8,158 research outputs found

    "Out of the loop": autonomous weapon systems and the law of armed conflict

    Get PDF
    The introduction of autonomous weapon systems into the “battlespace” will profoundly influence the nature of future warfare. This reality has begun to draw the attention of the international legal community, with increasing calls for an outright ban on the use of autonomous weapons systems in armed conflict. This Article is intended to help infuse granularity and precision into the legal debates surrounding such weapon systems and their future uses. It suggests that whereas some conceivable autonomous weapon systems might be prohibited as a matter of law, the use of others will be unlawful only when employed in a manner that runs contrary to the law of armed conflict’s prescriptive norms governing the “conduct of hostilities.” This Article concludes that an outright ban of autonomous weapon systems is insupportable as a matter of law, policy, and operational good sense. Indeed, proponents of a ban underestimate the extent to which the law of armed conflict, including its customary law aspect, will control autonomous weapon system operations. Some autonomous weapon systems that might be developed would already be unlawful per se under existing customary law, irrespective of any treaty ban. The use of certain others would be severely limited by that law. Furthermore, an outright ban is premature since no such weapons have even left the drawing board. Critics typically either fail to take account of likely developments in autonomous weapon systems technology or base their analysis on unfounded assumptions about the nature of the systems. From a national security perspective, passing on the opportunity to develop these systems before they are fully understood would be irresponsible. Perhaps even more troubling is the prospect that banning autonomous weapon systems altogether based on speculation as to their future form could forfeit their potential use in a manner that would minimize harm to civilians and civilian objects when compared to non-autonomous weapon systems

    Local Government Policy and Planning for Unmanned Aerial Systems

    Get PDF
    This research identifies key state and local government stakeholders in California for drone policy creation and implementation, and describes their perceptions and understanding of drone policy. The investigation assessed stakeholders’ positions, interests, and influence on issues, with the goal of providing potential policy input to achieve successful drone integration in urban environments and within the national airspace of the United States. The research examined regulatory priorities through the use of a two-tiered Stakeholder Analysis Process. The first tier consisted of a detailed survey sent out to over 450 local agencies and jurisdictions in California. The second tier consisted of an in-person focus group to discuss survey results as well as to gain deeper insights into local policymakers’ current concerns. Results from the two tiers of analysis, as well as recommendations, are provided here

    Unmanned and uncontrolled: The commingling theory and the legality of unmanned aircraft system operations

    Get PDF
    In 2002 Australia became the first nation to promulgate certification standards for the commercial use of drones or unmanned aircraft systems (UAS). Since that time the Australian Civil Aviation Safety Authority (CASA) has played a key role both domestically and internationally through the International Civil Aviation Organization (ICAO) in assisting to develop technical guidance materials that will enable contracting states to develop UAS regulations. An arduous component of this task is the fact that all existing aircraft are capable of being unmanned. Moreover, given the unbounded nature of aircraft operations, UAS regulations necessarily require international harmonisation. But the objective of developing universal UAS standards is still far from being finalised while the accelerating pace of UAS technological development continues to challenge traditional regulatory regimes and legal systems throughout the world. This paper considers the broader legal issues associated with civilian UAS operations and their integration into unsegregated civilian airspace. The Australian UAS regulatory experience is examined with some unique constitutional limitations identified in relation to the application of the so-called ‘commingling theory’. It is contended that such limitations may render void existing UAS regulation in certain situations – many of which are related to the operation of small UAS and may have significant privacy implications. In particular this paper finds that the regulations purporting to control the operation of systems that are not capable of commingling with aircraft operating within navigable airspace are ultra vires and hence of no legal effect. In concluding this paper strongly asserts that if the commercial benefits attendant to UAS operations is to be fully realised then their risks to society must be controlled through domestic legislation that is harmonised and consistent with internationally agreed guidelines

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    How much does a man cost? A dirty, dull, and dangerous application

    Get PDF
    Thesis (M.A.) University of Alaska Fairbanks, 2017This study illuminates the many abilities of Unmanned Aerial Vehicles (UAVs). One area of importance includes the UAV's capability to assist in the development, implementation, and execution of crisis management. This research focuses on UAV uses in pre and post crisis planning and accomplishments. The accompaniment of unmanned vehicles with base teams can make crisis management plans more reliable for the general public and teams faced with tasks such as search and rescue and firefighting. In the fight for mass acceptance of UAV integration, knowledge and attitude inventories were collected and analyzed. Methodology includes mixed method research collected by interviews and questionnaires available to experts and ground teams in the UAV fields, mining industry, firefighting and police force career field, and general city planning crisis management members. This information was compiled to assist professionals in creation of general guidelines and recommendations for how to utilize UAVs in crisis management planning and implementation as well as integration of UAVs into the educational system. The results from this study show the benefits and disadvantages of strategically giving UAVs a role in the construction and implementation of crisis management plans and other areas of interest. The results also show that the general public is lacking information and education on the abilities of UAVs. This education gap shows a correlation with negative attitudes towards UAVs. Educational programs to teach the public benefits of UAV integration should be implemented

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Unmanned and uncontrolled: The commingling theory and the legality of unmanned aircraft system operations

    Get PDF
    In 2002 Australia became the first nation to promulgate certification standards for the commercial use of drones or unmanned aircraft systems (UAS). Since that time the Australian Civil Aviation Safety Authority (CASA) has played a key role both domestically and internationally through the International Civil Aviation Organization (ICAO) in assisting to develop technical guidance materials that will enable contracting states to develop UAS regulations. An arduous component of this task is the fact that all existing aircraft are capable of being unmanned. Moreover, given the unbounded nature of aircraft operations, UAS regulations necessarily require international harmonisation. But the objective of developing universal UAS standards is still far from being finalised while the accelerating pace of UAS technological development continues to challenge traditional regulatory regimes and legal systems throughout the world. This paper considers the broader legal issues associated with civilian UAS operations and their integration into unsegregated civilian airspace. The Australian UAS regulatory experience is examined with some unique constitutional limitations identified in relation to the application of the so-called ‘commingling theory’. It is contended that such limitations may render void existing UAS regulation in certain situations – many of which are related to the operation of small UAS and may have significant privacy implications. In particular this paper finds that the regulations purporting to control the operation of systems that are not capable of commingling with aircraft operating within navigable airspace are ultra vires and hence of no legal effect. In concluding this paper strongly asserts that if the commercial benefits attendant to UAS operations is to be fully realised then their risks to society must be controlled through domestic legislation that is harmonised and consistent with internationally agreed guidelines

    SciTech News Volume 70, No. 4 (2016)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 4 SLA Annual Meeting 2016 Report (S. Kirk Cabeen Travel Stipend Award recipient) 6 Reflections on SLA Annual Meeting (Diane K. Foster International Student Travel Award recipient) 8 SLA Annual Meeting Report (Bonnie Hilditch International Librarian Award recipient)10 Chemistry Division 12 Engineering Division 15 Reflections from the 2016 SLA Conference (SPIE Digital Library Student Travel Stipend recipient)15 Fundamentals of Knowledge Management and Knowledge Services (IEEE Continuing Education Stipend recipient) 17 Makerspaces in Libraries: The Big Table, the Art Studio or Something Else? (by Jeremy Cusker) 19 Aerospace Section of the Engineering Division 21 Reviews Sci-Tech Book News Reviews 22 Advertisements IEEE 17 WeBuyBooks.net 2
    • 

    corecore