2,227 research outputs found

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA

    Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling

    Full text link
    We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {xj(tτ)xi(t)}\{x_j(t-\tau)-x_i (t)\} and {xj(tτ)xi(tτ)}\{x_j(t-\tau)-x_i(t-\tau)\}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ\tau is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we can not achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transition with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability. Finally, qualitative analysis is given to illustrate the numerical results.Comment: 17 pages, 9 figure

    Synchronization of spiral wave patterns in two-layer 2D lattices of nonlocally coupled discrete oscillators

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Chaos 29, 053105 (2019) and may be found at https://doi.org/10.1063/1.5092352.The paper describes the effects of mutual and external synchronization of spiral wave structures in two coupled two-dimensional lattices of coupled discrete-time oscillators. Each lattice is given by a 2D N×N network of nonlocally coupled Nekorkin maps which model neuronal activity. We show numerically that spiral wave structures, including spiral wave chimeras, can be synchronized and establish the mechanism of the synchronization scenario. Our numerical studies indicate that when the coupling strength between the lattices is sufficiently weak, only a certain part of oscillators of the interacting networks is imperfectly synchronized, while the other part demonstrates a partially synchronous behavior. If the spatiotemporal patterns in the lattices do not include incoherent cores, imperfect synchronization is realized for most oscillators above a certain value of the coupling strength. In the regime of spiral wave chimeras, the imperfect synchronization of all oscillators cannot be achieved even for sufficiently large values of the coupling strength.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Self-synchronization Phenomena in the Lugiato-Lefever Equation

    Full text link
    The damped driven nonlinear Schr\"odinger equation (NLSE) has been used to understand a range of physical phenomena in diverse systems. Studying this equation in the context of optical hyper-parametric oscillators in anomalous-dispersion dissipative cavities, where NLSE is usually referred to as the Lugiato-Lefever equation (LLE), we are led to a new, reduced nonlinear oscillator model which uncovers the essence of the spontaneous creation of sharply peaked pulses in optical resonators. We identify attracting solutions for this model which correspond to stable cavity solitons and Turing patterns, and study their degree of stability. The reduced model embodies the fundamental connection between mode synchronization and spatiotemporal pattern formation, and represents a novel class of self-synchronization processes in which coupling between nonlinear oscillators is governed by energy and momentum conservation.Comment: This manuscript is published in Physical Review A. Copyright 2017 by the American Physical Society. arXiv admin note: text overlap with arXiv:1602.0852

    Effects of external global noise on the catalytic CO oxidation on Pt(110)

    Get PDF
    Oxidation reaction of CO on a single platinum crystal is a reaction-diffusion system that may exhibit bistable, excitable, and oscillatory behavior. We studied the effect of a stochastic signal artificially introduced into the system through the partial pressure of CO. First, the external signal is employed as a turbulence suppression tool, and second, it modifies the boundaries in the bistable transition between the CO and oxygen covered phases. Experiments using photoemission electron microscopy (PEEM) together with numerical simulations performed with the Krischer-Eiswirth-Ertl (KEE) model are presented.Comment: 15 pages, 7 figures, accepted in J. Chem. Phy

    Coupled Maps on Trees

    Get PDF
    We study coupled maps on a Cayley tree, with local (nearest-neighbor) interactions, and with a variety of boundary conditions. The homogeneous state (where every lattice site has the same value) and the node-synchronized state (where sites of a given generation have the same value) are both shown to occur for particular values of the parameters and coupling constants. We study the stability of these states and their domains of attraction. As the number of sites that become synchronized is much higher compared to that on a regular lattice, control is easier to effect. A general procedure is given to deduce the eigenvalue spectrum for these states. Perturbations of the synchronized state lead to different spatio-temporal structures. We find that a mean-field like treatment is valid on this (effectively infinite dimensional) lattice.Comment: latex file (25 pages), 4 figures included. To be published in Phys. Rev.
    corecore