115,942 research outputs found

    Dynamic Decomposition of Spatiotemporal Neural Signals

    Full text link
    Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals

    Exploring spatiotemporal dynamics of urban fires: A case of Nanjing, China

    Get PDF
    Urban fire occurs within the built environment, usually involving casualties and economic losses, and affects individuals and socioeconomic activities in the surrounding neighborhoods. A good understanding of the spatiotemporal dynamics of fire incidents can offer insights into potential determinants of various fire events, therefore enabling better fire risk estimation which can assist with future allocation of prevention resources and strategic planning of mitigation programs. Using a twelve-year (2002–2013) dataset containing the urban fire events in Nanjing, China, this research explores the spatiotemporal dynamics of urban fires using a range of exploratory spatial data analysis (ESDA) approaches. Of particular interest here are the fire incidents involving residential properties and local facilities due to their relatively higher occurrence frequencies. The results indicate that the overall amount of urban fires has greatly increased in the last decade and the spatiotemporal distribution of fire events varies among different incident types. The identified spatiotemporal patterns of urban fires in Nanjing can be linked to the urban development strategies and how they have been reflected in reality in recent years

    Developing a labelled object-relational constraint database architecture for the projection operator

    Get PDF
    Current relational databases have been developed in order to improve the handling of stored data, however, there are some types of information that have to be analysed for which no suitable tools are available. These new types of data can be represented and treated as constraints, allowing a set of data to be represented through equations, inequations and Boolean combinations of both. To this end, constraint databases were defined and some prototypes were developed. Since there are aspects that can be improved, we propose a new architecture called labelled object-relational constraint database (LORCDB). This provides more expressiveness, since the database is adapted in order to support more types of data, instead of the data having to be adapted to the database. In this paper, the projection operator of SQL is extended so that it works with linear and polynomial constraints and variables of constraints. In order to optimize query evaluation efficiency, some strategies and algorithms have been used to obtain an efficient query plan. Most work on constraint databases uses spatiotemporal data as case studies. However, this paper proposes model-based diagnosis since it is a highly potential research area, and model-based diagnosis permits more complicated queries than spatiotemporal examples. Our architecture permits the queries over constraints to be defined over different sets of variables by using symbolic substitution and elimination of variables.Ministerio de Ciencia y Tecnología DPI2006-15476-C02-0

    Application of Spatiotemporal Fuzzy C-Means Clustering for Crime Spot Detection

    Get PDF
    The various sources generate large volume of spatiotemporal data of different types including crime events. In order to detect crime spot and predict future events, their analysis is important. Crime events are spatiotemporal in nature; therefore a distance function is defined for spatiotemporal events and is used in Fuzzy C-Means algorithm for crime analysis. This distance function takes care of both spatial and temporal components of spatiotemporal data. We adopt sum of squared error (SSE) approach and Dunn index to measure the quality of clusters. We also perform the experimentation on real world crime data to identify spatiotemporal crime clusters.

    Alcohol Availability and Violence: A Closer Look at Space and Time

    Get PDF
    Alcohol availability plays an important role in violence. Less is known about how spatiotemporal patterns of alcohol–violence association vary across time of day and across various crime types. This study examined whether and how the associations between on- and off-premise alcohol outlets and assaults, and between on- and off-premise alcohol outlets and robberies, vary across different times of day (morning, daytime, evening, and late night). This cross-sectional study used socioeconomic, alcohol license, and crime data from Milwaukee, Wisconsin, aggregated to US Census block groups and estimated spatially lagged maximum likelihood regression models that controlled for spatial dependence. On-premise outlets were negatively associated with evening assaults and positively associated with daytime and late-night robberies. Off-premise outlets were positively associated with evening assaults, late-night assaults, daytime robberies, and evening robberies. Spatiotemporal alcohol–violence associations vary across crime types and across time of day. On- and off-premise alcohol outlets play a unique role across four different temporal categories and across two violent crime types. These findings have the potential to inform theoretical explanations of the alcohol–violence relationship and may be beneficial when considering and designing custom-tailored local alcohol policy to reduce alcohol-related harm

    Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring

    Get PDF
    With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion Approach (STDFA) was used to reconstruct the time series high spatiotemporal resolution data from the Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field-of-view camera (GF-1 WFV), Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Then, the reconstructed time series were applied to extract crop phenology using a Hybrid Piecewise Logistic Model (HPLM). In addition, the onset date of greenness increase (OGI) and greenness decrease (OGD) were also calculated using the simulated phenology. Finally, crop types were mapped using the phenology information. The results show that the reconstructed high spatiotemporal data had a high quality with a proportion of good observations (PGQ) higher than 0.95 and the HPLM approach can simulate time series Normalized Different Vegetation Index (NDVI) very well with R2 ranging from 0.635 to 0.952 in Luntai and 0.719 to 0.991 in Bole, respectively. The reconstructed high spatiotemporal data were able to extract crop phenology in single crop fields, which provided a very detailed pattern relative to that from time series MODIS data. Moreover, the crop types can be classified using the reconstructed time series high spatiotemporal data with overall accuracy equal to 0.91 in Luntai and 0.95 in Bole, which is 0.028 and 0.046 higher than those obtained by using multi-temporal Landsat NDVI data

    Discovery of Spatiotemporal Event Sequences

    Get PDF
    Finding frequent patterns plays a vital role in many analytics tasks such as finding itemsets, associations, correlations, and sequences. In recent decades, spatiotemporal frequent pattern mining has emerged with the main goal focused on developing data-driven analysis frameworks for understanding underlying spatial and temporal characteristics in massive datasets. In this thesis, we will focus on discovering spatiotemporal event sequences from large-scale region trajectory datasetes with event annotations. Spatiotemporal event sequences are the series of event types whose trajectory-based instances follow each other in spatiotemporal context. We introduce new data models for storing and processing evolving region trajectories, provide a novel framework for modeling spatiotemporal follow relationships, and present novel spatiotemporal event sequence mining algorithms

    Deep Learning for Spatiotemporal Big Data: A Vision on Opportunities and Challenges

    Full text link
    With advancements in GPS, remote sensing, and computational simulation, an enormous volume of spatiotemporal data is being collected at an increasing speed from various application domains, spanning Earth sciences, agriculture, smart cities, and public safety. Such emerging geospatial and spatiotemporal big data, coupled with recent advances in deep learning technologies, foster new opportunities to solve problems that have not been possible before. For instance, remote sensing researchers can potentially train a foundation model using Earth imagery big data for numerous land cover and land use modeling tasks. Coastal modelers can train AI surrogates to speed up numerical simulations. However, the distinctive characteristics of spatiotemporal big data pose new challenges for deep learning technologies. This vision paper introduces various types of spatiotemporal big data, discusses new research opportunities in the realm of deep learning applied to spatiotemporal big data, lists the unique challenges, and identifies several future research needs

    Spatial and Spatiotemporal Modeling of Epidemiological Data

    Get PDF
    This dissertation focuses on modeling approach for spatial and spatiotemporal data with epidemiological applications. Chapter one gives the general overview of spatial and spatiotemporal data and challenges in the statistical analysis of spatial and spatiotemporal data, and motivation and objectives of the study. Chapter two describes the regression models commonly used in spatial data analysis. Various types of regression methods such as OLS, GWR and MGWR were used to study the association between diabetes prevalence and socioeconomic and lifestyle factors on county level data of Midwestern United States. A new analysis workflow is purposed for regression analysis of spatial data. Chapter three describes recently developed INLA as an alternative of traditionally used MCMC in Bayesian hierarchical models. INLA method was used to identify the best regression model for the spatiotemporal regression analysis of Lyme disease count data with climatic covariates in county-level data in Minnesota. Chapter four gives the contribution of this dissertation and discusses the direction for the future research
    • …
    corecore