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Abstract— Time-optimal paths are evaluated by VISIR (‘“dis-
coVerIng Safe and effIcient Routes’), a graph-search ship routing
model, with respect to the solution of the fundamental differential
equations governing optimal paths in a dynamic wind-wave
environment. The evaluation exercise makes use of identical
setups: topological constraints, dynamic wave environmental
conditions, and vessel-ocean parametrizations, while advection
by external currents is not considered. The emphasis is on
predicting the time-optimal ship headings and Speeds Through
Water constrained by dynamic ocean wave fields. VISIR upgrades
regarding angular resolution, time-interpolation, and static nav-
igational safety constraints are introduced. The deviations of
the graph-search results relative to the solution of the exact
differential equations in both the path duration and length are
assessed. They are found to be of the order of the discretization
errors, with VISIR’s solution converging to that of the differential
equation for sufficient resolution.

Index Terms— Graph-search, time-optimal differential opti-
mization, level set equations, reachability, ocean modelling,
computational performance, VISIR.

I. INTRODUCTION

ATH planning problems are typically addressed by merg-

ing optimization algorithms with a modelling of the
environment and the vehicle’s interaction with it. The approx-
imations and numerical errors of the algorithms used for path
computation have rarely been documented or investigated.
This may be due to the exact solution not being available,
particularly for strong and dynamic environments. However,
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the assessment of such errors is critical for real-world applica-
tions, including the optimization of road travel [1], the control
of autonomous robots and vehicles in harsh or remote environ-
ments such as those that are chemically hazardous [2], in the
open and deep ocean [3], in extra-terrestrial environments [4],
climate-optimized aircraft routing [S], and ship routing [6].
Comparing the approximate approaches to exact solutions
in optimal path planning is therefore of benefit. In addition
to saving time and energy, truly optimal paths reduce the
negative effects of transportation on the environment and their
contribution to anthropogenic climate change [7].

In this study, we focus on the prediction of time-optimal
paths for marine surface vessels sailing from one location to
another, under the influence of a dynamic surface ocean gravity
wave field that constrains the surface vessel motion. This is
a common issue for ship operators. Speed loss in waves is
due the degrees of freedom of the vessel and depends on the
hull geometry, cf. Appendix A. Due to this effect, and also for
safety reasons, waves eventually lead to an increase in travel
time and energy usage of the vessel.

Several approaches have been developed for path planning
in dynamic environments, which can also be considered for
marine voyages. In one category of approach the optimal
control problem is formulated on a graph and dynamic pro-
gramming methods (e.g., [8], [9]): heuristic search schemes
such as A* and the Rapidly-exploring Random Tree
(RRT, e.g., [10], [11]), and nonlinear convex optimization
(e.g., [12]-[15]), or evolutionary algorithms (e.g., [16], [17])
are employed to solve the optimal control problem. In another
category, obstacle avoidance is emphasised and potential field
methods [18] or Voronoi diagrams [19] are utilized to identify
safe routes. Another category utilizes Fast Marching Methods
(FMM, [20], [21]) or wave front expansions ( [?], [22], [23]).
Fundamental differential equations governing the reachabil-
ity front and time- and energy-optimal paths for vehicles
navigating in strong, dynamic, and uncertain environments
have recently been developed and used in real settings,
e.g., [3], [24]-[29]. These differential equations provide the
exact solution, so they are used here to evaluate the solution
provided by a graph-search method.

Graph-search methods are powerful and commonly used
in various R&D sectors [30]-[32]. However, using them to
solve time-optimal path or shortest path problems (SPPs)
in strong and dynamic environments presents challenges.
Reference [33] first recognized that Dijkstra’s approach can
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be used (with suitable modifications to include dynamic edge
weights) for finding time-dependent shortest paths. However,
this approach implicitly assumes that waiting at nodes is
possible before traversing each graph arc. The impact of
allowing such waiting times was analysed in [34], and the
authors noted that optimality of the modified Dijkstra’s algo-
rithm depends on the rate of change of arc weights, which
determines the behaviour of the network. For the network to
be of the First-In-First-Out (FIFO) type, this rate, if negative,
should not exceed unity in magnitude (if the rate is positive
the network is already FIFO). Notably, in such FIFO networks,
the Bellman’s principle of optimality holds. Therefore shortest
paths exist, which are simple and concatenated, and can
be computed by a modified Dijkstra’s algorithm. However,
in a non-FIFO network, the Bellman’s principle of optimality
no longer holds, and the shortest path may be not simple
and concatenated, thereby preventing the nodes from being
permanently labelled. The SPP then becomes computationally
hard (e.g. super-polynomial [25]) and the paths computed by
the direct use of the modified Dijkstra’s algorithm are then
sub-optimal. However, if a waiting time at the source node
of the path is feasible, the modified Dijkstra’s algorithm,
which has the same complexity as that of the static version,
can compute the optimal paths. Critically, this simplification
only holds if there are no positive discontinuities of the
arc weights as functions of time, which can be a major
limitation. In a closely related work [35], attempts were made
to establish the complexity for finding the optimum start time
by considering a FIFO network (or a non-FIFO with waiting
times at nodes). They proved that the computational cost of
their arrival function (i.e. start time plus travel time) is non-
polynomial. Even a variational approach to SPP, as noted
by [36], fails to find a global optimum in the presence of
obstacles or a spatially non-convex cost. The author showed
that a Hamilton-Jacobi (HJ) equation should be solved in such
a case. He established an algorithm, which by mimicking that
of Dijkstra, solves a numerical approximation of the HJ and
predicted that methods for propagating wavefronts or level-sets
could be even more appropriate. Finally, if flow advection by
the dynamic environment is strong, i.e., its speed is greater
than the vehicle speed, then local controllability issues will
arise in graph-search methods, as pointed out in [25].

A. Other Methods

A* [10], [37] is an extension of Dijkstra’s algorithm for
least-distance paths. It differs from Dijkstra’s in the fact that
the search is biased towards the destination by using heuristics.
It is still guaranteed to recover the optimal path (as Dijkstra
does) if the heuristics satisfy an admissibility requirement.
D* [38] generalizes A* to real-time planning in environments
with dynamic obstacles, as it can update edge weights during
the computation. Another difference of D* with respect to both
A* and Dijkstra’s algorithms is that it uses a backwards search
from the goal node.

RRT [39] is a stochastic technique for effectively generating
random points linked to a vertex and avoiding obstacles. Thus,
RRT can be used for computing least-distance paths, while
an efficient and accurate extension to least-time paths in a
dynamic environment is not obvious.
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Potential Field methods [18], [40] introduce a representa-
tion of obstacles through a function similar to an energy
potential. The routing problem is then driven by repulsion from
obstacles and attraction towards the goal location. The method
introduces subjective parameters representing the obstacle
and, depending on the energy landscape, may retrieve only
suboptimal (locally optimal) paths.

Voronoi diagrams [19] have been utilized to identifying
minimum distance paths in a partitioned domain.

FMM [20] solve the Eikonal equation to compute
time-optimal paths and is inspired by and mimics Dijkstra’s
algorithm. FMM correspond to a special case of the governing
HIJ equation solved in the limiting case of local controllability,
i.e. when currents are always weaker than the vehicle’s speed
(see Sect. II).

We are not aware of any applications of A*, D*, RRT,
potential field, Voronoi diagrams, and FMM to least-time path
planning in dynamic environments where the vehicle is under
the influence of such strong advection (e.g. by dynamic winds
or currents of speed greater than that of the vehicle).

B. VISIR and Its Evaluation

VISIR (“discoVerIng Safe and efflcient Routes™) is a path
planning model based on a time-dependent version of Dijk-
stra’s algorithm, which is fully integrated with operational
physical oceanography products [41], [42]. This has been val-
idated with both static and time-dependent analytical bench-
marks in [43]. However, the subtlety of the time-dependent
SPP on graphs discussed above makes a more thorough
evaluation necessary.

Thus, in the present manuscript the performance of VISIR is
evaluated by comparing it to the exact governing time-optimal
partial differential equation (PDE) [24]-[26]. This governing
PDE contains three terms: a time-rate of change, a propulsion
term with a vehicle speed accounting for speed loss in waves,
and an advection term that governs current- and wind-induced
transport [25].

However, in this initial comparison, VISIR can only com-
pute optimal paths for surface vessels in the presence of
waves [41]. Thus, the focus of this work is restricted to
time-optimal route planning for vessels operating in dynamic
ocean waves. The inclusion of waves into the PDE model
requires the parametrization of speed loss in waves, which
was taken from VISIR (cf. Appendix A) to allow for
direct comparisons. Currents were only included in VISIR
after the present work was completed, which is described
in [43].

C. Outline of the Manuscript

We first briefly describe the VISIR planner and some of
its specific components, and the differential time-optimal path
planning in Sect. II. In our investigation, new technical features
needed to be developed in VISIR, which are first introduced
in Sect. III. The optimal paths and computational cost of
the VISIR system are then compared to those of the gov-
erning differential equations for time-optimal path planning in
dynamic environments and are provided in Sect. IV. Finally,
conclusions are drawn in Sect. V.
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II. OPTIMAL PATH PLANNING METHODS

The present problem consists of predicting the time-optimal
path of a surface vessel sailing from one location to another
within a dynamic ocean surface gravity wave field that con-
strains the vessel cruising speed. The waves can be provided
either as analysis or forecast fields and the corresponding
constraints on the ship motions are modelled and assumed
known.

Problem Statement: Mathematically, the problem to be
solved is to predict the path x*(t) : [0,7*] — Q C R? of
a vessel moving between an assigned start x(0) = x4 and an
end location x(7*) = xp in a minimum time duration 7%,
given that the vessel sails at a time-dependent flow-relative
speed F'(x,t), a.k.a.Speed Through Water (STW). F'(x,t)
includes the speed loss due to the dynamic inhomogeneous
wave field.

In the present work, we evaluate the capacity of the
graph-search method (VISIR) to solve the above minimization
problem in a dynamic environment by comparing it with the
numerical solution of the exact HJ equation for the signed
distance or level-set-equation (LSE). These two methodologies
are described in the following two subsections.

A. Graph-Search Method (VISIR)

The graph-search method is implemented in the VISIR
model. It is distributed as free and open source software'.
VISIR is the basis of an operational service for motorboat
route planning in the Mediterranean Sea [42], which can also
be used by sailboats [44].

Central to VISIR is the assumption of piecewise uniform
motion, according to the trajectory differential equation

=~ Fx1)=0 (1)

that simply relates the time-rate of the change of vessel
position to vessel STW. Here we refer to the VISIR version
that allows for vessel speed variations in time and space but
neglects the advection caused by environmental flows V (x, t)
(e.g. by ocean currents). This reflects the VISIR version at the
time of this paper’s submission, but it has since been extended
to include also advection by ocean currents [43].

Paths of minimum travel time are obtained using vessel
heading as the control variable. The inter-nodal connections
of the graph (or “arcs”) are assigned and they determine the
angular resolution, cf. Sect. III-A. Arc weights dt are obtained
from (1), which is discretized by approximating dx/dt with its
finite difference quotient. This leads to a first order truncation
error. Finally, a graph search method is run, where the arc
weights are space and time-dependent quantities obtained
from the discretization of (1). The graph search method
used is a modified Dijkstra’s algorithm [45] for dealing with
time-dependent arc weights, cf. Sect. III-C. It returns, through
the orientation of the arcs, an estimate of the optimal control
policy, i.e., the optimal sequence of headings. In Sect. IV-B
we show that, with sufficiently fine grid resolution, Dijkstra’s
algorithm converges to the exact solution, but only for FIFO

' www.visir-model.net

networks and if the motions are not affected by environmental
flows larger than the nominal vehicle speed. In particular, for
the present cases with zero ocean advection (1), the vessel
heading is identical to the course over ground. Other technical
features already implemented in VISIR include:

1) Shortest Path Algorithm Costs: For Dijkstra’s algo-
rithm with static arc weights, the computational cost for
path computation scales as the square of the number n,
of grid points or, if a convenient data structure is used,
as ng log(ng). The data structure will not reduce the number of
graph nodes n, expanded by the algorithm, but can facilitate
operations on the list of nodes, such as insertion, removal,
and minimum search [46] without improving the scaling of
the worst-case estimate. While such data structures are not
as yet used in VISIR, it does make use of a “forward star”
representation [47]. This is a cleverer storage scheme used
for maintaining and updating intermediate results. It has a
beneficial effect on Djikstra’s algorithm performance, without
changing its worst-case estimate. In a forward star repre-
sentation, the shortest path algorithm is provided with the
list of all outgoing arcs from each graph node. Furthermore,
a pointer is maintained with each node for speeding up access
to its incidence list. This network representation improves the
performance of the algorithm, as the full list of graph nodes
is not accessed.

For the dynamic Dijkstra’s algorithm, the computational
cost depends on how often the arc weights are updated. More
details on this can be found in Sect. III-C.

2) Coastal Navigation: VISIR was originally designed for
short-sea shipping. Its capacity to deal with complex coastline
and shoals is based on masking, cf. Sect. III-B. An option for
controlling the minimum offshore distance can be used [42].
When the spatial resolution of the graph grid is higher than the
wave forecast resolution [48], fields are extrapolated inshore
through a “sea-over-land” procedure in the coastal zone [41].
Other extrapolations would also be possible, such as Laplace
interpolation (e.g., [49], [50]) to diffuse data to the higher
resolution grid points, which were previously land.

Synthetic information about how vessel interaction with
waves is modelled is given in Appendix A. Other algorithmic
updates of VISIR are reported in IIT and Appendix B.

B. Differential Path Planning (LSE)

For a ship moving from point A to point B in a strong and
dynamic environment, the exact reachability front, i.e., the set
of all points that can be reached by the vehicle in a given time,
is governed by the HJ equation

0p(x,t
D) | Pl IV6(x, )]+ V1) - Volx ) =0 @)
with initial conditions ¢(x,0) = |x — x4| and appropriate

boundary conditions for coastlines and the open ocean [25].
Here, ¢(x,t) is a scalar reachability front tracking level set
function (e.g., the signed distance field). The zero level set
contour of the solution of (2) at £ > 0 is the reachability front
for a vehicle starting from x4 at ¢ = 0, and the first time ¢ at
which the zero level set contour reaches the target B. The exact
time-optimal path X*(¢) can be extracted from the time series
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of zero level set contours by solving the particle backtracking
ordinary differential equation (ODE)

dX*() e Vo(X*(1),1)
@~ PG,
= V(X*(t), 1),
X*(T*(xB;%x4)) = XB. 3)

Thus, time-optimal path planning consists of two steps: i)
the propagation of the reachability front by numerically com-
puting the viscosity solution of (2); ii) computation of the
time-optimal trajectory by solving (3) (to be understood in
the generalized gradient sense).

Numerical schemes have been developed to complete
the above steps [25] and generalized for various optimal-
ity criteria, including the time-, energy-, coordination-, and
interception-optimal planning of swarms of AUVSs in realistic
data-assimilative dynamic ocean re-analyses [26], [S1]-[56].
This was also recently utilized successfully in real-time exer-
cises at sea with real AUVs [28], [57].

In the following we refer to the level-set-based numeri-
cal method used to solve the differential time-optimal path
planning equations as the LSE method. It has several useful
features and below we list those relevant to ship routing.

1) Exact Solution in Strong Advection and Dynamic Envi-
ronments: The solution of the level-set PDEs, Eq. (2-3), is the
exact time-optimal path between given endpoints, whenever
such a path exists. This is true even in challenging situations,
such as when multiple equivalent optimal paths exist or there
are strong environmental fields. In fact, for both these situ-
ations the reachability front tracking level-set fields become
non-differentiable. However, the viscosity solution of the HJ
equation (2) has weak requirements in this field, namely to be
Lipschitz-continuous.

When currents are stronger than a ship’s speed, local
controllability is an issue. This is accounted for by the LSE
solution, e.g., [25]. Classic graph-based methods are, however,
not guaranteed to provide the true solution in this case, hence
we do not include currents in the present evaluation of VISIR.

Finally, as for other consistent and stable numerical solu-
tions of PDEs [58], [59], the solution of (2) converges to
the true solution as the spatial and temporal resolution is
increased.

2) Computational Cost: The computational cost of solving
the level-set advection PDE scales linearly with the number
ng of grid points [?], [24], [25]. In addition, to track the
reachability front accurately, the PDE can be solved only in a
narrow band of points around the zero level-set contour instead
of the whole domain. This further reduces the computational
effort required. The reachability fronts contain paths to all
the reachable points for the vehicle, starting from A at time
t = 0. Thus, if a different endpoint other than B or multiple
end points anywhere in the domain are desired, only a scalar
backtracking ODE needs to be solved for each end point,
the computational cost of which is very cheap and also scales
linearly with the number of path waypoints desired. The LSE
cost linearity is inherent to the PDE solver [25], regardless of
whether a narrow band is used or not. In the present study,
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the LSE computation is completed over the whole domain
(i.e. without a narrow band) to ensure that VISIR and LSE
operate on the same number of grid points.

The total computational cost also scales linearly with the
number of time steps. For the present application, this is cho-
sen to satisfy a Courant-Friedrich-Levy (CFL) condition [25]
for the problem with the highest mesh resolution, and then
kept roughly constant, cf Tab. II. If a narrow-band spatial
discritezation is used to evolve the zero level-set using only
the necessary degrees of freedom (e.g.the necessary finite-
volumes), the computational cost is further reduced [25].

Finally, we note that the LSE grid can be coarsened in
space and/or in time to reduce the computational cost, just
as the number of graph nodes can be reduced in the VISIR
scheme. The accuracy of the solutions of both approaches
will thus be reduced, as they are optimal for coarsened or
averaged/smoothed dynamic wave field and coastlines. For
balance, we use the same resolution for both LSE and VISIR
when directly comparing their solutions.

3) Starting Time: In addition to computing the time-optimal
path for a given start time, the level-set PDEs can also be used
to determine the optimal vehicle start time and thus reach
the desired end point in the quickest time. In the presence of
adverse environmental conditions, this start time may be later
than the earliest possible [25].

III. EVALUATION APPROACH AND UPDATES TO VISIR

To evaluate the solution computed by VISIR, we compare it
with the time-optimal path computed by solving the LSE with
speed loss in waves provided by the same vessel response
parametrization of VISIR, but without current advection. The
latter is a simplification when compared to previously pub-
lished time-optimal planning for AUVs and gliders in which
vehicles speeds were similar to those of currents. As there are
no advection terms and the ship speed is always positive in our
case, the ship can always get to the destination in a finite time.
As the spatial and temporal resolution are increased, a graph-
search scheme such as the modified Dijkstra’s algorithm and a
numerical solver for the level-set PDE are expected to provide
solutions that converge with each other.

For this evaluation, the overall sequence of VISIR and
LSE steps is summarized in Fig. 1. First, a G(v, Az) graph
with order of connectivity v and mesh resolution Ax is
prepared, ensuring that the shoreline-crossing arcs are pruned.
VISIR is then run on the G’'(v, Ax) graph resulting from
this pruning. Subsequent steps include the computation of the
vessel response function (Appendix A), a land-sea mask, and
the regridding of the wave field on the grid of G'(v, Ax).
Both the vessel response function and the mask are used for
the initialization of LSE. Thus, it is ensured that both VISIR
and LSE use exactly the same bathymetry, shoreline, input
forecast fields, and vessel response function. The evaluation
is then restricted to the effect of the subsequent steps (those
below the darker arrows in Fig. 1).

For VISIR, these are: a further pruning of G'(v,Ax)
accounting for Under Keel Clearance (UKC), resulting in a
new graph, G” (v, Ax); the computation of the arc weights
dt defined by (1); and the run of the shortest path algorithm.
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VISIR LSE

* Prepare a graph G(v, Ax)
* Pruning step i) of Sect.lll.B

* Initialization:
* Vessel response
* Lland-sea mask

4

* Interpolate forecast field in time

* Compute vessel speed at every
grid point and time step

* Solve Eq.2

* Solve Eq.3

§

LSE Optimal Path

* Compute vessel response function
* Compute a land-sea-depth mask
* Regrid the forecast fields

4

« Compute arc weights, Eq.1
* Run shortest path algorithm

§

VISIR Optimal Path

>

Fig. 1. Summary of main steps of the VISIR-LSE comparison strategy.
The shaded box contains the VISIR steps and the outcome is used in the
LSE runs. The steps below the darker arrows are the objects of the present
evaluation exercise.

For LSE, these are: the time-interpolation of the forecast field,
the computation of the vehicle’s speed at each grid point in
space and time; and the solution of (2-3). Both VISIR and
LSE optimal paths and kinematic quantities are then extracted
and compared, as described below.

To increase the accuracy of VISIR, we conducted tech-
nical developments with respect to the previously published
version [41]. These involved the graph order of connectivity,
the masking procedure, and the use of a temporal interpolation
for the edge weights. We present these in the following
subsections and then use them in the actual evaluation and
comparison experiments of Sect. I'V.

A. Graph Order of Connectivity

To smooth the VISIR paths, an increase in its angular
resolution is realized by additional graph edges. However,
it is essential that this is accompanied by an increase in the
horizontal resolution of the graph mesh. If not, new directions
are created by the additional edges, but their lengths increase.
This in turn reduces the accuracy of the representation of the
environmental field (significant wave height and direction) on
the graph, which is given by the average of its values at the
graph nodes. The wave height field then determines the travel
time along the edge, and thus contributes to the total duration
of the voyage T, which is the objective of the optimization
algorithm and the metrics used for validating VISIR vs. LSE.

VISIR graph nodes were previously linked only to all other
nodes reached via either one or two hops. In this work, a larger
number of hops is allowed. For a maximum of v hops, in a
directed graph with a squared mesh there are

D, =4v(v+1) 4)

such arcs (cf. Fig. 2). The number v is the order of connectivity
and D, is the “average degree of the graph” [60].

While in [41] only ¥ = 2 was used, in the present work
graphs up to v < 7 were produced. This enables the angular

&
A\

Fig. 2. Stencil of graphs G(v = {1,4}; Az = OH;) of variable path
resolution OP,. The v(v + 1) nodes within a single quadrant are displayed
as filled circles (their pattern distinguishes between rgl_ei linked to O at
successive v values). The minimum resolved angle is H, O P,,. Other arcs of
G(v; Ax) are not displayed. Here, the path resolution AP = OP, varies
with the graph order v.

TABLE I

CONNECTIVITY AND RESOLUTION PARAMETERS FOR GRAPHS
WITH SQUARED MESHES

v D, A0 AP/(V2Ax)
Eq.(6) Eq.(D
1 8 45.0 1.000 0.900
2 24 26.6 1.581 1.525
3 48 18.4 2.236 2.198
4 80 14.0 2916 2.886
5 120 11.3 3.606 3.582
6 168 9.5 4.301 4.282
7 224 8.1 5.000 4.983
10 440 5.7 7.106 7.095
20 | 1680 29 | 14160 14.154

resolution Af (corresponding to angle HTO\P,, of Fig. 2) to
be increased up to:

A = arctan(1/v) 5)

Values of A# and the number of outgoing arcs per node are
reported for various v in Tab. L.

Several authors using graph-search methods have built
graphs with a higher v for enhancing the smoothness of
the paths, cf. [61], [62] and [63]. However, a point that has
until now been disregarded (apart from a suggestion in the
geometrical construction of [61]) is that acting on just the
order of connectivity also alters the length of the arc realizing
the finest angular resolution. This length is hereafter referred
to as the path resolution AP, cf. Fig. 2.

The arc weights are computed by VISIR as an average of
the field values at the nodes. As AP increases, the accuracy of
the estimation of the arc weights, and particularly vessel speed,
decreases. Thus, to increase the angular resolution without
degrading the path resolution, it is necessary to refine the
graph mesh spacing Az. By requiring that the length of the
arc leading to A of (5) remains constant as the connectivity
is increased, the following relation is derived:

AP/Az = \/1+12 (6)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

v=1
45
/1/=2
H1 30
- -3
H2 v
° H
3
i H 15
ol ™~
° N
® 4 v=4
®
0 05 1 °.2
O P

Fig. 3. Stencil of graphs G(v = {1,4}; Az = OP/v/1 + v2) of constant
path resolution AP = OP. For a given v, the gridpoints are aligned along
the angle A@ defined by (5) and their spacin/&Aw/ OH; as a function of A6
is the solid line per O and Hi. Angles OH, P = 90° Vv correspond upon
axes tilting to OH, P, of Fig. 2.

The graphical construction of Fig. 3 makes it clear that the
path resolution is AP = 2 Az, (with Az; = OH,) for
all graphs satisfying (6). The AP/(Ax+/2) ratio represents
the refinement factor of the mesh spacing with respect to the
v = 1 case, which is necessary to maintain a constant path
resolution AP.

By computing the limit value of both (5) and (6) for v — oo
it is found that:

Az = AP - Af (N

(with A# in radians). That is, for preserving path resolution
in graphs of a higher order of connection, mesh spacing
Ax must increase proportionally to angular resolution A6.
In practice, as seen from the last two columns in Tab. I, the
error committed using Az from (7) with respect to (6) is
already below 1% for v > 5.

B. Masking

To account for landmass and shallow waters, before the run
of the shortest path algorithm in VISIR the graph is processed
by removing (“pruning”’) some of its arcs:

i) Arcs intersecting the shoreline are all pruned;

ii) The depth of an arc is taken to be the minimum depth
at either arc node. Unsafe arcs, i.e. arcs whose depth is
smaller than the vessel draught (UKC<O0) are pruned.

This two-step processing corresponds to the masking proce-
dure described in [41]. However, it can lead to a failure in
some cases, and safe v-hop arcs (v > 1) intersecting unsafe
1-hop arcs will not be pruned by step ii). To amend this, a third
pruning step is applied in this work:

iii) If a v-hop arc (v > 1) intersects with an unsafe 1-hop
arc, and this intersection is not at the head or tail of either
arc, the v-hop arc is pruned.’

irc intersection may occur at various positions along the arc. E.g. in Fig. 2
O P5 (a 2-hop arc) intersects both H1 P; and Ha P> (both 1-hop arcs). While
intersection with Ho P> occurs at O P>’s head node (P»), intersection with
H1 Pi occurs at a point that is neither head nor tail of either arc
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In Sect. IV-A we report a specific effect of step iii) for the
case study considered.

In LSE, the equations are not simply solved under the mask,
and island boundary conditions are utilized [51]. Therefore,
no special pruning or treatment is necessary in the set-up of
the reachability analysis.

C. Temporal Interpolation

Operationally, the wave forecasting is completed before the
ship routing computations. Thus, the wave forecasts are only
available at output times, A;r of the wave model, whereas
the path planner usually has a finer temporal resolution A;.
Therefore, a temporal interpolation scheme is used to estimate
the environmental conditions at the temporal resolution of the
planner. For LSE, this is simply a linear interpolation from
A¢g to A;. For VISIR, prior to the present comparison, arc
weights were evaluated at the earliest possible time-step, /3,

¢ =1+floor(r;/Ag) ®)

with the time 7; needed for reaching (“expanding”) node j
along the shortest path (77 = 0 at the start node 1) and
the time-step duration A;g. If 7; does not coincide with
the onset of a new time-step of the wave field, (8) still
forces the evaluation of the arc weight at the time of the
onset. The arc weights are thus kept constant during each
time-step of the wave field. The advantage of this approach is a
computational cost identical to that of a static algorithm [34].
The limit of this approach is the representation of rapidly
varying environmental conditions. To improve this situation,
the arc weights are evaluated at the exact time the tail node
is expanded. This is achieved by linear interpolation in time,
i.e., the real number £ is computed:

L=1+T1;/MAg 9)

and a linear interpolation in time of the arc weight is per-
formed to estimate their value at ¢ = L. The related logical
modifications to the pseudocode of the VISIR shortest path
function are reported in Appendix B.

IV. RESULTS

To assess the impact of the evaluation strategy and the
advances of VISIR described in Sect. III, we focus on the
case study #1 of [41]. This is a path planning exercise for a
ferryboat crossing the Sicily Channel (about 120 nmi*) during
a severe storm, with waves up to more than 5 m in terms of
significant height. The sea state corresponds to analysis fields
of an operational implementation of a NEMO-WW3 coupled
model in the Mediterranean Sea [48]. The interaction between
the ferryboat and the waves is based on a parametrization of
wave-added resistance, as in Appendix A. An account of the
circulation pattern in this part of the sea is given in [64].

The time-optimal route is then computed using (1) for
preparing the arc weights and Dijkstra’s method in VISIR and

3The function floor rounds to the nearest integer less than or equal to its
argument.
4nmi = nautical mile = 1 852 m.
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Fig. 4. Comparison of the VISIR (blue) vs. LSE (red) path maps (left column) and speed timeseries (right column). The first-row panels correspond to the case
without time-interpolation. VISIR and LSE mesh resolutions are 1/94° and 1/90° respectively, in both the first and second row panels and 1/262°y, and 1/240°y
in the third row panels. Animations of the paths on top of the time-dependent significant wave height field can be viewed at https://av.tib.eu/media/35106,

https://av.tib.eu/media/35107, https://av.tib.eu/media/35108, respectively.

by numerical solution to (2-3) in LSE. Again, we emphasize
that advection by currents is not used in this test case for either
VISIR or LSE, i.e. V = 0 in (2-3). In addition, unlike [41],
the dynamical safety constraints on vessel intact stability are
disabled in VISIR and not present in LSE. They could be
implemented in LSE using the technique for path planning in
the presence of moving obstacles developed in [51].

We next compare path and speed profiles in Sect. IV-A,
and then study the convergence of the solutions as the dis-
cretization error is reduced in Sect. IV-B, and finally analyze
the computational costs and the scalings with problem size in
Sect. IV-C.

A. Paths and Speed Profiles

The optimal paths and corresponding vessel speed profiles
are displayed in Fig. 4 for different graphs G” (v, Ax).

At all spatial resolutions, the wave field pattern induces a
southbound diversion of the paths, which is instrumental in
avoiding rough seas and thus realizing higher vehicle speeds
through water. Thus, the destination is reached after a time 7™
quicker than along the rhumb line between A and B.

The first row (panels a and b) displays a situation similar
to that already computed in [41] for VISIR: the graph uses
the same order of connectivity (¥ = 2) and a 50% finer
mesh spacing Az and, for both VISIR and LSE, the time-
interpolation is disabled. However, in this case the updated
arc pruning procedure described in Sect. III-B prevents, due
to the UKC constraint, all paths from sailing north of Favi-
gnana island (ca. 37.93°N, 12.31°E). This was not the case
in [41], where a northern passage for the least-distance path
(“geodetic route”) was computed. The optimal path com-
puted by VISIR exhibits three sudden changes of heading at
about 2, 4 and 12 hours after departure: these are due to the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II

SUMMARY OF VISIR-LSE COMPARISON METRICS FOR THE PRESENT CASE STUDY (DYNAMIC WAVES BUT ADVECTION-FREE). N¢, ng, A
ARE THE NUMBERS OF TIME STEPS, MESH GRID POINTS, AND GRAPH ARCS, RESPECTIVELY

model 1/Az v  T-interp Ny ng A CPU time T*(xp;xa) L(xp;xa)
opt [s] tot [s] [hrs] [nmi]
300 1 y 16 3 724 28 688 1.3 4.8 14.5911 140.35
474 2 y 16 9 305 214 908 9.1 15.1 13.9558 130.89
VISIR 67.1 3 y 16 18 642 861 430 352 48.7 13.7894 130.53
(AP = 2.8nmi) 875 4 y 16 31 985 2 465 004 102.0 135.0 13.7424 129.99
1082 5 y 16 48 920 5 657 446 228.2 301.0 13.7206 130.16
1290 6 y 16 69 623 11 275 440 458.8 586.8 13.7301 130.93
1500 7 y 16 93 954 20 294 288 829.7 1082.6 13.7278 130.93
60.0 1 y 16 14 993 117 642 5.8 12.7 14.6275 140.42
949 2 n 16 37 564 883 882 9.7 433 13.7742 131.52
VISIR 949 2 y 16 37 564 883 882 424 75.7 14.0340 132.10
(AP = 1.4nmi) 1342 3 y 16 75 023 3 531 744 160.8 232.8 13.7939 130.59
1749 4 y 16 127 882 10 036 000 461.8 651.1 13.7420 130.19
2163 5 y 16 195870 23 061 464 | 1041.1  1529.3 13.7356 130.71
90.0 1 y 16 33 774 266 716 15.6 30.5 14.6607 140.52
VISIR 1423 2 y 16 84 443 1 999 666 109.2 176.6 13.8992 131.02
(AP = 1.0nmi) 201.3 3 y 16 168 937 8 003 026 441.7 668.9 13.7707 131.18
2624 4 y 16 288415 22775600 | 1225.1 1866.7 13.7356 130.69
60.0 - y 1415 14 993 - 39 21.3 14.15 128.74
90.0 - n 510 33916 - 32 174 13.60 129.72
LSE 90.0 - y 1 400 33916 - 8.8 479 14.00 128.97
1200 - y 1395 60 447 - 15.6 85.2 13.95 129.10
240.0 - y 1379 241 415 - 62.4 340.8 13.79 129.84

coarse angular resolution of the graph. Instead, at this Az,
the LSE path is smoother than that of VISIR. The speed
profiles of both VISIR and LSE (Fig. 4b) show, starting
from about 5 hours since departure, the saw-tooth feature
that was already noted in [41] and which is due to the
onset of the hourly time steps of the significant wave height
field.

The second row (panels c,d) displays the results on the same
VISIR graph and LSE mesh of (panels a,b) upon application
of time-interpolation, cf. Sect. III-C. Even though in this case
the topological part of the optimal paths is not significantly
modified, the speed profiles are altered. They are now much
smoother for both VISIR and LSE and do not contain any
saw-tooth feature. This leads to navigation time savings of
about 20 minutes, cf. Tab. II.

The third row (panels e and f) displays the results at the
best spatial and angular resolution, using also time interpola-
tion. Both VISIR and LSE path results are smoother. Minor
differences are found only in the coastal zone off Tunisia,
due to the VISIR path sailing slightly more inshore, where a
better sea state and thus a higher vessel speed are experienced.
At even higher resolution, these differences should disappear
and the VISIR time-optimal path then converges with that of
the LSE.

The three path comparisons are also analyzed in terms
of the Fréchet distance between the VISIR and the LSE
solution [65]. The values reported in Fig. 4a.c.e are found
to be in the order of path resolution AP (cf. Tab. II) or
smaller.

B. Convergence of Solution Metrics

Two metrics are considered for evaluating the impact of
discretization errors: the optimal voyage duration 7% (x5, X ),
which is the objective of the optimization, and the correspond-
ing length L(xp;x4) of the optimal path. These are displayed
in the two panels of Fig. 5.

The various series displayed correspond to different values
of the path resolutions AP (cf. Sect. III-A). The general trend
observed for both 7" and L is that for both VISIR and LSE
they converge, increasing mesh parameter 1/Ax.

However, as noted in Sect. III-A, for T* from a graph-search
method to converge it is necessary to increase both mesh and
angular resolution. If only the mesh resolution is changed,
no new headings are available and the path cannot be made
spatially (L) shorter as the mesh resolution is increased. For
example, at v = 1 only headings he {N, NE, E, SE, S, SW,
W, NW} directions are possible. This results in the length L
of VISIR optimal paths being nearly independent of Ax for
v = 1, Fig. 5b. For larger v values, the variability of L with
Az is limited to the order of magnitude of the mesh spacing.

For VISIR, both T and L plots exhibit oscillations, which
are more pronounced for the L datapoints, Fig. 5. These
probably result from the existence of a common set of arcs
in the graphs of identical AP but different (v, Az). This
enables the optimal path to have a similar length on the two
different graphs. Due to the spatial inhomogeneity of the wave
field, the same L may still lead to different 7, and thus 7™
oscillations are less pronounced.
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Fig. 5. Optimal path durations T*(xp;x4) (panel a) and corresponding

path lengths L(xp;x4) (panel b) as functions of mesh parameter 1/Ax:
VISIR datapoints (blue filled symbols) are also labelled by the order of
connectivity v. For a given AP they are joined by a spline interpolation
(solid blue lines). AP = [2.8,1.4,1.0] nmi, respectively, for the low (1),
medium (m) and high (h) resolution series. LSE datapoints are displayed as
empty red diamonds. The mesh spacing (1/16°) of the WW3 wave model
fields used in the input is marked by a dashed vertical line.

This behaviour in the graph-search method of VISIR con-
trasts with the exact time-differential method of LSE, where
convergence of 7™ is achieved by only increasing mesh
resolution Ax. In fact, in LSE new headings are generated by
projecting normals to the reachability front, cf. first term on the
r.h.s. of (3). This leads to a 7™ that monotonously converges
to about 13.8 hours, with a negative slope. For the lengths,
LSE convergence to the asymptotic value L = 130 nmi instead
occurs with a positive slope because, as for the coarser meshes,
the path endpoints are closer. Those too inshore cannot be
chosen because of the initialization of the reachability front
of the LSE method (to reach the coastline a direct travel-time
model is commonly used, which is in agreement with real
ship practices in the vicinity of harbours). Thus, for too
coarse meshes, LSE underestimates L and, in turn, 7. VISIR
endpoints can instead be placed exactly at the coastline, at any
graph mesh resolution.

Finally, Fig. 5 shows that to achieve the convergence of
the solution, meshes of quite high spatial resolutions must be
used. In particular, Az must be decreased by at least one order
of magnitude with respect to the resolution of the wave fields
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Fig. 6. Optimal route CPU times as a function of grid spacing ng.
Least-square fits of power-law trends (lines) are also displayed. VISIR and
LSE results are portrayed as blue and red symbols, respectively. AP =
[2.8,1.4,1.0] nmi, respectively, for the low (l), medium (m) and high
(h) resolution series.

provided as inputs to both VISIR and LSE. This is as expected
for the hyperbolic PDE (2).

C. Scaling of the Computational Cost

For completing the assessment of VISIR with respect to the
exact time-differential method of LSE, we next compare the
computational costs of their solutions. First, we note that:

i) Similar computers were used: VISIR results were com-
puted on a 3.5GHz, Intel Core i7, 32 GB RAM, DDR3 iMac
and those for LSE on a 3GHz, quad core, 16 GB RAM,
DDR2 PC (the evaluation experiment was carried out at two
different Institutions);

ii) The VISIR total computational time reported here does
not include the time for graph computation and pre-processing
(cf. Sect. III-B).

iii) LSE data consists of empirical data for the lowest
resolution case (Az = 1/60°) and nominal data for all other
cases.

All performance data is reported in Tab. II, together with the
parameters characterizing the size of the numerical problems.
The CPU times for the computation of the optimal routes are
displayed as functions of the number n, of spatial gridpoints in
Fig. 6. While LSE is linear in n, [25], VISIR currently scales
as ng (as expected from a basic implementation of Dijkstra’s
algorithm [46]).

The scaling laws are not affected by the different hardware
used for the numerical tests. The main aim of the present
evaluation exercise was to evaluate and validate the previ-
ously published solution of VISIR, in which the Dijkstra’s
algorithm did not include binary heaps or a priority queue.
In the future, more advanced performance experiment can be
completed when the VISIR shortest path algorithm uses data
structures enabling ideal scaling O(nylogn,). We note that
such data structures would be invasive in the VISIR code
validated through the present exercise, without changing its
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TABLE III

SUMMARY OF VISIR AND LSE COMPUTATIONAL PERFORMANCE AND
GOODNESS-OF-FIT. THE FIT FUNCTION IS a - (ng4)®

model type AP [nmi] a [s] b[—] rmse [s]
VISIR optimal route 23 1.36e-07  1.97 1.42
total job 1.69¢-07  1.97 6.54
optimal route 14 6.75¢-08  1.93 2.98
total job 5.70e-08  1.97 11.02
optimal route 10 3.71e-08  1.93 5.88
total job 6.21e-08  1.92 0.09
LSE optimal route i 2.58e-04  1.00 0.02
total job 1.41e-03  1.00 0.14

solution (optimal path and duration). This contrasts with the
modifications made here for the time-interpolation of edge
weights Sect. III-C, which also affected and improved the
VISIR solution.

For both VISIR and LSE, the actual number of Degrees
of Freedom per time step (DOF) and its dependence on grid
spacing Az can be estimated as follows. First, we note that
in a rectangular mesh there are n, ~ (1/Ax)? gridpoints.

Then, for VISIR, the shortest path algorithm depends on the
number A of arcs, scaling as D,ngy, cf. (4). In a graph con-
serving path resolution, the v parameter varies with (1/Ax),
cf. (6). This finally results in:

DOFVISIR = A= O(VQ’I’Lg) ~ (1/A$)4 (10)

For LSE, the DOF is only given by the number of grid points
Ng:

DOFisp = ny = O(ny) ~ (1/Ax)? (11)

Thus, mesh refinement is computationally more expensive
in VISIR, as the graph connectivity has to be increased
to preserve the path resolution (cf. AP in Fig. 3). If the
path resolution is not preserved, convergence of the solution
(cf. datapoints of given v in Fig. 5) cannot be achieved in a
graph-search method.

V. CONCLUSION

In this study, an initial evaluation of a graph-search approach
for time-optimal path planning in dynamic ocean surface
gravity waves (VISIR) was completed by comparing it with
a numerical solver of the governing differential equations for
such path planning (LSE). The comparison also allows for the
validation of VISIR’s optimal path planning in time-dependent
wave fields, which commonly constrain the cruising speed of
ships.

VISIR and LSE were compared to compute time-optimal
paths without advection by ocean currents. Under these condi-
tions (ocean current speed is null, thus less than vessel speed),
the graph-search method also solves the exact time-optimal
path.

After several technical improvements (the time-interpolation
and masking procedure in VISIR, and vessel speed loss in
waves for LSE, Sect. III), we indeed found that the VISIR
solution became similar to and converged to that of LSE.
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As shown in Sect. IV, the two approaches obviously differ in
their key ideas, numerical implementation, performance, and
capabilities to manage limit conditions (e.g. currents stronger
than vessel velocity, delayed start of the path, and non-FIFO
arc weights for LSE; and in direct coastal endpoints for
VISIR). We note that for VISIR (and a graph-search method
in general) to converge, it is not sufficient to simply increase
the mesh resolution. The new procedure for mesh refinement
and contextual increase in graph connectivity (Sect. III-A and
Fig. 3) is necessary, cf. (6).

To complement the analysis, a preliminary assessment of
the computational performance of the two numerical solvers in
their present implementation was provided. The present VISIR
code performance scales such as ng and could be improved
at most to nglogng. The LSE cost scales linearly with the
number of grid points n4. Thus, the present LSE software
delivered the results on the finest mesh in about 5 minutes,
while the corresponding VISIR results were obtained in about
a b times that duration.

The capability to deal with advection by ocean currents
has also recently been introduced in VISIR for vessels faster
than the flow [43]. Instead, for small or very slow surface
vessels, the computational cost of the graph search method
may significantly increase. It could even lead to suboptimal
solutions if the magnitude of local currents exceeds the top
vessel speed (local controllability). In [66] a graph based
method was tested versus an optimal control method for AUV
path planning, requiring an adaptive time step for delivering
the correct results. In future, this needs to be investigated also
through VISIR.

Nevertheless, the present paper provides, to our knowledge,
the first quantitative comparison and convergence analysis of
two end-to-end path planning systems for a realistic ship
routing application.

Additional areas of development for VISIR may include
some problems already addressed through the LSE, such
as interceptions and multi-waypoint missions [29], [55], [56],
energy optimization [54], onboard learning [57], and clus-
tering of vessels to low-risk routes in uncertain flow
environments [67]-[69].

APPENDIX A
VESSEL INTERACTION WITH WAVES

Maritime path planning is particular to the terrestrial routing
and the specific vessel type can make a difference. The VISIR
model version assessed by the present evaluation exercise
refers to some of the vessel types sailing in the Mediterranean
Sea (fishing vessels, short trip coastal freighters, displacement
hull, yachts and pleasure crafts, and small ferry boats). In the
present exercise a ferry boat is considered, and the speed loss
in waves (cf. Sect. III) corresponds to the parameterization
documented in detail in [41], and is briefly reviewed as
follows.

The propulsion system delivers, through the main engine,
shaft and eventually the gearbox, a power P, to the propeller.
In the steady state, P, balances the power dissipated by the
resistance acting on the propeller. The latter consists of a calm
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water R. and a wave-added component R,y,. R. includes the
frictional and wave making resistance and is parametrized as
a polynomial in vessel STW. R, is a parametrization of
pitch and heave energy loss, based on a statistical reanaly-
sis of numerical simulations via Gerritsma and Beukelman’s
method [70]. It depends only on vessel length, beam, draught,
and significant wave height. The vessel top-speed allows for
the value of the wetted surface to be identified, which is given
in R.. The power balance results in the vessel speed being
one of the roots of a polynomial equation.

The relation of this vessel model to typical issues in

navigation is briefly reviewed as follows:

e Currents are addressed by the new VISIR model
version [43], accounting for vector composition of ocean
velocity and vessel STW;

o Winds are not yet dealt with in the VISIR modelling of
motorboats, and only sailboat routing though a polar dia-
gram is considered [44]. This has also been implemented
in LSE. The effect of wind is important for vessels with
a large superstructure and will be considered in VISIR in
a new project’;

o Fuel consumption is proportional to engine break power
P, and sailing time 7. In [43], and optimal path com-
putations are performed to account for both factors;

o Emissions in [43] the impact of VISIR path optimization
on CO2 emissions was assessed through the use of
an indicator of carbon intensity (EEOI) defined by the
International Maritime Organization.

o Safety constraints for intact stability are included in
VISIR. However, they were not considered for the present
evaluation as the focus of the manuscript was an assess-
ment of VISIR as a path planner. Dynamic safety con-
straints can also be addressed in LSE by means of
masking [51];

o Manoeuvrability issues may arise from too rapid
changes in either vessel heading h and/or engine power
setting P,. Vessel turn radius [71] typically reads a few
vessel length units, which is less than 1 nmi for the
vessel under consideration. changes in Fig. 4 imply a
radius of curvature of several tens of miles, which is large
enough with respect to the vessel rate of turn. P, is kept
constant within both VISIR and LSE for the sake of this
exercise. For open-sea navigation, which is well outside
the zone where ship acceleration/deceleration transients
usually occur, this is an acceptable approximation.

A recent evaluation of time-optimal trajectories computed by
VISIR and actually sailed trajectories in the Southern Atlantic
Ocean was conducted in [72]. These preliminary results
indicate that only part of the actually sailed trajectories are
to some extent optimized.

APPENDIX B
PSEUDOCODE OF THE VISIR TIME-DEPENDENT
ALGORITHM

In the following pseudocode, j,, je are the start and end path
node, respectively; fj is the predecessor (“father”) of node k

Shttp://www.bit.ly/guttaproject

Algorithm 1 DIJKSTRA_TIME-INTERP
vinputs: js, je, {(7k)}, {a;re}

2 Initialization:

3 T < ty, fs — NaN

4 Vk#s o« oo, — 0, fr, — NaN
5 J<Js
6
7
8
9

if T-interp then
| L—1+ Tj/AtE
else
| ¢ —1+floor(r;/Avg)
10 end if
11 Main iteration — part I:
12 for all neighbours k of j for which 1, = 0 do
13 | if T-interp then

14 | bjr = a;i(t) linearly interp. at t = £
15 | else

16 | bjk = Qjke

17 | end if

18 O}, < min {O’k,Tj-l—bjk}

19 | if o changed at line 18, then set fi « j

20 end for

21 Exit condition:

22 if jo has non-null T value then

23 | exit

24 else

25 | Main iteration — part 11:

26 | find a node I: 0; = iréi‘r/mk, V=A{k:m, =0}

27 | setT «—op,7 «— 1
28 | proceed with Main iteration — part 1
29 end if

on the path; NaN is a missing value; (jk) is the oriented
arc between j and k node; ajx, and a,(t) are corresponding
edge weights at time step ¢ and at time t; o} and 7 are the
temporary and permanent labels of node k, respectively.
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