)xy=0

0, otherwise.
(5.4)

where (G)xy and (Wc′)xy represents the value of G and Wc′ at position (x,y) respectively.
Gripper orientations for which no peak could be detected are discarded and rθ is set to the
the gripper orientation for which the peak could be determined in G yielding the picking
position

u = (rx,ry,rθ )
⊤ = argmax

x,y
f (x,y,rθ ). (5.5)

The optimal gripper position and orientation as obtained from the GI identify a reference
for the gripper for collision-free picking of the target object. However, this ignores the
possibility that parts of the target object could be entangled with other items in the bin
such that it may end up picking them along with the target. In case of TPs, experience tells
that this frequently occurs resulting in more than the desired mass being picked. In the
next section, a strategy is proposed for reducing tangling during the pick operation to help
alleviate this problem.

5.2.2 Tangle Reduction: SnP

To reduce the level of tangling and thereby achieve more consistent picking, this thesis
proposes a SnP approach, inspired by human behaviour. In humans, it is frequently
observed that they use their fingers to separate things while picking, especially when they
have to work with one hand. The idea here is to mimic this behaviour by adjusting the pick
to include a spreading step: specifically, if the target object is between the plates of the
gripper, instead of moving them inwards (closing) to grasp the object, they are first moved
outward to try to disentangle any nearby objects before proceeding with the pick.

The proposed approach extends the GI by identifying regions of high entanglement in
the scene and then defining a spreading movement to disentangle them. For a specific rθ ,
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Gc′ is used to obtain Wc′ , the region that represents gripper-object collision. Wc′ is then
used to identify the region of entanglement

G′ = Wc′ ∗X. (5.6)

Using G′, the peak entanglement position is computed as

v = (rx,ry,rθ )
⊤ = argmax

x,y
h(x,y,rθ ) (5.7)

where

h(x,y,rθ ) =

(G′)xy, if (Wc′)xy=1

0, otherwise.
(5.8)

The line of peak entanglement is then defined as that intersecting v and u. This line
defines the spreading movement in the proposed approach: during the pick operation, the
gripper plates are moved outwards along this line to disperse the tangle and improve the
consistency of picking. PL, being an informative feature in the design of the picking strate-
gies, can also be used in the future to adjust the proposed outward movement considering
the tangling propensity of different TPs. Figure 5.4 illustrates the working of the robot
while following the SnP approach.

5.2.3 Mass-constrained Picking

In the industrial setting, the picking task is typically specified in terms of a target mass so
it is necessary to find a way to translate the training data into the required pick parameter
δ . The purpose of SnP is to reduce the pile entanglement to a reasonable threshold such
that the remaining element of δ (i.e., gripper aperture w) can be estimated efficiently for
any target mass mt . The training set D to learn the skill as expressed in (2.2) is collected
by running N picking trials for different pick parameter δ and consists of a matrix of pick
parameters (δ1, ....,δp) ∈ R4×P and the corresponding matrix of observed picked masses(

mδ1
1 ... m

δp
1. . .

mδ1
n ... m

δp
n

)
∈ RN ×P . This data D is used to fit a predictive model through supervised

learning. Specifically, a simple least-squares regression is computed as

m = N(w) (5.9)

to determine a relationship between the gripper aperture width w and picked-up weight m.
Using (5.9) for a target weight mt , gripper width is estimated as

w = N−1(mt) (5.10)
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(a) (b)
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(e) (f)

(g) (h)

Figure 5.4: Time lapse illustrating SnP approach. (a) Robot reaches a fixed point above
the pile. (b) Gripper orientation adjusted to align with line of peak entanglement. (c)
Gripper aperture set to chosen width. (d) Gripper moved into herb pile to pick from
the optimal collision-free point according to GI. (e) Gripper plates moved outwards to
maximum aperture width. (f) Gripper closed. (g) Gripper raised with items picked. (h)
Picked items dropped onto scale to record mass.

The inverse of the model is then used to achieve the desired skill (2.2). It should be
noted, however, that the chosen model should be monotonic to be inverted.
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Table 5.1: picked mass (mean±s.d.) of staples (over 60 trials) for PL l ∈ {6,8,10,12}mm,
staple width d = 12mm, gripper aperture w = 40mm and pile mass p = 60g.

l (mm) FP (g) SnP (g)
6 1.786±1.013 1.439±0.753
8 2.466±1.370 2.437±1.141
10 3.184±1.729 3.632±1.640
12 2.986±1.333 2.621±1.156

5.3 Evaluation

5.3.1 Fixed-Point Picking & Spread-and-Pick: Staples

The first experiment considers a simple picking task to compare the picking mass variance
following FP and SnP-based approaches. Staples with varied PLs are chosen as the TP. To
evaluate the effectiveness of the SnP approach as compared to FP picking, this experiment
tests the following hypothesis.

Hypothesis

H3 Picking following SnP results in a significant increase in picking consistency as com-
pared to FP-based picking.

Staples with constant staple width d = 12mm and variable PL l (see Figure 2.5 (a)) are
chosen as the TP for this experiment: each staple is identical with (i) only two protrusions,
(ii) fixed protrusion length and (iii) fixed volume, shape and density. The experimental
procedure is as follows.

Procedure

A similar procedure to that outlined in section 4.4.2 is followed. For SnP, after lowering
its end-effector into the pile, the robot performs the spreading manoeuvre, closes the
gripper plates, moves its end-effector vertically upwards to a fixed position, records the
picked mass and then drops what has been picked back into the container. The procedure
is repeated 60 times for sets of staples with PLs l ∈ {6,8,10,12}mm, gripper aperture
w = 40mm and pile mass p = 60g. The same procedure is then repeated for FP picking.
Note that, in the latter, (i) no spreading movement is performed and (ii) the target picking
location is fixed as the centre of the pile.
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Result

Table 5.1 reports the picked mass (mean±s.d.) for the FP and SnP methods. It is observed
that the standard deviation of the picked mass is the least for SnP among all cases. This
demonstrates that SnP reduces entanglement in the pile without having to precisely define
and measure the overall degree of entanglement, making picking more consistent and
hence confirming H3.

5.3.2 Random & Collision-free Picking: Plastic Herbs with Protru-
sions

The second experiment considers a simple picking task to compare picking using collision-
free positions with random positions (neither using peak entanglement position). Plastic
herb with many protrusions are chosen as the GM. This experiment tests the following
hypothesis

Hypothesis

H4 Picking from the collision-free point results in a greater picking accuracy as compared
to random picking.

Procedure

During the experiment, a fixed mass of plastic herbs are placed in a pile in an open picking
area of dimension 30cm×25cm. Each picking operation consists of the robot reaching
into the pile as per the pick parameter δ , closing its gripper, and lifting what is grasped
free of the surface. In detail, in each pick, the gripper orientation is initialised to rθ = 90°,
target picking location (rx, ry) is chosen randomly and the insertion depth rz is set such
that the tips of the gripper just touch the surface of the picking area. The robot moves
its end-effector to a fixed position above the picking area, sets the gripper aperture w to
the chosen width and lowers it into the pile. There, it closes the gripper plates, moves its
end-effector vertically upwards to a fixed position, and drops what has been picked into
the weighing device to record the picked mass. To ensure a similar physical arrangement
of the plant material between trials, any material picked is returned, the entire quantity is
manually transferred to a 18.5cm×13.5cm×4.5cm cuboid container and then replaced
onto the picking area for the next pick. Picking is conducted 30 times for gripper aperture
w = 40mm and pile mass p = 30g. For the random picking scenario, collision-free point
is not estimated and picking is performed from the chosen random point. Same procedure
is followed for the collision-free scenario, except picking is performed from the estimated
collision-free point instead of the random point.
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Table 5.2: picked mass in picking plastic herbs with protrusions (mean±s.d. over 30 trials).

Method Picked mass (g)
Random Picking 4.963±4.712

Collision-free Picking 4.549±3.735

Table 5.3: picked mass in picking plastic herbs with protrusions (mean±s.d. over 30 trials).

Method Picked mass (g)
Random Spread 5.854±2.987

SnP 4.281±1.942

Result

Table 5.2 reports the picked mass (mean±s.d.) for the random and collision-free picking
methods. It is observed that the standard deviation of the picked mass is less for the
collision-free case as compared to the random picking method. This demonstrates that
picking from collision-free point contributes in making picking more consistent and hence
confirms H4.

5.3.3 Random Spread & Spread-and-Pick: Plastic Herbs with Pro-
trusions

The third experiment considers a simple picking task to compare the proposed SnP with
random SnP. Specifically, collision-free point is utilised in both cases, except pile is spread
randomly for the latter. Plastic herb with many protrusions are chosen as the GM. This
experiment tests the following hypothesis

Hypothesis

H5 Spreading as per the estimated line of entanglement results in a greater picking accuracy
as compared to random spreading.

Procedure

During the experiment, a fixed mass of plastic herbs are placed in a pile in an open picking
area of dimension 30cm×25cm. Each picking operation consists of the robot reaching
into the pile as per the pick parameter δ , closing its gripper, and lifting what is grasped
free of the surface. In detail, in each pick, the gripper orientation is initialised to rθ = 90°,
the target picking location (rx, ry) is chosen randomly and the insertion depth rz is set such
that the tips of the gripper just touch the surface of the picking area. The robot moves
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its end-effector to a fixed position above the picking area, sets the gripper aperture w to
the chosen width and lowers it into the pile. There, it closes the gripper plates, moves its
end-effector vertically upwards to a fixed position, and drops what has been picked into
the weighing device to record the picked mass. To ensure a similar physical arrangement
of the plant material between trials, any material picked is returned, the entire quantity is
manually transferred to a 18.5cm×13.5cm×4.5cm cuboid container and then replaced
onto the picking area for the next pick. For SnP, after lowering its end-effector into the
pile, the robot performs the spreading manoeuvre as per the estimated line of entanglement,
closes the gripper plates, moves its end-effector vertically upwards to a fixed position,
records the picked mass and then drops what has been picked back into the container. The
procedure is repeated 30 times for gripper aperture w = 40mm and pile mass p = 30g. The
same procedure is then repeated for the random SnP picking. In both cases, a collision-free
point is estimated, however, in the latter, spreading movement is performed randomly
instead of spreading along the line of entanglement.

Result

Table 5.3 reports the picked mass (mean±s.d.) for the random and proposed SnP methods.
It is observed that the standard deviation of the picked mass is less for the proposed SnP as
compared to the random spreading. This demonstrates that spreading as per the estimated
line of entanglement contributes to making picking more consistent and hence confirms
H5.

5.3.4 Industrial Herb and Salad Picking Task

In this section, the proposed SnP method is evaluated with respect to its efficacy in
improving consistency in an industrial picking task, namely, picking a target mass of fresh
herbs and salads (flat-leaf parsley and wild rocket, see Figure 2.7). Picking experiments
involving bins composed of plastic herbs with protrusions (see Figure 2.6(a)) are also
reported. Plastic herbs are a reasonable mock-up of real herbs and their use enable some
degree of control against natural variations in the real plant material (e.g., due to plant
material drying out, or becoming damaged over successive picks). Specifically, the next
experiment test the hypothesis:

Hypothesis

H6 Picking following SnP results in a greater picking accuracy as compared to GI-based
picking.
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Table 5.4: PE in picking plastic herbs (mean±s.d. over 20 trials) with standard error of the
linear model as 0.140.

mt (g) Method Picked Mass (g) PE (g)

8
GI 4.832±5.013 5.191±2.709

SnP 8.318±4.681 3.772±2.655

10
GI 8.791±9.176 6.516±6.408

SnP 7.228±3.514 3.820±2.253

12
GI 12.621±9.307 6.995±5.959

SnP 10.523±5.907 5.090±3.149

Table 5.5: PE in picking wild rocket (mean±s.d. over 10 trials) with standard error of the
linear model as 0.113.

mt (g) Method Picked Mass (g) PE (g)

15
GI 9.434±3.937 6.008±3.133

SnP 10.033±2.793 5.091±2.533

20
GI 14.137±6.274 6.529±5.495

SnP 15.799±4.819 5.297±3.414

Procedure

Data is collected using the mock picking station rig shown in Figure 4.1 and used to
fit a predictive model of the required pick parameter δ given a target masses for each
TP considered. Specifically, picking is performed 20 times for gripper aperture w ∈
{20,30,40,50,60}mm for plastic herbs and 10 times for w ∈ {20,30,40}mm for real
herbs, using the procedure outlined in section 4.3.2. As discussed in section 5.2.3, this data
is used to estimate a linear model, that is inverted to derive the skill as presented in (2.2)
for computing required gripper aperture for target mass mt . The remaining elements of δ

(i.e., picking location and orientation r) are computed according to the procedure described
in sections 5.2.1 and 5.2.2 respectively. To evaluate the accuracy and consistency of picking,
this method is applied to pick a series of target masses: mt ∈ {8,10,12}g for plastic herbs
(mt ∈ {15,20}g for real herbs) and the picking error (PE) (i.e., absolute difference from
actual mass picked) is recorded. This is repeated for 20 trials for plastic herbs (10 trials
for real herbs). For comparison, the experiment is also repeated using standard GI-based
picking (i.e., picking at the collision-free point, and omitting the spreading movement).
To further test the robustness, the experiment is also repeated with the variation that the
picking model for wild rocket is applied to picking material from a different plant, namely,
flat-leaf parsley.

Result

Tables 5.4 and 5.5 report the PE for picking plastic herbs and wild rocket, respectively.
It is observed that the PE with SnP is lower among all cases, and is up to 41% lower for
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Table 5.6: PE in picking flat-leaf parsley (mean±s.d. over 10 trials). Gripper aperture w
are estimated using the wild rocket model.

mt (g) Method Picked Mass (g) PE (g)

15
GI 14.250±8.944 7.444±4.365

SnP 12.228±7.064 6.464±3.466

20
GI 15.921±8.886 7.535±5.863

SnP 17.893±3.951 3.729±2.257

picking mt = 10g of plastic herbs and up to 19% for picking mt = 20g of wild rocket. A
significant decrease in the PE variance is also observed with SnP for all cases. Finally,
Table 5.6 provides the PE for picking flat-leaf parsley using the model derived for wild
rocket. As observed, the PE is lower for SnP compared to the GI-based approach for all
target masses considered with up to 51% for picking mt = 20g. These results show that
the proposed SnP approach effectively reduces PE and improves picking consistency for a
variety of herbs and salads, confirming H4.

5.4 Discussion

The results from the study in section 5.3.1 and the industrial herb and salad picking task
(section 5.3.4) demonstrate the power of the proposed SnP approach in reducing error
and improving picking consistency by tackling tangling in TPs. In the former, controlled
staple-picking experiment, SnP results in a lower standard deviation of the picked mass in
all cases, demonstrating the important effect that reducing tangling can have. Moreover,
in the herb/salad picking task the PE is shown to be lower when using SnP in all cases.
Interestingly, comparing the PE for plastic and real herbs, the reduction in PE is lower
for the former. This difference is attributed to factors such as moisture variation and a
generally higher degree of entanglement in the real herbs. It is worth noting that, the
real herb material occasionally prevented the gripper plates from fully opening due to
their tendency to tangle around the gripper itself. The presence of moisture in real plant
material also tends to cause adhesion between herb strands in addition to the mechanical
entanglement, potentially exacerbating the effect. Surprisingly, the maximum decrease
in PE is observed for target mass mt = 20g for flat-leaf parsley (see Table 5.6), even
though gripper aperture was estimated using the wild rocket picking model. The interplay
between the ability to pack and the ability to entangle is considered responsible for such
an observation.

Overall, it can be seen that the proposed SnP method proves effective in directly
countering tangling in a variety of TPs. It is not practical to train a separate model for all
individual TPs and the insights regarding protrusions as presented in this work, provide a
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useful way of generalising a picking model, especially considering the physical properties
of the TPs.

5.5 Summary

In summary, this chapter presents an entanglement reduction strategy that effectively
reduces the entanglement in a TP pile compared to the traditional approach of picking from
a collision-free point. Compared to prior work, the proposed method explicitly counters the
issue of entanglement in a TP pile. Overall, it can be seen that the proposed SnP method
proves effective in directly countering tangling in a variety of GMs.

Countering the issue of object entanglement is important for the successful deployment
of robotic bin-picking systems, especially when the bin is composed of TPs such as
herbs and salads. Using the proposed method of entanglement reduction, the one-shot
mass-constrained picking can be made more predictable without directly estimating the
overall degree of entanglement in the pile. As such, the presented method makes a
valuable contribution toward robotic bin-picking systems for TPs and achieving effective
entanglement reduction for a variety of challenging GMs.

The principal idea, the presented method revolves around is that the picking perfor-
mance for a one-shot mass-constrained picking task is closely linked to the entanglement
in the pile. Here, it is acknowledged that entanglement is unavoidable for TPs considered
in this thesis. The aim instead is to reduce entanglement to a level where the picked mass
is predictable. Specifically, the proposed method aims to reduce the picked mass variance
resulting from the entanglement in a TP pile, such that the uncertainty in the training data
required for learning the picking skill presented in (2.2) can be reduced.
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Conclusions

This thesis has been dedicated to the issue of picking excess mass due to entanglement
such as occurs in bins composed of tangle-prone materials, especially in the context of
a one-shot mass-constrained robotic bin-picking task. Specifically, it proposes a human-
inspired entanglement reduction method for making the picking of TPs more predictable.
A video demonstration of the robot performing the proposed SnP manoeuvre is provided
as supplementary material 1.

RAS have transformed many aspects of human lives and possess the potential of greatly
revolutionising large-scale industries. Specifically, in agriculture, a reduction in available
labour and arable land, with an increasing population, is threatening global food security
[28, 30, 31] and the need for efficient RAS is more relevant than ever before. Apart from
alleviating long-standing issues in the sector, RAS are expected to contribute more than
$50 billion to global gross domestic product [32], helping in attracting a skilled workforce
to an otherwise traditional field such as agriculture. As noted by Rose et al. [133], RAS
offer many economic, social and cultural benefits to the agri-food sector. It is strongly
believed that RAS capable of manipulating challenging TPs such as herbs and salads
have many benefits for the agricultural workforce, which is what motivated the research
presented in this thesis. Such systems can improve production efficiency, reduce human
errors and free up the labour tied with mundane manual tasks. This additionally, provides
an opportunity for upskilling, consequently improving the well-being and lifestyle of the
agri-food workforce.

The main contributions of the thesis can be summarised as follows:

1. Intriguing insights from humans picking from a tangled TP bin are presented in chap-
ter 2. These insights were obtained from a recordings of human pickers packaging
herbs and salads in an industrial environment at a large supplier of fresh produce,

1The demonstration video can be found at youtu.be/QDrriGcwN-Y
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specialising in watercress, herbs and salads. Using these insights, a human-inspired
non-prehensile motion (spread) was identified for effectively reducing entanglement
in a variety of TP bins. Overall, this work, being one of the first to study the largely
unexplored task—robotic manipulation of tangle-prone TPs, plays an important role
in bringing it to the attention of the robotics research community. Furthermore,
challenges, considerations and assumptions generally necessary for working with
TPs are highlighted such that future work can benefit from it in building robust RAS
capable of efficiently manipulating a diverse range of TPs.

2. Chapter 3 provides an in-depth review of prior work. A review of the current state-
of-the-art RAS in the agriculture sector highlights the gap in addressing all vital
components of the ASC. It is observed that the majority of current RAS in the
sector cater to the production activities (e.g., land preparation, sowing and planting,
harvesting) and other equally critical components such as packaging still do not
tap into the full potential of such systems. Similar to insights from human pickers
presented in chapter 2, a review of prior work dealing with robotic manipulation
in clutter further highlights the advantages of human-like non-prehensile motions
(e.g., push, pull, spread) for effective manipulation of objects in highly stochastic
scenarios.

3. Insights from natural sciences and robotic manipulation of non-tangling TPs pre-
sented in chapter 3 underline the importance of understanding the mechanics of
TPs for efficient manipulation. To that end, experimental studies are presented in
chapter 4 which demonstrate that protrusions play an important role in causing
mechanical entanglement in a TP pile. It is also noted that the ability to pack and
the ability to entangle are two indispensable factors to be considered while manip-
ulating TPs. Results from the experiments involving TPs with varied PLs further
demonstrate the usefulness of PL in developing generalised picking strategies for
effectively countering entanglement.

4. Based on the insights from chapters 2 to 4, SnP, a novel entanglement reduction
method applicable to a variety of TPs is proposed in chapter 5. Specifically, as-
sisted by vision-based methods, it leverages human-inspired non-prehensile motion
(spread) for entanglement reduction through pile interaction. Here, it is acknowl-
edged that entanglement is unavoidable for TPs considered in this thesis. The aim
instead is to reduce entanglement to a level where the picked mass is predictable.
Robotic picking experiments with TPs (plastic herbs and staples) demonstrate the
effectiveness of SnP in reducing the picked mass variance resulting from the en-
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tanglement in a TP pile. Real herbs and salads are used in the final evaluation to
assess the usability of SnP in a practical industrial application in Chapter 6. An
industrial herb and salad picking task demonstrate the power of the proposed SnP
approach in reducing error and improving picking consistency by tackling tangling
in challenging TPs.

Overall, this thesis has studied the mechanics of a variety of TPs improving the
understanding of the phenomenon of entanglement as observed in TP bins. Furthermore,
based on intriguing insights from human pickers, a novel entanglement reduction method
i.e., SnP is proposed that effectively reduces the entanglement in a variety of TP bins. The
primary approach has been to directly counter entanglement with an aim of reducing it to a
level where the picked mass is predictable, instead of avoiding entanglement by picking
from collision or entanglement-free points or regions. This is so because in the real world
collision or entanglement-free scenarios are generally scarce. The proposed approach does
not require estimating the degree of entanglement in the pile, is applicable for use with a
variety of different hand mechanisms, including parallel, multi-finger and vacuum grippers
and is unaffected by colour variation (that may occur between different plants).

6.1 Future Work

This thesis is one of the first few works that address the issue of object entanglement in TP
bins in the context of robotic bin-picking. A number of potential improvements and future
research directions are possible. Some of the feasible future extensions of this thesis are as
follows:

– Protrusions and PL:
This work is one of the first few that explores robotic picking of tangle-prone piles
in terms of protrusions and PL. Naturally, protrusions exist in a variety of ways
and proposing a truly general geometric definition encompassing all natural and
man-made objects with protrusions is non-trivial. However, it is acknowledged that
a more general definition of terms such as protrusions and PL will bring further
value to this research. Specifically, further analysis of objects with protrusions from
a geometrical perspective could help in developing better picking strategies. Fractal
geometry is a branch of mathematics that provides a general framework for the study
of irregular sets or functions that cannot be described effectively using classical
calculus. Roughly over a period of hundred years, the theory of fractal geometry
has seen several advances and still continues to be a developing field. Today,
fractal geometry has found applications in several areas of science and engineering,
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(a) (b) (c)

Figure 6.1: Modelling trees and plants using fractals. (a) 2nd, (b) 3rd and (c) 4th iterations
[135].

including physics, digital imaging, computer graphics, computational geometry,
geology and biology. Along with man-made objects such as networks, computer
graphics and antennas, it also has been utilised to model complex natural phenomena
such as plant growth, pattern formation, diffusion, lightning and turbulence. Fractal
geometry has been shown of great use for modelling irregular and fragmented objects
such as natural plants [134–137]. Figure 6.1 demonstrate the use of a certain type
of fractal called L-systems for modelling trees and plants. Glenny et al. [138]
studied the fractal geometry of bronchial trees in four different strains of laboratory
mice to demonstrate that airway branching patterns are encoded within the DNA.
Smith et al. [139] explore how neurons exploit fractal geometry to optimize their
network connectivity. Husain et al. [140] leverage the concept of fractal geometry
to measure the degree of geometric irregularity present in a coastline. Specifically,
fractal geometry has proven to be useful when dealing with the class of geometrical
objects called fractals where classical Euclidean Geometry is not enough to describe
their complex nature. However, since its inception, the field of fractal geometry
has gone through several iterations and a purely mathematical definition of fractals
is still at the centre of research in this area [141, 142]. Future work may consider
fractal geometry to simulate tangle-prone materials such as herbs, facilitating a
more robust mathematical representation, specifically in the context of a one-shot
mass-constrained robotic bin-picking task.

– Learning to drop: SnP enables the robot to reduce the entanglement and in turn
improves the picking consistency by directly interacting with the herb pile. However,
it is acknowledged that entanglement is unavoidable for the plant material considered
in this study and some extra mass is still expected to be picked. A more efficient
approach could be employing a hybrid method where SnP is used along with a
dropping strategy. Specifically, in the first step SnP can be utilised to reduce pile
entanglement. This assists in separating the target bunch from the rest of the pile. In
the second step, a dropping strategy is used to drop any extra mass. Figure 6.2(a)
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(a) (b)
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Figure 6.2: Entanglement leads to extra mass being picked for bins composed of TPs such
as staples.(a) When the objective is to pick one staple, an anti-clockwise rotation (dashed
black line) along the y-axis can drop the extra staple. (b) However, identifying a dropping
strategy to be able to drop more than one staple in a controlled manner is non-trivial.

demonstrates a simple dropping strategy for two tangled staples. As can be seen, an
anti-clockwise rotation along the y-axis could help in dropping the extra undesired
staple. Methods that extend this behaviour to multiple staples (see Figure 6.2(b))
can help in dropping the undesired extra mass picked because of the inherent pile
entanglement. Specifically, a taxonomy of primitive dropping movements can
be identified. These movements can then be used in combination to drop any
undesired extra mass. Additionally, future work may consider other relevant in-hand
strategies to drop the extra mass without repeating the pick or using non-standard
hand mechanisms.

– Ability to pack and entangle: Picking experiments involving TPs with varied PLs
highlight the significance of the ability of a TP to pack and entangle, especially
considering a one-shot mass-constrained robotic bin-picking task. Considering the
ability to entangle independently from the ability to pack, it is intuitive to expect
the overall degree of entanglement in the pile to increase as the contact surface area
increases i.e., PL increases. However, the results from the experiments reported
in section 4.4 demonstrate the picked mass variance decreases for PL l > 10mm,
suggesting a decrease in pile entanglement. This suggests that the ability to pack, a
property unique to the TPs, plays a salient role in offsetting the effect of increasing
PL (see Figure 6.3). Specifically, the interplay between packing and entanglement
in a TP gives rise to observed non-monotonic behaviour. A concrete representation
of the ability to pack and the ability to entangle could aid in developing a better
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Ability to entangle improves with increasing PL

Ability to pack increases with decreasing PL

Figure 6.3: Interplay between the ability to pack and the ability to entangle in a TP (staple)
pile.

understanding of the relationship between them, providing further insights into the
phenomenon of entanglement in a TP pile.

– Picking skill representations: In the industrial setting, the picking task is typically
specified in terms of a target mass so it is necessary to find a way to translate the
training data into the required gripper aperture. It should be noted, however, that the
chosen model should be monotonic for to be inverted. For simplicity, the training
data collected from the picking experiments conducted in this thesis is used to fit a
simple linear relationship between the gripper aperture and the target mass. However,
other representations (e.g., non-linear) remain to be explored. Future work could
explore other relevant picking skill representations, especially considering notable
factors such as the ability to pack and the ability to entangle.

– PL and SnP: This research demonstrate the significance of protrusions and PL in
the context of a one-shot mass-constrained robotic bin-picking task. The effect of PL
on the overall degree of entanglement in a TP pile offers a variety of useful insights
for developing RAS that can counter object entanglement in a pile. However, one of
the main limitations of this work is that it does not incorporate PLs in the proposed
entanglement reduction method i.e., SnP. Instead of spreading fully for all TPs, PL
information could be employed to spread efficiently, improving performance and
cycle time. Future work could explore the effect of spreading on TPs with different
PLs to further improve the efficacy and cycle time of the proposed method.

– Hardware limitations: The experimental set up is a mock-up of the packaging
workstation of a large fresh herbs and salads producer equipped with a robotic
manipulator. As the robotic platform, a 7-degree of freedom (DoF) Rethink Robotics
Sawyer is used, with a maximum reach of ±1260mm and precision of 0.1mm. A
two arm system could be considered in the future as a comparison with a one arm
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system utilised in this research. The robot is equipped with a parallel gripper from
Actobotics (product code: 637092) as its end-effector. The latter has maximum
opening aperture of w = 71.12mm and is controlled using a Hitec HS-422 Servo
Motor with operating voltage range 4.8V-6.0V. Other efficient design of grippers
such as multi-finger grippers could potentially improve the performance, usability
and accuracy of the presented system. As the vision module, the platform uses an
Intel realsense d435i depth camera recording depth data at a frequency of 15Hz.
Although robust, realsense d435i is a research-grade camera and is affected by
lighting conditions. Use of industrial grade depth cameras can further increase the
performance of the proposed method.

– Picking without replacement: In this thesis, experiments involving repeated robotic
picking from bins composed of TP are conducted. After each pick, the picked mass
is dropped or replaced back in the pile. However, in the real world, picking from a
bin without replacement—picking until the bin is empty, is frequently encountered.
It would be beneficial to move a little closer to the real-world scenario of picking
without replacement.

– Neuromuscular control and skill learning: As discussed, in chapter 2, the ability
of human hands and fingers to work in synergy makes humans capable of achieving
non-trivial objectives with relative ease and high precision. Neuro-motor control
such as reaching and pointing movement with arms has been the focus of several
studies from the computational neuroscience community [143]. In recent years,
computational neuroscience has become a crucial constituent in neurobiological
research. The computational neurobiology of untangling is also an interesting avenue
to study various techniques used by humans, especially when manipulating a tangle-
prone media such as a pile of herbs or salads using just one hand. Future work could
look into developing a better understanding of how humans learn untangling skills,
forming new theories of neuromuscular control and skill learning.
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Appendix A

List of Publications

Conferences
1. Ray, P., Howard, M. J., (2020). Robotic Untangling of Herbs with Parallel

Grippers. UKRAS20 Conference: “Robots into the real world” Proceedings,
137-139. doi: 10.31256/Wd8Aj7K.

2. P. Ray and M. J. Howard, "Robotic Untangling of Herbs and Salads with Paral-
lel Grippers," 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 2624-2629, doi: 10.1109/IROS45743.2020.9342536.
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Appendix B

Data and Software

Data
1. The data supporting this research are openly available from the King’s Col-

lege London research data repository, KORDS, at https://doi.org/10.18742/
19977779.

Software
1. The software supporting this research are openly available from the King’s Col-

lege London Robot Learning Lab, RLL, at https://github.kcl.ac.uk/RLL/Spread-
and-Pick.

Further information about the data and conditions of access can be found by emailing
research.data@kcl.ac.uk
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