2,561 research outputs found

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    Persistent ocean monitoring with underwater gliders: Adapting sampling resolution

    Get PDF
    Ocean processes are dynamic and complex and occur on multiple spatial and temporal scales. To obtain a synoptic view of such processes, ocean scientists collect data over long time periods. Historically, measurements were continually provided by fixed sensors, e.g., moorings, or gathered from ships. Recently, an increase in the utilization of autonomous underwater vehicles has enabled a more dynamic data acquisition approach. However, we still do not utilize the full capabilities of these vehicles. Here we present algorithms that produce persistent monitoring missions for underwater vehicles by balancing path following accuracy and sampling resolution for a given region of interest, which addresses a pressing need among ocean scientists to efficiently and effectively collect high-value data. More specifically, this paper proposes a path planning algorithm and a speed control algorithm for underwater gliders, which together give informative trajectories for the glider to persistently monitor a patch of ocean. We optimize a cost function that blends two competing factors: maximize the information value along the path while minimizing deviation from the planned path due to ocean currents. Speed is controlled along the planned path by adjusting the pitch angle of the underwater glider, so that higher resolution samples are collected in areas of higher information value. The resulting paths are closed circuits that can be repeatedly traversed to collect long-term ocean data in dynamic environments. The algorithms were tested during sea trials on an underwater glider operating off the coast of southern California, as well as in Monterey Bay, California. The experimental results show improvements in both data resolution and path reliability compared to previously executed sampling paths used in the respective regions.United States. National Oceanic and Atmospheric Administration. Monitoring and Event Response for Harmful Algal Blooms (NA05NOS4781228)National Science Foundation (U.S.). Center for Embedded Networked Sensing (CCR-0120778)National Science Foundation (U.S.). (Grant number CNS-0520305)National Science Foundation (U.S.). (Grant number CNS-0540420)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-09-1-1031)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-08-1-0693)United States. Office of Naval Research. Service-Oriented Architectur

    Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves

    Get PDF
    Time-optimal paths are evaluated by VISIR (\u201cdis- coVerIng Safe and effIcient Routes\u201d), a graph-search ship routing model, with respect to the solution of the fundamental differential equations governing optimal paths in a dynamic wind-wave environment. The evaluation exercise makes use of identical setups: topological constraints, dynamic wave environmental conditions, and vessel-ocean parametrizations, while advection by external currents is not considered. The emphasis is on predicting the time-optimal ship headings and Speeds Through Water constrained by dynamic ocean wave fields. VISIR upgrades regarding angular resolution, time-interpolation, and static nav- igational safety constraints are introduced. The deviations of the graph-search results relative to the solution of the exact differential equations in both the path duration and length are assessed. They are found to be of the order of the discretization errors, with VISIR\u2019s solution converging to that of the differential equation for sufficient resolution
    corecore