260,616 research outputs found

    Boosting analyses in the life sciences via clusters, grids and clouds

    Get PDF
    In the last 20 years, computational methods have become an important part of developing emerging technologies for the field of bioinformatics and biomedicine. Those methods rely heavily on large scale computational resources as they need to manage Tbytes or Pbytes of data with large-scale structural and functional relationships, TFlops or PFlops of computing power for simulating highly complex models, or many-task processes and workflows for processing and analyzing data. This special issue contains papers showing existing solutions and latest developments in Life Sciences and Computing Sciences to collaboratively explore new ideas and approaches to successfully apply distributed IT-systems in translational research, clinical intervention, and decision-making. (C) 2016 Published by Elsevier B.V

    Guest Editorial Special Issue on Medical Imaging and Image Computing in Computational Physiology

    Get PDF
    International audienceThe January 2013 Special Issue of IEEE transactions on medical imaging discusses papers on medical imaging and image computing in computational physiology. Aslanid and co-researchers present an experimental technique based on stained micro computed tomography (CT) images to construct very detailed atrial models of the canine heart. The paper by Sebastian proposes a model of the cardiac conduction system (CCS) based on structural information derived from stained calf tissue. Ho, Mithraratne and Hunter present a numerical simulation of detailed cerebral venous flow. The third category of papers deals with computational methods for simulating medical imagery and incorporate knowledge of imaging physics and physiology/biophysics. The work by Morales showed how the combination of device modeling and virtual deployment, in addition to patient-specific image-based anatomical modeling, can help to carry out patient-specific treatment plans and assess alternative therapeutic strategies

    Knowledge management, innovation and big data: Implications for sustainability, policy making and competitiveness

    Get PDF
    This Special Issue of Sustainability devoted to the topic of “Knowledge Management, Innovation and Big Data: Implications for Sustainability, Policy Making and Competitiveness” attracted exponential attention of scholars, practitioners, and policy-makers from all over the world. Locating themselves at the expanding cross-section of the uses of sophisticated information and communication technology (ICT) and insights from social science and engineering, all papers included in this Special Issue contribute to the opening of new avenues of research in the field of innovation, knowledge management, and big data. By triggering a lively debate on diverse challenges that companies are exposed to today, this Special Issue offers an in-depth, informative, well-structured, comparative insight into the most salient developments shaping the corresponding fields of research and policymaking

    Structural Alignment of RNAs Using Profile-csHMMs and Its Application to RNA Homology Search: Overview and New Results

    Get PDF
    Systematic research on noncoding RNAs (ncRNAs) has revealed that many ncRNAs are actively involved in various biological networks. Therefore, in order to fully understand the mechanisms of these networks, it is crucial to understand the roles of ncRNAs. Unfortunately, the annotation of ncRNA genes that give rise to functional RNA molecules has begun only recently, and it is far from being complete. Considering the huge amount of genome sequence data, we need efficient computational methods for finding ncRNA genes. One effective way of finding ncRNA genes is to look for regions that are similar to known ncRNA genes. As many ncRNAs have well-conserved secondary structures, we need statistical models that can represent such structures for this purpose. In this paper, we propose a new method for representing RNA sequence profiles and finding structural alignment of RNAs based on profile context-sensitive hidden Markov models (profile-csHMMs). Unlike existing models, the proposed approach can handle any kind of RNA secondary structures, including pseudoknots. We show that profile-csHMMs can provide an effective framework for the computational analysis of RNAs and the identification of ncRNA genes

    Guest editorial: Special issue on matching under preferences

    Get PDF
    No abstract available
    corecore