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ABSTRACT 

 

SPATIAL AND SPATIOTEMPORAL MODELING OF EPIDEMIOLOGICAL DATA 

LAXMAN KARKI 

2017 

 

This dissertation focuses on modeling approach for spatial and spatiotemporal data with 

epidemiological applications. Chapter one gives the general overview of spatial and 

spatiotemporal data and challenges in the statistical analysis of spatial and spatiotemporal 

data, and motivation and objectives of the study. 

Chapter two describes the regression models commonly used in spatial data analysis. 

Various types of regression methods such as OLS, GWR and MGWR were used to study 

the association between diabetes prevalence and socioeconomic and lifestyle factors on 

county level data of Midwestern United States. A new analysis workflow is purposed for 

regression analysis of spatial data. 

Chapter three describes recently developed INLA as an alternative of traditionally used 

MCMC in Bayesian hierarchical models. INLA method was used to identify the best 

regression model for the spatiotemporal regression analysis of Lyme disease count data 

with climatic covariates in county-level data in Minnesota. 

Chapter four gives the contribution of this dissertation and discusses the direction for the 

future research. 
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Chapter 1 
 

1 General Introduction 
 

1.1 Background 

 

The availability of spatial and spatiotemporal data has increased substantially in the last 

few decades due to advancement in computational tools, which enables us to collect real- 

time data coming from GPS, satellite etc. (Cressie, 2015; Plant, 2012; Ripley, 2005). 

Researchers nowadays in a wide variety of fields including epidemiology, forestry, and 

sociology to hydrology, have to deal with spatial and spatiotemporal data. Spatial data 

constitutes information about both an attribute of interest as well as its location. The 

location may include a set of coordinates such as longitude and latitudes or small areas 

such as census tracts, counties etc. 

An example we can consider is an epidemiologist to evaluate the incidence of particular 

diseases such as Lyme disease in some state or geographical regions. The data is usually 

available in counts of people infected with the disease in small areas, for example, county- 

level count data of Lyme disease over the years. Researchers can answer many questions 

for example: is there a potential geographical pattern of the disease for areas close to each 

other that have similar incidence?  Is there some temporal pattern of the disease? 

According to Blangiardo et al. (2013), spatial data are defined as realized values of 

stochastic process indexed by space as: 

 

 

 Ds(s)Y(s)  ,y
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Where D is a fixed subset of Rd (Here we consider d=2). A collection of observations y = 

(y (s1), y (s2),…, y (sn)) represents the actual data and (s1, s2,…, sn) represents the spatial 

units of measurements. If D is continuous surface then the problem can be specified as 

spatially continuous random process, and if D is a countable collection of d-dimensional 

spatial units then the problem is defined as discrete random process (Blangiardo, Cameletti, 

Baio, & Rue, 2013; Gelfand, Diggle, Guttorp, & Fuentes, 2010). 

We can specify spatial data into three different categories as: 

1.1.1 Areal or Lattice data: Lattice refers to a situation where y(s) is the 

aggregation of values over areal units such as zip codes, counties(s) with well-

defined boundaries in D. For example, we can aggregate all the cases of Lyme 

disease per counties in Minnesota. The difference between areal and lattice data is 

former is irregular in shape and the boundaries are defined based on administrative 

boundaries such as postal code, census tract, counties etc. whereas later is regular 

in shape, for example, we can collect the number certain plant species present in 

regularly shaped areal quadrats. 

 1.1.2 Point-referenced (Geostatistical) data: This category consists of data measured 

at specific location y(s) where the spatial domain s varies continuously over the spatial 

domain D. The location s is commonly represented by two- dimensional vector 

longitude and latitude. The actual data are represented by observations y = (y (s1), y 

(s2), …, y (sn)) at locations (s1, s2,…,sn). For example, we can get the measurement of 

temperature and precipitation data from weather stations located at different locations. 

A common goal of point-referenced (Geostatistical) data is to interpolate y where the 

data measurements are not available. 
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1.1.3 Point pattern data: The point pattern data y(s) is the collection of 

information about whether the event of interest occurred or not at random locations. 

The spatial domain D represents the set of points where the event occurred. For 

example, we might be interested in locations of nests of a bird species in a forest or 

addresses of persons with a certain disease. In these examples, the location S in Rd 

is random and the measurements y(s) are taken as binary value 0, 1 based on 

whether the event has occurred or not. The main question of interest with point 

pattern data is whether the event of interest is random or clustered in the spatial 

domain D. 

1.2 Spatiotemporal data: 

Spatiotemporal data is a simple extension of spatial data with adding time dimension. 

Spatiotemporal data are defined as: 

 RRD,)y(),Y(
2  )(,, tststs  

Where data is observed in n spatial areas or locations and at T time points. Tobler’s first 

law of geography states that “everything is related to everything else but near things are 

more related than distant things” (Tobler, 1970). Spatial data are usually correlated either 

positively or negatively with proximal locations. Positive spatial autocorrelation arises if 

similar values cluster together in a map; similarly, negative spatial autocorrelation arises 

when dissimilar values cluster together in map. There is the presence of autocorrelation 

due to spatial dependency. The use of standard statistical techniques, which assumes 

independence of observations, are not appropriate for spatial data due to spatial 
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autocorrelation. Figure 1.1 displays an example of positive and negative spatial 

autocorrelation. 

 

Figure 1. 1 An example of positive and negative spatial autocorrelation (Source: Dr. 

Ronald Briggs, with modification). 

The relationship between variables might be different at different points in space. The use 

statistical models in spatial data without considering the possibilities of variation of 

effects with geographical locations commits Simpson’s paradox which is the ‘reversal of 

results when groups of data are analyzed separately and then combined (Fotheringham, 

Brunsdon, & Charlton, 2003). The effect of Simpson’s paradox in spatial data analysis is 

better displayed by figure 1.2: 

 

Figure 1. 2 Example of Simpson’s paradox. 

 Source: www.pages.csam.montclair.edu/~yu/GISDay_GWR.ppt 
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1.3 Measurement of Spatial Autocorrelation 
 

1.3.1 Global Indices of Spatial Autocorrelation 

 

Spatial autocorrelation is the correlation of the same measurement taken at different areal 

units. Global indices of spatial autocorrelation are to summarization of degree to which 

similar observation tend to occur near each other. It gives the summary over the entire 

region rather than a test to detect local spatial clusters. It calculates the similarity of values 

at location i and j and then weights the similarity by the proximity of locations i and j. High 

similarities with high weight are the indication of similar values that are closer together 

and low similarities with high weight indicate dissimilar values that are close together. The 

value of global spatial autocorrelation help to summarize the similarity of nearby areal 

units. The similarities of values Ai and Aj are weighted by the proximities of i and j. The 

weight wij defines proximity. The weighted average of similarities between areal units 

represents the extent of similarities. Global indices of spatial autocorrelation are built on 

this basic form: 





 

 



n

i

n

j

ij

n

i

n

j

jiij

w

yyyyw

1 1

1 1

))((

 

1.3.2 Moran’s I: 

Moran’s I is the basic extension of global indices of local autocorrelation. The similarity 

between areal units i and j is defined as the product of the respective difference between yi 

and yj with the overall mean divided by sample variance as: 
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
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1

2

1 1

0 )(

))((

'  

Where S0 is standard deviation. 

The value of Moran’s I varies in the interval [-1, 1]. We can interpret the value as similar 

to correlation coefficients. When the neighboring regions tend to have similar values then 

the value of Moran’s I will be positive and when the neighboring regions have dissimilar 

values then Moran’s I will be negative. 

1.3.3 Calculation of weight matrices 

 

Most of the spatial models are based on whether one region is the spatial neighbor of 

another region. Weight matrix is a square symmetric n x n matrix with (i,j) element is equal 

to 1 if  region i and j are neighbors of one another, and zero otherwise. The diagonal 

elements of the spatial weight matrix are zeros.  The most common ways to construct such 

a matrix are as follows: 

(1) Rook case contiguity: Two regions are spatial neighbors if they share a common 

border (on any side). In this case, two regions are considered as neighbors if that 

border is longer than predefined small “snap distance”. Figure 1.3 gives an example 

of Rook’s case. 

 

 

 



7 
 

 

   

 A  

                                                        

 

Figure 1. 3 Rook’s case contiguity. 

(2) Bishop case contiguity: two spatial regions meet at a point. This is similar to two 

elements of a graph meeting at a vertex. Bishop contiguity case arises when two 

regions share a common border and that is shorter than “snap distance”. Figure 1.4 

gives an example Bishop’s case contiguity. 

   

 A  

                                                        

 

Figure 1. 4 Bishop’s case contiguity. 

 Queen’s case contiguity: It is combination of Rook’s case and Bishop’s case. 

Figure 1.5 gives an example of Queen’s case contiguity. 

   

 A  

                                                        

 

Figure 1. 5 Queen’s case contiguity. 
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1.3.4 Spatial weight matrix (with Rook’s case): 

A B 

C D 

 

As described earlier, the elements of the weights matrix are 1 if the neighbors share the 

border and zero otherwise in Rook’s case. Suppose we have four spatial lattice A, B, C and 

D as shown in the figure above.  The weight matrix is calculated as: 























0110

1001

1001

0110

ijW  

Usually, spatial weights matrix is row standardized by dividing each element of the weight 

matrix by the corresponding row sum as: 























05.05.00

5.0005.0

5.0005.0

05.05.00

ijW  

1.4 Global Measures of Spatial Autocorrelation 

1.4.1 Geary’s C 

 

Geary’s C statistic (Geary 1954) is based on the deviations in responses of each observation 

with one another. We can calculate Geary’s C value as: 
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Geary’s 
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The value of Geary’s C lies in the range [0, 2]. The value of 1 means there is no spatial 

autocorrelation. Values less than 1 indicates there is increasing positive spatial 

autocorrelation and values higher than 1 illustrate increasing negative spatial 

autocorrelation. There is an inverse relationship between Geary’s C and Moran’s I but they 

are not identical.  

Moran’s I is more global measurement and more sensitive to extreme values of y while 

Geary’s C is more sensitive to local spatial autocorrelation. They both are asymptotically 

normally distributed as n increases (A. D. Cliff & Ord, 1981). In general, Moran’s I and 

Geary’s C results in the same conclusion regarding spatial autocorrelation, however, 

Moran’s I is more powerful than Geary’s C (A. Cliff & Ord, 1975; A. D. Cliff & Ord, 

1981). 

1.5 A local measure of spatial autocorrelation: 

One might expect that sub-regions of a greater whole could have different local 

autocorrelation than that characterized by the single statistic that describes the entire region 

(Plant, 2012). The strength of global Moran’s I is its simplicity in calculations and 

interpretation. The major limitation is that it takes the average local variations in the 

strength of global spatial autocorrelation. To overcome this problem, statisticians have 

developed local indices of spatial autocorrelation. The statistical methods to examine the 
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local level of spatial autocorrelation is very helpful in order to identify areas where values 

of the variable are extreme and geographically homogeneous (Anselin, 1995).  

Anselin (1995) developed a standard tool, local indicator of spatial autocorrelation (LISA) 

to examine the local autocorrelation. It is the local equivalent of Moran’s I. The sum of all 

the indices is proportional to the global value of Moran’s statistics. 

1.5.1 Anselin Local Moran’s I: 

Anselin local Moran’s I statistic of spatial autocorrelation is calculated as 

)(
,1

2
yyw

S

yy
I j

n
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i 
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 
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II
i i  , and I= Global Moran’s I value. 

Where yi and y are the attribute of the feature i and the mean of the corresponding attribute 

respectively. Wij is weight matrix. 
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A significantly low p-value of the test statistic gives statistically significant cluster. 

Permutations are used to determine the significant cluster. If there is spatially significant 

pattern in data, local Moran’s I values generated from permutation display less clustering 

than the local Moran’s I value from the original data. 

LISA values for each location allow to compute its similarity with its neighbors and to test 

its significance. The test can result in five different scenarios as: 

(1)  Hot spots: Locations with high values with similar locations. High-high. 

(2) Cold spots: Locations with low values with similar locations. Low-low. 

(3) Potential spatial outliers: Locations with high values with low value locations. 

High-low. 

(4) Potential spatial outliers: Locations with low values with high value locations. 

Low-high. 

(5) Locations with no significant local autocorrelations. 

There is also presence of spatial heterogeneity, which is due to locational effect. Overall 

parameter estimates for entire region may not describe the process at any given location. 

Spatial statistical methods have been used in wide variety of research areas: epidemiology, 

forestry, ecology, urban planning, and so many other research areas. The focus of this 

research was the application of spatial statistical methods in epidemiological data. The 

research objectives of my studies are as follows: 
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1.6 Objectives 
 

(1) To determine the spatial prevalence of diabetes and how the distribution is 

associated with the geography of socio demographic and life style covariates in the 

Midwestern United States County-level diabetes data. 

(2) To determine the spatial pattern of human cases of Lyme disease in Minnesota. 

(3) To estimate the relationship between Lyme disease count and environmental risk 

factors using spatiotemporal methods in Minnesota. 

1.6.1 Motivation and significance of objective 1 

 

Most of the studies considered GWR model for regression analysis of spatial data. Even 

though GWR model ignores the possibility of having global and local effects of covariates. 

Fotheringham, Brunsdon, & Charlton (2003) purposed MGWR model to accommodate 

local and global regression coefficients in a single model. There are a plethora of research 

publications on spatial epidemiology that fitted GWR model to find the relationship 

between variables. To the best of my knowledge, none of the studies have considered 

MGWR model in spatial epidemiology. 

Diabetes is a serious health threat with an alarming increase in prevalence rate among 

general population globally (Barker, Kirtland, Gregg, Geiss, & Thompson, 2011; Dijkstra 

et al., 2013; Kauhl et al., 2015; Wild, Roglic, Green, Sicree, & King, 2004). Diabetes and 

its complications are one of the serious health concern in the United States (Hipp & Chalise, 

2015; Shaw, Sicree, & Zimmet, 2010). Diabetes prevalence rate for persons of age group 

65 years or older is more than 10 times higher than people of age group 45 or younger 

(Engelgau, Geiss, Saaddine, & et al., 2004). According to CDC 2012 report, there were 
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29.1 million Americans, 9.3 percent of the total population had diabetes with estimated 

total health care costs of $ 245 billion in 2012. Type 2 diabetes which accounts for more 

than 90 percent of total diabetes affects people of all sex, age, race and ethnic groups 

however the rate is higher in American Indians, African Americans and people with 

socioeconomic disadvantages (Haire-Joshu, 2015). 

This study will fit MGWR model as proposed by (Fotheringham et al., 2003) with county- 

level diabetes prevalence data for the Midwestern United States. This study will help to 

understand the relationship between sociodemographic covariates and diabetes prevalence 

in the Midwestern United States. The findings of this study will help public health 

programs to better target populations at risk of diabetes. 

1.6.2 Motivation and Significance of study of objective 2 

 

Lyme disease is one of the most frequent vector born disease in the United States (Killilea, 

Swei, Lane, Briggs, & Ostfeld, 2008; Orloski, Hayes, Campbell, & Dennis, 2000). It is 

expanding geographically and in its severity of impact (Hanrahan et al., 1984; Schauber & 

Ostfeld, 2002; Allen C Steere, Coburn, & Glickstein, 2004; Allen C Steere, Taylor, Wilson, 

Levine, & Spielman, 1986). The disease is transmitted by “black-legged” tick, Ixodes 

scapularis or Ixodes pacificus (A. C. Steere, Hardin, & Malawista, 1978). The early 

symptoms of Lyme disease are fever, skin rash, headache, and fatigue. If the disease is not 

treated in the initial stage of infection, more severe complications such as arthritis in major 

joints, intense pain, numbness or tingling in the hands or feet, and memory problem (Li et 

al., 2014).  A 1998 study estimated the financial burden of Lyme disease in the United 

States were about $2.8 billion over a 5- year period (Maes, Lecomte, & Ray, 1998). 

According to CDC 2014 report, 96 percentage of confirmed Lyme disease cases is reported 
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to 14 states: Connecticut, Delaware, Maine, Maryland, Massachusetts, Minnesota, New 

Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, Virginia, and 

Wisconsin. Lyme disease is distributed unevenly in every spatial scale and the vast 

majority of confirmed cases are in the northeastern and the upper Midwestern part of the 

United States and coastal central/northern California (Orloski et al., 2000). 

Minnesota is one of the states in the United States with the high incidence of Lyme disease 

cases. To the best of my knowledge, there is no systematic study of Lyme disease 

distribution focusing on the state of Minnesota. This study aims to focus on spatial cluster 

analysis to detect Lyme disease clusters in Minnesota. 

The emergence of infectious disease over past several decades highlights the needs of better 

understandings to handle the challenge of being epidemics or spread the disease to new 

locations. The understanding of spatial and temporal pattern of this disease will help to 

prepare and allocate the public health resources for disease prevention and control. 

1.6.3 Motivation and significance of objective 3 

The availability of data with spatial and temporal component has increased dramatically in 

the last few years. Some of the epidemiological data have the outcome and the risk factor 

characterized by the spatial and temporal structure which need to be considered for the 

inferential process (Blangiardo et al., 2013). Spatial data often recorded as count in certain 

spatial units. For example, in epidemiology, the number of infected people of certain 

disease per spatial units (states, counties) are available. Such data with information over 

time is also very common. 
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Climatic factor plays important role in tick borne diseases (Ogden et al., 2008; Raghavan, 

Goodin, Neises, Anderson, & Ganta, 2016; Subak, 2003). Climate and weather condition 

plays a key role in the incidence of Lyme disease because demography and distribution of 

I. scapularis are sensitive to variation in temperature and precipitation (Burtis et al., 2016; 

Eisen, Eisen, & Beard, 2016). Tick requires relatively humid microclimate. A recent study 

in northern Illinois found a significant relationship between cumulative rainfall and tick 

infection rates (Jones & Kitron, 2000). 

The challenge of modeling spatiotemporal count data is the presence of many zeros and 

spatiotemporal correlation. A zero count is due to complete absence of the persons with 

Lyme disease in a given year or it might be the result of incomplete survey or imperfect 

detection. The zero-inflated Poisson model better in modeling such data (Agarwal, 

Gelfand, & Citron-Pousty, 2002; Wang, Chen, Kuo, & Dey, 2015). 

Lyme disease count data follows a non-Gaussian distribution. Statistical modeling of count 

data is challenging due to counties with zero counts and there is complicated 

spatiotemporal dependence. Bayesian approach is effective in spatiotemporal data analysis. 

Bayesian hierarchical models can be implemented to estimate the parameters of 

spatiotemporal data (Lawson, 2013; Musenge, Chirwa, Kahn, & Vounatsou, 2013). 

Application of Bayesian hierarchical models in spatiotemporal analysis is challenging. 

Implementation of Bayesian hierarchical model relies on computationally expensive 

MCMC simulation techniques. A recently developed INLA has been an effective 

alternative of computationally expensive MCMC.  
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This study will find the relationship between Lyme disease count and climatic risk factors 

by using Bayesian hierarchical models in INLA. The findings of this study will help to 

understand the effects of climatic risk factors with Lyme diseases cases over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

 

References 
 

Agarwal, D. K., Gelfand, A. E., & Citron-Pousty, S. (2002). Zero-inflated models with 

application to spatial count data. Environmental and Ecological Statistics, 9(4), 

341-355. doi:10.1023/a:1020910605990 

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 

27(2), 93-115.  

Barker, L. E., Kirtland, K. A., Gregg, E. W., Geiss, L. S., & Thompson, T. J. (2011). 

Geographic distribution of diagnosed diabetes in the US: a diabetes belt. American 

journal of preventive medicine, 40(4), 434-439.  

Blangiardo, M., Cameletti, M., Baio, G., & Rue, H. (2013). Spatial and spatio-temporal 

models with R-INLA. Spatial and spatio-temporal epidemiology, 7, 39-55.  

Briggs, R. (2012). Spatial Autocorrelation concepts. Retrived from 

http//www.utdallas.edu/~briggs/. 

Burtis, J. C., Sullivan, P., Levi, T., Oggenfuss, K., Fahey, T. J., & Ostfeld, R. S. (2016). 

The impact of temperature and precipitation on blacklegged tick activity and Lyme 

disease incidence in endemic and emerging regions. Parasites & Vectors, 9, 606. 

doi:10.1186/s13071-016-1894-6 

Cliff, A., & Ord, J. (1975). The choice of a test for spatial autocorrelation. Display and 

analysis of spatial data, 54-77.  

Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications (Vol. 44): Pion 

London. 

Cressie, N. (2015). Statistics for spatial data: John Wiley & Sons. 



18 
 

 

Dijkstra, A., Janssen, F., De Bakker, M., Bos, J., Lub, R., Van Wissen, L. J., & Hak, E. 

(2013). Using spatial analysis to predict health care use at the local level: a case 

study of type 2 diabetes medication use and its association with demograpHic 

change and socioeconomic status. PLoS One, 8(8), e72730.  

Eisen, R. J., Eisen, L., & Beard, C. B. (2016). County-Scale Distribution of Ixodes 

scapularis and Ixodes pacificus (Acari: Ixodidae) in the Continental United States. 

J Med Entomol, 53(2), 349-386. doi:10.1093/jme/tjv237 

Engelgau, M. M., Geiss, L. S., Saaddine, J. B., & et al. (2004). THe evolving diabetes 

burden in the united states. Annals of Internal Medicine, 140(11), 945-950. 

doi:10.7326/0003-4819-140-11-200406010-00035 

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted 

regression: the analysis of spatially varying relationships: John Wiley & Sons. 

Gelfand, A. E., Diggle, P., Guttorp, P., & Fuentes, M. (2010). Handbook of spatial 

statistics: CRC press. 

Haire-Joshu, D. L. (2015). Next Steps: Eliminating Disparities in Diabetes and Obesity. 

Preventing chronic disease, 12.  

Hanrahan, J. P., Benach, J. L., Coleman, J. L., Bosler, E. M., Morse, D. L., Cameron, D. 

J., . . . Kaslow, R. A. (1984). Incidence and cumulative frequency of endemic Lyme 

disease in a community. Journal of Infectious Diseases, 150(4), 489-496.  

Hipp, J. A., & Chalise, N. (2015). Peer Reviewed: Spatial Analysis and Correlates of 

County-Level Diabetes Prevalence, 2009–2010. Preventing chronic disease, 12.  



19 
 

 

Jones, C. J., & Kitron, U. D. (2000). Populations of Ixodes scapularis (Acari: Ixodidae) are 

modulated by drought at a Lyme disease focus in Illinois. J Med Entomol, 37(3), 

408-415. doi:10.1603/0022-2585(2000)037[0408:poisai]2.0.co;2 

Kauhl, B., Heil, J., Hoebe, C. J., Schweikart, J., Krafft, T., & Dukers-Muijrers, N. H. 

(2015). The spatial distribution of hepatitis C virus infections and associated 

determinants—an application of a geographically weighted poisson regression for 

evidence-based screening interventions in hotspots. PLoS One, 10. 

doi:10.1371/journal.pone.0135656 

Killilea, M. E., Swei, A., Lane, R. S., Briggs, C. J., & Ostfeld, R. S. (2008). Spatial 

dynamics of Lyme disease: a review. EcoHealth, 5(2), 167-195.  

Lawson, A. B. (2013). Bayesian disease mapping: hierarchical modeling in spatial 

epidemiology: CRC press. 

Li, J., Kolivras, K. N., Hong, Y., Duan, Y., Seukep, S. E., Prisley, S. P., . . . Gaines, D. N. 

(2014). Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia. The 

American Journal of Tropical Medicine and Hygiene, 91(6), 1166-1172. 

doi:10.4269/ajtmh.13-0733 

Maes, E., Lecomte, P., & Ray, N. (1998). A cost-of-illness study of Lyme disease in the 

United States. Clin Ther, 20(5), 993-1008; discussion 1992.  

Musenge, E., Chirwa, T. F., Kahn, K., & Vounatsou, P. (2013). Bayesian analysis of zero 

inflated spatiotemporal HIV/TB child mortality data through the INLA and SPDE 

approaches: applied to data observed between 1992 and 2010 in rural North East 

South Africa. International Journal of Applied Earth Observation and 

Geoinformation, 22, 86-98.  



20 
 

 

Ogden, N. H., St-Onge, L., Barker, I. K., Brazeau, S., Bigras-Poulin, M., Charron, D. F., . 

. . Maarouf, A. (2008). Risk maps for range expansion of the Lyme disease vector, 

Ixodes scapularis, in Canada now and with climate change. International Journal 

of Health Geographics, 7(1), 24.  

Orloski, K. A., Hayes, E. B., Campbell, G. L., & Dennis, D. T. (2000). Surveillance for 

Lyme disease—United States, 1992–1998. MMWR CDC Surveill Summ, 49(3), 1-

11.  

Plant, R. E. (2012). Spatial data analysis in ecology and agriculture using R: CRC Press. 

Raghavan, R. K., Goodin, D. G., Neises, D., Anderson, G. A., & Ganta, R. R. (2016). 

Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic 

Determinants of Rocky Mountain Spotted Fever. PLoS One, 11(3), e0150180.  

Ripley, B. D. (2005). Spatial statistics (Vol. 575): John Wiley & Sons. 

Schauber, E. M., & Ostfeld, R. S. (2002). Modeling the effects of reservoir competence 

decay and demographic turnover in Lyme disease ecology. Ecological 

Applications, 12(4), 1142-1162. 

Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of 

diabetes for 2010 and 2030. Diabetes research and clinical practice, 87(1), 4-14.  

Steere, A. C., Coburn, J., & Glickstein, L. (2004). The emergence of Lyme disease. The 

Journal of clinical investigation, 113(8), 1093-1101.  

Steere, A. C., Hardin, J. A., & Malawista, S. E. (1978). Lyme arthritis: a new clinical entity. 

Hosp Pract, 13(4), 143-158.  



21 
 

 

Steere, A. C., Taylor, E., Wilson, M. L., Levine, J. F., & Spielman, A. (1986). Longitudinal 

assessment of the clinical and epidemiological features of Lyme disease in a 

defined population. Journal of Infectious Diseases, 154(2), 295-300.  

Subak, S. (2003). Effects of climate on variability in Lyme disease incidence in the 

northeastern United States. American Journal of Epidemiology, 157(6), 531-538.  

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. 

Economic geography, 234-240.  

Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of 

diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27 

(10): 2568-2569. 

Wang, X., Chen, M.-H., Kuo, R. C., & Dey, D. K. (2015). BAYESIAN SPATIAL-

TEMPORAL MODELING OF ECOLOGICAL ZERO-INFLATED COUNT 

DATA. Statistica Sinica, 25(1), 189-204. doi:10.5705/ss.2013.212w 

 

 

 

 

 

 

 



22 
 

 

Chapter 2 
 

2 Spatial Analysis of Diabetes Prevalence in the Midwestern United 

States using Mixed Geographically Weighted Regression Models 
 

ABSTRACT 

 

Diabetes is a major health problem in the United States. There is an increasing interest in 

the relationship between diabetes and sociodemographic and lifestyle factors but the extent 

of the geographical variability of diabetes with respect to these variables still remains 

unclear. The regression models commonly used for disease modeling either use Ordinary 

Least Square (OLS) regression by assuming all the explanatory variables have the same 

effect over geographical locations or Geographically Weighted Regression (GWR) that 

assumes the effect of all the explanatory variables vary over the geographical space. In 

reality, the effect of some of the variables may be fixed (global) and other variables vary 

spatially (local). For this type of data analysis, Mixed Geographically Weighted Regression 

(MGWR) which can include global and local variables in the same model is the best 

alternative (Fotheringham et al., 2003). We propose using MGWR model to study the 

association between diabetes prevalence rate and sociodemographic and life style variables 

in counties of the Midwestern United States. The results of this study showed that the effect 

of some of the variables is global and others are local. The benefit of fitting MGWR is it 

gives local insight of the disease, which helps policy makers develop effective policy to 

address disease at the local level. 
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Keywords: Geographically Weighted regression Model (GWR), Mixed Geographically 

Weighted regression Model (MGWR), Ordinary Least Square (OLS) regression, Diabetes 

prevalence rate.  

2.1 Introduction 
 

Diabetes is a serious health problem in the Unites States. According to CDC report, more 

than 29 million people had diabetes with estimated total health care cost of $ 245 billion in 

2012. Type 2 diabetes that accounts for more than 90 percent of total diabetes affects people 

of all sex, age, race and ethnic groups; however, the rate is higher in American Indians, 

African Americans and people with socioeconomic disadvantages (Haire-Joshu, 2015). 

The findings of the previous studies have shown that diabetes is associated with increased 

risk of microvascular complications (Klein, 1995; Pirart, 1978), myocardial infractions 

(Kuusisto, Mykkänen, Pyörälä, & Laakso, 1994; Turner et al., 1998), stroke (Lehto, 

Rönnemaa, Pyörälä, & Laakso, 1996). Diabetes is associated with obesity, physical 

inactivity, race and some other socioeconomic covariates (Hipp & Chalise, 2015). There is 

a steady increase in type 2 diabetes prevalence especially in adolescents and African 

Americans (Arslanian, 2000; Arslanian, Bacha, Saad, & Gungor, 2005; Harris, 2001). 

Studies of the correlates of diabetes ignore the spatial non-stationarity by either fitting OLS 

method or using all the variables as nonstationary by fitting GWR model. A number of 

studies (Chen, Wu, Yang, & Su, 2010; Dijkstra et al., 2013; Hipp & Chalise, 2015; Siordia, 

Saenz, & Tom, 2012) used GWR model to study the association between diabetes and other 

covariates. 
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GWR is one of the localized regression techniques which accounts for spatial heterogeneity 

or spatial non- stationarity (Benson, Chamberlin, & Rhinehart, 2005; C. Brunsdon, 

Fotheringham, & Charlton, 1996; Fotheringham, Brunsdon, & Charlton, 2003; Lu, Harris, 

Charlton, & Brunsdon, 2015). As an exploratory tool, GWR is useful in wide varieties of 

research fields including but not limited to health and disease (Chalkias et al., 2013; Chen 

et al., 2010; Chi, Grigsby-Toussaint, Bradford, & Choi, 2013; Dijkstra et al., 2013; Fraser, 

Clarke, Cade, & Edwards, 2012; Hipp & Chalise, 2015; Lin & Wen, 2011; Nakaya, 

Fotheringham, Brunsdon, & Charlton, 2005; Schuurman, Peters, & Oliver, 2009; Siordia 

et al., 2012; Wen, Chen, & Tsai, 2010; Yang, Wu, Chen, & Su, 2009), housing market 

(Fotheringham et al., 2003; Yu, Wei, & Wu, 2007), poverty (Benson et al., 2005; Farrow, 

Larrea, Hyman, & Lema, 2005; Longley & Tobón, 2004), traffic models (Selby & 

Kockelman, 2013; Zhao & Park, 2004), forest fire (Martínez-Fernández, Chuvieco, & 

Koutsias, 2013; Mitchell & Yuan, 2010; Sá et al., 2011), crime (Cahill & Mulligan, 2007; 

Troy, Grove, & O’Neil-Dunne, 2012; Wheeler & Waller, 2009; Yan, Shu, & Yuan, 2010; 

Haifeng Zhang & Song, 2014), fisheries and wildlife  (Irigoien et al., 2014; Sheehan, 

Strager, & Welsh, 2013; Tseng et al., 2013; Windle, Rose, Devillers, & Fortin, 2009), and 

tourism (Deller, 2010; Honglei Zhang, Zhang, Lu, Cheng, & Zhang, 2011). 

One should not expect the effect of every explanatory variable always significantly vary 

spatially. If this is the case, then the use of GWR which considers every explanatory 

variable significantly varies over space leads to inefficient or incorrect conclusions (Kang 

& Dall’erba, 2016; Wei & Qi, 2012). Most of the studies that report GWR consider all the 

coefficients vary spatially without testing whether the spatial differences are statistically 

significant. 
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MGWR model can include both global and local variables in a single model. The use of 

MGWR is efficient and easy to apply. There are a large number of studies that consider 

GWR model in disease epidemiology. The use of MGWR model has been ignored in the 

studies of disease epidemiology. To the best of our knowledge, none of the studies have 

used MGWR model before for fitting spatial regression model for any epidemiological 

data. The objective of this study is to find the relationship between sociodemographic and 

lifestyle factors in the geographical variability of diabetes in the Midwestern United States 

by using MGWR. 

2.2 Methods 
 

2.2.1 Geographically Weighted Regression 

 

A global regression model (OLS) can be written as: 

iik

k

ki xy   0 … … … (1) 

GWR is an extended version of traditional regression estimates of local rather than global 

parameters. GWR model can be written as: 

i

k

ikiikiii xvuvuy    ),(),(0 … … … (2) 

Where (ui,vi) represents the coordinates of the ith point in the space and βk(ui,vi) is a realized 

value of the continuous function βk(u,v) at point i. GWR model allows the continuous 

surface of parameter values and the measured value at certain points denote the spatial 

variability of the surface.  
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From equation (2), we can assume that the near observations to the location i are more 

influential to the estimates of βk (ui,vi) than observations farther from location i. GWR 

model is based on the weight of an observation based on the proximity to the location i. 

More weight is given to the data with observations that are close to i than data with 

observations farther away. 

yWXXWXβ ),()),((),(ˆ 1

ii

T

ii

T

ii vuvuvu  … … … (3) 

Where β̂  is the estimated value ofβ , and ),( ii vuW is an n by n matrix with off-diagonal 

elements are zero and diagonal elements are geographical weights of each of the n observed 

data for regression point i. 

To see this more clearly, the classical regression equation can be written in matrix form as: 

εXβY  … … … (4) 

Where β  is the vector of parameters to be estimated, which is constant over space and 

estimated by: 

YXXXβ
TT 1)(ˆ  … … … (5) 

The GWR equivalent of this model is:  

εXβY  1)( … … … (6) 

The matrixβ , which has n sets of local parameters. It has the following structures: 
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The parameter estimates of each row of the above matrix is given by: 

YWXXWXβ )())(()(ˆ 1 iii TT  … … … (8) 

Where i represents a row of the matrix in (7) and W (i) is an n by n spatial weighting matrix 

of the form: 
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Where win denotes the weight given to the data point n in the calibration of model for 

location i. 

The implicit weighting scheme for OLS framework is: 

jiwij ,1   

Where j is a specific point in space at which data are observed and i represents any points 

in space for which parameters are estimated. The global model has a weight of unity. The 

initial step of weighting based local model excludes the observations outside some distance 

b from regression point. The weighting function can be written as: 

otherwisew

bdifw

ij

ijij

0

1




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Spatial weighting has the problem of discontinuity, which results in a drastic change in 

estimated coefficients. One way of overcoming the problem of discontinuity is to express 

wij as a continuous function of dij, the distance between i and j as: 

])/(
2

1
exp[ 2bdw ijij   

Where b is referred as bandwidth. An alternative kernel utilizes the bi-square function as:  

otherwise

bdifbdw ijijij

0

])/(1[ 22




 

This will provide a continuous weighting function up to distance b and then zero weight 

for any data point outside b. 

Bandwidth Selection: 

These methods determine the optimum bandwidth in GWR: 

Least cross-validation score (CV): 

Cross-validation score is the difference between observed value and the GWR calibrated 

value using the bandwidth. 

2)](ˆ[ byyCV ii i   

Where )(ˆ by i is the fitted value of iy  with data from point i is omitted from the calibration. 

The lower value of CV indicates better model fit. 

Least Akaike Information Criterion (AIC): 

Akaike Information Criterion (AIC) derives the optimum bandwidth for GWR as: 
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Where n is the sample size, ̂ is the estimated standard deviation of the error term and tr(S) 

is the trace of the hat matrix. Syy ˆ , where S is hat matrix which maps fitted values on to 

observed values. Hat matrix is a function of the bandwidth of weighting function. 

Each row of S, ri is given by: 

ri = Xi(XTW(ui,vi)X)-1XTW(ui,vi) 

We used cross validation score method to select optimum bandwidth. 

Model selection 

The best model selection was done by the following algorithm as described by Gollini et 

al. (2013): 

(1) All the possible bivariate GWR model was calibrated by sequentially regressing a 

single independent  variable against the dependent variable 

(2) The best performing model with least AICc value, and permanently include the 

independent variable in the subsequent models. 

(3) Remaining independent variables were sequentially introduced to construct the 

new model with permanently included independent variables. The next 

permanently included variable is selected based on AICc value 

(4) Step 3 was repeated until all the independent variable were included in the model. 
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2.2.2 Mixed Geographically Weighted Regression (MGWR) model 

 

MGWR is an extension of basic GWR model when the degree of variation for some of the 

coefficients might be negligible. MGWR model has two different types of coefficients. 

Some of the coefficients are global and the others are local. Global coefficient has fixed 

effect over space whereas local coefficients are modeled as the function of geographical 

locations (Benson et al., 2005; Chris Brunsdon, Fotheringham, & Charlton, 2000; 

Fotheringham et al., 2003; Mei, He, & Fang, 2004). According to Fotheringham et al.( 

2003) MGWR model can be written as: 
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XT
bi = (Xi, q+1, Xi, q+2,. . . ,Xi, p) is the ith row of the Xb and  

W(ui,vi) = diag [w1(ui,vi), w2(ui,vi),… wn(ui,vi)] is an n x n diagonal weight matrix at 

location (ui,vi) where elements in diagonal are usually taken to be a Gaussian function of 
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where b is bandwidth. 

Calibration approach in (Fotheringham et al. 2002, chapter 3): 
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and spatially varying coefficient vector at location (ui,vi) as: 
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Therefore, the fitted values of the response at n locations are obtained by: 



32 
 

 

 Tnyyy ,,,ˆ
21 Y =  

aaaab βXβXYS ˆˆ   =   aβXSIYS abb
ˆ = SY  

Where, 

     )S(I)S(IXXSIXXSISS b

T

b

T

a

1

ab

T

aabb 


 

  Where for each observation i, yi is the dependent variable, (ui,vi) represents geographical 

location, ka represents global coefficients and kb represents local coefficients. The group 

of independent variables associated with global coefficients is referred as a-group variables 

and independent variables associated with local coefficients are referred as b-group 

variables. There is one intercept term from either a-group or b-group of variables but not 

for both.  

2.2.3 Data Source: 

This study includes the county-level data for the Midwestern United States. It included 

county-level data of 1055 counties from Midwestern States, Illinois, Indiana, Iowa, Kansas, 

Michigan, Minnesota, Missouri, Nebraska, Ohio, North Dakota, South Dakota, and 

Wisconsin. This study includes data on diabetes, obesity rates, and physical inactivity for 

2012 from the Centers for Disease Control and Prevention’s Diabetes Interactive Atlas. 

The data collection is based on Behavioral Risk Factor Surveillance System (BRFSS). 

CDC defines diabetes prevalence as the estimated percentage of adults with either type 1 

or type 2 diabetes after adjustment for age. Obesity prevalence is defined as the estimated 

percentage of adults with body mass index ≥ 30 after adjustment for age; physical inactivity 

prevalence is defined as percentage of adults who have not done any physical exercise or 

activity for past 30 days. Data for the socioeconomic variables –percentage nonwhite 

population, percentage living behind federal poverty level, percentage below high school 
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graduates, percentage unemployed, percent of adults in work force, and percent of people 

with German ancestry were collected from the US Census Bureau’s American Community 

Survey 5-year estimates (2008-2012). 

Percentage of people who did not identify himself or herself as white is referred as 

percentage of nonwhite population. The percentage of people living below federal poverty 

levels is determined based on income threshold defined by the United States census bureau, 

which varies depending on family size. Unemployment rate was defined as percentage of 

people aged 16 years or older that did not go for work for the reference week. The education 

variable is determined as the percentage of people who reported having less than a high 

school diploma. Percentage of people in labor force is determined as percentage of 

population that is either working or actively seeking employment. Percentage of German 

ancestry is defined as people who have defined their ancestry as German. 

Table 2.1 presents the list of variables used in different models where diabetes is a 

dependent variable and the other variables are the independent variables. 

Table 2. 1 The list of response and explanatory variables used in model fitting. 

Variables Description of Variables Variable status 

Diabetes  Percentage of people with diabetes Response 

Obesity Percentage of people with obesity Explanatory 

Physical inactivity Percentage physically inactive Explanatory 

Unemployment  Percentage unemployed Explanatory 

Nonwhite Percentage  nonwhite population Explanatory 

Poverty Percentage living below federal poverty level Explanatory 

Education  Percentage adults with less than high school diploma Explanatory 

Labor force Percentage of people in labor force Explanatory 

German ancestry Percentage of people with German ancestry Explanatory 
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2. 3 Results 
 

Figure 2.1 displays the distribution of diabetes and other variables in the Midwestern 

United States. It shows that there was variation in county-level data. 
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Figure 2. 1 Spatial distribution of variables: (1) Diabetes (2) Obesity (3) Physical inactivity 

(4) Unemployment (5) Nonwhites (6) Education (7) Poverty (8) Labor force (9) German 

ancestry. 

Table 2.2 presents the summary statistics of variables used for modeling. The minimum 

diabetes prevalence rate was 5 percent, median 10.7 percent, mean 10.66 percent and 

maximum 17.8 percent. Obesity rate was minimum 21 percent, median and mean both 31.5 

percent and maximum 44.5 percent. Physical inactivity rate was minimum 15.5 percent, 

median 27.2 percent, mean 27.09 and maximum 37.6 percent. Unemployment rate was 

minimum 0 percent, median 6.8 percent, mean 7.22 percent, and maximum 26.4. Percent 

of adults with below high school diploma was minimum 3.2, median 11.4, mean 12.15, 

and maximum 44.5 percent. Percent of population below poverty level was minimum 3.9 

percent, median 13 percent, mean 13.78, and maximum 49.5, percent of adults in labor 

force was minimum 36.4 percent, median 64.6 percent, mean 63.64 percent, and maximum 

78.7 percent, and percent of nonwhite population was minimum 0 percent, median 2.9 

percent, mean 6.18  percent, and maximum 96.2 percent. 
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Table 2. 2 Summary statistics of variables. 

Variables Minimum Median Mean Maximum 

Diabetes  5 10.7 10.66 17.8 

Obesity 21 31.5 31.5 44.5 

Physical Inactivity 15.5 27.2 27.09 37.6 

Unemployment  0 6.8 7.22 26.4 

Education 3.2 11.4 12.15 44.5 

Poverty 3.9 13 13.78 49.5 

Labor force 36.4 64.6 63.64 78.7 

Nonwhite 0 2.9 6.18 96.2 

German ancestry 0.31 28 30.55 77.93 

 

Figure 2.2 shows that all of the variables have significant local spatial autocorrelation. All 

the areas with red color indicate the “hot spots” and areas with blue color indicate “cold 

spot” of the particular variable. 
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Figure 2. 2 Plots of local autocorrelation (Moran’s I). 

Table 2.3 presents the regression parameter estimates for the OLS model. The results from 

OLS model shows that all the variables except percent below high school, German 

ancestry, and percent below the poverty level are significant at 0.05 significance level. 

Obesity, physical inactivity, nonwhite population, and unemployment have positive 

relationship with diabetes prevalence and percent of people in labor force have a negative 

relationship with diabetes prevalence in the Midwestern counties in the United States. The 

Moran’s I test for spatial autocorrelation for OLS residuals was significant that means the 

residuals of OLS model is spatially autocorrelated. The model coefficients of OLS model 

are not reliable because it violates the independence of the residuals in OLS model. 
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Table 2. 3 Coefficients of OLS model. 

Variables Estimates 

Standard 

Error t value P-values 

Intercept 7.07 0.73 9.71 <0.0001** 

Obesity 0.15 0.01 10.75 <0.0001** 

Physical inactivity 0.15 0.01 14.31 <0.0001** 

Unemployment  0.13 0.01 9.52 <0.0001** 

Nonwhite 0.01 0.004 2.32 0.02** 

Poverty -0.01 0.01 -1.29 0.2 

Education -0.01 0.009 -1.23 0.22 

Labor force -0.09 0.007 12.715 <0.0001** 

German ancestry 0.001 0.002 0.44 0.66 

AIC 3184.56    

** means those variables are significant at 0.05 level of significance 

 

Table 2.4 and figure 2.5 present the parameter estimates for GWR model coefficients. The 

Moran’s I test for spatial autocorrelation of residuals from the GWR model was not 

significant. This means that there was no issue of spatial autocorrelation in GWR residuals. 

Table 2. 4 Coefficients for GWR model. 

Variables Minimum First Quartile Median 

Third 

Quartile Maximum 

Intercepts 1.23 5.08 7.22 10.4 15.66 

Obesity 0.05 0.11 0.15 0.18 0.22 

Physical inactivity 0.02 0.1 0.13 0.15 0.22 

Unemployment  0.002 0.04 0.06 0.09 0.17 

Nonwhite -0.05 -0.01 0.003 0.02 0.07 

Poverty -0.09 -0.04 -0.01 0.002 0.03 

Education  -0.07 -0.02 0.01 0.03 0.06 

Labor force -0.17 -0.12 -0.09 -0.05 -0.006 

German ancestry -0.01 -0.005 0.0004 0.007 0.01 

AICc 3063.92     
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GWR model was used to model spatial autocorrelation. The selection of variables was done 

based on model AICs values. From figure 2.3 and 2.4, The GWR model with all the 

variables included in OLS model was the best model. 

 

 

Figure 2. 3 View of GWR model selection with different variables. 
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Figure 2. 4 Alternative view of GWR model selection procedure. 
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Figure 2.5 GWR coefficients: (1) Intercepts (2) Obesity (3) Physical inactivity (4) 

Unemployment (5) Nonwhites (6) Education (7) Poverty (8) Labor force (9) German 

ancestry. 

The results in table 2.5 from Monte Carlo test for spatial non stationarity of variables show 

that obesity, physical inactivity, nonwhites, education, and labor force have local effect 

and unemployment, poverty and German ancestry has the global effect. Since poverty, 

unemployment, and German ancestry are stationarity variables.  
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Table 2. 5  Monte Carlo test of nonstationary of variables. 

Variables P value 

Intercepts 0 

Obesity 0.02 

Physical inactivity 0.01 

Unemployment 0.2 

Nonwhite  0 

Poverty 0.41 

Education 0.001 

Labor force 0 

German ancestry 0.43 

 

 

The MGWR model includes poverty, unemployment and German ancestry as global 

variables and obesity, physical inactivity, nonwhites, education, and labor force as local 

variables. Table 2.6 gives parameter estimates for global variables and Table 2.7 presents 

parameter estimates for local variables of the MGWR model. The AIC value of MGWR 

model is less than GWR model indicates that MGWR model performs better than GWR 

model. 

Similarly, Figure 2.6 describes map of MGWR coefficients of local variables. 

Table 2. 6 Coefficients of MGWR model (Global variables). 

Variables Estimates 

Poverty -0.02 

Unemployment  0.07 

German ancestry 0.003 
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Table 2. 7 Coefficients of MGWR model (Local variables). 

Variables Minimum 

First 

Quartile Median 

Third 

Quartile Maximum 

Intercepts 1.18 5.44 7.13 9.92 16.5 

Obesity 0.05 0.11 0.15 0.17 0.22 

Physical inactivity 0.02 0.1 0.13 0.16 0.22 

Nonwhite  -0.04 -0.007 0.002 0.03 0.08 

Education  -0.07 -0.02 0.02 0.03 0.08 

Labor force -0.16 -0.11 -0.09 -0.06 -0.006 

AICc 3042         
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Figure 2. 6 MGWR coefficients of local variables: (1) Intercepts (2) Obesity (3) Physical 

inactivity (4) Nonwhites (5) Education (6) Labor force. 
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2.4 Discussion 
 

Two basic assumptions of OLS model are the residuals are independent and have constant 

variance. The violation of these basic assumptions in spatial data will lead to erroneous 

results if we fit OLS model. Fotheringham et al. (1996) introduced GWR model to address 

the issue of spatial autocorrelation by fitting spatially varying local models. In the GWR 

model, variables are treated as spatially nonstationary that means there is a spatially 

varying relationship between dependent and independent variables. Sometimes the effect 

of some of the variables varies negligibly with geographical location while others vary 

geographically. Fotheringham et al. (2003) purposed to extend the GWR model to MGWR 

to address this issue by having both local and global variables into a single model.  

The results of this study showed some of the variables are associated globally and others 

have local effects in diabetes prevalence. In recent years, there has been increasing research 

interest in effects of different variables on the geographical distribution of diseases. GWR 

model has been a famous choice of researchers who want to fit regression models with 

spatial data, but the result of this study showed that the effect of all the explanatory 

variables on diabetes prevalence does not vary spatially.  Fitting GWR model with data 

with some of the variables with global effect will give erroneous results (Fotheringham et 

al., 2003).  

The spatial distribution of diabetes prevalence and other independent variables varied 

strongly in this county-level data. This was reflected by the result of local Moran’s I plots 

and MGWR. The issue of spatial heterogeneity is very common for other chronic diseases 

such as cancer (Fu, Jiang, Lin, Liu, & Wang, 2015; Goovaerts et al., 2015; Jia, James, & 
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Kedia, 2014; Ren et al., 2016; Yao, Foltz, Odisho, & Wheeler, 2015); heart diseases (Ford 

& Highfield, 2016; Hu, 2009; Lim et al., 2014; Srinivasan), obesity (Chalkias et al., 2013; 

Fraser et al., 2012; Procter, Clarke, Ransley, & Cade, 2008). Our results, therefore, 

supported the previous findings that chronic diseases are usually clustered spatially.   

The results of this study show that there is a positive relationship between diabetes 

prevalence and obesity and the effect varies with the locations which is consistent with 

previous studies (Dijkstra et al., 2013; Hipp & Chalise, 2015) that fit GWR model on study 

of diabetes prevalence and obesity. 

This study showed that physical inactivity was positively associated with diabetes 

prevalence rate and the effect varies spatially which is consistent with the similar studies 

(Hipp & Chalise, 2015) in the continental Unites States. Similarly, there was 

geographically varying association between nonwhites and diabetes prevalence. The 

association between diabetes prevalence and education varies geographically this finding 

is consistent with similar studies (Hipp & Chalise, 2015) in the continental United States. 

The effect of percent of people in labor force on diabetes prevalence also varied 

geographically. To the best of our knowledge, this is the first study that tested the 

relationship of diabetes prevalence with percentage of people in labor force. 

The results of this study also showed that the effects of poverty, unemployment, and 

German ancestry on diabetes prevalence do not vary geographically. Previous study by 

(Hipp & Chalise, 2015) showed that the effect of poverty and unemployment varies with 

geographical locations in the continental United States. This result might be different 

because it includes data from counties in the Midwestern United States only. From a 

methodological aspect, MGWR proves to be the best model based upon AICc values of the 



51 
 

 

models. The main strength of this study is to use the MGWR to study the association 

between diabetes and socioeconomic and lifestyle factors. MGWR model is superior 

compared to OLS model and basic GWR model. The benefit of fitting geographical 

location specific models is it provides the local insight of the problems and helps public 

health policymakers to make effective policies to control and prevent diabetes.  

2.5 Conclusion 
 

Eight different risk factors of diabetes were identified in the Midwestern United States: (1) 

Obesity (2) Physical inactivity (3) Unemployment (4) Education (5) Poverty (6) Nonwhite 

(7) Labor force, and (8) German ancestry. The result supports the use of MGWR model 

better describes the relationship between diabetes prevalence and lifestyle and 

socioeconomic variables. The effect of poverty, unemployment, and German ancestry was 

global and the effects of the rest of the covariates on diabetes prevalence vary 

geographically. The use of MGWR can be useful to study spatial pattern of different 

diseases. The findings of this study can also be useful for policy makers to make effective 

policy based on geographical locations. Different strategies for diabetes reduction may be 

appropriate in different locations because of the spatially varying effects of covariates on 

diabetes prevalence. 
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Chapter 3 

 

3 Bayesian Spatiotemporal Zero-Inflated Models for Areal Count Data 

 

ABSTRACT 

Lyme disease is one of the most common vector born disease in the United States. 

Minnesota is one of the states in the United States that has the higher incidence of Lyme 

disease cases each year. Researchers are trying to find the relationship between Lyme 

disease and socioeconomic, climatic, landscape, and physical covariates. Even though 

Lyme disease is very common in Minnesota, it is not distributed evenly. There are many 

counties that have no reported cases of Lyme disease. The study of Lyme disease count 

involves excess zero counts and spatiotemporal correlation. Bayesian hierarchical models 

which rely on computationally expensive MCMC have been used extensively to address 

the presence of spatiotemporal correlation. Recently developed computationally efficient 

INLA approach is increasingly popular as an effective alternative of MCMC. In this 

chapter, the effect of climatic covariates on Lyme disease count in Minnesota was studied 

by using INLA approach and fond the best model which was identified based on DIC. The 

findings of this study will help to prevent and control Lyme disease. 

3.1 Introduction 
 

Vectors such as mosquitos, ticks, and fleas transmit vector borne diseases. In the United 

States, 14 different vector-borne diseases are of national public health concern. Climatic 

factors have a great impact on the seasonality, distribution, and prevalence of vector borne 

diseases such as Lyme disease (Gage, Burkot, Eisen, & Hayes, 2008). The geographic 

distribution of Lyme disease is limited to some specific areas in the United States, and there 
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is year-to-year variation in case count (Mead, 2015; Moore, Eisen, Monaghan, & Mead, 

2014). 

The climate patterns have great influence on survival and distribution primary host of Lyme 

disease Ixodes scupularis (Brownstein, Holford, & Fish, 2005; Johnson et al., 2016; 

Lindsay et al., 1995; Stafford, 1994). The variation in temperature and precipitation play 

important role in distribution of Lyme disease (Eisen, Eisen, & Beard, 2016; McCabe & 

Bunnell, 2004; N. Ogden et al., 2004; N. H. Ogden et al., 2008).  

Bayesian approach is very effective in spatiotemporal data analysis in which we need to 

consider the spatial and temporal structure of data in the inferential process (Blangiardo, 

Cameletti, Baio, & Rue, 2013). Bayesian approach has been applied in several 

epidemiological applications (Bernardinelli et al., 1995; Best, Richardson, & Thomson, 

2005; Lawson, 2013; Musenge, Chirwa, Kahn, & Vounatsou, 2013). For example, we can 

specify disease mapping and/or ecological regression if the data is aggregated counts of 

outcomes and covariates, alternatively, we can use geostatistical models if we data are 

observed at point locations (Blangiardo et al., 2013). 

Hierarchical Bayesian models rely on computationally expensive and technically 

challenging MCMC simulation techniques. A novel methodology, INLA, has been 

developed as an alternative of MCMC. INLA method use approximation techniques for 

inference that helps to avoid intense computational demands, convergence and mixing 

problems (Blangiardo et al.,2015).  

It is common to have a large proportion of data with zeros in ecological, epidemiological 

and environmental studies (Arab, 2015). There are varieties of ways to model count data 
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such as Poisson, negative binomial, binomial etc. Poisson regression is the most commonly 

used model for spatial count data (Agarwal, Gelfand, & Citron-Pousty, 2002).  

The study of multiple climatic factors that contribute to the increased risk of Lyme disease 

helps to control and spread of the disease. Since the forecast for average climatic conditions 

for forthcoming weeks, months and seasons is available, the finding of this study will help 

in Lyme disease control and prevention effort. 

The objective of this study was to review the existing methodology of zero-inflated 

spatiotemporal data and find the spatiotemporal relationship between Lyme disease count 

data and climatic covariates in Minnesota. 

3.2 Methods 

 

3.2.1 Data 

 

This study modeled Lyme disease count data in Minnesota. Data of confirmed cases of 

Lyme disease from 2008 to 2014 at the county-level for the state of Minnesota was obtained 

from the Center for Disease Control and Prevention (CDC). County-level temperature and 

precipitation data are obtained from PRISM weather data (htpp://prism.oregonstate.edu). 

County wise surveillance of Lyme disease in the United States is publicly available from 

CDC for the year 2000 to 2014. The national surveillance of Lyme disease was changed in 

2008. Before 2008, Lyme disease case is confirmed by the presence of erythemia migrans 

(EM) rash or presence of one late stage symptoms with laboratory confirmation. However, 

after 2008, known exposure or the presence of EM rash only is sufficient to declare 

confirmed case of Lyme disease when it occurred in an already endemic county. A positive 

laboratory test is required for non-endemic counties (Li et al., 2014). This study only 
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included data of Lyme disease count in the state of Minnesota from 2008-2014 due to 

change in national surveillance of Lyme disease in 2008.  

3.2.2 Spatiotemporal data 

 

Spatiotemporal data have information about spatial region and time domain. Consider a 

spatial domain S= {1, …, N} where i = 1, …, N are the index of areas for N number of 

areas. The neighbors of area i are denoted by Ni, for iS. That is, 

Ni = {jS: j is neighbor of i}, iS . 

The neighbors of a given area can be defined by adjacency criteria such as sharing common 

border. The number of neighbors based on adjacency criterion for the ith area is denoted as 

ni. Total T time points are index by t as 1, 2, 3, … , T. The response variable yit denotes 

count of area i at time t, where i = 1,2,3, … , N, and t = 1,2,3, …. , T. The values for 

covariate k for area i, at time point t is denoted by xitk where i = 1,2,3, … , N, t = 1,2,3, …, 

T, and k = 1,2,3, …., K. The covariates can be written as a vector form xit, that is:

),,...,,( 321
 itkititit xxxxitX . 

3.2.3 Bayes’ Theorem 

 

Bayes’ theorem states that: 

)(

)()|(
)|(

yP

PyP
yP





  … … … (1) 

Where )|( yP  is posterior probability density, )|( yP is likelihood, )(P is prior and 

)(yP  is normalizing constant. 
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Since the denominator does not contain θ, it acts as normalizing constant. Therefore, we 

can simplify the Bayes Theorem as: 

Posterior   Likelihood x Prior 

3.2.4 Hierarchical model 

 

The basic hierarchical model consists of three primary stages: (1) Data model 

([data|process, parameters]); (2) process model ([process|parameters]); (3) parameter 

model where the brackets and vertical line refers to probability distribution and conditional 

distribution respectively. This approach is helpful in data analysis because it breaks the 

complex statistical modeling problem into pieces (Wikle & Anderson, 2003).  

The first stage of the hierarchical model involved with data observational process, or data 

model, which represents the distribution of the data (example; counts of Lyme disease) 

given the process of interest (example; count of Lyme disease over some geographic area) 

and the parameters that describe the data model. The second stage of the model describes 

the process conditional on other parameters. For example, this might be a regression model 

relating Lyme disease count data to some climatic covariates with model parameters 

represents the strength of the association. The last stage accounts for uncertainty in 

parameters by assigning them distributions. For example, the effect of climatic covariates 

could be different at different geographical location and time. Thus, we might allow the 

regression parameters varying spatially and temporally by assigning distributions, that 

includes spatiotemporal correlation. 

The benefit of fitting hierarchical model is it allows parameters to vary more than one level 

via the introduction of random effect that helps to simplify the complex interactions. 
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Application of hierarchical Bayesian models is very useful for modeling complex data 

structure for example explicit modeling of spatiotemporal variability (Cressie, Calder, 

Clark, Hoef, & Wikle, 2009). 

3.2.5 Zero-inflated count data models 

 

A variety of modeling approaches are available to model spatial and spatiotemporal count 

data. For example; count data are modeled by using Poisson, negative binomial, binomial, 

beta binomial or hyper-geometric distributions (Agarwal et al., 2002; Lambert, 1992). 

Poisson regression is the most frequently used method for the spatial count data.  

yi ~ Poisson (λi) Where i= 1,…, n. 

Then, E (yi) = variance (yi) = λi. 

We can show this relationship upon considering the probability mass function 

!
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The most commonly used zero-inflated mixture models for count data are zero-inflated 

Poisson mixture model (ZIP) and zero-inflated negative binomial mixture model (ZINB) 

(Agarwal et al., 2002; Lambert, 1992). 
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3.2.6 Zero-inflated data models 

 

Let Y denotes the observed variable. We assume the following model  

 ),(,  pPPY   for Y.  

21 )1( ZZY   

Where ~Bernoulli (p), }{~ 1

1 PPZ
Z
 , and }0{2 ~ Z are independent. We also assume 

that Z1 is discrete and P (Z1 ≥ 0) =1.We can apply the above described model for count 

data because the observed variable Y has non-negative support.  

𝑃(𝑌 = 𝑦) = {   
(1 − 𝑝) + 𝑝𝑝𝑍1

(0), 𝑦 = 0

𝑝𝑝𝑍1
(𝑦),             𝑦 = 1,2,3, …

 

If Z ~ Poisson (λ) we obtain Zero-inflated Poisson model as 

𝑃(𝑌 = 𝑦) = {   

(1 − 𝑝) + 𝑝𝑒𝑥𝑝(−𝜆), 𝑦 = 0

𝑝
𝜆𝑦exp (−𝜆)

𝑦!
,             𝑦 = 1,2,3, …

 

Theorem 1 and Theorem 2 describes various properties of zero-inflated data (Eggers, 

2015).  

 Theorem 1.  The excepted value E[Y] and variance Var [Y] of Y are given by E[Y] = 

pE[Z1] and Var[Y] = pVar[Z1] +(1-p)p E[Z1]
2. 

Proof. The expected value of Y is given by 

)])1([][ 21 ZZEYE   

)])1[(][ 21 ZEZE   
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The variance of Y is given by 
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Corollary. The expected value E[Y] and variance Var[Y] of Poisson model are given by 

E[Y]= pλ, and var[Y]= pλ(1+λ-pλ). 

Proof: In zero-inflated Poisson model, Z1~ Poisson (λ), and E(Z1) = Var(Z1) = λ. 

Plugging these values for E(Z1) and Var(Z1) in the expression will give above result. 

Theorem 2. Let Z1 ~ Poisson (λ). The moment estimators )(ˆ YpMME  and MME̂  are given 

by 

)(ˆ YpMME  
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The moment estimators of )(ˆ YpMME and MME̂  (Y) are given by the values of p and λ 

which satisfy 
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3.2.7 Latent Gaussian Model 

 

The INLA framework deals with latent Gaussian model, where response variable yi and 

the parameter of the family of distribution ϕi is linked to a structured additive predictor ηi 

through link function g (.) so that g (ϕi) = ηi (Martins, Simpson, Lindgren, & Rue, 2013). 

The INLA method is useful to estimate the effect of set of relevant covariates on some 

function (typically mean) of observed data with spatial or spatiotemporal correlation is 

taken into consideration in modeling.  

The modelling framework for estimating the mean for the ith unit by means of an additive 

predictor can be expressed as: 





L

l

lil

k

k

kiki zfx
11

)( … … … (2) 
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Where,  

α is the intercept, ),...,,,( 321 kβ is the coefficients for the effects of some covariates 

),...,,,( 321 kxxxxx  on response, and f = {f1(.), …., fl(.)} is a collection of functions 

defined in terms of a set of covariates z = (z1, … , zl). This formulation can accommodate 

a wide range of models from standard and linear hierarchical regression to spatial and 

spatiotemporal models by varying the form of function fl(.) (Blangiardo et al., 2013).   

The vector of parameters in (2) is represented by θ = {α, β, f}. We can assume GMRF prior 

on θ, with mean 0 and a precision matrix Q which reflects neighborhood structure. Qij = -

1 if i and j are neighbors, and 0 otherwise. The diagonal elements of Q is Qii = ni where ni 

represents the neighbors of the ith area. The vector of K hyper-parameters ),...,( 1 Kψ  

which is much smaller than θ. 

For example, if we consider 3 x 3 spatial grid as: 

1 2 3 

4 5 6 

7 8 9 

 

The Q matrix can be written as: 
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The temporal precision matrix for 7 time points represented by W as 
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The marginal posterior distributions for each of the parameters vector is computed by 

Bayesian computation as: 

ψyψ,yψy dpp ii  )|()|()|(   

and each element of the hyper-parameter vector as 

  kk dpp ψyψy )|()|(  

We need to compute: 

(1) )|( yψp to get all the marginals )|( ykp   

(2) )|( yψ,ip  Which is needed to compute the marginal posterior for the parameters. 
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The first step of INLA method is to compute an approximation to the posterior marginal 

distribution of marginal hyper-parameters as    

)(
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))()(
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p

ppp
= : )(~ y|ψp … … … (3) 

Where )(~ yψ,|θp is Gaussian approximation of yψ,|θ(p ) and )(ψθ
 is its mode. 

The second step is slightly more complex because there are generally more elements in θ 

than there are in ψ and this is more expensive in computation. An easy alternative to solve 

this issue is to approximate the posterior conditional distribution )|( yψ,θip directly as the 

marginal from, by using a Normal distribution where the precision matrix is based on the 

Cholesky decomposition of precision matrix Q (Rue & Martino, 2007). This method is 

very fast but less accurate.  The alternative way is to re write the vector of parameters as θ 

= (θi, θ-i) and use Laplace approximation again to get 
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
 

  =: )(~ yψ,|θip … … … (4) 

Random variable ( yψ,,θ ii | ) are generally normally distributed and the approximation 

provided by (4) typically works well. This strategy also very expensive in terms of 
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computation. Better alternative is “Simplified Laplace Approximations” which is Taylor 

series expansion of the Laplace approximation. It requires shorter computation time and 

produces more accurate results. 

INLA method starts with exploring the marginal joint posterior for the hyper-parameters 

)(~ y|ψp to locate the mode; a grid search is then performed to get a set of relevant points 

 kψ along with a corresponding set of weights KΔ , to give approximation to this 

distribution. For each k , the conditional posteriors ),|(~ ykip  are obtained by numerical 

integration as:  

Kk

K

k

kii ppp Δyyy )|(~),|(~)|(~

1

 


  

3.2.8 Count data modeling using INLA 

 

County- level Lyme disease count data in Minnesota was spatially modeled by using 

INLA with Besag-Yourk-Mollie (BYM) method as described by Lawson (2013) as: 

)( iiii ePoissony    

iiii vux  β)(log   

),0(~ uNu   

),(~






v
vNv v  

Where, 
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(1) yi is the count of Lyme disease in county i; ei is the expected count in county i; 

and θi is the relative risk of county i.  

p

p
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 𝑦𝑖
𝑝
 is the population in the 𝑖𝑡ℎ county of Minnesota. 

𝜃𝑖̂ = 
i

i

e

y
 

(2) ui is the spatially unstructured random effect component normally distributed with 

mean zero. 

(3) vi is the spatially structured component which is modeled by using an intrinsic 

conditional autoregressive structure (iCAR) as: 


















v
vNv v,~  

Where, Neighborhood consist of spatially adjacent shapes is characterized by the 

normally distributed mean of the spatially structured random effect terms for the 

spatial shapes that makes the neighborhood )( v  and the standard deviation of 

that mean divided by the number of the spatial shapes in the neighborhood 














v

v . 

The spatial model described above can be extended to include temporal characteristics for 

a space-time model for count data in small areas in fixed time points. This approach 

extends Beasg-York-Mollie (BYM) by including a linear term for space time interaction 

and a nonparametric spatiotemporal time trend (Balngiardo et al., 2013). The 

spatiotemporal model can be written as: 
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ijiii

T

iij vux   β0)(log  

Where 0  is the intercept, T

ixβ is vector of coefficients for climatic covariates, iu is 

spatially unstructured random effect term, iv  is the spatially structured conditional 

autoregressive term, i  is the first-order random walk-correlated time variable, and ij  is 

the interaction term for space and time for i= 1 … N small areas (N=87 counties in 

Minnesota) j= 1…T time points (T=7 years). 

Spatiotemporal modeling was conducted using INLA approach with R-INLA package. 

3.2.9 Bayesian Model selection using the Deviance Information Criterion (DIC) 

 

Several models can be considered for a given data analysis. A large model fits data better 

because it has more flexibility, but larger models are difficult to compute and interpret. 

Choosing better model from competing models is also a very important issue in data 

analysis.  

Some of the commonly used model selection criterion are Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and the Deviance Information Criterion 

(DIC).  

Akaike Information Criterion (AIC) takes the form: 

plAIC mi 2)ˆ(2  iθ  

Bayesian Information Criterion (BIC) takes the form: 

pnlBIC mi )log()ˆ(2  iθ  
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Where )ˆ(θ
iml is the log likelihood of the model mi, iθ̂ is the maximum likelihood estimate 

(MLE) of θ under the model mi, n is the number of observations and p is the number of 

parameters. Models with lower AIC and BIC values are considered as better models. The 

number of parameters p in model determines the penalty for model complexity in both AIC 

and BIC calculation. AIC and BIC methods are not appropriate for the Bayesian 

hierarchical model where parameters include correlated random effects. 

DIC, which is an extension of AIC, may be applied in choosing hierarchical spatial models. 

The criteria is defined as: 

D (θ) = -2logL (y|θ) 

Where L(y|θ) is the likelihood function of the data given the parameters under the model. 

Then the DIC is defined as 

DpDDIC 
______

)(θ  

Where 
______

)(θD  = E [D (θ) |y] is the posterior mean of the deviance, a measure of fit with 

lower value indicates the better fit of the data. Dp  is a penalty term which measures the 

complexity of the model and is defined as: 

)()
_______

θ(θ DDp D   

Where )(θD is the deviance evaluated at the posterior mean of θ. Dp penalty accounts 

for spatial correlation or shrinkage among correlated parameters and gives estimate of 

effective number of model  parameters rather than simply penalizing the models depends 
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on the total raw numbers parameters appearing in the model. The models with lower DIC 

score is preferred since it represents the best combination of fit and parsimony. 

3.3 Results 
 

Local Moran’s I test was used to find local spatial autocorrelation. Figure 3.1 and Figure 

3.2 display hot spots and cold spots of Lyme disease in Minnesota. 

 

 

Figure 3. 1 Spatial cluster of Lyme disease in Minnesota for years 2008-2011. 
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Figure 3. 2 Spatial cluster of Lyme disease in Minnesota for years 2012-2014. 

 

Figure 3.3 and 3.4 display that a large number of counties in Minnesota have no recorded 

cases of Lyme disease. 
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Figure 3. 3 Bar plot of Lyme disease count in Minnesota from year 2008-2011. 
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Figure 3. 4 Bar plot of Lyme disease count in Minnesota from year 2012-2014. 
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Figure 3.5 shows that there were fewer cases of Lyme disease in 2008 and 2014 

compared to other years. There were many outliers in each year. Outliers are defined as 

any data value which is 1.5 interquartile rage (IQR) below the first quartile and above the 

third quartile.  

 

Figure 3. 5 Box and whisker plot of Lyme disease count in Minnesota from year 2012-

2014. 
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The results from figure 3.6 and 3.7 show that the distribution of Lyme disease was 

clustered in counties in the northeastern part of the state of Minnesota. 

 

 

Figure 3. 6 County level map of Lyme disease count per 10000 people in Minnesota from 

year 2008-2011. 
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Figure 3. 7 County level map of Lyme disease count per 10000 people in Minnesota from 

year 2012-2014. 
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The results from figure 3.8 shows the pattern in neighborhood structure and which helps to 

identify more isolated or more central counties. 

 

Figure 3. 8 Adjacency matrix of Minnesota counties. 

 

Table 3.1 shows model coefficients from Poisson, Poisson hurdle (Zero inflated Poisson0) 

and Zero inflated Poisson (Zero inflated Poission1) models where β0 is for intercept, β1 for 

average annual temperature 2 years lag, β2 for average annual precipitation two years lag, 
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β3 for average winter temperature one year lag, β4 for average winter temperature, β5 for 

average annual temperature one year lag, β6 for average annual temperature, β7 for average 

annual precipitation, β8 for average annual precipitation one year lag. The result also shows 

that there was significant relationship between Lyme disease cases and average annual 

temperature two years lag (β1), average winter temperature (β4), and average annual 

temperature (β6). The effect of rest of the variables was not significant because 95% 

credible interval includes both positive and negative values. The result also shows that 

there was negative relationship between Lyme disease count and average annual 

temperature two years lag and average temperature whereas average winter temperature 

was positively related with Lyme disease count. 
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Table 3. 1: Model coefficients from Poisson, Poisson hurdle (Zero inflated Poisson0) and 

Zero inflated Poisson (Zero inflated Poission1) models. 

Model Covariates Mean SD 2.5 % quantile 0.975% quantile 

  β0 10.009 2.349 5.398 14.594 

 β1 -0.116 0.04 -0.193 -0.043 

 β2 0.005 0.004 -0.002 0.011 

Poisson β3 -0.008 0.023 -0.051 0.037 

 β4 0.061 0.018 0.028 0.097 

 β5 -0.073 0.048 -0.17 0.019 

 β6 -0.085 0.036 -0.154 -0.011 

 β7 0.006 0.003 -0.001 0.013 

  β8 0.003 0.003 -0.003 0.009 

 β0 9.638 2.287 5.054 14.018 

 β1 -0.114 0.041 -0.193 -0.035 

 β2 0.005 0.004 -0.002 0.012 

 β3 -0.007 0.023 -0.051 0.039 

Zero inflated Poison0 β4 0.059 0.018 0.025 0.097 

 β5 -0.077 0.051 -0.179 0.017 

 β6 -0.068 0.038 -0.14 0.008 

 β7 0.007 0.004 0.001 0.014 

  β8 0.004 0.003 -0.003 0.01 

  β0 9.615 2.578 4.518 14.383 

 β1 -0.109 0.043 -0.184 -0.028 

 β2 0.005 0.003 -0.002 0.012 

 β3 -0.009 0.023 -0.052 0.037 

Zero inflated Poisson1 β4 0.059 0.019 0.026 0.096 

 β5 -0.069 0.05 -0.17 0.022 

 β6 -0.086 0.035 -0.153 -0.015 

 β7 0.006 0.004 -0.003 0.01 

  β8 0.004 0.003 -0.003 0.01 

 

 

Table 3.2 shows model coefficients from Negative binomial, Negative binomial hurdle 

(Zero inflated Negative binomial 0) and Zero inflated Negative binomial (Zero inflated 

Negative binomial 1) models where β0 is for intercept, β1 for average annual temperature 

2 years lag, β2 for average annual precipitation two years lag, β3 for average winter 

temperature one year lag, β4 for average winter temperature, β5 for average annual 
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temperature one year lag, β6 for average annual temperature, β7 for average annual 

precipitation, β8 for average annual precipitation one year lag. 

Table 3. 2  Model coefficients from Negative binomial, Negative binomial hurdle (Zero 

inflated Negative binomial 0) and Zero inflated Negative binomial (Zero inflated 

Negative binomial 1) models. 

Model Covariates Mean SD 

2.5 

quantile 

0.975 

quantile 

  β0 6.268 1.861 2.62 9.93 

 β1 -0.033 0.015 -0.064 -0.003 

 β2 0.005 0.005 -0.005 0.014 

Negativebinomial β3 -0.006 0.021 -0.048 0.036 

 β4 0.039 0.012 0.016 0.062 

 β5 -0.055 0.037 -0.128 0.017 

 β6 -0.095 0.034 -0.161 -0.029 

 β7 0.001 0.005 -0.008 0.01 

  β8 0.011 0.005 0.001 0.02 

 β0 6.43 1.804 2.883 9.973 

 β1 -0.035 0.016 -0.066 -0.005 

 β2 0.005 0.005 -0.005 0.015 

 β3 -0.006 0.022 -0.05 0.038 

Zeroinflated negativebinomial0 β4 0.04 0.011 0.017 0.061 

 β5 -0.055 0.038 -0.13 0.018 

 β6 -0.093 0.034 -0.16 -0.027 

 β7 0.002 0.005 -0.008 0.011 

  β8 0.012 0.005 0.0026 0.022 

  β0 6.236 1.846 2.604 9.855 

 β1 -0.033 0.015 -0.063 -0.003 

 β2 0.005 0.005 -0.005 0.014 

 β3 -0.006 0.021 -0.048 0.036 

Zeroinflated negativebinomial1 β4 0.039 0.012 0.016 0.061 

 β5 -0.055 0.037 -0.127 0.017 

 β6 -0.095 0.034 -0.161 -0.029 

 β7 0.001 0.005 -0.008 0.01 

  β8 0.011 0.005 0.001 0.02 

 

 

Table 3.3 presents results of model diagnostics. Zero-inflated Poisson model is the best 

model because it has the lowest DIC value. 
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Table 3. 3 Model diagnostics. 

Model DIC 

Poisson 2887.75 

Zero-inflated Poisson0 3210.87 

Zero-inflated Poisson1 2884.51 

Negative binomail 2891.28 

Zero-inflated negative binomial0 3205.65 

Zero-inflated negative binomial1 2890.3 

 

Figure 3.9 displays posterior density plot for intercept, Temp.vector (average annual 

temperature 2 years lag), Prep.vector (average annual precipitation two years lag), t1 

(average winter temperature one year lag), t2 (average winter temperature), ty1 (average 

annual temperature one year lag), ty (average annual temperature), py (average annual 

precipitation), and py1 (average annual precipitation one year lag). 
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Figure 3. 9 Posterior density plots. 

 

 

Figure 3.10 shows that there was no significant temporal trend of Lyme disease in 

Minnesota from 2008-2014. 
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Figure 3. 10 Plot for posterior mean with 95 % credible interval over years. 
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Figure 3.11 displays diagnostic plots for zero-inflated Poisson regression. There is no 

failure in result means the model is good. 

 

Figure 3. 11 Diagnostic plots. 
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3.4 Discussion and Conclusion 
 

Spatiotemporal count data with excess zeros are very common in epidemiology. The 

modeling of spatiotemporal count data is more complicated due to the presence of excess 

zeros and spatiotemporal correlation. Researchers and statisticians have been using 

Bayesian hierarchical models to address those issues. Unfortunately, fitting Bayesian 

hierarchical model to estimate model parameters is complicated due to computational 

demands of MCMC algorithm. Recently developed INLA is increasingly popular as a 

substitute for MCMC methods to fit Bayesian hierarchical models due to less 

computational demand and accurate results. The use of INLA approach is increasingly 

popular in spatiotemporal count data analysis (DiMaggio, 2015; Musenge et al., 2013; 

Ross, Hooten, & Koons, 2012; Schrödle & Held, 2011; Serra, Saez, Juan, Varga, & Mateu, 

2014; Ugarte, Adin, Goicoa, & Militino, 2014; Zhao et al., 2014). 

 The objective of this study was to study the relationship between Lyme disease count and 

climatic covariates in Minnesota. Like many other epidemiological data, the study of Lyme 

disease count regression model is complicated due to the presence of complicated statistical 

features such as excess of zeros and spatiotemporal correlation. Poisson and negative 

binomial models are the most commonly used models in count data modeling. The 

extension of these models is available to address the issue of presence of excess zeros. 

Regular and zero inflated Poisson and negative binomial models were fitted to study the 

relationship between Lyme disease count and climatic covariates using INLA approach. 

Zero-inflated Poisson model was selected as the best model based on DIC and effective 

numbers of parameters.  
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Among all the climatic variables tested in this analysis to study their association with Lyme 

disease count in Minnesota, average annual temperature two years lag, average winter 

temperature and average annual temperature were the only covariates that have the 

significant association with Lyme disease count. There was no clear temporal pattern of 

Lyme disease in Minnesota over the years 2008-2014. The findings of this study shows 

that average annual temperature two years lag and average annual temperature of the same 

year was negatively associated with Lyme disease. Similarly, average winter temperature 

of the same year was positively associated with Lyme disease which is consistent with 

previous studies by (Brownstein et al., 2005; Ostfeld, Canham, Oggenfuss, Winchcombe, 

& Keesing, 2006; Schauber, Ostfeld, & Evans Jr, 2005; Subak, 2003). The increase of 

average winter temperature helps to increase the activity of Lyme disease causing ticks in 

the summer months. 
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Chapter 4 
 

4 Conclusions and future directions 
 

This chapter includes major conclusions and contribution of this dissertation and suggests 

some possible areas for future research. 

4.1 Conclusions 
 

Spatial and spatiotemporal data analysis is a new and emerging field in statistics. Spatial 

and spatiotemporal regression models are quite common in epidemiological data analysis. 

Chapter one provides the general overview of spatial data and challenges of spatial data 

analysis. Chapter two summarize the models used for geographically weighted regression 

and fitted MGWR model to study the association between diabetes prevalence and 

socioeconomic and life style covariates. The benefit of fitting MGWR is that it can include 

both local and global variables in a single model. Chapter three presents the use of INLA 

approach in model selection for zero- inflated count data which is an alternative of 

computationally challenging MCMC method in Bayesian hierarchical modeling. INLA 

approach was used to find the best model for the spatiotemporal regression analysis to find 

the relationship of Lyme disease count data with climatic variables in Minnesota. Zero-

inflated Poisson regression model was identified as the best model from the analysis.  

 

4.2 Contributions 
 

The research reported in chapter two serves as a new and improved analysis workflow for 

geographically weighted regression models. There are a large number of research articles 
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dealing with geographically weighted regression models, but there is no clear workflow 

for dealing such data. I propose the following workflow that will provide a clear guideline 

for applying geographically weighted regression models with spatial data. 
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Compare AIC 

 

 

 

 

 

OLS model 

If residuals are not spatially auto correlated from Moran’s I test 

(OLS is good model)  

If residuals are spatially auto correlated: 

Try GWR 

Do model selection based on AICc value 

Get final GWR model 

Do Monte Carlo Test for 

spatial non stationarity 

If all the variables are spatially non 

stationary 

If some of the variables are 

spatially stationary 

Fit GWR 

Fit MGWR 

Figure 4. 2 Suggested flow chart for regression analysis of spatial data. 

Compare AIC 
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In addition, this study help to understand the association between diabetes prevalence and 

socioeconomic and life style factors by using MGWR which has never been considered for 

the analysis of any epidemiological data before. The findings of this study will help to 

understand the distribution of diabetes in the Midwestern United States and the effects of 

some covariates.  

In chapter three, A Bayesian hierarchical model was developed using integrated INLA 

approach which runs faster than traditionally used MCMC methods for spatiotemporal data 

analysis. The use of INLA approach help to reduce the computational time so we can fit 

and compare the results of different models in time efficient way. The results from 

spatiotemporal regression analysis of the association between Study of the association 

between Lyme disease count data and climatic covariates in Minnesota by using zero-

inflated spatiotemporal regression model helps to understand the effects of climatic 

variables on Lyme disease count. The findings of this study will help Lyme disease 

prevention and control. 

4.3 Areas for future research 
 

This research proposes an improved analysis workflow to fit geographically weighted 

regression models. Future work can be conducted in the study of other chronic diseases in 

different geographical scales. INLA approach is very fast in computation. Future work can 

be extended to regional to even national data of Lyme disease. 
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