9 research outputs found

    Interactive Density Maps for Moving Objects

    Full text link

    VISUALIZATION OF SPATIO-TEMPORAL RELATIONS IN MOVEMENT EVENT USING MULTI-VIEW

    Get PDF

    Visual analytics of movement: An overview of methods, tools and procedures

    Get PDF
    Analysis of movement is currently a hot research topic in visual analytics. A wide variety of methods and tools for analysis of movement data has been developed in recent years. They allow analysts to look at the data from different perspectives and fulfil diverse analytical tasks. Visual displays and interactive techniques are often combined with computational processing, which, in particular, enables analysis of a larger number of data than would be possible with purely visual methods. Visual analytics leverages methods and tools developed in other areas related to data analytics, particularly statistics, machine learning and geographic information science. We present an illustrated structured survey of the state of the art in visual analytics concerning the analysis of movement data. Besides reviewing the existing works, we demonstrate, using examples, how different visual analytics techniques can support our understanding of various aspects of movement

    Asynchronous Visualization of Spatiotemporal Information for Multiple Moving Targets

    Get PDF
    In the modern information age, the quantity and complexity of spatiotemporal data is increasing both rapidly and continuously. Sensor systems with multiple feeds that gather multidimensional spatiotemporal data will result in information clusters and overload, as well as a high cognitive load for users of these systems. To meet future safety-critical situations and enhance time-critical decision-making missions in dynamic environments, and to support the easy and effective managing, browsing, and searching of spatiotemporal data in a dynamic environment, we propose an asynchronous, scalable, and comprehensive spatiotemporal data organization, display, and interaction method that allows operators to navigate through spatiotemporal information rather than through the environments being examined, and to maintain all necessary global and local situation awareness. To empirically prove the viability of our approach, we developed the Event-Lens system, which generates asynchronous prioritized images to provide the operator with a manageable, comprehensive view of the information that is collected by multiple sensors. The user study and interaction mode experiments were designed and conducted. The Event-Lens system was discovered to have a consistent advantage in multiple moving-target marking-task performance measures. It was also found that participants’ attentional control, spatial ability, and action video gaming experience affected their overall performance

    Trajectory Data Mining in Mouse Models of Stroke

    Get PDF
    Contains fulltext : 273912.pdf (Publisher’s version ) (Open Access)Radboud University, 04 oktober 2022Promotor : Kiliaan, A.J. Co-promotor : Wiesmann, M.167 p

    View-Dependent Visualization for Analysis of Large Datasets

    Get PDF
    Due to the impressive capabilities of human visual processing, interactive visualization methods have become essential tools for scientists to explore and analyze large, complex datasets. However, traditional approaches do not account for the increased size or latency of data retrieval when interacting with these often remote datasets. In this dissertation, I discuss two novel design paradigms, based on accepted models of the information visualization process and graphics hardware pipeline, that are appropriate for interactive visualization of large remote datasets. In particular, I discuss novel solutions aimed at improving the performance of interactive visualization systems when working with large numeric datasets and large terrain (elevation and imagery) datasets by using data reduction and asynchronous retrieval of view-prioritized data, respectively. First I present a modified version of the standard information visualization model that accounts for the challenges presented by interacting with large, remote datasets. I also provide the details of a software framework implemented using this model and discuss several different visualization applications developed within this framework. Next I present a novel technique for leveraging the hardware graphics pipeline to provide asynchronous, view-prioritized data retrieval to support interactive visualization of remote terrain data. I provide the results of statistical analysis of performance metrics to demonstrate the effectiveness of this approach. Finally I present the details of two novel visualization techniques, and the results of evaluating these systems using controlled user studies and expert evaluation. The results of these qualitative and quantitative evaluation mechanisms demonstrate improved visual analysis task performance for large numeric datasets

    Spatiotemporal Analysis of Sensor Logs using Growth Ring Maps

    No full text
    Spatiotemporal analysis of sensor logs is a challenging research field due to three facts: a) traditional two-dimensional maps do not support multiple events to occur at the same spatial location, b) three-dimensional solutions introduce ambiguity and hard to navigate, and c) map disortions to solve the overlap problem are unfamiliar to most users. This paper introduces a novel approach to represent spatial data changing over time by plotting a number of non-overlapping pixels, close to the sensor positions in a map. Thereby, we encode the amount of tome that a subject spent at a particular sensor to the number of plotted pixels. Color is used in a twoflod manner; while distinct colors distinguish between sensor nodes in different regions, the colorsintensity is used as an indicator to the temporal property of the subjects' avtivity. The resulting visualization technique, called Growth Ring Maps, enables users to find similarities ans extract patterns of interest in spatiotemporal dtaa by using humans' perceptual abilities. We demonstrate the newly introduced technique on a dataset that shows the behavior of healthy and Alzheimer transgenic, male and female mice. We motivate the new technique by showing that the temporal analysis based on hierarchical clustering and the spatial analysis based in transition matrices only reveal limited results. results and findings are cross-validated using multidimensional scaling. While the focus of this papaer is to apply our visualization for monitoring animal behavior, the technique is also applicable for analyzing dta, such as packet tracing, geographic monitoring of sales development, or mobile phone capacity planning

    Tasks and visual techniques for the exploration of temporal graph data

    Get PDF
    This thesis considers the tasks involved in exploratory analysis of temporal graph data, and the visual techniques which are able to support these tasks. There has been an enormous increase in the amount and availability of graph (network) data, and in particular, graph data that is changing over time. Understanding the mechanisms involved in temporal change in a graph is of interest to a wide range of disciplines. While the application domain may differ, many of the underlying questions regarding the properties of the graph and mechanism of change are the same.The research area of temporal graph visualisation seeks to address the challenges involved in visually representing change in a graph over time. While most graph visualisation tools focus on static networks, recent research has been directed toward the development of temporal visualisation systems. By representing data using computer-generated graphical forms, Information Visualisation techniques harness human perceptual capabilities to recognise patterns, spot anomalies and outliers, and find relationships within the data. Interacting with these graphical representations allow individuals to explore large datasets and gain further insightinto the relationships between different aspects of the data. Visual approaches are particularly relevant for Exploratory Data Analysis (EDA), where the person performing the analysis may be unfamiliar with the data set, and their goal is to make new discoveries and gain insight through its exploration. However, designing visual systems for EDA can be difficult, as the tasks which a person may wish to carry out during their analysis are not always known at outset. Identifying and understanding the tasks involved in such a process has given rise to a number of task taxonomies which seek to elucidate the tasks and structure them in a useful way.While task taxonomies for static graph analysis exist, no suitable temporal graph taxonomy has yet been developed. The first part of this thesis focusses on the development of such a taxonomy. Through the extension and instantiation of an existing formal task framework for general EDA, a task taxonomy and a task design space are developed specifically for exploration of temporal graph data. The resultant task framework is evaluated with respect to extant classifications and is shown to address a number of deficiencies in task coverage in existing works. Its usefulness in both the design and evaluation processes is also demonstrated.Much research currently surrounds the development of systems and techniques for visual exploration of temporal graphs, but little is known about how the different types of techniques relate to one another and which tasks they are able to support. The second part of this thesis focusses on the possibilities in this area: a design spaceof the possible visual encodings for temporal graph data is developed, and extant techniques are classified into this space, revealing potential combinations of encodings which have not yet been employed. These may prove interesting opportunities for further research and the development of novel techniques.The third part of this work addresses the need to understand the types of analysis the different visual techniques support, and indeed whether new techniques are required. The techniques which are able to support the different task dimensions are considered. This task-technique mapping reveals that visual exploration of temporalgraph data requires techniques not only from temporal graph visualisation, but also from static graph visualisation and comparison, and temporal visualisation. A number of tasks which are unsupported or less-well supported, which could prove interesting opportunities for future research, are identified.The taxonomies, design spaces, and mappings in this work bring order to the range of potential tasks of interest when exploring temporal graph data and the assortmentof techniques developed to visualise this type of data, and are designed to be of use in both the design and evaluation of temporal graph visualisation systems
    corecore