844 research outputs found

    Visual Importance-Biased Image Synthesis Animation

    Get PDF
    Present ray tracing algorithms are computationally intensive, requiring hours of computing time for complex scenes. Our previous work has dealt with the development of an overall approach to the application of visual attention to progressive and adaptive ray-tracing techniques. The approach facilitates large computational savings by modulating the supersampling rates in an image by the visual importance of the region being rendered. This paper extends the approach by incorporating temporal changes into the models and techniques developed, as it is expected that further efficiency savings can be reaped for animated scenes. Applications for this approach include entertainment, visualisation and simulation

    JNMR: Joint Non-linear Motion Regression for Video Frame Interpolation

    Full text link
    Video frame interpolation (VFI) aims to generate predictive frames by warping learnable motions from the bidirectional historical references. Most existing works utilize spatio-temporal semantic information extractor to realize motion estimation and interpolation modeling. However, they insufficiently consider the real mechanistic rationality of generated middle motions. In this paper, we reformulate VFI as a Joint Non-linear Motion Regression (JNMR) strategy to model the complicated motions of inter-frame. Specifically, the motion trajectory between the target frame and the multiple reference frames is regressed by a temporal concatenation of multi-stage quadratic models. ConvLSTM is adopted to construct this joint distribution of complete motions in temporal dimension. Moreover, the feature learning network is designed to optimize for the joint regression modeling. A coarse-to-fine synthesis enhancement module is also conducted to learn visual dynamics at different resolutions through repetitive regression and interpolation. Experimental results on VFI show that the effectiveness and significant improvement of joint motion regression compared with the state-of-the-art methods. The code is available at https://github.com/ruhig6/JNMR.Comment: Accepted by IEEE Transactions on Image Processing (TIP

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    Segmentation-based video coding system allowing the manipulation of objects

    Get PDF
    This paper presents a generic video coding algorithm allowing the content-based manipulation of objects. This manipulation is possible thanks to the definition of a spatiotemporal segmentation of the sequences. The coding strategy relies on a joint optimization in the rate-distortion sense of the partition definition and of the coding techniques to be used within each region. This optimization creates the link between the analysis and synthesis parts of the coder. The analysis defines the time evolution of the partition, as well as the elimination or the appearance of regions that are homogeneous either spatially or in motion. The coding of the texture as well as of the partition relies on region-based motion compensation techniques. The algorithm offers a good compromise between the ability to track and manipulate objects and the coding efficiency.Peer ReviewedPostprint (published version

    Scalable video compression with optimized visual performance and random accessibility

    Full text link
    This thesis is concerned with maximizing the coding efficiency, random accessibility and visual performance of scalable compressed video. The unifying theme behind this work is the use of finely embedded localized coding structures, which govern the extent to which these goals may be jointly achieved. The first part focuses on scalable volumetric image compression. We investigate 3D transform and coding techniques which exploit inter-slice statistical redundancies without compromising slice accessibility. Our study shows that the motion-compensated temporal discrete wavelet transform (MC-TDWT) practically achieves an upper bound to the compression efficiency of slice transforms. From a video coding perspective, we find that most of the coding gain is attributed to offsetting the learning penalty in adaptive arithmetic coding through 3D code-block extension, rather than inter-frame context modelling. The second aspect of this thesis examines random accessibility. Accessibility refers to the ease with which a region of interest is accessed (subband samples needed for reconstruction are retrieved) from a compressed video bitstream, subject to spatiotemporal code-block constraints. We investigate the fundamental implications of motion compensation for random access efficiency and the compression performance of scalable interactive video. We demonstrate that inclusion of motion compensation operators within the lifting steps of a temporal subband transform incurs a random access penalty which depends on the characteristics of the motion field. The final aspect of this thesis aims to minimize the perceptual impact of visible distortion in scalable reconstructed video. We present a visual optimization strategy based on distortion scaling which raises the distortion-length slope of perceptually significant samples. This alters the codestream embedding order during post-compression rate-distortion optimization, thus allowing visually sensitive sites to be encoded with higher fidelity at a given bit-rate. For visual sensitivity analysis, we propose a contrast perception model that incorporates an adaptive masking slope. This versatile feature provides a context which models perceptual significance. It enables scene structures that otherwise suffer significant degradation to be preserved at lower bit-rates. The novelty in our approach derives from a set of "perceptual mappings" which account for quantization noise shaping effects induced by motion-compensated temporal synthesis. The proposed technique reduces wavelet compression artefacts and improves the perceptual quality of video

    Saliency-Enabled Coding Unit Partitioning and Quantization Control for Versatile Video Coding

    Get PDF
    The latest video coding standard, versatile video coding (VVC), has greatly improved coding efficiency over its predecessor standard high efficiency video coding (HEVC), but at the expense of sharply increased complexity. In the context of perceptual video coding (PVC), the visual saliency model that utilizes the characteristics of the human visual system to improve coding efficiency has become a reliable method due to advances in computer performance and visual algorithms. In this paper, a novel VVC optimization scheme compliant PVC framework is proposed, which consists of fast coding unit (CU) partition algorithm and quantization control algorithm. Firstly, based on the visual saliency model, we proposed a fast CU division scheme, including the redetermination of the CU division depth by calculating Scharr operator and variance, as well as the executive decision for intra sub-partitions (ISP), to reduce the coding complexity. Secondly, a quantization control algorithm is proposed by adjusting the quantization parameter based on multi-level classification of saliency values at the CU level to reduce the bitrate. In comparison with the reference model, experimental results indicate that the proposed method can reduce about 47.19% computational complexity and achieve a bitrate saving of 3.68% on average. Meanwhile, the proposed algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality
    • …
    corecore