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INTRODUCTION
                                                                                                                                       

Neurological diseases are among the leading causes of death and disability 
today [1]. Research on these diseases–including stroke, Parkinson’s disease, 
Alzheimer’s disease (AD), and many others–is thus crucially important, at 
both the basic and clinical level for the development of preventatives and/or 
interventions. Technological development is changing how research in this field 
is carried out, as new tools make both collection and analysis of large amounts 
of behavioral phenotype data easier. For preclinical research involving behavior 
and locomotion in rodents, automated home cage monitoring systems enable 
the collection of data 24/7 with minimal interaction with animals. In addition 
to reducing the amount of stress on animals and eliminating many other 
confounding factors, automated home cage monitoring expands the scope of 
the parameters that can be measured and the total amount of data collected, 
which also creates a need for new software to process these data.

Traja, the novel software developed and presented in this thesis, is one such 
tool designed for the processing and analysis of large amounts of movement 
tracking data. Indeed, many fields of scientific research are moving towards a 
more data-driven approach, and tools like Traja will enable researchers to open 
up new avenues of scientific discovery.

1.1 AIMS OF THE THESIS

This thesis introduces Traja, a new, openly available software built for analysis 
of behavioral data collected with home cage monitoring. With the creation of 
this software, we have developed a method for data collection and analysis that 
opens up a new, previously inaccessible avenue of research in neuroscience. 
Increased application of advanced and state-of-the-art modeling techniques 
allow for the identification, description and visualization of previously 
undetectable patterns in movement data. This software framework employs 
methods such as automated pattern and anomaly detection, dimensionality 
reduction, and deep neural networks (Figure 1.3), which have never before 
been applied to mouse home cage locomotion data.

1

Main contribution
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The primary use case for Traja is with automated home cage monitoring of 
animals, which provides many advantages over traditional locomotion and 
behavioral testing. To this end, the thesis includes two studies (Chapters 3 
and 4) examining the effect of diets on mice following ischemic stroke. In this 
research, Traja was used to measure recovery of the animals by the analysis of 
locomotion data collected from mouse home cages.

The intended audience of the research in this thesis includes researchers 
looking to improve work in laboratory animal sciences (see §1.2.4 below and 
§5.1 for an extended discussion), as well as neuroscientists interested in finding 
new patterns in animal behavior, especially those handling large amounts of 
data, and extending the analysis of movement data to advanced computational 
and statistical techniques. Further, this thesis is also relevant to biologists and 
neuroscientists interested in computational and data science tools (Figure 1.2) 
and how these can revolutionize their research strategies.

Description of methods is given at a level sufficient to encourage exploration 
of data and prototyping of approaches, and is thus application- rather than 
theoretical-focused. For this reason, some technical concepts are treated lightly, 
while others assume comfort with reading mathematical expressions at the level 
of an introductory course in machine learning, in order to provide the reader 
with sufficient context. For the reader interested in an extensive treatment of 
machine learning, please see Christopher Bishop’s excellent introduction [2].

1.2 LOCOMOTION ANALYSIS IN NEUROSCIENCE RESEARCH

Abnormalities in movement can be an indicator of cognitive impairment 
associated with neurodegenerative disorders due to aging and disease [3]. 
Examples of such diseases marked by changes in movement include Parkinson’s 
disease, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Huntington’s 
disease, and stroke, among others. Since many of these neurological conditions 
can be studied using animal models, non-invasive methods of diagnosing and 
following the progression of disease and recovery are crucial for research in this 
area. Thus, locomotion analysis (also referred to as gait analysis) — a subset of 
behavioral tests that examine information about the motion of animal models 
or human subjects — has historically been an effective and invaluable tool [4, 5]. 
Similar forms of gait analysis can be useful in clinical settings [6]. Locomotion 
analysis may also enable earlier diagnosis of diseases than other methods, 
with both animal models and human patients, due to early manifestation of 
symptoms [7–9]. For many neurological conditions, including Parkinson’s 
and stroke, early diagnosis can drastically improve the chances of successful 
therapeutic intervention. As technology improves, research has begun to shift 
from using traditional gait analysis tools towards using systems of automated 
home cage monitoring (HCM) [10, 11]. These methods allow for continuous 

Scope of research
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tracking of locomotor activity, circadian rhythms, and other behaviors in 
rodents [12–14].

Tools traditionally used for locomotion analysis generally fall within two cate- 
gories: sensor platforms (including computerized visual systems) or wearable 
sensors [3]. Sensor platforms usually measure movement parameters when test 
subjects are walking on them. They can be useful for studies carried out in a lab 
environment and do not require subjects to wear potentially uncomfortable 
sensors, but are not always easily portable or useful for measuring daily activity. 
Wearable sensors can collect data while a subject performs daily activities, but 
can be uncomfortable to wear and are more often used with human subjects 
rather than in animal research. These methods of locomotion analysis have 
traditionally been coupled with other behavioral tests in the evaluation and 
tracking of sickness and recovery in rodent models of neurological diseases.

New systems of automated HCM improve upon these more traditional 
techniques. The ability of researchers to record the movement or position 
of rodents 24 hours a day provides new advantages: rodents are recorded 
constantly including at night when they are naturally most active, a wide 
range of behaviors is captured without the need to disturb the rodents, and 
the reduction of animal handling can reduce experimenter influence [12–14] 
and stress for the animal, because it can stay in the home cage instead a new 
experimental environment [15, 16]. These new methods of HCM result in the 
collection of large amounts of data; thus, new tools for analysing this data are 
needed, which elevates the importance of software designed for this purpose. 
Traja is a new software developed in this PhD study for the purpose of analyzing 
HCM data.

1.2.1. Neurological diseases characterized by movement abnormalities

Locomotion analysis and now automated HCM have broad research and clinical 
applications due to the fact that many neurological diseases are characterized by 
irregularities in movement and behavior. These tools can be used for diagnosis 
as well as for monitoring the progression of and recovery from various diseases 
in rodents used for research purposes.

One such disease in which locomotion analysis serves as a relevant tool is 
Parkinson’s. Indeed, neurologists have long observed that patients with 
Parkinson’s disease demonstrate gradual changes in gait which are visible to 
the naked eye [17]. Gait patterns can also be an indicator of cognitive decline 
associated with Parkinson’s [18]. Gait analysis can additionally be used to 
study Parkinson’s in animal models [19, 20], which has pertinent applications 
for research on, for example, effect of interventions. Studies using automated 
HCM of Parkinson’s mice models have helped to measure reduction of home 
cage locomotor activity [21, 22].
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that 
primarily affects motor neurons. Early symptoms can include muscle twitching, 
cramping, fatigue and difficulty swallowing and speaking, and then progress 
to paralysis [23, 24]. Over the progression of the disease, gait is also affected, 
and thus locomotion analysis can be used to aid in its diagnosis and observing 
the impact of treatments [25–27]. ALS can be difficult to diagnose early on in 
its progression, but locomotion analysis can improve the probability of early 
detection; indeed, it can be used to detect the development of ALS even before 
the onset of more noticeable symptoms [8]. One recent study using automated 
HCM also found that ALS mouse models exhibited irregular activity potentially 
indicating sleep disturbances [28].

In Alzheimer’s disease, like many other forms of dementia, cognitive decline is 
often accompanied by gait disturbances [29, 30] as well as behavioral changes 
such as increased anxiety and hyperactivity [31, 32]. Because gait abnormalities 
vary according to the stage of the disease, gait can serve as an indicator of the 
severity of dementia [29]. Locomotion analysis also has the potential to be 
used as a tool for early diagnosis of Alzheimer’s disease in human patients [33]. 
Automated HCM can also be used to characterize behavioral changes in mouse 
models of Alzheimer’s disease [34].

Huntington’s disease, an autosomal-dominant neurodegenerative disorder, 
is characterized by both cognitive and motor decline and is also marked by 
changes in gait [35, 36]. Mouse models of Huntington’s have traditionally 
been studied using behavioral tests such as the rotarod and open field test [37]. 
HCM can also be used to examine the behavior of animal models, and studies 
using these tools have found early behavioral disturbances such as repetitive 
behaviors, increased drinking and sleep disturbances followed by an overall 
decrease in motor activity as the disease progresses [38–42].

Finally, stroke is often characterized by both motor and cognitive impairment 
[43–45]. Motor impairment due to stroke can be studied using locomotion 
analysis or HCM in the context of rodent models [46–48]. The mouse stroke 
model is the primary focus of the studies included within this thesis, and it will 
be further discussed in §1.2.2.

Movement and behavioral disturbances are a valuable indicator of neurological 
disease or injury (Figure 1.1). Movement analysis can also be used to track 
recovery after injury and assess the effectiveness of preventative measures or 
treatments. It is useful to understand the broad applications for locomotion 
analysis and HCM across many diseases in both clinical and preclinical research 
settings, and therefore the potential for the usage of HCM data analysis software 
such as Traja in other contexts in addition to those detailed in this thesis.
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Figure 1.1:

1.2.2. Vascular dementia and stroke

Vascular dementia is the second most common form of dementia after 
Alzheimer’s disease [49–52]. It is caused by reduced blood flow to the brain 
(hypoperfusion) due to stroke, and there are multiple subtypes of vascular 
dementia, including single-infarct dementia, multi-infarct dementia, hereditary 
vascular dementia (CADASIL) and others [49, 50, 52]. Risk factors for both 
AD and vascular dementia include age, diabetes, hypertension, and metabolic 
syndrome (including obesity) [49, 50, 52, 53]. Hypoperfusion is suggested to 
play an important role in cognitive impairment and dementia, and can also lead 
to motor impairment [45, 46]. Further, several studies suggest that stroke and 
AD are comorbid [54]. Indeed, it is one of the most common causes of death 
and disability worldwide [55–57]. As the average age of the general population 
increases, the prevalence of stroke also increases [56]. Research in this field, 
both in clinical and laboratory settings, is therefore increasingly important.

Research into stroke can lead to more effective methods of diagnosis and the 
ability to monitor patient recovery, as well as new methods of prevention and 
treatments. In a clinical context, gait analysis can be used to identify movement 
deficits and measure patient performance during recovery; findings from this 
research can then lead to improved diagnosis and treatment of post-stroke 
patients [46, 58, 59].

In a laboratory setting, rodent models of stroke are essential for studying 
potential new treatments and tools for stroke prevention. There are many 
different rodent models commonly used in research, including middle cerebral 
artery occlusion (MCAo) in rats or mice, photothrombosis, embolic MCAo, 
and endothelin-1 application, among others [60, 61]. Mice subjected to 
MCAo, for example, perform less successfully than control mice on tests to 
assess behavioral aspects after stroke, including gait analysis [62, 63], Rotarod 
[64], Pole test [65, 66], and Morris water maze [67].

Homecage monitoring can be used to observe phenotype in stroke mouse models. 
The studies performed in this PhD presented in Chapters 3 and 4 of this thesis are 
interested in analysis of behavior as an indicator of dietary treatment efficacy in 
single-housed mouse stroke models.
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A common model for studying ischemic stroke in mice, transient MCAo 
(tMCAo) has several advantages including relatively non-invasive surgery 
and ability to parameterize the severity by modifying the occlusion time [61]. 
In tMCAo, surgery can be performed in a short time period, thus limiting 
confounders such as effects from extensive anesthesia, and it produces highly 
reproducible lesions. In Chapters 3 and 4 of this thesis, the stroke model used 
is a 30-min tMCAo induced in mice [47, 48, 68, 69]. This model involves the 
proximal occlusion of the middle cerebral artery for 30 minutes with a filament, 
and mimics one of the most common forms of ischemic stroke in humans 
[70,71].

1.2.3. Traditional methods of locomotion and behavioral analysis

Previously, diagnosis of neurological diseases and monitoring of recovery in 
both rodents in laboratory studies and patients in clinical settings was carried 
out using a combination of locomotion analysis and behavioral tests [3].

One of the simplest traditional methods of locomotion analysis is to apply ink 
to the paws of rodent models or feet of human subjects and have them walk 
across paper to record the prints [3, 72]. Many researchers today use electronic 
systems of locomotion analysis, such as pressure-sensitive platforms [73, 74] 
and transparent platforms through which gait can be recorded on video [75]. 
There are also commercially available tools for locomotion analysis, such as 
DigiGait (Mouse Specifics, Inc.), CatWalk (Noldus IT) and GAITRite (CIR 
Systems, Inc.) [3]. DigiGait records high-speed video of the underside of mice 
as they walk on top of a transparent treadmill, which can then be analyzed 
to examine gait [76–78]. CatWalk is a camera-based gait analysis system that 
records the unforced movement of mice or rats over a transparent platform in 
an enclosed walkway [79–81]. GAITRite is a portable walkway with embedded 
pressure sensors that can measure spatial and temporal gait characteristics and 
is designed for use with human patients [82]. In addition to sensor platforms 
as described above, there are many wearable sensors which are more commonly 
used with human patients. These include the SmartShoe (developed by Sazonov 
et al. [83]) [84–86], GaitShoe (developed by Bamberg et al. [87]), ForceShoe 
(Xsens) [88], and CODA motion analysis system (Charnwood Dynamic Ltd.) 
[3, 89, 90], among others.

In laboratory research settings, locomotion analysis is typically paired with 
other behavioral tests used to diagnose and monitor neurological injury. 
Among rodents, some of the most commonly used tests include the Morris 
water maze and radial arm maze to test spatial learning and memory, the corner 
test to assess sensorimotor and postural asymmetries, and the open field test 
to assess exploratory behavior and generalized locomotor activity. These tests 
are explained in further detail in §4.2. While these tests benefit from broad 
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usage among animal researchers, there are several limitations to manual testing: 
i) mice are nocturnal, but mostly tested during the day period, ii) they only 
capture a snapshot of behavioral phenotype, and iii) they risk researcher bias 
and interference [14]. As a result, animal welfare (based on the principle of 
the 3RS - reduce, refine and replace) and reproducibility have been called into 
question. HCM has the potential to address these concerns by reducing animal 
usage and refining experiments to improve animal welfare and complement the 
description of the animal model to offer better translation to human studies. A 
discussion of animal welfare and the potential of HCM to increase efficiency is 
provided in §5.1.

1.2.4. Movement towards automated home cage monitoring

In laboratory research, new technologies have resulted in a shift from gait analysis 
techniques and behavioral tests towards automated HCM. This allows for 
constant recording of the movements of rodents and, as previously mentioned, 
provides many new advantages over traditional methods. There are multiple 
tools available for automated HCM, including PhenoTyper (Noldus IT), 
PhenoMaster (TSE Systems), Intellicage (TSE Systems), Home Cage Analyser 
(Actual Analytics), and Digital Ventilated Cage (Tecniplast SpA) [12, 91–94]. 
These automated HCM systems use a variety of different methods for tracking 
animal movement, such as video, infrared sensors, or microchips and antennae. 
The Digital Ventilated Cage (DVC), which is the HCM system used in this 
thesis, continuously tracks the position of animals via electrical capacitance 
[92, 93] and has been used to identify behavioral phenotypes related to change 
or shift in circadian rhythm [95] as well as recovery from stroke [47, 48, 96].

1.2.5. Challenges and limitations of HCM

HCM can greatly increase the variety and volume of data by tracking movement 
24/7, and can reduce animals’ stress by decreasing unnecessary interactions 
with researchers and testing in a new environment. It is thus promising for the 
future of research into neurological, movement and behavioral disorders.

While HCM systems have several advantages for identifying behavioral 
phenotypes (see below and §5.3.1 for a complete comparison), there are new 
challenges posed by this shift towards automated movement analysis, such as 
greater reliance on individual housing, lack of ability to measure behaviors 
aside from movement tracking, and technical limitations of data capturing and 
analysis.
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HCM like DVC is currently only capable of tracking individual mice, 
necessitating single housng. Social isolation of home cage environment can 
lead to drifts in behavior [97] and possibly diminished validity. For example, in 
one study involving socially-isolated mice in PhenoTyper cages during an 8-day 
recording period, total daily distances gradually declined with similar increases 
in total daily sleep, as well as feeding and licking times [98]. Controlling for 
the effects of social isolation may be achieved by enriching the environment 
with objects such as running wheels, which have been shown to ameliorate 
several aspects of neuropsychiatric symptomology in rodent models [99]. In 
addition, several studies have demonstrated the ability to track animals in pairs 
or group housing using RFID-based individual identification [100–102] or 
fluorescent markers [103]. These approaches involving enriched environments 
and complex tracking favor end-to-end HCM systems that can more easily 
integrate various types of sensors, such as from running wheels, or that can 
track multiple animals simultaneously, a task not possible with the resolution 
provided by the DVC data.

HCM systems like DVC only track the movement of rodents. While this is 
useful, it doesn’t capture the whole range of behaviors, for example, whether 
the animal is sitting and grooming or sleeping. Other systems exist which can 
infer more high-level behaviors for individually-housed mice like grooming, 
rearing, sniffing, digging etc. [104, 105], however they generally require more 
space for housing and larger equipment than the DVC, making them less 
practical for large-scale studies.

Video HCM systems, which may capture a wider range of behaviors, carry 
other limitations. Camera-based monitoring systems have a greater reliance 
on environmental factors such as lighting and spatial constraints. For example, 
infrared-based systems require consistent infrared lighting to provide tracking 
in dark phases, however are somewhat limited in their ability to distinguish 
between individual subjects within a group [98]. Some classical movement 
behavior tests like spatial memory tasks be difficult to implement with HCM 
when the task requires spatial separation from the home cage [106]. Thus, 
extending HCM to testing in locations separate from the home cage may 
require additional equipment or software [97]. Additionally, some home cage 
environments may not be monitored with a single camera or sensor but may 
require multiple cameras or sensors, increasing the complexity of the data 
collection. The ability of DVC to track mice without additional cage space is 
a particular advantage of the system [92], which enabled the large-scale studies 
present with minimal intervention in animal handling.
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Figure 1.2: Data Science in neuroscientific research (2013) [107].

A further significant challenge for implementing HCM systems is the 
extensive data collection and management required. Detection of movement 
in several days of HCM data requires optimal processing and interpretation 
of high-throughput data, such as video or sensor data. Such data is often only 
available offline, thus limiting the observer from intervening until the event as 
passed. Further, the large volume of data involved carries an increased risk of 
tracking errors, which can increase the probability of outliers or anomalies in 
the data.

Indeed, the shift towards automated HCM creates a need for user-friendly 
software to screen and analyze large amounts of data collected from the home 
cage over extended periods of time to ensure data and measurement quality. 
The combination of software with domain expertise and mathematical and 
statistical techniques is commonly referred to as “data science,” owing to the 
unique tools and skills needed (Figure 1.2) for working with data and the 
hypothesis-driven approach [107]. Existing software such as the R package 
Trajr [108] are not designed for HCM data: they are either not flexible enough 
to use raw centroids, are not extensible to advanced methods of modeling, such 
as deep learning (see §1.3), or are not available in the common data science 
language Python (see Table 5.2 for a complete comparison of existing package 
features). This thesis addresses this need with the development of Traja, a 
software toolkit designed for trajectory analysis of animal models.
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Figure 1.3: 

1.3 TOWARDS DEEP LEARNING FOR TRAJECTORY DATA MINING

Animal and human motility researchers traditionally relied on painstaking data 
collection methods (e.g. observational studies, mark-recapture, travel diaries) 
and/or aggregate data (e.g. seasonal distribution maps, origin-destination flows, 
intercept counting) [109]. Technological breakthroughs have led to not only 
increased usage of automated HCM in laboratory settings, but also an increase 
in the use of Global Positioning System (GPS) for analyzing motion of animals 
in ecological research [110].

Use of GPS data and other tracking techniques has provided insights into 
animal behavior in the wild, such as foraging and mating. Availability of 
tracking data has allowed large-scale, high resolution analysis of animal 
movement and trajectories [111]. With the rapid development of information 
and communication technology, the amount of data is growing at a rapid 
rate. For example, the healthcare system in the United States alone produced 
more than 150 exabytes (1018) in 2011 [112] and the worldwide health records 
were expected to reach 40 yottabytes (1024) in 2020 [113]. In the biomedical 
informatics domain, the volume of data is growing exponentially [114–117]. 
This big data is generally defined by Dash et al. [118] as data which is “large and 
unmanageable using traditional software or internet-based platforms.” Such 
a growth in data implies considerable opportunity for identifying patterns in 
clinical and biomedical data, leading to more efficient treatments.

Extracting useful information from large datasets is often referred to as 
data mining, or “knowledge discovery” [119, 120]. Data-driven modeling 
of movement allows identifying patterns in an automated fashion, thus 
leading to improved methods for diagnosis and prognosis and thus improved 

Increased amounts of data combined with statistical learning methods allow 
data-driven modeling of animal behavior for neuroscientific and medical research. 
Advanced methods such as recurrent neural networks (RNNs) are implemented 
in Traja (§2.1.10). An overview of methods implemented in Traja can be found in 
Chapter 2.
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strategies for treatment [121] (Figure 1.3). Broadly speaking, virtually any 
pattern which is apparent to a trained researcher is theoretically perceptible to 
a machine learning system trained on sufficient data. Automated analysis of 
locomotion opens the possibility of identifying patterns which are not apparent 
to a trained researcher, due to effects being manifested below a researcher’s 
perceptive threshold. Cognitive-behavioral effects which are manifested over 
not only seconds but hours or weeks are thus within the potential scope of 
an automated pattern detector. Identifying inexpensive, precise, and real-time 
effects of interventions for stroke from non-invasive biomarkers is the holy grail 
of clinical research model development.

Previous examples of modeling animal movement in ecological contexts with 
deep learning include interpolating paths for bird [122] as well as bears [123], 
seals [124], mice [125], worms [123], and insects [126]. Modeling behavior 
with deep learning involves extracting features from the movement data and 
identifying latent numerical representations (or variables, in statistical terms) 
which predict the underlying dynamics which in turn lead to expression of 
certain bhaviors. Similar techniques are used in application to pedestrian path 
modeling [127] as well as particle motion analysis [128]. Crucially, Traja enables 
mining patterns in animal trajectories, owing to its implementation in Python, 
the de facto programming language for machine learning, and integration with 
deep learning libraries (see §2.1). Further discussion of modeling behavior with 
advanced techniques is provided in §2.1.10.

1.3.1. Machine learning

Machine learning is the study of computer algorithms that automatically 
improve performance through experience. The field combines approaches 
from computer science, statistics, probability theory, optimization theory, 
decision theory and mathematics. It is generally different from mathematics 
or statistics, where mathematical rules are applied primarily for inferring the 
relationship between variables, whereas machine learning seeks to identify 
generalizable predictive patterns [129]. Many types of tasks can be solved with 
machine learning, for example:

• forecasting disease trajectories [130]
• image-based classification of tumor type or growth rate [131]
• regression analysis to predict life expectancy [132]
• clustering clinical data into profiles [133]
• recommendation systems for clinical decision support [134]
• generation of data such as realistic medical images [135]
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Distinctive of machine learning algorithms as opposed to traditional modeling 
techniques is the relevance of the amount of data to train the models [2]. 
Generally speaking, the more clean data available, the better the models.

A remarkable feature of machine learning is that it allows one to make sense 
of data about which one has no prior understanding nor domain specific 
knowledge. Machine learning has been used to model animal trajectories [122, 
123].

Machine learning has become increasingly relevant to biological research in 
recent years due to the following factors:

• increase in accessibility and number of sensors which collect data
• decrease in size, cost, and energy requirements of sensors
• increase in computational power and development of algorithms 

and tools for handling large amounts of data.

1.3.2. Deep learning

While prior research in modeling human and animal locomotion mainly relied 
on hidden Markov models1 and rule-based approaches, significant advances 
have been made in recent years by learning representations of trajectories via 
neural networks. Deep learning has emerged as a powerful tool enabling solving 
challenges in computer vision [136] such as medical imaging [137], as well as 
neuroscientific applications such as analyzing brain activations [138].

Deep learning is a subset of machine learning where models are structured 
into sequential “layers” in an artificial neural network (Figure 1.4). A neural 
network is a biologically-inspired computational graph organized into layers of 
computational units (neurons) which fire sequentially based on their inputs. 
Neural networks are organized into an input layer which receives features of the 
data, one or more hidden layers, and an output layer. Deep neural networks are 
distinguished by the plurality of hidden layers which make a model “deep” and 
allow complex computational routines for learning efficient representations 
of the data; this is particularly useful for high-dimensional, unstructured data. 
Deep learning has led to breakthroughs in biomedical and neuroscientific 
research such as with medical imaging [139] and neural decoding [138]. They 
have distinct advantages over traditional methods, such as being non-parametric, 
self-learning, noise-tolerant and having minimal assumptions [140].

1 see §2.1.10
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Figure 1.4: Neural network.

1.3.3. Deep learning for trajectory analysis

Deep learning has several applications for time series data ranging from stock 
price prediction to solving ordinary differential equations [141]. With sufficient 
volume and quality of animal trajectory data, one can build probabilistic models 
that describe present and/or future states, including:

• trajectory forecasting
• phenotyping
• diagnosis
• prognosis
• effectiveness of treatment.

Learning methods are further divided into classification, regression and 
clustering. In classification, a machine learning algorithm is trained on input 
data which classifies the unknown instances either into two classes (binary 
classification) or multiple classes (multiclass classification). However, in the 
case of regression, the output is continuous, for instance, prediction of house 
prices given that area of a house, age, and rooms. Both categories (classification 
and regression) are supervised techniques; clustering, however, is generally an 
unsupervised method where inputs are divided into groups and the identity of 
these groups are not previously known.

Various machine learning methods have been proposed for the above tasks such 
as logistic regression, linear discriminant analysis (LDA), decision trees, linear 
regression, K-means clustering, and recently deep artificial neural networks; 
these include convolutional neural networks, which learn translationally 
invariant features, typically of image inputs, and recurrent neural networks 
(RNNs), which learn time-dependent features of sequence inputs. Trajectory 
data mining is often performed with Long-Short-Term Memory (LSTM) 
networks, a type of RNN.
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Dynamical processes such as locomotion can be modeled with continuous- 
time recurrent neural networks. An implementation of an LSTM with Traja is 
provided in §2.1.10. As opposed to classical sequence modeling methods such 
as Markov models, deep learning focuses on learning representations of the 
data in an end-to-end fashion that allows for solving a task without handcrafted 
features extracted from the data. A typical example of this is a face detector 
which learns to recognize faces based on seeing thousands of faces without any 
special underlying knowledge of the problem domain, simply by identifying 
edges and other abstract patterns of the images.

An introduction to the analytical and learning methods available in Traja is 
provided in Chapter 2.

1.4 DIETARY INTERVENTION DURING STROKE RECOVERY

We want to investigate the impact of dietary intervention on behaviors affected 
by stroke, and therefore we will use Traja software developed during this thesis 
to analyze mouse locomotion and activity during stroke recovery.

Generally, much emphasis is placed on pharmaceutical treatments after stroke 
[142, 143], and often too little attention is given to diet and exercise. However, 
research suggests that diet can play a significant role in the brain’s recovery 
from injury. For example, the Fortasyn diet has been shown to improve cerebral 
blood flow (CBF) and neurogenesis in mice [69, 144] as well as motor function 
in male stroke mice [69]. In Chapter 3, we further examine the effects of this 
diet in mice after the induction of stroke. In order to do this, we measure the 
recovery of animals in both control and experimental groups. We use automated 
HCM to track mice in their home cages, and apply Traja to analyze movement 
and behavioral data. We demonstrate use of Traja with HCM for providing 
descriptive statistics of mouse behavior in the home cage, including comparing 
distance moved, velocity, and turning direction, and laterality.

A diet rich in hydroxytyrosol (HT) has also been shown to increase CBF and 
brain derived neurotrophic factor (Bdnf) in mice, indicating its potential as a 
beneficial neurogenic therapeutic approach. Consequently, in Chapter 4, we 
test the influence of HT treatment after induced stroke in mice. In this case, 
in order to measure recovery from stroke, we use Traja to analyze automated 
HCM data in conjunction with standard behavioral tests and found a left 
(ipsilateral) turn preference for stroke mice in home cage during nighttime.

1.5. THESIS OVERVIEW

In this thesis, I present Traja, a software framework for data analysis that opens 
up a new avenue of research in neuroscience that was not previously accessible 
through the standardization and application of data science methods for 
detecting patterns in behavioral data.
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To assess its utility, we apply it to home cage mouse locomotion data collected 
during several experiments of dietary interventions for ischemic stroke. We use 
it to support analysis of circadian rhythms as well as various proxies for health 
and prognosis. Though Traja has multiple applications1 (see Chapter 2), and has 
been recognized in the spatiotemporal analysis literature for animal trajectory 
analysis [145, 146], it is particularly useful for analyzing data from automated 
home cage monitoring, which records rodent activity and locomotion patterns 
24/7 in the home cage environment without stressing the animals by bringing 
them into new test environments.

In §1.2, I introduce the biological context of the thesis, which sets up the im- 
portance of locomotion analysis in neurological research. In §1.3, I introduce 
the technical aspects which are relevant to the development of Traja. In §1.4, I 
introduce the application of Traja to HCM data in stroke mice.

The HCM data used in these experiments consists of noisy, high-volume raw 
centroid coordinates corresponding to the mouse position [92], collected 
over a period of 8 months. This data requires extensive cleaning and pre- 
processing in order to generate the reproducible, accurate statistical analysis. 
In Chapter 2, published in Journal of Open Source Software, I present and 
explain the computational and analytical methods available in Traja. There I 
describe various methods useful for preprocessing, analyzing, and modeling 
spatio-temporal data, using data derived from the study on multinutrient 
intervention after ischemic stroke in mice [48]. These methods include essential 
preprocessing techniques common to working with spatio-temporal data, 
including trip grid computation (Figure 2.2), feature scaling (§2.1.5), missing 
data handling (§2.1.5), dimensionality reduction (Figure 2.8), and a wide 
range of techniques used for exploratory analysis of movement data. Further, 
to support scientific reproducibility and transparency, I provide a link to the 
complete documentation of the API with complete descriptions of methods, 
data structures and examples of usage.

Then, I apply Traja to mouse home cage data collected with DVC in investigation 
of mouse models of stroke next to standard behavioral tests like open field, grip 
strength, and pole test. Chapter 3 is based on the paper “Automated analysis 
of stroke mouse trajectory data with Traja,” which was published in Frontiers 
in Neuroscience [48]. In this chapter we explore the effects of receiving a 
multicomponent dietary treatment on stroke recovery. Using Traja, we analyze 
activity (§3.3.1), distance travelled (§3.3.2), velocity (§3.3.3), and turns and 
laterality (§3.3.4). I identify increased walked distance and velocity in both 
control and Fortasyn groups over time with Traja and   DVC, which was not 
able to be seen in Open Field tests [147], and distinguish between changes in 
nighttime and daytime behavior (Figure §3.3.4).

1 Traja has reportedly been used by researchers in fields ranging from geoinformatic systems to  
     moth flight analysis.
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Chapter 4 is based on “Hydroxytyrosol, the major phenolic compound of olive 
oil as acute therapeutic strategy after ischemic stroke,” published in Nutrients 
[47]. There, I apply Traja to the extensive study of stroke treatment in mice 
with hydroxytyrosol (HT), the foremost phenolic component in olive oil. In 
this study, we analyze the effects of light phase and HT treatment on activity, 
distance travelled, walking velocity, total turnings, and laterality index 24/7 
(§4.5). We compare the laterality following surgery and identify a left turn 
preference in the home cage following stroke, whereas this was undetectable 
with traditional behavioral tests. These results confirm previous results with 
corner test where stroke mice exhibited preference towards the nonimpaired 
(ipsilateral) side in distal middle cerebral artery occlusion (MCAo) [148, 149] 
as well as combined distal and proximal MCAo [150], in contrast to sham mice 
which showed no directional bias. In these studies, I demonstrate that Traja 
combined with DVC confirms several results from traditional behavioral tests 
without experimental intervention, and is additionally able to identify distinct 
behavioral phenotypes not possible with traditional tests.

Chapter 5 provides a unifying discussion for this thesis. I address recent advances 
in technology used for behavioral analysis, particularly automated home cage 
monitoring, and how these create a need for software like Traja. I also further 
discuss the capabilities and advantages of Traja, and the applications of the 
software presented in this thesis. Finally, I consider other possible applications 
of Traja and reflect on how the software fits into the changing landscape of 
scientific research today.
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TRAJA: A PYTHON TOOLBOX FOR ANIMAL
TRAJECTORY ANALYSIS
                                                                                                                                                    

Several tools exist for the analysis of animal locomotion. However, none are 
designed for working with high-throughput homecage data coordinates 
provided by systems employing movement sensors like DVC. Traja provides 
a way to automatically analyze such data, opening up a new, previously 
inaccessible avenue of research in neuroscience.

This chapter is published in Journal of Open Source Software as:
Shenk, J., Byttner, W., Nambusubramaniyan S., Zoeller, A. (2021). Traja: 
A Python Toolbox for Animal Trajectory Analysis. Journal of Open Source 
Software 6:3202. doi: 10.2110S/joss.03202.

2
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2.1 SUMMARY

There are generally four categories of trajectory data: mobility of people, 
mobility of transportation vehicles, mobility of animals, and mobility of 
natural phenomena [151]. Animal tracking is important for fields as diverse 
as ethology, optimal foraging theory, and neuroscience. Mouse behavior, for 
example, is a widely studied in biomedical and brain research in models of 
neurological disease such as stroke.1

Several tools exist which allow analyzing mouse locomotion. Tools such as 
Ethovision [152] and DeepLabCut [153] allow converting video data to 
pose coordinates, which can further be analyzed by other open source tools. 
DLCAnalyzer2 provides a collection of R scripts for analyzing positional 
data, in particular visualizing, classifying and plotting movement. B-SOiD 
[154] allows unsupervised clustering of behaviors, extracted from the pose 
coordinate outputs of DeepLabCut. SimBA [155] provides several classifiers 
and tools for behavioral analysis in video streams in a Windows-based graphical 
user interface (GUI) application.

These tools are primarily useful for video data, which is not available for the 
majority of animal studies. For example, video monitoring of home cage mouse 
data is impractical today due to housing space constraints. Researchers using 
Python working with non-visual animal tracking data sources are not able to 
fully leverage these tools. Thus, a tool that supports modeling in the language of 
state-of-the-art predictive models [127, 156, 157], and which provides animal 
researchers with a high-level API for multivariate time series feature extraction, 
modeling and visualization is needed.

Traja is a Python package for statistical analysis and computational modelling of 
trajectories. Traja extends the familiar pandas [158, 159] methods by providing 
a pandas accessor to the df.traja namespace upon import. The API for 
Traja was designed to provide an object-oriented and user-friendly interface 
to common methods in analysis and visualization of animal trajectories. Traja 
also interfaces well with relevant spatial analysis packages in R (e.g., trajr [108] 
and adehabitat [160]), Shapely [161], and MovingPandas [162] allowing rapid 
prototyping and comparison of relevant methods in Python. A comprehensive 
source of documentation is provided on the home page (http://traja.
readthedocs.io).

                                                                       1 The examples in this paper focus on animal motion, however it is useful for other domains.
2 https://github.com/ETHZ-INS/DLCAnalyzer
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2.1.1 Statement of Need

The data used in this project includes animal trajectory data provided by 
Tecniplast S.p.A., manufacturer of laboratory animal equipment based in 
Varese, Italy, and Radboud University, Nijmegen, Netherlands. Tecniplast 
provided the mouse locomotion data collected with their Digital Ventilated 
Cages (DVC). The extracted coordinates of the mice requires further analysis 
with external tools. Due to lack of access to equipment, mouse home cage data 
is rather difficult to collect and analyze, thus few studies have been done on 
home cage data. Furthermore, researchers who are interested in developing 
novel algorithms must implement from scratch much of the computational and 
algorithmic infrastructure for analysis and visualization. By packaging a library 
that is particularly useful for animal locomotion analysis, future researchers can 
benefit from access to a high-level interface and clearly documented methods 
for their work.

Other toolkits for animal behavioral analysis either rely on visual data [153, 
163] to estimate the pose of animals or are limited to the R programming 
language [108]. Prototyping analytical approaches and exploratory data analysis 
is furthered by access to a wide range of methods which existing libraries do 
not provide. Python is the de facto language for machine learning and data 
science programming, thus a toolkit in Python which provides methods for 
prototyping multivariate time series data analysis and deep neural network 
modeling is needed.

2.1.2 Overview of the Library

Traja targets Python because of its popularity with data scientists. The library 
leverages the powerful pandas library [158], while adding methods specifically 
for trajectory analysis. When importing Traja, the Traja namespace registers 
itself within the pandas dataframe namespace via df.traja.

The software is structured into three parts. These provide functionality 
to transform, analyse and visualize trajectories. Full details are available at 
https://traja.readthedocs.io/. The trajectory module provides 
analytical and preprocessing functionalities. The models subpackage provides 
both traditional and neural network-based tools to determine trajectory 
properties. The plotting module allows visualizing trajectories in various 
ways.

Data, e.g., x and y coordinates, are stored as one-dimensional labelled arrays as 
instances of the pandas native Series class. Further, subclassing the pandas 
DataFrame allows providing an API that mirrors the pandas API which 
is familiar to most data scientists, thus reducing the barrier for entry while 
providing methods and properties specific to trajectories for rapid prototyping. 
Traja depends on Matplotlib [164] and Seaborn [167] for plotting and NumPy 
[166] for computation.
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Trajectory Data Sources
Trajectory data as time series can be extracted from a wide range of sources, 
including video processing tools as described above, GPS sensors for large 
animals or via home cage floor sensors, as described in the section below. The 
methods presented here are implemented for orthogonal coordinates (x, y) 
primarily to track animal centroids, however with some modification they 
could be extended to work in 3-dimensions and with body part locations as 
inputs. Traja is thus positioned at the end of the data scientist’s chain of tools 
with the hope of supporting prototyping novel data processing approaches. A 
sample dataset of jaguar movement [167] is provided in the traja.dataset 
subpackage.

2.1.3 Mouse Locomotion Data

The data samples presented here3 are in 2-dimensional location coordinates, 
reflecting the mouse home cage (25x12.5 cm) dimensions. Analytical methods 
relevant to 2D rectilinear analysis of highly constrained spatial coordinates are 
thus primarily considered.

High volume data like animal trajectories has an increased tendency to have 
missing data due to data collection issues or noise. Filling in the missing 
data values, referred to as data imputation, is achieved with a wide variety of 
statistical or learning-based methods. As previously observed, data science 
projects typically require at least 95% of the time to be spent on cleaning, 
preprocessing and managing the data [168]. Therefore, several methods 
relevant to preprocessing animal data are demonstrated throughout the 
following sections.

  Figure 2.1: Generation of a random walk

                                                                   
3 This dataset has been collected for other studies of our laboratory [48].
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2.1.4 Spatial Trajectory

A spatial trajectory is a trace generated by a moving object in geographical space. 
Trajectories are traditionally modelled as a sequence of spatial points like:

Tk = {Pk1, Pk2, ...}

where Pki(i ≥ 1) is a point in the trajectory. 

Generating spatial trajectory data via a random walk is possible by sampling 
from a distribution of angles and step sizes [108, 169]. A correlated random 
walk (Figure 2.1) is generated with traja.generate.

2.1.5 Spatial Transformations

Transformation of trajectories can be useful for comparing trajectories from 
various geospatial coordinates, data compression, or simply for visualization 
purposes.

Feature Scaling
Feature scaling is common practice for preprocessing data for machine 
learning [170] and is essential for even application of methods to attributes. 
For example, a high dimensional feature vector x ∈ Rn where some attributes 
are in (0,100) and others are in (−1, 1) would lead to biases in the treatment 
of certain attributes. To limit the dynamic range for multiple data instances 
simultaneously, scaling is applied to a feature matrix X = {x1, x2, ..., xN} ∈ Rn×N, 
where n is the number of instances.

Min-Max Scaling To guarantee that the algorithm applies equally to all 
attributes, the normalized feature matrix      is rescaled into range (0, 1) such that 
                            .

Standardization The result of standardization is that the features will be 
rescaled to have the property of a standard normal distribution with µ = 0 and 
σ = 1 where µ is the mean (average) of the data and σ is the standard deviation 
from the mean. Standard scores (also known as z-scores) are calculated such 
that                        .

Scaling Scaling a trajectory is implemented for factor f in scale where
f ∈ R : f ∈ (−∞, +∞).
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Rotation
Rotation of a 2D rectilinear trajectory is a coordinate transformation of 
orthonormal bases x and y at angle θ (in radians) around the origin defined by

with angle θ where θ ∈ R : θ ∈ [−180, 180].

Trip Grid
One strategy for compressing the representation of trajectories is binning the 
coordinates to produce an image as shown in Figure 2.2.

Figure 2.2: Trip grid image generation from mouse trajectory.

Allowing computation on discrete variables rather than continuous ones has 
several advantages stemming from the ability to store trajectories in a more 
memory efficient form.4 The advantage is that computation is generally faster, 
more data can fit in memory in the case of complex models, and item noise can 
be reduced.

Creation of an M ∗ N grid allows mapping trajectory Tk onto uniform grid 
cells. Generalizing the nomenclature of [171] to rectangular grids, Cmn(1 ≤ m ≤ 
M; 1 ≤ n ≤ N) denotes the cell in row m and column n of the grid. Each point 
Pki is assigned to a cell C(m, n). The result is a two-dimensional image M ∗ N 
image Ik, where the value of pixel Ik(m, n)(1≤m, n≤M) indicates the relative 
number of points assigned to cell Cmn. Partionining of spatial position into 
separate grid cells is often followed by generation of hidden Markov models 
[172] (see below) or visualization of heat maps (Figure 2.3).

Smoothing
Smoothing a trajectory can also be achieved with Traja using Savitzky-Golay 
filtering with smooth_sg [173].
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Figure 2.3: 

2.1.6 Resampling and Rediscretizing

Trajectories can be resampled by time or rediscretized by an arbitrary step 
length. This can be useful for aligning trajectories from various data sources 
and sampling rates or reducing the number of data points to improve 
computational efficiency. Care must be taken to select a time interval which 
maintains information on the significant behavior. If the minimal time interval 
observed is selected for the points, calculations will be computationally 
intractable for some systems. If too large of an interval is selected, we will fail to 
capture changes relevant to the target behavior in the data.

                                                                   

Visualization of heat map from bins generated with trip_grid. Note regularly 
spaced artifacts (bright yellow) in this sample due to a bias in the sensor data 
interpolation. This type of noise can be minimized by thresholding or using a 
logarithmic scale, as shown above.

4 In this experiment, for example, data can be reduced from single-precision floating point (32 bits)
    to 8-bit unsigned integer (uint8) format.
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Resampling by time is performed with resample_time (Figure 2.4). 
Rediscretizing by step length is performed with rediscretize.

Figure 2.4: Resampling trajectories by different time scales is performed with resample_time.

For example, the Fortasyn dataset [48] demonstrated in this paper was sampled 
at 4 Hz and converted to single-precision floating point data. Pandas dataframes 
store this data in 4 bytes, thus there are approximately 4.15 MB5 bytes required 
to store data for x and y dimensions plus an index reference for a single day. In the 
case of [48], 24 mice were observed over 35 days. This translates to 3.4 GB (109) 
of storage capacity for the uncompressed datasets prior to feature engineering. 
Thus resampling can be a useful way to reduce the memory footprint for 
memory constrained processes that have to fit into a standard laptop with 8 GB 
memory space. A demonstration of how reduction in precision for trajectory 
data analysis is provided in Figure Figure 2.4, as applied to a sample from the 
Fortasyn experiment [48]. Broad effects such as cage crossings, for example, 
can still be identified while downsampling data to a lower frequency, such as 
0.1 Hz, reducing the memory footprint by a factor of 40 (4 Hz/0.1 Hz) and 
providing significant speedups for processing.

2.1.7 Movement Analysis

Traja includes traditional as well as advanced methods for trajectory analysis.

                                                      
5  4 x 4 Hz x 60 seconds x 60 minutes x 24 hours x 3 features (x, y, and time)
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Distance traveled
Distance traveled is a common metric in animal studies - it accounts for the 
total distance covered by the animal within a given time interval. The distance 
traveled is typically quantified by summing the square straight-line displacement 
between discretely sampled trajectories [174, 175]. Alternative distance metrics 
for the case of animal tracking are discussed in [176].

Let p(t) = [px(t), py(t)] be a 2 × 1 vector of coordinates on the ground representing 
the position of the animal at time t. Then, the distance traveled within the time 
interval t1 and t2 can be computed as a sum of step-wise Euclidean distances

is the Euclidean distance between two positions in adjacent time samples.

Figure 2.5: Velocity histogram from one day of mouse activity.

Speed
Speed or velocity is the first derivative of centroids with respect to time. 
Peak velocity in a home cage environment is perhaps less interesting than a 
distribution of velocity observations, as in Figure 2.5. Additionally, noise can 
be eliminated from velocity calculations by using a minimal distance moved 
threshold, as demonstrated in [48]. This allows identifying broad-scale 
behaviors such as cage crossings.



2.1 SUMMARY 38

Turn Angles
Turn angles are the angle between the movement vectors of two consecutive 
samples. They can be calculated with calc_turn_angles.

Laterality
Laterality is the preference for left or right turning and a laterality index is 
defined as                           where RT is the number of right turns observed and LT
is the number of left turns observed. Turns are counted within a left turn 
angle ∈ (θ, 90) and right turn angle ∈ (−θ, −90). A turn is considered to have a 
minimal step length.

2.1.8 Periodicity

Periodic behaviors are a consequence of the circadian rhythm as well as observing 
expression of underlying cognitive traits. Some basic implementations of 
periodic analysis of mouse cage data are presented.

Autocorrelation
Autocorrelation is the correlation of a signal with a delayed copy of itself as a 
function of the decay. Basically, it is similarity of observations as a function of 
the time lag between them. An example is shown in Figure 2.6.

Figure 2.6: Autocorrelation of the y-dimension reveals daily (1440 minutes) periodic behavior

Power Spectrum
Power spectrum of a time series signal can be estimated (Figure 2.7). This is 
useful for analyzing signals, for example, the influence of neuromotor noise on 
delays in hand movement [177].
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2.1.9 Algorithms and Statistical Models 

Machine Learning for Time Series Data
Machine learning methods enable researchers to solve tasks computationally 
without explicit instructions by detecting patterns or relying on inference. 
Thus they are particularly relevant for data exploration of high volume datasets 
such as spatial trajectories and other multivariate time series.

Figure 2.7 : Power Spectral Density. One day of activity reveals fairly smooth power spectral   
    density.

Principal Component Analysis
Principal Component Analysis projects the data into a linear subspace with a 
minimum loss of information by multiplying the data by the eigenvectors of 
the covariance matrix.

Figure 2.8: PCA of Fortasyn trajectory data. Daily trajectories (day and night) were binned into
                     8x8 grids before applying PCA.
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This requires converting the trajectory to a trip grid (see Figure 2.2 and 
performing PCA on the grid in 2D (Figure 2.8) or 3D (Figure 2.9). Structure 
in the data is visible if light and dark time periods are compared.

Figure 2.9: 3D PCA of Fortasyn trajectory data. Daily trajectories (day and night) were binned
                      into 8x8 grids before applying PCA.

Clustering
Clustering of trajectories is an extensive topic with applications in geospatial 
data, vehicle and pedestrian classification, as well as molecular identification. 
K-means clustering is an iterative unsupervised learning method that assigns a 
label to data points based on a distance function [2] (Figure 2.10).

Figure 2.10: K-means clustering on the results of the PCA shown above reveals a high accuracy of
                        classification, with a few errors. Cluster labels are generated by the model.
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Hierarchical Agglomerative Clustering
Clustering spatial trajectories has broad applications for behavioral research, 
including unsupervised phenotyping [178]. For mice, hierarchical agglomerative 
clustering can also be used to identify similarities between groups, for example 
periodic activity and location visit frequency [179].

Gaussian Processes
Gaussian Processes is a non-parametric method which can be used to model 
spatial trajectories. This method is not currently implemented in Traja and is 
thus outside the scope of the current paper, however the interested reader is 
directed to the excellent text on Gaussian processes by Rasmussen and Williams 
[180] for a complete reference and [181] for an application to spatial trajectories.

2.1.10 Other Methods Fractal Methods

Fractal (i.e. multiscale) methods are useful for analyzing transitions and 
clustering in trajectories. For example, search trajectories such as eye movement, 
hand-eye coordination, and foraging can be analyzed by quantifying the spatial 
distribution or nesting of temporal point processes using spatial Allen Factor 
analysis [182, 183].

Recurrence plots and derivative recurrence factor analysis can be applied 
to trajectories to identify multiscale temporal processes to study transition 
or nonlinear parameters in a system, such as postural fluctuation [184] and 
synchrony [185] in humans and to movement of animals such as ants [186] and 
bees [187]. These methods are not yet implemented in Traja, but are planned 
for a future release.

Graph Models
A graph is a pair G = (V, E) comprising a set of vertices and a set of connecting 
edges. A probabilistic graphical model of a spatial occupancy grid can be used 
to identify probabilities of state transitions between nodes. A basic example is 
given with hidden Markov models below.

Hidden Markov Models
Transition probabilities are most commonly modelled with Hidden Markov 
Models (HMM) because of their ability to capture spatial and temporal 
dependencies. A recent introduction to these methods is available provided 
by [188]. HMMs have successfully been used to analyze movement of caribou 
[189], fruit flies [190], and tuna [191], among others. Trajectories are typically 
modelled as bivariate time series consisting of step length and turn angle, 
regularly spaced in time.
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Traja implements the rectangular spatial grid version of HMM with transitions.

The probability of transition from each cell to another cell is stored as a 
probability within the transition matrix. This can be visualized as a heatmap 
and plotted with plot_transition_matrix (Figure 2.11).

Figure 2.11: 

Convex Hull
The convex hull of a subtrajectory is the set X of points in the Euclidean plane 
that is the smallest convex set to include X. For computational efficiency, a 
geometric k-simplex can be plotted covering the convex hull by converting to a 
Shapely object and using Shapely’s convex_hull method.

Figure 2.12: Neural network architectures available in Traja

Transition matrix. Rows and columns are flattened histogram of a grid 20 cells high 
and 10 cells wide. Spatially adjacent grid cells are visible at a spacing of -11, -10, -9, 1, 
10, and 11 cells from the diagonal. The intensity of pixels in the diagonal represents 
relative likelihood to stay in the same position.
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Recurrent Neural Networks
In recent years, deep learning has transformed the field of machine learning. 
For example, the current state of the art models for a wide range of tasks, 
including computer vision, speech to text, and pedestrian trajectory prediction, 
are achieved with deep neural networks. Neural networks are essentially 
sequences of matrix operations and elementwise function application based 
on a collection of computing units known as nodes or neurons. These units 
perform operations, such as matrix multiplication on input features of a 
dataset, followed by backpropagation of errors, to identify parameters useful 
for approximating a function.

Recurrent Neural Networks (RNNs) are a special type of Neural Networks 
that use a state S(ti−1) from the previous timestep ti−1 alongside X(ti) as input. 
They output a prediction Y(ti) and a new state S(ti) at every step. Utilising 
previous states makes RNNs particularly good at analyzing time series like 
trajectories, since they can process arbitrarily long inputs. They remember 
information from previous time steps X(ti−k), ..., X(ti−1) when processing the 
current time step X(ti).

Trajectory prediction lets researchers forecast the location and trajectory of 
animals [126]. Where this technique works well, it is also a sign that the trajectory 
is highly regular and, fundamentally, follows certain rules and patterns. When 
tracking an animal live, it would also let researchers predict when it will arrive 
at a particular location, or where it will go, letting them rig cameras and other 
equipment ahead of time.

A particularly interesting type of RNN is the Long Short Term Memory 
(LSTM) architecture. Their layers use stacks of units, each with two hidden 
variables - one that quickly discards old states and one that slowly does so - to 
consider relevant information from previous time steps. They can thus look 
at a trajectory and determine a property of the animal – whether it is sick or 
injured, say – something that is time-consuming and difficult to do by hand. 
They can also predict future time steps based on past ones, letting researchers 
estimate where the animal will go next. LSTMs can also classify trajectories, 
determining whether a trajectory comes from an animal belonging in a specific 
category. This lets researchers determine how a controlled or semi-controlled 
variable (e.g., pregnancy) changes the movement pattern of an animal.

Traja implements neural networks (§2.1.10) by extending the widely used 
open source machine learning library PyTorch [192], primarily developed 
by Facebook AI Research Group. Traja allows framework-agnostic modeling 
through data loaders designed for time series. In addition, the Traja package 
comes with several predefined model architectures which can be configured 
according to the user’s requirements.
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Because RNNs work with time series, the trajectories require special 
handling. The traja.dataset.MultiModalDataLoader efficiently groups 
subsequent samples and into series and splits these series into training and test 
data. It represents a Python iterable over the dataset and extends the PyTorch 
DataLoader class, with support for

• random, weighted sampling,
• data scaling,
• data shuffling,
• train/validation/test split.

MultiModalDataLoader accepts several important configuration parameters 
and allows batched sampling of the data. The two constructor arguments 
n_past and n_future specify the number of samples that the network will 
be shown and the number that the network will have to guess, respectively. 
batch_size is generally in the dozens and is used to regularise the network.

The RNNs also need to be trained this is done by the high-level Trainer 
class below. It performs nonlinear semicolor optimisation with a Stochastic 
Gradient Descent-like algorithm. The Trainer class by default implements 
the Huber loss function [193], also known as smooth L1 loss, which is a loss 
function commonly used in robust regression:

In comparison to mean-squared error loss, Huber loss is less sensitive to outliers 
in data: it is quadratic for small values of a, and linear for large values. It extends 
the PyTorch SmoothL1Loss class, where the d parameter is set to 1.6 A common 
optimization algorithm is ADAM and is Traja’s default, but several others are 
provided as well. Although training with only a CPU is possible, a GPU can 
provide a 40 − 100x speedup [194].

Recurrent Autoencoder Networks
Traja can also train autoencoders to either predict the future position of a track 
or classify the track into a number of categories. Autoencoders embed the 
time series into a time-invariant latent space, allowing representation of each 
trajectory or sub-trajectory as a vector. A class of well-separated trajectories 
would then be restricted to a region of the latent space. The technique is similar 
to Word2vec [195], where words are converted to a 100+ dimensional vector. 
In this approach, forecasting and classification are both preceded by training 
the data in an autoencoder, which learns an efficient representation of the data 
for further computation of the target function.

                                                    
6 https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Traja allows training a classifier that works directly on the latent space output 
- since each class of trajectories converges to a distinct region in the latent 
space, this technique is often superior to classifying the trajectory itself. Traja 
trains classifiers for both Autoencoder-style and Variational Autoencoder-style 
RNNs. When investigating whether animal behavior has changed, or whether 
two experimental categories of animals behave differently, this unstructured 
data mining can suggest fruitful avenues for investigation.





APPLICATION OF TRAJA TO MOUSE STROKE MODEL
ON ENRICHED DIET
                                                                                                                                                    

Quantitative characterization of mouse activity, locomotion and walking 
patterns requires the monitoring of position and activity over long periods 
of time. Manual behavioral phenotyping, however, is time and skill-intensive, 
vulnerable to researcher bias and often stressful for the animals. We present 
examples for using a platform-independent open source trajectory analysis 
software, Traja, for semi-automated analysis of high throughput mouse 
homecage data for neurobehavioral research. Our software quantifies numerous 
parameters of movement including travelled distance, velocity, turnings, and 
laterality which are demonstrated for application to neurobehavioral analysis. 
In this study, the open source software for trajectory analysis Traja is applied 
to movement and walking pattern observations of transient stroke induced 
female C5 BL/6 mice (30 min middle cerebral artery occlusion) on an acute 
multinutrient diet intervention (Fortasyn). Mice were housed individually 
in Digital Ventilated Cages (DVC, GMS00, Tecniplast S.p.A., Buguggiate 
(VA), Italy) and activity was recorded 24/7 every 250 ms using a DVC board. 
Significant changes in activity, velocity, and distance walked are computed 
with Traja. Traja identified increased walked distance and velocity in Control 
and Fortasyn animals over time. No diet effect was found in preference of 
turning direction (laterality) and distance travelled. As open source software 
for trajectory analysis, Traja supports independent development and validation 
of numerical methods and provides a useful tool for computational analysis 
of 24/7 mouse locomotion in home-cage environment for application in 
behavioral research or movement disorders.

This chapter is published in Frontiers in Neuroscience as:
Shenk, J., Lohkamp, K. J, Wiesmann M., Kiliaan, A. J. (2020). Automated 
Analysis of Stroke Mouse Trajectory Data With Traja. Frontiers in Neuroscience 
14:518. doi: 10.3389/fnins.2020.00518.

3
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3.1 INTRODUCTION

Rodent locomotion has been studied in the context of various disease models 
such as spinal cord injury [196–198] neurodegenerative diseases such as 
Parkinson’s [199–201] and Down syndrome [202, 203], assessment of 
pharmacological agents [204], genetic mutations [205, 206], and stroke [207, 
208]. Locomotion monitoring has been used both as a proxy for measuring 
illness and fatigue as well as overall development and recovery. Automated 
quantitative analysis of mouse phenotype allows researchers to objectively 
assess cognitive and motor abilities and disturbances brought about by genetics, 
disease processes, and interventions. The ability of these effects to be observed, 
measured and communicated, is constrained by the availability of assays which 
reflect physiological and cognitive changes occurring over indeterminate time 
intervals. Further, the time resolution of observations and analysis are limited 
by the availability of behavioral data and analytical methods. Sharing data and 
analytical methods allows for increasing the validity of experimental modalities.

Phenotyping mouse models typically involves screening mice through various 
behavioral tests to measure anxiety, learning, memory, or locomotion in 
experimental setups outside the home-cages. Several mouse tracking tools 
exist for phenotyping; a recent review can be found at [209]. These tools 
however either are not designed to be used in home-cage environments or 
require expensive commercial software which limits the reproducibility of data 
collection and analysis. Monitoring in artificial environments introduces an 
additional stress and discomfort to the animals, and the short-term nature of 
the experiments risk missing important behavioral patterns which can only be 
discovered during long-term observation.

The Open Field (OF) test is a widely used experimental paradigm for quantifying 
mouse locomotion and monitoring behavior. It allows providing descriptive 
statistics of mobility and stress-related behaviors such as tendency to remain 
near walls or corners [210]. OF is limited, however, because it is subject to 
experimenter bias, requires trained animal handler’s to be present, management 
of equipment, and specialized space for experimentation. Multiple exposure 
to the OF environment leads to habituation, which decreases exploratory 
behavior and can mask recovery after an ischemic insult. In addition, the 
novelty of the environment causes stress to the animal which may affect the 
observed response. Similarly, the Corner Test [211] is widely used to identify 
sensory-motor functional deficits like laterality preference after an experimental 
stroke, but suffers the same drawbacks. Reproducibility of movement data 
analysis depends on widespread access to the data and analytical methods 
for verification within the scientific community [210]. The vast majority of 
researchers use commercial software for recording and digitally analyzing the 
OF test results. A number of applications capture locomotion with video [212, 
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213] or photo-beams [214]. Most tracking systems require specialized cages, 
illumination [215, 216] or the presence of intrusive devices which do not 
fit within standard mouse home-cage and interfere with mouse behavior, or 
are based upon proprietary methods or software specific to the data sources. 
Such experimental setups rely on a novel environment during recording, or are 
otherwise difficult to scale to large studies without considerable investment in 
equipment. Ability to customize parameters used for analysis is a priority in 
defining quantitative statistics, since the validity of the construct in relation 
to the features of interest in many cases cannot be determined empirically 
[217]. For example, laterality is defined in various ways in the literature, e.g., 
with various thresholds for distance travelled or angular movement. Software 
which allows customizing the parameters for analysis supports independent 
verification of the results and fine-tuning of analytical methods for increased 
internal validity [217].

Open source software has been developed in the past years for tracking mice 
in OF (M-Track) [216] and other specialized cage environments (Live Mouse 
Tracker) [209]. Singh et al. 2019 developed a camera-based system for mouse 
tracking for mouse home-cage locomotion tracking and analysis. Their setup 
requires the user to be experienced in configuring hardware and does not 
provide tools for analyzing the distance travelled.

Trajr is an R package developed for analysis of animal movement in two- 
dimensional space [219]. It provides several methods for trajectory analysis 
and data preprocessing. The source code however is not optimized for analysis 
of the millions of data points needed to track the lifetime position of mice, 
the most common used experimental animal model. Further, there are many 
advanced data modelling tools for machine learning, such as TensorFlow and 
PyTorch, which are not accessible in R, thus unnecessarily restricting the user 
to traditional analytical techniques.

The Python programming language, on the other hand, is a general-purpose 
programming language and is the primary language used for implementation 
of current state-of-the-art trajectory prediction models (eg, Social Ways [127], 
Next [156], and TraPHic [220]). A library which bridges the most widely used 
machine learning packages with mouse home-cage trajectory is thus needed.

We present a Python package, Traja, for automated analysis of activity and 
position extracted via the 12 capacitive home-cage sensors in the DVC 
(Tecniplast S.p.A., Buguggiate (VA), Italy) [221, 222] to quantify several 
behavioral modalities in a stroke mouse model. Stroke is a motor impairment 
disease; therefore, Traja is a suitable application for identifying changes in 
behavior and motor function relevant to surgical intervention and treatments 
like diet and exercise [223]. We analyze mouse activity, distance, velocity, and 
turning bias/laterality from data collected in a comparison of a group on 
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Control diet and a group treated with the multinutrient intervention, Fortasyn 
[223]. Fortasyn consists of fatty acids, phospholipids, and vitamins stimulating 
neuronal membrane formation, and improving vascular health by increasing 
cerebral blood flow (CBF) which suggest that this diet may also improve 
damages caused by cerebrovascular diseases (CVD) such as stroke. This study 
on the impact of Fortasyn on behavior (Open Field, Pole test), neuroimaging 
and post-mortem brain measures was previously published [147]. In short, 
the study provides evidence that Fortasyn leads to improved brain integrity, 
sensorimotor integration and neurogenesis, while motor skills did not recover 
in female stroke mice on Fortasyn diet [147]. The present results computed 
by Traja are a valuable addition to the previously performed study, since DVC 
derived data might pick up more effects than classical behavioral tests (e.g. 
Open Field). We demonstrate the capability of metrics derived from home-cage 
activity and position tracking to study differences in the neurobehavioral 
phenotypes of mice over extensive lengths of time, within a method that is 
accessible to researchers possessing moderate programming background. Thus, 
by making use of the DVC dataset of this female stroke mouse model, we show 
that the Traja software package is a valid method for semi-automated trajectory 
analysis.

3.2 MATERIALS AND METHODS

3.2.1 Description of the Traja Python package

The user of the Python package Traja can carry out data selection by using filter 
settings like minimal distance moved to eliminate slight “apparent” movements. 
Several quantitative measures of behavior are available and can be described 
with descriptive statistics relevant to neurobehavioral research, including 
activity, distance, velocity, turn angle, and laterality. A list of functionalities and 
specifications of Traja are listed in the Supplementary materials (Table 1 and 2).

Figure 3.1: Study design. Acclimatization, behavioral training and baseline behavioral 
experiments started 35 days before tMCAo. Immediately after stroke induction 
(day 0), diets were switched to either Fortasyn multinutrient diet (n=11) or to an 
isocaloric diet (n=12). Additionally, all animals were individually housed in DVC 
to monitor their locomotive behavior, including activity, distance moved, velocity, 
turns and laterality. Until 35 days post-surgery, behavioral tests [pole test, prepulse 
inhibition (PPI), grip test, Open Field, novel object recognition test (ORT)] were 
performed and animals underwent two MRI scanning sessions.
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3.2.2. Automated locomotion and trajectory analysis 

Activity and centroids
Activity and centroids were measured by sensing boards, equipped with 
12 capacitive-based electrodes, underneath each Digital Ventilated Cage 
(Tecniplast S.p.A., Buguggiate (VA), Italy) as previously described in detail 
[221, 222]. In short, proximity sensors are able to measure electrical capacitance 
of each electrode in 250ms time intervals 24/7. As soon as an animal is moving 
in the cage, the electrical capacitance of the proximity sensors are influenced 
by the dielectric properties of matter in close proximity to the electrode. 
Consequently, animals moving across the electrodes are detected and recorded 
as change in capacity over a limited time interval. An activity event describes 
the absolute value of the difference between two consecutive measurements 
for each electrode that is compared with a set threshold to control for noise. 
Centroids include the x, y coordinates of the mouse position inside the cage. 
For the x, y-value calculation, the mouse position is estimated in the average 
position between the centers of the active electrodes weighted by using change 
in capacity, as described elsewhere in more detail [222].

Distance and velocity
Distance and velocity were calculated using the first and second derivative, 
respectively, of the centroid coordinates with respect to time [222]. The distance 
computed with Traja was matching the distance obtained with Ethovision 
XT 14, indicating that Traja accurately computes trajectory parameters 
(Supplementary Figure 1) [147]). In Traja this is accomplished with traja.
calc_displacement() and traja.calc_derivatives(), respectively. 
Velocity was measured with a minimum velocity threshold of 0.02 m/s.

Turn angle and laterality
Angular velocity has been used in several animal models including mice and 
fish [224] for observing reflexes and locomotion. Extending the nomenclature 
in [215] with heading at time step n as HEn and time coordinate t, relative turn 
angle RTAn = HEn − HEn−1 and relative angular velocity RAVn =
We calculate laterality index LI =      where R is the number of right turn
angles RTA ∈ [30, 90], L is the number of left turn angles RTA ∈ [−90, −30], 
and LI ∈ [0, 1] and the minimum velocity is 1 cm/s. Turn bias of trajectories 
can be visualized using traja.polar_bar().

3.2.3. Stroke disease model

All results regarding behavioral tests, neuroimaging, and post-mortem brain 
analysis of the dietary intervention Fortasyn in a female stroke mouse model 
were published earlier by Wiesmann et al. [147]. The focus of the present study 
is the trajectory analysis of the female stroke model in DVC with the software 
Traja.
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Transient middle cerebral artery occlusion
Ischemic stroke was induced in female C57BL/ 6JRj mice by a transient middle 
cerebral artery occlusion (tMCAo), which is mimicking one of the most 
common types of ischemic stroke in patients [225]. The intraluminal occlusion 
model was performed as described elsewhere with minor modifications [147, 
225]. In short, a 7-0 monofilament (tip diameter 190–200lm, coating length 
2–3 mm, 70SPRePK5, Doccol Corp., Sharon, MA, USA) was inserted in 
the right common carotid artery and placed to block blood supply via the 
middle cerebral artery. The filament was held in place for 30 min followed 
by retraction of the filament leading to reperfusion. A Laser Doppler probe 
(moorVMS-LDF2, Moor Instruments, UK) was placed on the skull of the mice 
to monitor cerebral blood flow, considering a drop of ≥ 80% CBF as a successful 
stroke induction. Animals were anesthetized during the whole time of surgery, 
using 1.5% isoflurane (Abbott Animal Health, AbbottPark, IL, USA) in a 2:1 
air and oxygen mixture.

Animals, diet, housing and study design
At 3-4 months of age, 24 female C57BL/ 6JRj mice (Harlan Laboratories Inc., 
Horst, the Netherlands) arrived at the preclinical imaging center of the Radboud 
university medical center (Radboudumc) (Nijmegen, the Netherlands) where 
all experiments were performed (see Figure 1 for study design). Animals were 
group housed (four animals per cage) in DVC (Tecniplast S.p.A., Buguggiate 
(VA), Italy) which contained corn based bedding material (Bio Services, Uden, 
The Netherlands), wood wool nesting material (Bio Services, Uden, The 
Netherlands), and a mouse igloo (Plexx, Elst, The Netherlands). Standard food 
pellets (Ssniff rm/h V1534-000, Bio Services, Uden, The Netherlands) and 
autoclaved water were available ad libitum. The room had constant temperature 
(21 ± 1◦C), humidity (55% ± 10%), background music and an artificial 12h 
light-dark cycle (light on at a.m.). After letting the animals acclimatize, baseline 
behavioral measurements were performed pre-stroke. All parameters measured 
in the Open Field (walked distance, velocity, manual scored behaviors) and 
grip strength test did not differ between the Control and Fortasyn group prior 
surgery [147]. Immediately after tMCAo, mice were randomly divided into 
two experimental groups using a random sequence generator switching from 
normal chow (Ssniff rm/h V1534-000, Bio Services, Uden, The Netherlands) 
to either a multinutrient intervention Fortasyn diet (n = 12) or an isocaloric 
Control diet (n = 12) [147]. Both the Fortasyn and the Control diet were based 
on AIN-93M (Reeves et al., 1993) with 5% fat, but differed with respect to 
their fatty acid composition and some additional nutrients. The Fortasyn diet 
contained 0.1% coconut oil, 1.9% corn oil, and 3.0% fish oil, while the Control 
diet contained 1.9% soy oil, 0.9% coconut oil, and 2.2% corn oil. Furthermore, 
the Fortasyn diet contained a specific multinutrient composition comprising 
uridine, omega-3 polyunsaturated fatty acids (PUFAs), choline, B vitamins, 
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phospholipids, and antioxidants (the specific composition is specified in 
[226]. Both diets were manufactured and pelleted by Ssniff (Soest, Germany) 
and stored at −20◦C until use. Group sizes were calculated based on the effect 
sizes (Type I error: 0.05, statistical power: 0.80), exclusion and mortality rates 
determined in our previous study [226]. Before and 1 day after stroke surgery, 
all mice were injected Carprofen (Rimadyl, Pfizer Animal Health, Cappele aan 
de IJssel, the Netherlands) subcutaneously adjusted to their weight (0.1 ml 
Carprofen l per 10 gram) to prevent discomfort. After surgical intervention, 
the animals were housed separately in clean DVC to optimize healing of surgical 
wounds. During the post-surgery period (35 days) it was not necessary to clean 
the cages due to single-housing. Furthermore, physiological parameters as well 
as stroke related disturbances in motor function during the recovery period 
were monitored for each individual mouse. Body weight did not differ between 
experimental groups, however, during the first week post-stroke, Fortasyn 
fed mice ate significantly more than Control animals although the diets were 
isocaloric. No further diet effects on both body weight and food intake were 
found during the poststroke weeks 2-5. Body weight increased in weeks 2 and 3 
and stabilized in week 3 and 5 to baseline levels [147].

Ethics statement
Our study was in concurrence with the European regulations on ethics 
and responsible conduct regarding scientific communication as previously 
described [147]. Experiments were performed according to Dutch federal 
regulations for animal protection and the European Union Directive of 22 
September 2010 (2010/63/EU). They were approved and pre-registered by 
the Animal Ethics Committee (called the Dierexperimentencommissie; DEC, 
RU-DEC 2014-1 1) of the Radboudumc. Furthermore, our experiments 
were performed according to the (updated) recommendations made by the 
Stroke Therapy Academic Industry Roundtable (STAIR) for the preclinical 
development of therapies for ischemic stroke [227] and ARRIVE guidelines 
[228]. All applicable international, national, and institutional guidelines for 
the care and use of animals were followed. Our study was also in concurrence 
with the European regulations on ethics and responsible conduct regarding 
scientific communication.

3.2.4. Data analysis

Mouse tracking was performed using DVC collecting data 24/7 via capacitance 
sensors placed underneath the home-cage. The raw data of mouse position 
centroids and activity were provided by Tecniplast. The data was analyzed with 
Traja.
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Coding
Traja was written using Python 3.6 and several Python libraries for 
data management and analysis, with links and descriptions provided in 
Supplementary Table 2 [147].

Software
The software and documentation for Traja are freely available for download at 
http://traja.readthedocs.io or from the repository https://github.
com/justinshenk/traja [223]. It is compatible with Microsoft Windows, 
Mac OSX and Linux.

Statistical analysis
Before analysis, data was aggregated for Fortasyn and Control groups. Unless 
otherwise stated, data were pooled within experimental groups by days from 
surgery and split into nighttime (7pm - 7am, light off) and daytime (7am 
-7pm, light on). Furthermore, effects found across 24 hours are considered 
as overall effects. All data are presented as mean ± SEM, unless otherwise 
stated. Statistical significance was set at p<0.05. Effects and interactions of 
longitudinal data were calculated by generalized linear models treating time 
and diet as fixed effects with the Python statsmodel software package (program 
items are in Supplementary 1). Moreover, for our GEE regression additional 
statistical measures are provided in the Supplementary material (e.g. number 
of observations/clusters, min./max./ mean cluster size, skew and kurtosis, 
standard errors, z-values) clarifying our statistical approach.

3.3. RESULTS

3.3.1 Activity

Recovery following stroke induction was monitored by analyzing mouse 
activity during day- and nighttime. In the first three days after surgery, Fortasyn 
fed animals were overall significantly more active than the Control group 
(p<0.050) (Figure 2A). In the same day range, activity increased in all animals 
during daytime (p<0.001) (Figure 2A). Both groups showed increased activity 
over time between day ranges 1- (daytime (p<0.001); nighttime (p<0.001); 
overall (p<0.001)) and 1-33 (nighttime (p<0.017)) (Figure 2B). Contrary to 
nighttime activity, daytime activity decreased between day 1-33 in both groups 
(p<0.020) (Figure 2B).
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Figure 3.2: Mean activity measured in Control and Fortasyn fed animals during day- and 
nighttime between day ranges 1–7(A) and 1–33 (B). (A) Fortasyn fed animals 
were overall significantly more active between day 1–3 (p<0.050). (A,B) In both 
groups, activity increased over time during day- time [days: 1–3 (p<0.001), days: 
1–7(p<0.001)], nighttime [days: 1–7(p<0.001), days: 1–33 (p<0.01 )], and overall 
(days: 1–7 p<0.001). During daytime activity decreased in Control and Fortasyn 
animals between day 1–33 (p<0.020).
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3.3.2. Distance

In all animals the average distance travelled was observed to increase during 
daytime between day ranges 1-3 (p<0.038) and 1-7 (p<0.012) (Figure 3.3A). 
Between day 1-33 an increase in travelled distance was observed during 
nighttime (p<0.001) and overall (p<0.001) (Figure 3.3B). No diet effects were 
found over time.

Figure 3.3: Average distance traveled by Control and Fortasyn fed animals during day- and 
nighttime between day ranges 1–7 (A) and 1–33 (B). (A,B) In all animals the 
distance traveled increased over time during daytime [days: 1–3 (p<0.038), days: 
1–7(p<0.012)], nighttime (days: 1–33 p<0.001), and overall (days: 1–33 p<0.001).
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3.3.3. Velocity

All animals displayed increased mean velocity over time during daytime 
between day ranges 1-3 (p<0.004), 1-7 (p<0.001), 1-33 (p<0.001), and also 
overall between day range 1-33 (p<0.008) (Figure 3.4B). A diet effect was 
detected between day 1-3 during daytime (Figure 3.4A). In detail, Fortasyn fed 
animals were significantly faster in comparison to the Control group (p<0.008) 
(Figure 4A).

Figure 3.4: Average velocity measured in Control and Fortasyn fed animals during day- and 
nighttime between day ranges 1–7 (A) and 1–33 (B). (A) Average velocity was 
significantly higher in the Fortasyn group compared to Control during daytime 
between day ranges 1–3 (p < 0.008). (A,B) In all animals walking velocity increased 
over time during daytime [days: 1–3 (p<0.004), days: 1–7 (p<0.001)], nighttime 
[days: 1–33 (p<0.001)], and overall [days: 1–7 (p<0.059), days: 1–33 (p<0.008)].
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3.3.4. Turns & Laterality

No significant diet or time differences were found regarding the number of 
right and left turns during day- and nighttime (Figure 3.5). Laterality is defined 
as proportion of right turns over all turns, thus laterality <0.5 indicates left turn 
preference (Figure 3.6). No significant effects due to diet or time were found 
between groups. In both experimental groups Traja was able to detect left 
and right turns. Laterality index was observed to be consistently around 0.5, 
indicating similar number of left and right turns during recovery.

Figure 3.5: Number of turns measured in Control [(A) 1–7 days, (C) 1–21 days] and Fortasyn 
[(B) 1–7 days, (D) 1–21 days] group during day- and nighttime between different day 
ranges. No effect of time or diet was detected.
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Figure 3.6: Visualization and analysis of turns. (A) Laterality in Fortasyn and Control group 
during daytime (A) and nighttime (B) following stroke. (C) Polar bar chart of angular 
movement of one mouse over the period of one day produced by Traja, visualizing 
laterality.
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3.4 DISCUSSION

We have demonstrated several capabilities of Traja relevant to behavioral analysis 
of a stroke mouse model. An increasing number of sensors for animal tracking 
in recent years has led to a plethora of possibilities to analyze activity, each having 
advantages and disadvantages (reviewed in [209]). Monitoring single housed 
mice in their home-cages allows to increase the validity of observations for 
ongoing experiments. The disruption of mouse activity caused by cage changes 
has been previously documented [222]. It is clear that home-cage analysis is 
useful to monitor interference effects of novel environments. Testing animals 
in an environment consistent with daily living is thus crucial to maximizing the 
validity of behavioral assays, and Traja supports analysis of such data.

In the present experimental setting, we investigated the effect of a dietary 
intervention with Fortasyn acute after stroke induction in female, wildtype 
C57BL/ 6JRj mice [147]. Parameters, including activity, distance, velocity, 
and laterality were analyzed based on DVC metric measures with Traja to 
detect differences in recovery between intervention and Control group. Afore- 
mentioned parameters were analyzed between different day ranges to explore 
stroke or diet effects on short term (day range 1-3, 1-7) and long term post- 
surgery (day range 1-33). Traja calculated a subtle increase in overall activity 
and daytime velocity in the Fortasyn group compared to the Control group 
between day 1-3. Previous studies have clearly shown that Fortasyn has 
neuroprotective effects after an ischemic stroke, however short-term effects 
have not been shown before and need to be further investigated [147, 229]. 
Further diet effects were negligible regarding distance, turns and laterality. Both, 
the Control and Fortasyn group showed progressive recovery from stroke over 
time. More precisely, in both diet groups Traja calculated an increase of activity, 
distance, and velocity on short-term and/or long-term after stroke induction. 
In contrast, activity was overall found to be decreased during daytime (day 
range 1-33). This lower daytime activity is likely to be the consequence of the 
many behavioral tests which were performed during daytime on several days 
during the experiment (detailed overview in Supplementary Figure 2) [147].

In comparison to standard behavioral tests as the OF, automated analysis of 
DVC trajectory data with Traja was able to detect differences in walked distance 
and velocity in the present female stroke animal model during the post-surgery 
period [147]. Previously, neither time nor diet differences on locomotion 
(distance, velocity) have been found in the OF [147]. In future, further 
exploration of hyperparameters for laterality (i.e, distance threshold and turn 
angle range) could improve observation of stroke-induced turn preference, 
thus potentially providing a quantitative measure of impairment and recovery. 
In conclusion, the generated data provide a proof-of-concept of Traja as novel 
automated analysis method of activity measured via home-cage sensors in DVC 
to quantify several locomotive parameters in a stroke mouse model.
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Automated home-cage 24/7 monitoring is an active area of research and a step 
forward for reproducible behavioral analysis, accompanied by rapid advances 
in technology and advanced methods such as machine learning (ML). While 
researchers seek to control many factors in experimental settings to understand 
biological and pathological processes, there is still much opportunity to extract 
and analyze large datasets in an experiment. As the amount of data available to 
researchers grows beyond the capacity of researchers to process and analyze it, 
tools which support automated pattern recognition are becoming increasingly 
relevant to neuropsychiatric research and disease treatment. As an open source, 
Python-based software, Traja supports collaboration between behavioral 
researchers for both classical hypothesis testing as well as complementary 
advanced analytical techniques for pattern detection such as unsupervised ML. 
Based on these findings, we suggest that Traja can be used to gain insight into 
mouse locomotion in movement disorders and stroke research.

In future, by combining sensor data provided by devices like DVC with open 
source tools such as Traja, researchers will be able to gain a deeper insight into 
underlying cognitive processes relevant to neurological conditions like stroke as 
well as ordinary behavior. Further potential extensions of this software include 
development of a graphical user interface to increase the usability to researchers 
with minimal computer skills. Researchers can use tools like Traja to generate 
highly reproducible and transparent analysis and visualizations of spatial 
trajectory data collected through virtually any tracking data source.
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APPLICATION OF TRAJA TO MOUSE STROKE MODEL
ON A MEDITERRANEAN DIET
                                                                                                                      

Stroke is one of the leading causes of adult disability worldwide. After 
ischemic stroke, damaged tissue surrounding the irreversibly damaged core of 
the infarct, the penumbra, is still salvageable and therefore a target for acute 
therapeutic strategies. Mediterranean diet (MD) has been shown to lower 
stroke risk. MD is characterized by increased intake of extra-virgin olive oil, of 
which hydroxytyrosol (HT) is the foremost phenolic component. This study 
investigates the effect of a HT-enriched diet directly after stroke on regain 
of motor and cognitive functioning, MRI parameters, neuroinflammation, 
and neurogenesis. Stroke mice on HT diet showed increased strength in the 
forepaws, as well as improved short-term recognition memory probably due 
to improvement in functional connectivity (FC). Moreover, mice on HT 
diet showed increased CBF and also heightened expression of brain derived 
neurotrophic factor (Bdnf) indicating a novel neurogenic potential of HT. 
This result was additionally accompanied by an enhanced transcription of the 
postsynaptic marker Psd-95 and by a decreased IBA-1 level indicative of lower 
neuroinflammation. These results suggest that a HT-enriched diet could serve 
as a beneficial therapeutic approach to attenuate ischemic stroke-associated 
damage.

This chapter is published in Nutrients as:
Shenk, J.1, Calahorra, J.1, Wielenga, V. H., Verweij, V., Geenen, B., Dederen, P. 
J., Peinado, Herreros, M. A. P., Siles, E., Wiesmann, M., Kiliaan, A. J.. (2019). 
Hydroxytyrosol, the major phenolic compound of olive oil as acute therapeutic 
strategy after ischemic stroke. Nutrients 11:2430. doi: 10.3390/nu11102430.

1 The authors contributed equally to the present work.
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4.1 INTRODUCTION

Stroke is a leading cause of death and long-term disability worldwide. Whereas 
two-third of stroke deaths occur in less developed countries, it is the second most 
common cause of death in Europe [230]. Ischemic stroke, caused by obstruction 
of a blood vessel by for example a thrombus, is the most common type of stroke 
(80-85%). The neuronal injury after ischemic stroke is caused by the absence 
of oxygen and glucose during the ischemic period and, more importantly, by 
oxidative stress and increase in inflammation along the reperfusion period 
[231]. Consequently, neurodegeneration especially in the core of the infarct 
takes place, giving rise to a gradual and continuous deterioration of behavioral 
and cognitive functions [232, 233]. The penumbra, the ischemic boundary 
zone around the irreversibly injured core, is a potentially salvageable tissue and 
may be the objective of restorative interventions [234].

Endovascular interventions and intravenous thrombolysis restore brain 
perfusion and limit the acute effects of stroke. However, no further stroke 
treatments are available, except for some rehabilitative therapies such as 
training, progressive task-related practice of skills, and neurostimulation [235]. 
The decrease of the oxidative stress level, the reduction of the inflammatory 
processes or the stimulation of neuro- and synaptogenesis are some of the 
strategies that, particularly when combined, could help to reduce the impact 
of stroke in the potentially salvageable tissue. A dietary approach could play an 
essential role in this field. In fact, several studies prove its significance [236]. Our 
group has already demonstrated that a multinutrient intervention (Fortasyn) 
containing long chain poly unsaturated fatty acids (LCPUFAS), extra vitamins 
and antioxidants improves sensorimotor integration, brain integrity and 
neurogenesis after ischemic stroke induction [237, 238]. The PREDIMED 
trial, which studies the effect of Mediterranean diets in health, has highlighted 
the positive association between extra virgin olive oil (EVOO) consumption 
and the risk of stroke in humans [239, 240]. This beneficial effect of EVOO 
has also been shown to be protective in terms of redox homeostatic balance, 
lipid and protein damage, activation of NO synthase (NOS) in penumbra and 
reduction of apoptosis level in chronic ischemic models [241–243].

EVOO, obtained by mechanical processes under cold temperatures, is 
constituted by two fractions: the major saponificable fraction (98%) composed 
of fatty acids such as oleic acid, and the minor unsaponificable fraction (2%) 
existing of more than 230 components, amongst which are the phenolic 
alcohols [244]. Hydroxytyrosol (HT), together with tyrosol and oleuropein, 
are the most abundant phenolic alcohols in EVOO [245]. A number of studies 
have demonstrated that many of the beneficial properties of EVOO are strongly 
related with HT. This polyphenol has shown numerous biological effects, 
among others such as antioxidant and anti-inflammatory capacity, antitumour 
properties and neuroprotective effects [246]. Until now, all studies concerning 
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the neuroprotective effect of HT under ischemic conditions have been carried 
out ex vivo, using thick brain sections [247–250]. These sections were incubated 
with different concentrations of HT or extracted from previously treated 
animals. The results obtained from these experiments, indicate that HT exerts 
a neuroprotective effect associated with lower release of lactic dehydrogenase, 
decreased levels of nitrosative and oxidative stress and decrease in inflammation. 
The neuroprotective effect of this compound in ischemic processes has also 
been studied in diabetic rats, and indicated that its neuroprotective action is 
not exclusively linked to its antioxidant action [251].

With this background, the objective of the present study is to longitudinally 
evaluate the effect of a HT-enriched diet both on motor and cognitive skills 
as well as structural and functional MRI outcomes like cerebral blood flow 
(CBF) and grey and white matter integrity at day and day 35 post-stroke in a 
well-known and broadly used mouse transient middle cerebral artery occlusion 
(tMCAo) model. In addition, metabolic, neurogenic and inflammatory markers 
will be evaluated as well as oxidative levels in serum, in order to investigate the 
potential of HT as acute therapeutic strategy after stroke.

4.2 MATERIALS AND METHODS

4.2.1 Animals

The present study was double-blinded randomized and performed at the 
Preclinical Imaging Center (PRIME) of the Radboud university medical center 
(Radboudumc, Nijmegen, The Netherlands) using 28 male 2-3-month-old 
CS BL/6JRj mice (Harlan Laboratories Inc., Horst, the Netherlands). Before 
tMCAO, the mice had ad libitum access to standard food pellets (Ssniff rm/h 
V1534-000, Bio Services, Uden, the Netherlands) and autoclaved water and 
were individually housed in DVC cages (Digital Ventilated Cage, Tecniplast 
S.P.A., Buguggiate (VA) Italy) during the experiments, to study individual 
locomotion via calculation of DVC metric measures (activity, walked distance, 
walked velocity, total turnings, laterality index) during day- and night time, 
before and after surgery [252, 253]. The animals were kept at artificial 12h 
light-dark cycle (lights on at a.m.) in rooms controlled for humidity and 
temperature at 21±1 °C and background music playing during the light 
cycle. All experiments were performed in accordance with the Dutch federal 
law for animal experimentation (“Wet op de Dierproeven”, 1996) and the 
regulations of the European Union Directive of 22 September 2010 (2010/63/
EU). All experiments were approved by the Animal Ethics Committee of the 
RadboudUMC (protocol number: RU-DEC 2017-0021) and performed 
according to the ARRIVE guidelines.
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4.2.2 Transient middle cerebral artery occlusion (tMCAo)

At ~3 months of age, mice underwent transient (30min) occlusion of the right 
middle cerebral artery (tMCAo), as previously described [238]. Mice were 
anesthetized with 1.5% isoflurane in a 2:1 (air:oxygen) mixture and were kept 
under anaesthesia for the duration of the surgery. Just prior to the occlusion 
procedure, a Laser Doppler probe (moorVMS-LDF2, Moor Instruments, 
UK) was placed on the skull of the mice to monitor cerebral blood flow (CBF) 
as an assessment of the efficacy of the occlusion (≥80% loss of CBF). A 7-0 
monofilament (190-200µm, coating length 2-3mm, 70SPRePK5, Doccol 
Corp., Sharon, MA, USA) was inserted in the right carotid cerebral artery 
(CCA) and pushed upwards to the proximal part of the middle cerebral 
artery (MCA). The filament occluded the MCA for 30min, after which it 
was retracted to allow reperfusion. As a control, part of the mice underwent 
sham surgery instead of tMCAo. In these mice, the filament was immediately 
retracted after touching the Willis’ circle. After surgery, all mice were carefully 
assessed for pain and other discomfort, weighed every day at 12 a.m. for days, 
and food intake was monitored. Exclusion criteria were decreased motor activity 
(<50% of the baseline measurements combined from the baseline values of each 
behavioural test) or extreme weight loss (>20% within three consecutive days). 
Using a T2-weighted RARE sequence to measure lesion size and ratio between 
stroke (right) and unaffected (left) hemispheres, all stroke animals showed a 
comparable lesion size at days post-stroke and no dietary effect on lesion size 
(data not shown). Notably, both dietary groups demonstrated atrophy over 
time visible in a decrease in left-to-right ratio (D : 0.9 ±0.03; D35: 0.85±0.08; 
F(1,12)=31.3, p<0.006). The time line of the experimental design is illustrated 
in Figure 4.1.

4.2.3 Group allocation and diet

After stroke, mice were randomly allocated, using a random sequence 
generator, to one of two diets: an HT-enriched diet (n=13; stroke (n=6), sham 
(n=7)) or an isocaloric control diet (n=15; stroke (n=8), sham (n=7)). Group 
sizes were calculated according to effect sizes (p=0.05, statistical power: 0.80), 
exclusion and mortality rates previously determined by a similar study of our 
group [238]. Both diets contained 24.0% kcal protein, 15.0% kcal fat, and 
61.0% kcal carbohydrates (Research Diet Services B.V., Wijk bij Duurstede, 
The Netherlands), based on a previous study from another group [254–256]. 
The HT-enriched diet was supplied with 0.03g% HT (Seprox Biotech, Spain). 
Food intake and body weight was measured before and during the weeks after 
surgery. Excluded mice per test are shown in Table 4.1.
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Figure 4.1: 

4.2.4 Open field

Mice were placed in a square open field (45x45x30cm) for 10 min to assess 
locomotion and explorative behaviour. The open field test was performed three 
times: once prior to surgery, and at 3 and 21 days postsurgery. Locomotion 
was automatically recorded, using EthoVision XT 10.1 (Noldus, Wageningen, 
The Netherlands). In EthoVision, the floor of the open field arena was divided 
in zones to distinguish the periphery, corners and center. The frequency of 
entering these zones was automatically recorded. Additionally, manual scoring 
of exploratory behaviours (sitting, walking, grooming, wall-leaning, rearing) 
was performed, as previously described [257].

4.2.5 Grip test

Grip strength of the mice was measured with a grip strength meter (Grip 
Strength Meter, 47200, Ugo Basile, Italy) at three time points: pre-stroke, and 
day 15 and day 29 (post-stroke). Mice were held by their tail so they could 
grab a trapeze or grid (connected to the grip strength meter) to measure, 
respectively, muscle strength in the fore limbs (trapeze) or strength in all four 
limbs collectively (grid). Trials in which mice grabbed the trapeze with only 
one forepaw or the grid with less than four paws, were excluded. Additionally, 
trials in which the mouse grabbed the side of the trapeze were also excluded. 
The maximum value of peak force (in gram per force (gf)) was averaged per 
experimental group for both trapeze and grid.

Study design. After a transient occlusion of the middle cerebral artery (tMCAo) for 
30 min, mice were divided into two dietary groups (Control or HT-enriched). At 
and 35 days post tMCAo all mice underwent MRI. In between, all mice were tested 
on motor and cognitive impairments via several behavioral tests, like the Open field, 
Rotarod, Pole test, Prepulse inhibition (Ppi), grip strength test, and novel object 
recognition test (ORT). After MRI at day 35, animals were sacrificed, serum samples 
were recollected and all brains were processed for immunohistochemical stainings 
and qPCR analysis.
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4.2.6 Pole test

The pole test is used to monitor motor function. It was performed pre-stroke, 
and post-stroke at day 14 and day 28. The mouse was placed on a vertical pole 
with its head pointed upwards and had to turn 180 degrees to walk down the 
pole. The time needed to fully turn 180 degrees (turning time) and the turning 
direction were manually recorded. Additionally, video recordings of each trial 
were automatically analysed with EthoVision XT 10.1 (Noldus, Wageningen, 
The Netherlands) to calculate the velocity (cm/s) with which the mouse walked 
down the pole. Trials that were excluded from statistical analysis consisted of: 
every first trial of a mouse (acclimatization), trials in which the mouse was 
already turning when placed on the pole, and trials in which the mouse showed 
no motivation and was assisted by the researcher to go down.

4.2.7 Rotarod

As a measure of balance, coordination, physical condition and motor planning 
the Rotarod (ITC LifeScience INC., Woodland Hills, CA, USA) was performed 
presurgery, and at day 10 and day 21 postsurgery. The mice were placed on the 
Rotarod and left to acclimatize for 10-30 sec. Then the Rotarod was turned on 
to accelerate for 300 sec from 4 to 40 rpm. The latency time to fall was recorded. 
No significant effects (data not shown) were found.

4.2.8 Prepulse inhibition (Ppi)

The prepulse inhibition (Ppi) test was performed 16 days post-stroke to examine 
the sensorimotor gating integration of the mice, as previously described [258]. 
To measure the startle reactivity, the mouse was placed in a restrainer in the 
chamber of the SR-LAB startle response system (San Diego Instruments, San 
Diego, CA, USA) and exposed to blocks of startle pulses. Prepulse inhibition 
was calculated during the second block of startle pulses as 100 - response to 
startle pulse after prepulse/response to startle pulse x 100%. Additionally, 
habituation to startle pulses was investigated by comparing the startle response 
to the first startle pulse block to the startle response in the third (last) startle 
pulse block.

4.2.9 Morris water maze (MWM)

The Morris water maze (MWM) was used to test spatial learning and memory 
in rodents. In short, before surgery all mice were placed in a circular pool, 
filled with opaque water, and were trained to find a submerged platform in the 
northeast (NE) quadrant of the pool by using distant visual cues. At the end of 
the fourth day, mice performed additionally a single probe trial, in which the 
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platform was removed from the swimming pool. Mice were allowed to swim 
for 120 s and the time spent swimming and searching in the NE quadrant 
(where the platform had been located) was recorded. The MWM is used to 
analyse spatial learning and memory before surgery (data not shown). All mice 
learned to find the hidden platform revealed by a decrease in latency time from 
acquisition day 1 to day 4 (-16.33s±5.68s; F(3,81)=3.8, p<0.013).

4.2.10 Novel object recognition test (ORT)

Short-term memory of the mice was measured with the novel object recognition 
test (ORT), as previously described [238]. This test spanned over 3 days. On 
the first day, mice were acclimatized to the open field box by letting them 
explore freely for 10min. On the second and third day, mice underwent object 
recognition trials. First, mice performed a familiarization trial. In this trial two 
identical objects (eggs, tea light holders, yellow plastic ice cream cones, or bottles 
filled with sand) (F1 and F2) were placed in the open field, equidistant from 
the center, and the mouse was then placed in the open field to freely explore 
the objects for 4 minutes. After a certain delay (30 min on day 2 and 60 min 
on day 3) the trial was repeated, with one of the familiar objects (F3) and one 
object replaced for a novel object (N1). Exploratory behaviour of the mice was 
measured using EthoVision XT 10.1 (Noldus, Wageningen, The Netherlands) 
as direct contact with the object, or movement within a 2cm diameter around 
the object.

To measure object recognition, several indexes were calculated in both the 
familiarization and the test phase. In the test phase, discrimination between 
objects was calculated with the discrimination index (DI), as the time spend 
around N1 minus F3, divided by the time spend around both objects (DI = 
(N1-F3)/(N1+F3)). From this index, a number between +1 and -1 is obtained, 
where closer to +1 shows more time spend around N1, closer to -1 more time 
spend around F3, and 0 shows no difference in time spend at either object. 
To measure recognition memory, the recognition index (RI) was calculated 
as the time spend around N1 as a fraction of the time spend around both 
objects (RI = N1/(N1+F3)). The preference for either object was calculated 
with the preference index (PI), as time the mouse spend around N1 (or F3) as 
a percentage of the time spend around both objects (PI = 100 x ([N1 or F3]/
(N1+F3)). If N1 is the numerator, closer to 100% indicates preference for N1, 
50% indicates no preference, and below 50% preference for F3 (vice versa if F3 
is the numerator) [259].
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4.2.11 Digital ventilated cages (DVC)

Like previously detailed described [252, 253], animals were single housed 
in DVC cages during the experiment to study individual locomotion via 
calculation of DVC metric measures (activity, walked distance, walked velocity, 
total turnings, laterality index) during day- and nighttime before and after 
surgery. A detailed explanation of the calculations on the aforementioned 
DVC metric measures can be found in the supplementary material (Figure 
4.19). For analysis of the processed results we compared week 1-5 individually 
to presurgery values.

4.2.12 In vivo magnetic resonance imaging (MRI)

MRI measurements were performed  and 35 days after surgery with an 11.7T 
BioSpec Avance III small animal MR system (Bruker BioSpin, Ettlingen, 
Germany) operating on Paravision 6.0.1. software (Bruker, Karlsruhe, 
Germany) under full isoflurane anaesthesia (3.5 % for induction and 1.8% for 
maintenance; in a 2:1 (medical air:oxygen) mixture). Body temperature was 
monitored with a rectal probe, and maintained at 37 0C using hot air flow. A 
pneumatic cushion respiratory monitoring system (Small Animal Instruments 
Inc, NY, USA) was used to measure the respiration rate of the mouse. Mice 
with scans that showed motion and/or echo planar imaging artifacts were 
excluded from MRI analysis.

4.2.13 Arterial spin labelling (ASL)

To assess cerebral blood flow (CBF), perfusion imaging was performed using 
a flow sensitive alternating inversion recovery arterial (FAIR) technique as 
previously described [234, 238]. Hippocampus, cerebral cortex and thalamus, 
according to the Paxinos and Franklin atlas [260], were analysed as regions of 
interest (ROI) by a researcher blinded to the surgery and treatment groups. For 
each ROI, CBF was analysed in the affected (ipsilateral/right) and unaffected 
(contralateral/left) hemisphere separately for each group.

4.2.14 Diffusion tensor imaging (DTI)

Diffusion of water was imaged as described previously [261–263]. In short, 
22 axial slices covering the whole brain were acquired with a four-shot SE-EPI 
protocol. B0 shift compensation, navigator echoes and an automatic correction 
algorithm to limit the occurrence of ghosts and artefacts were implemented. 
Encoding b-factors of 0 s/mm2 (b0 images; 5×) and 1000 s/mm2 were used and 
diffusion-sensitizing gradients were applied along 30 non-collinear directions 
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in three-dimensional space. The diffusion tensor was estimated for every voxel 
using the PATCH algorithm [264]; mean water diffusivity (MD) and fractional 
anisotropy (FA) were derived from the tensor estimation following a protocol 
as described elsewhere [263]. MD and FA values were measured in several 
white matter (WM) and grey matter (GM) areas, manually selected based on 
an anatomical atlas [265].

4.2.15 Resting state functional MRI (rs-fMRI)

Subsequently after the acquisition of the anatomical reference images, resting 
state fMRI (rsfMRI) datasets were acquired using a single-shot spin-echo 
sequence with echo-planar readout (SE-EPI) sequence. Six hundred repetitions 
with a repetition time (TR) of 1.8 s and echo time of 16.9 ms were recorded for a 
total acquisition time of 18 min. The rsfMRI datasets were first realigned using a 
least-squares method and rigid-body transformation with Statistical Parametric 
Mapping (SPM) mouse toolbox (SPMS, University College London; http://
www.fil.ion.ucl.ac.uk/spm/; [266]. Mean and maximum displacement 
across the six degrees of freedom (along the x-, y-, and z-axes and on three 
rotation parameters pitch, roll, and yaw) were measured in each mouse. The 
mean SE-EPI images for each mouse were then used to generate a study-specific 
template through linear affine and nonlinear diffeomorphic transformation 
(ANTs. v1.9; http://picsl.upenn.edu/ANTS/). Visual inspection of the 
normalised dataset was performed to screen for possible normalization biases. 
On the template, 12 areas were selected in left and right hemisphere. The selected 
regions were based on previous work concerning functional connectivity in 
mice [267], and included: left and right dorsal hippocampus, left and right 
ventral hippocampus, left and right auditory cortex, left and right motor 
cortex, left and right somatosensory cortex, and left and right visual cortex. 
All cortical ROIs were selected 1–2 voxels away from the edge of the cortex, 
to minimise the impact of susceptibility artefacts, which are more prominent 
in areas close to tissue interfaces (e.g., near the skull or near the ear canals). 
In-plane spatial smoothing (0.4 × 0.4 mm), linear detrending, and temporal 
high-pass filtering (cut-off at 0.01 Hz) were applied to compensate for small 
across-mouse misregistration and temporal lowfrequency noise. Functional 
connectivity (FC) group comparison between ROIs were calculated from the 
BOLD time series using total correlation analyses implemented in FSLNets 
(FSLNets v0.3; www.fmrib.ox.ac.uk/fsl). Pearson’s correlation values were 
Fisher transformed to Z-scores for group comparisons and statistical analysis.
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4.2.16  qPCR

RNA was isolated from frontal parts (divided in to left and right) of the 
brain (Bregma: −0.10 to 4.28 using TRIzol method (Thermo Scientific, 
Waltham, USA). The samples were treated with RNase-free DNase I (RQ1, 
Promega, Fitchburg, USA) to eliminate any genomic DNA. cDNA was 
synthesized using the iScript kit (Bio-Rad, Hercules, USA). qPCR was done 
in 96-well plates (Thermo Scientific) using a StepOnePlus system (Thermo 
Scientific). Gene expression of postsynaptic density protein 95 (Psd-95), 
brain derived neurotrophic factor (Bdnf) and glucose transporter 1 (GLUT-1) 
were quantitatively assessed by using hypoxanthine guanine phosphoribosyl 
transferase (Hprt) and beta-2 microglobulin (B2m) as the normalizing genes. 
The sequences of primers are shown in Table 4.2.

4.2.17 (Immuno)histochemistry

After the last scanning session, the mice were sacrificed by transcardial perfusion 
using 0.1M phosphate-buffered saline (PBS) followed by 4% paraformaldehyde 
in 0.1M PBS. The brains were harvested and stored separately. The brains 
were postfixed overnight in 4% paraformaldehyde at 40C and transferred to 
0.1M PBS containing 0.01% sodium azide the next day. One part of the brain 
(Bregma: -0.1-4.36) was cut in 30 µm frontal sections using a sliding microtome 
(Microm HC 440, Walldorf, Germany) equipped with an object table for 
freeze-sectioning at -600C. 24 Hours before cutting, the brains were transferred 
in 30% sucrose in 0.1M phosphate buffer. 8 Series were cut and stored in 0.1M 
PBS with 0.01% sodium azide so multiple immunohistochemical stainings 
could be performed.

All sections were stained in one session to minimize differences in staining 
intensity. In total three stainings were performed for vascular integrity 
measured via glucose transporter-1 (GLUT-1), for activated microglia 
via ionized calcium-binding adapter molecule 1 (IBA-1) as indicator for 
neuroinflammation, and for immature neurons (measure for neurogenesis) 
with antibodies against doublecortin (DCX) on free-floating brain sections 
on shaker tables at room temperature. Immunohistochemistry was performed 
using standard free-floating labelling procedures, using previously described 
protocols [268]. The GLUT-1 amount was visualized using polyclonal 
rabbit anti-GLUT1 antibody (1:40.000, Chemicon AB 1340, Chemicon 
International, Inc., Temecula, CA, USA) and as secondary antibody donkey 
anti-rabbit biotin (1:1500 Jackson ImmunoResearch, West Grove,PA, USA). 
For IBA-1, as primary antibody against IBA-1 polyclonal goat anti-IBA-1 
(1:3000; Abcam) and for DCX, polyclonal goat anti-DCX (1:8000; Santa Cruz 
Biotechnology Inc., Santa Cruz, CA, USA) was used as a primary antibody to 
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assess neurogenesis. For both as secondary antibody donkey anti-goat biotin 
(1:1500; Jackson ImmunoResearch, West Grove, PA, USA) was used. From 
a more frontal part of the brain tissue (Bregma: -0.10 to 0.98) was fixed in 4% 
paraformaldehyde in 0.1 M phosphate buffer (pH .4) and embedded in paraffin 
according to a standard protocol.

4.2.18 Quantification (GLUT-I, IBA-I, and DCX)

Brain sections (Bregma: -1.46 to -2.30) were preselected for quantification 
accordingly to the atlas of Franklin and Paxinos [260]. Quantification was 
done on images at a 5x objective using an Axio Imager A2 (Zeiss Germany). 
ImageJ (National Institute of Health, Bethesda, MD, USA) was used to analyze 
the regions of interest (GLUT-1 + IBA-1: Cortex (Bregma 0.62 & -1.94), 
hippocampus, thalamus, caudate putamen, corpus callosum (only IBA-1); 
DCX: Hippocampus).

4.2.19 Determination of Serum NO Level

Nitric oxide production was indirectly quantified by determining nitrate/
nitrite and S-nitroso compounds (NOx), using an ozone chemiluminescence- 
based assay adapted to serum samples [269, 270]. In brief, serum samples 
were deproteinized with 0.8 N NaOH and 16% ZnSO4 solutions (1/0.5/0.5). 
After centrifugation at 10,000g for 5 minutes, the resulting supernatants were 
removed for chemiluminescence analysis [271] in an NO analyzer (NOA 280i; 
Sievers Instruments, Boulder, CO). NOx concentration was calculated by 
comparison with standard solutions of sodium nitrate. Final NOx values were 
expressed as µM.

4.2.20 Determination of serum oxidative stress level

Thiobarbituric acid reactive substances (TBARS), a major indicator of 
oxidative stress, was determined using an adaptation of the method described by 
Buege and Aust [272]. Specifically, 8% sodium dodecyl sulfate was added (1:1) 
to each serum sample. Samples were vortexed and mixed (1:6) with a reagent 
containing 15% trichloroacetic acid, 0.38% thiobarbituric acid, and 2% HCl 
and then heated for 30 minutes at 960C, cooled, and centrifuged (3000g for 5 
minutes). The supernatants were collected, and the absorbance was measured 
at 532 nm. The concentration of TBARS was determined by extrapolation 
from a malondialdehyde standard curve. Results were expressed as µM.
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4.2.21 Statistical analyses

A random and blinded selection procedure was maintained throughout the 
study. Group means were compared using univariate analysis of variance 
(ANOVA) with Bonferroni correction for multiple testing with a statistical 
program, SPSS 24 (IBM SPSS Statistics 24, IBM Corporation, Armonk, 
NY, USA). Nonparametric tests were used when assumptions of normality 
and homogeneity of variance were not met. p-values lower than 0.05 were 
considered significant. Data are presented as mean ± SEM.

4.3 RESULTS

4.3.1 Food intake and body weight

Body weight (Figure 4.2A) of sham mice did not decrease over time comparing 
presurgery with the first week after surgery (F(1,12)=3.3, p<.095), while body 
weight of both dietary stroke groups decreased post-stroke versus pre-stroke 
(F(1,12)=18.2, p<.002). Food intake (Figure 4.2B) of both stroke and sham 
mice decreased over time comparing presurgery with the first week after surgery 
(Stroke: F(1,12)=19.8, p<.001; Sham: F(1,12)=40.5, p<.001).

Investigating the development over time of body weight and food intake, these 
parameters were analyzed weekly after surgery. Sham mice showed a significant 
time interaction in body weight (F(1,48)=14.5, p<.001) and also in food intake 
(F(1,48)=16.5, p<.001). Specifically, sham mice lost body weight comparing 
week 1 with week 2 (p<.001), while this effect was not present in the following 
weeks comparing week 2 with week 3, week 3 with week 4, and week 4 with week 
5. Sham mice had a lowered food intake comparing week 1 to week 2 (p<.006) 
and also week 3 to week 4 (p<.009). Notably, sham mice on HT diet had a 
higher food intake during all post surgery weeks than sham mice on control diet 
(F(1,12)=5.3, p<.041). Stroke mice demonstrated a time interaction in food 
intake (F(1,48)=10.2, p<.001). After further statistical analysis, stroke mice ate 
less comparing week 1 with week 2 (p<.025) and started to eat more comparing 
week 2 with 3 (p<.008).
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Figure 4.2: 

4.3.2 Behaviour, cognition and motor tasks

4.3.2.1 Open field

At 3 days postsurgery, all sham and all stroke mice moved a shorter distance 
(Sham: F(1,12)=137.1, p<0.001; Stroke: F(1,12)=116.2, p<0.001) (Figure 
4.3A) and with a lower velocity (Sham: F(1,12)=99.4, p<0.001; Stroke: 
F(1,12)=116.5, p<0.001) in the arena (Figure 4.3B), compared to baseline. At 
21 days post- surgery, sham animals walked more in the open field compared to 
3 days post- surgery (F(1,12)=1 .1, p<0.002), however stroke animals did not 
(Figure 4.3A). No effects of diet were observed in distance moved and velocity 
in the open field.

Effect of HT-diet on body weight and food intake. (A) Body weight of both dietary 
stroke groups decreased post-stroke versus pre-stroke (p<.002). Sham mice lost body 
weight comparing week 1 with week 2 (p<.001), with no effect in the upcoming 
weeks. (B) Food intake of both stroke and sham mice decreased over time comparing 
presurgery and the first week after surgery (Sham: p<.001; Stroke: p<.001). Sham 
mice had a lower food intake comparing week 1 to week 2 (p<.006) and also week 
3 to week 4 (p<.009). Sham mice on HT diet had a higher food intake during all 
postsurgery weeks than sham mice on control diet (p<.041). Stroke mice ate less 
comparing week 1 with week 2 (p<.025) and started to eat more comparing week 
2 with 3 (p<.008). Only sham mice showed a significant time interaction in body 
weight (p<.001) and in food intake (p<.001). Values represent mean ± SEM. *p<0.05, 
**p<0.01, ***p<0.001.
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Anxiety and exploration were assessed by tracking the position of the mice 
in the open field (center, corners, periphery). Compared to baseline, stroke 
mice visited the center (F(1,12)=60.7, p<0.001), periphery (F(1,12)=230.2, 
p<0.001) and corners (F(1,12)=85.5, p<0.001) less frequently at 3 days 
post-stroke (Figure 4.3C), but showed no change in time spent at all locations 
(Figure 4.3D). Sham animals also visited the periphery (F(1,12)= 3.4, p<0.001) 
and corners (F(1,12)=1 2.0, p<0.001) less frequently at 3 days post-stroke 
compared to baseline (Figure 4.3C), however they spent less time in the corners 
(F(1,12)=6.7, p<0.024) at 3 days (Figure 4.3D). No diets effects were observed 
in these parameters.

Figure 4.3: Activity, anxiety and explorative behavior measured in open field prior to stroke, 
and at 3 and 21 days post-stroke. Locomotion was assessed by evaluating (A) the 
distance moved and (B) the velocity. Anxiety and exploration were evaluated by 
tracking (C) the frequency and (D) the time spent in the different zones in the arena 
(center, periphery and corner). (A,B) At 3 days postsurgery, all sham and all stroke 
mice moved a shorter distance (Sham: p<0.001; Stroke: p<0.001) with lower velocity 
(Sham: p<0.001; Stroke: p<0.001) compared to baseline. At 21 days post-stroke, 
sham animals walked more in the open field compared to 3 days post-stroke animals 
(p<0.002). (C-D) Stroke mice visited the center (p<0.001), periphery (p<0.001) and 
corners (p<0.001) less frequently at 3 days post-stroke. Sham animals also visited 
the periphery (p<0.001) and corners (p<0.001) less frequently at 3 days post-stroke 
compared to baseline, however they spent less time in the corners (p<0.024) at 3 days. 
Values represent mean ± SEM. # 0.05<p<0.08, *p<0.05, **p<0.01, ***p<0.001.
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The frequency with which the mice engaged in different types of exploratory 
behavior was manually scored (Figure 4.4). Compared to baseline, all mice 
showed decreased frequency of wall leaning (Sham: F(1,12)=64.5, p<0.001; 
Stroke: F(1,12)=258.1, p<0.001) and walking (Sham: F(1,12)=26.7, p<0.001; 
Stroke: F(1,12)=157.3, p<0.001) and also spent less time performing these 
behaviors (Wall leaning: Sham: F(1,12)=123.0, p<0.001; Stroke: F(1,12)= 
8.1, p<0.001; Walking: Sham: F(1,12)=84.2, p<0.001; Stroke: F(1,12)=40.3, 
p<0.001) at 3 days post-stroke, while they spent more time sitting (Sham: 
F(1,12)=172.4, p<0.001; Stroke: F(1,12)=62.3, p<0.001) and grooming 
(Sham: F(1,12)=6.2, p<0.028). At baseline and 3 days post-stroke, sham-HT 
mice groomed less frequently than sham-control mice (F(1,12)=5.6, p<0.036; 
not shown in graph). Additionally, stroke mice also reared less frequently at 3 
days compared to pre-stroke (F(1,12)=8.6, p<0.012). At 21 days post-stroke, 
walking frequency (F(1,12)=6.4, p<0.026) was even further decreased in sham 
mice, whereas stroke mice showed no change in walking frequency or duration, 
but did show increased rearing (F(1,12)=8.6, p<0.012) and wall leaning 
frequency (F(1,12)= 7.2, p<0.020). Sham mice groomed more frequently at 21 
days compared to 3 days post-stroke (F(1,12)=12.3, p<0.004). No additional 
diet effects were found for these parameters (Figure 4.4).

4.3.2.2 Grip test

Forelimb strength of the mice was quantified with the grip test, by letting the 
mice grip a small trapeze connected to a grip strength meter. Fore- and hind 
limb strength was determined in a similar fashion, using a grid instead of a 
trapeze. At week 2, only sham mice showed a lower grip strength on the grid 
compared to pre-surgery (F(1,12)=13.0, p<0.004) (Figure 4.5A). Stroke mice 
showed no significant decreased grip strength on either the trapeze or grid 2 
weeks after stroke compared to baseline. A surgery effect was observed at week 
2, shown by weaker grip strength in forelimbs in stroke-control mice compared 
to sham-control mice (F(1,9)=17.3, p<0.002) (Figure 4.5A). At 4 weeks 
postsurgery, sham mice show a decreased forelimb grip strength compared 
to 2 weeks postsurgery (F(1,10)=26.0, p<0.001) (Figure 4.5A). Interestingly, 
HT-fed stroke mice demonstrated a higher grip strength on the trapeze at week 
2 and 4 compared to stroke control diet-mice (F(1,12)=49 .0, p<0.018). No diet 
effects were observed on the grid (Figure 4.5B).
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Figure 4.4: Behaviors in the open field. The behaviors of the mice in the arena during the 
open field were manually scored as another measure of locomotion, activity, and 
explorative behavior. (A-C, G, H) Frequency and (D- F, J, K) duration of leaning, 
rearing, grooming, sitting, and walking were quantified presurgery and 3 and 21 days 
after surgery. (A, G) All mice showed decreased frequency of wall leaning (Sham: 
p<0.001; Stroke: p<0.001) and walking (Sham: p<0.001; Stroke: p<0.001) and 
(D,J) also spent less time performing these behaviors (Wall leaning: Sham: p<0.001; 
Stroke: p<0.001; Walking: Sham: p<0.001; Stroke: p<0.001) at 3 days post-stroke, 
(K, F) while they spent more time sitting (Sham: p<0.001) and grooming (Sham: 
p<0.028). (C) At baseline and 3 days post-stroke, sham-HT mice groomed less 
frequently than sham-control mice (p<0.036; not shown in graph). (B) Stroke mice 
also reared less frequently at 3 days compared to pre-stroke (p<0.012). (G) At 21 days 
post- stroke, walking frequency (p<0.026) was even further decreased in sham mice, 
(A,B) whereas stroke show increased rearing frequency (p<0.012) and wall leaning 
frequency (p<0.020). (C) Sham mice groomed more frequently at 21 days compared 
to 3 days post-stroke (p<0.004). Values represent mean ± SEM. # 0.05<p<0.08, 
*p<0.05, **p<0.01, ***p<0.001.
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Figure 4.5: 

4.3.2.3 Pole test

The pole test was performed to assess motor dysfunction. The time needed to 
make a full 180 degree turn on the pole and the turning direction was manually 
scored, and the velocity with which the mice walked down the pole was 
calculated. There was no change in velocity between baseline measurement and 
the first measurement after surgery (at 14 days). At 28 days postsurgery, sham 
mice (F(1,12)=21.4, p<0.001) and stroke mice (F(1,9)=5.2, p<0.049) walked 

Grip strength in the forelimbs (trapeze) and in all four paws (grid) before (pre) and 
after (week 2 and 4) stroke. (A) Time effects and (B) diet effects on maximum grip 
strength are shown. (A) At week 2, sham mice showed a lower grip strength on the 
grid compared to pre-surgery (p<0.004). A surgery effect was observed at week 2, 
shown by weaker grip strength in forelimbs in stroke-control mice compared to 
sham-control mice (p<0.002). At 4 weeks postsurgery, sham mice showed a decreased 
fore- limb grip strength compared to 2 weeks postsurgery (p<0.001). (B) HT- fed 
stroke mice demonstrated a higher grip strength on the trapeze at week 2 and 4 
compared to stroke control diet-mice (p<0.018). Values represent mean ± SEM. 
*p<0.0S, **p<0.01, ***p<0.001.
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down the pole with a lower velocity compared to 14 days postsurgery (Figure 
4.6). Neither time nor diet effects on turning side preference or turning time 
were observed.

4.3.2.4 Prepulse inhibition (Ppi)

The pre-pulse inhibition test was performed to assess sensorimotor gating 
after stroke. In both surgery and diet groups, no effects could be detected on 
PPI. No habituation effects were observed, however an overall diet effect was 
detected. HT-mice showed a higher startle amplitude to the basal and final 
startle stimulus of 120dB than control-mice (F(1,22)=8.3, p<0.009) (Figure 
4.7).

Figure 4.6: 

Figure 4.7: 

Motor coordination assessed pre-stroke and 14 days and 28 days post- stroke by the 
pole test. (A) Downwards walking velocity. (B) Time to turn around on the pole 
(turning time) and (C) tendency to turn right vs left (laterally index). (A) At 28 days 
postsurgery, sham mice (p<0.001) and stroke mice (p<0.049) walked down the pole 
with a lower velocity compared to 14 days postsurgery. Values represent mean ± 
SEM. Values represent mean ± SEM. # 0.05<p<0.08, *p<0.05, ***p<0.001

Sensorimotor integration measured before and after (16 days) stroke induction by the 
prepulse inhibition test (PPI). (A) PPI data shown as percentage. (B) Habituation to 
startle pulse. HT-mice showed a higher startle amplitude to the basal and final startle 
stimulus of 120dB than control-mice (p<0.009). Values represent mean ± SEM. 
**p<0.01.
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4.3.2.5 Novel object recognition test (ORT)

The object recognition task (ORT) was performed once after stroke to measure 
short-term memory of the mice. In the 30min trials of the familiarization phase, 
all discrimination index (DI), recognition index (RI) and preference index (PI) 
all showed that stroke animals have a preference for object 2 and sham animals 
a preference for object 1, as they visited it more frequently (F(1,22)=5.7, 
p<0.026). However, in stroke animals this effect was largely caused by mice on 
control diet, as they only showed as PI above 50% (Figure 4.8). In the 30min 
trials of the test phase, HT-fed animals showed a preference for the novel 
object and visited it more frequently than control diet-animals (F(1,22)=6.4, 
p<0.019), as shown by all indexes (DI, RI and PI) (Figure 4.9).

Figure 4.8: 

4.3.2.6 Digital ventilated cages (DVC) metrics

See Supplementary results in §4.5

Familiarization phase ORT. Short-term memory of sham and stroke mice assessed by 
the novel object recognition test (ORT). (A) Discrimination index (B) Recognition 
index and (C) preference index. (A,B,C) Stroke animals had a preference for object 
2 and sham animals a preference for object 1 (p<0.026). Values represent mean ± 
SEM. *p<0.05.
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Figure 4.9: 

4.3.3 In vivo magnetic resonance imaging (MRI)

4.3.3.1 Cerebral Blood Flow (CBF)

Using an ASL-FAIR technique, CBF was assessed in the lesioned and unlesioned 
hemisphere at and 35 days post-stroke in the hippocampus, thalamus and cortex 
(Figure 4.10). At days post-stroke, CBF was lower in all groups in the right 
cortex (Sham-control: F(1,6)=24.9, p<0.002; Sham- HT: F(1,5)=24.5, p<0.004; 
Stroke-control: F(1,6)=16.1, p<0.00 ; Stroke-HT: F(1,4)=12.6, p<0.024), right 
hippocampus (Sham-control: F(1,6)=24.2, p<0.003; Sham-HT: F(1,5)=50.5, 
p<0.001; Stroke-control: F(1,6)= 0.1, p<0.001; Stroke- HT: F(1,4)=16.3, 
p<0.016), and right thalamus (Sham-control: F(1,6)=28.5, p<0.002; Sham-HT: 
F(1,5)=262.5, p<0.001; Stroke-control: F(1,6)=21.2, p<0.004; Stroke-HT: 
F(1,3)=10.3, p<0.049) than in the corresponding ROI in the left hemisphere 
(not shown in figure).

At 35 days post-stroke, almost all groups still displayed a lower CBF in the right 
cortex (Sham-control: F(1,6)=14.0, p<0.10; Sham-HT: F(1,6)=10.8, p<0.01; 
Stroke-control: F(1,6)=12.7, p<0.012, Stroke-HT: F(1,5)=18.9, p<0.007) 

Test phase ORT. Short-term memory of sham and stroke mice assessed by the novel 
object recognition test (ORT). (A) Discrimination index (B) Recognition index and 
(C) preference index. (A,B,C) HT-fed animals showed a preference for the novel 
object and visited it more frequently than control diet-animals (p<0.019). Values 
represent mean ± SEM. *p<0.05.
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and right hippocampus (Sham-control: F(1,6)=19.5, p<0.004; Sham-HT: 
F(1,6)=43.0, p<0.001; Stroke-HT: F(1,5)=33.5, p<0.002) compared to 
respectively the left cortex and left hippocampus. In the right thalamus, a 
lower CBF was also observed in sham animals at 35 days, compared to the 
left thalamus (Sham- control: F(1,6)=25.2, p<0.002; Sham-HT: F(1,6)=38.8, 
p<0.001). Interestingly, reperfusion was observed in stroke animals in the right 
thalamus, as demonstrated by the lack of significant difference in CBF between 
the left and right thalamus at 35 days (not shown in figure).

An overall diet effect was observed in the right hippocampus at and 35 days 
post-stroke, as shown by an increased CBF in HT-fed sham mice of both 
surgery groups (F(1,11)=5.0, p<0.046). Additionally, an increased CBF was 
also observed in the left cortex of stroke-HT mice compared to stroke-control 
mice at  and 35 days post-stroke (F(1,10)=5.4, p<0.043) (Figure 4.10)

All stroke animals showed a significantly increased CBF at 35 days post-stroke 
in the right hippocampus and compared to days post-stroke (F(1,10)=8.6, 
p<0.015). In the left hippocampus only HT-fed stroke mice maintained an 
increased CBF at 35 days compared to control diet-fed mice (F(1,10)=5.1, 
p<0.048) (Figure 4.10). In the left thalamus, a decreased CBF was observed 
at 35 days compared to  days post-stroke in stroke-HT mice (F(1,3)=13.1, 
p<0.036). Conversely, an increase of CBF was observed in the right thalamus 
in stroke-control mice at 35 days post-stroke, compared to days post-stroke 
(F(1,6)=23.4, p<0.003).

4.3.3.2 DTI and rs-fMRI

fractional anisotropy (fa): In sham-control and sham-HT mice, the right 
hippocampus showed a lower FA than the left hippocampus at 7 days 
(Sham-control: F(1,6)=32.1, p<0.001; Sham-HT: F(1,5)=11.4, p<0.020) and 35 
days (Sham-control: F(1,6)=13.1, p<0.011; Sham-HT: F(1,5)=49.7, p<0.001) 
after surgery. In stroke mice, only the control group at  days post-stroke showed 
that FA was lower in the right hippocampus than its contralateral counterpart 
(F(1,6)=9.3, p<0.022). In contrast, FA in the right hippocampus increased 
between days and 35 days after surgery in sham- control mice (F(1,6)= .4, 
p<0.035). In the motor cortex, a decreased FA in the right compared to left 
hemisphere was only observed at 35 days in stroke- control (F(1,6)=7.6, 
p<0.033) mice and not in stroke-HT mice. Stroke mice showed an FA increase 
in the left motor cortex at 35 days post-stroke compared to days post-stroke 
(F(1,11)=11.6, p<0.006). However, sham animals showed a decrease of FA 
in both the left (F(1,11)=13.7, p<0.003) and right (F(1,11)=12.8, p<0.004) 
motor cortex over time (35 days vs.7days) (Figure 4.11A).



4.3 RESULTS 86

MEAN DIFFUSIVITY (MD):  In the hippocampus, MD was higher in the 
lesioned (right) hemisphere than in the unaffected (left) hemisphere at 7 days 
postsurgery in all groups (Sham-control: F(1,6)=12.0, p<0.013; Sham- HT: 
F(1,5)=25.8, p<0.004; Stroke-control: F(1,6)=17.4, p<0.006; Stroke- HT: 
F(1,5)=6.6, p<0.050), and at 35 days only in sham mice (Sham-control: 
F(1,6)=61.6, p<0.001; Sham-HT: F(1,5)=34.9, p<0.002).

Sham-HT mice showed an increase in MD of the corpus callosum at 35 
days compared to days postsurgery (F(1,5)=8.5, p<0.033). All stroke mice 
also showed a higher MD in the corpus callosum 35 days compared to days 
postsurgery (F(1,11)=10.7, p<0.008).
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Figure 4.10: CBF was assessed in the lesioned and unlesioned hemisphere at and 35 days 
post-stroke in the hippocampus, thalamus and cortex. At days post-stroke, CBF 
was lower in all groups in the right cortex (Sham-control: p<0.002; Sham-HT: 
p<0.004; Stroke-control: p<0.007; Stroke-HT: p<0.024), right hippocampus 
(Sham-control: p<0.003; Sham-HT: p<0.001; Stroke-control: p<0.001; Stroke-HT: 
p<0.016), and right thalamus (Sham-control: p<0.002; Sham-HT: p<0.001; 
Stroke-control: p<0.004; Stroke-HT: p<0.049) than in the corresponding ROI in 
the left hemisphere (not shown in figure). At 35 days post-stroke, almost all groups 
still displayed a lower CBF in the right cortex (Sham-control: p<0.10; Sham-HT: 
p<0.01 ; Stroke- control: p<0.012, Stroke-HT: p<0.007) and right hippocampus 
(Sham- control: p<0.004; Sham-HT: p<0.001; Stroke-HT: p<0.002) compared to 
the left cortex and left hippocampus, respectively (not shown in figure). In the right 
thalamus, a lower CBF was also observed in sham animals at 35 days, compared to the 
left thalamus (Sham-control: p<0.002; Sham-HT: p<0.001) (not shown in figure). 
CBF was also increased in the left cortex of stroke-HT mice compared to stroke- 
control mice at and 35 days post-stroke (B, p<0.043). All stroke animals showed 
a significantly increased CBF at 35 days post-stroke in the right hippocampus and 
compared to days post-stroke (A, p<0.015). Notably, CBF in the right hippocampus 
was increased in HT-fed sham mice of both surgery groups at both and 35 days 
post-surgery (B, Sham-HT: p<0.046). In the left hippocampus only HT-fed stroke 
mice maintained an increased CBF at 35 days compared to control diet-fed mice 
(p<0.048). In the left thalamus, a decreased CBF was observed at 35 days compared 
to days post-stroke in stroke-HT mice (p<0.036). Conversely, an increase of CBF 
was observed in the right thalamus in stroke-control mice at 35 days post-stroke, 
compared to days post- stroke (p<0.003). (C) Representative high-resolution 
voxel-wise analyzed CBF images at and 35 poststroke. Values represent mean ± 
SEM. Sham-control: n=7, sham-HT: n=6, stroke-control: n=7, stroke-HT:n=4. # 
0.05<p<0.08, *p<0.05, ***p<0.001.
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RSFMRI

Total correlations

Only in stroke mice, HT diet improved FC from day to day 35 after stroke 
between several cerebral regions: right dorsal hippocampus (DHR) to left 
motor cortex (MCL, F(1,8)=8.1, p<.022); DHR to right motor cortex (MCR, 
F(1,8)=6.1, p<.040); MCL to right visual cortex (VCR, F(1,8)=9.4, p<.014); 
VCR to MCR (F(1,8)=5.5, p<.048) (Figure 4.12).
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Figure 4.11: 

Figure 4.12: 

White matter (WM) and gray matter (GM) integrity as measured by quantitatively 
assessed diffusion tensor-derived indices at + 35 days poststroke in mice fed HT 
or Control diet. Fractional anisotropy (FA) (A) and mean diffusivity (MD) 
(B) were measured for ROI drawn in white (Corpus Callosum, CC) and gray 
matter (Hippocampus, motor cortex) regions. (A) In sham-control ( D, p<0.001; 
35D, p<0.011) and sham-HT mice ( D, p<0.020; 35D, p<0.001), FA in the right 
hippocampus was lower than in the left hippocampus at days and 35 days after 
surgery. Only in stroke-control mice at days post-stroke FA was decreased in the 
right hippocampus compared to its contralateral counterpart (p<0.022). FA in 
the right hippocampus also increased between days and 35 days after surgery in 
sham-control mice (p<0.035). A lowered FA in the right the motor cortex compared 
to left motor cortex was only found at 35 days in stroke-control (p<0.033) mice. 
In the left motor cortex, stroke mice had an FA increase in the hemisphere at 35 
days post- stroke compared to days post-stroke (p<0.006). Sham animals showed 
a decrease of FA in both the left (p<0.003) and right (p<0.004) motor cortex over 
time (35 days vs. days). (B) MD was higher in the right hippocampus than in the left 
hippocampus at days postsurgery in all groups (Sham-control: p<0.013; Sham-HT: 
p<0.004; Stroke-control: p<0.006; Stroke-HT: p<0.050), while at 35 days only in 
sham mice (Sham-control: p<0.001; Sham-HT: p<0.002). Only in stroke-control 
mice at days postsurgery, a higher MD in the right motor cortex than the left motor 
cortex was detected (p<0.075). Sham-HT mice had a heightened MD of the corpus 
callosum at 35 days compared to days postsurgery (p<0.033). All stroke mice also 
showed a higher MD in the corpus callosum 35 days compared to days postsurgery 
(p<0.008). (C) Representative high-resolution set of FA images for each dietary 
group at and 35 days poststroke.

Resting-state functional connectivity (FC) based on total (A) and partial correlation 
analyses (B) in the brains of mice fed HT or Control diet and 35 days poststroke. FC 
was measured between 12 ROI: dorsal hippocampus (DH), ventral hippocampus 
(VH), auditory cortex (AU), motor cortex (M1), somatosensory cortex (S1), and 
visual cortex (V1). Total correlations revealed that HT diet improved FC in stroke 
mice between several ROI, i.e. right DH to left MC (p<.022); right DH to right M1 
(p<.040).
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4.3.4. (Immuno)histochemistry and Biochemical analysis

4.3.4.1 DCX Staining

To visualize immature neurons, we used an anti-DCX antibody as a neurogenesis 
marker. DCX+ cells were quantified in hippocampus. Here, we found an 
increased number of DCX+ cells/mm2 in all stroke mice compared to sham 
mice (F(1,23)=8.4, p<0.008). The hippocampus size was reduced significantly 
in stroke mice without a diet effect (F(1,23)= 7.0, p<0.015) (Figure 4.13B).

Figure 4.13:Immunohistological stainings for doublecortin (DCX) in hippocampus of the 
brains of HT and control fed mice 35 days after surgery. (A) All stroke mice showed 
an increased number of DCX+ cells/mm2 compared to sham mice (p<0.008). (B) 
The hippocampus size was reduced significantly in stroke mice without a diet effect 
(p<0.015). Values represent mean ± SEM.
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4.3.4.2 IBA-I Staining

All stroke mice showed an higher IBA1+-area (Figure 4.14) than sham mice in 
the cortex at bregma -1.94 (F(1,21)=4.5, p<0.046), hippocampus (F(1,19)=6.6, 
p<0.019), in both left (F(1,23)=10.9, p<0.002) and right (F(1,23)=11.6, 
p<0.002) thalamus, cortex at bregma 0.62 (F(1,21)=5.6, p<0.027), and in both 
left (F(1,23)=5.0, p<0.03 ) and right (F(1,23)=35.8, p<0.001) caudate putamen. 
Notably, in the corpus callosum only in stroke-control mice a heightened 
IBA1+-area was found compared to sham-control mice (F(1,13)=8.9, p<0.011). 
Moreover, only in stroke mice in the right thalamus (F(1,12)=11.7, p<0.006) 
and in the right caudate putamen (F(1,12)=34.6, p<0.001) IBA1+-area was 
increased compared to their corresponding left hemispheric part. In the cortex 
at bregma 0.62 HT-diet lowered IBA1+-area compared to control diet in both 
sham and stroke mice (F(1,21)=4.9, p<0.039). While in the corpus callosum 
IBA1+-area was decreased by HT-diet only in stroke mice (F(1,12)=6.9, 
p<0.022).

4.3.4.3 GLUT-I Staining

Vascular density was higher in stroke than shams in the left cortex (Bregma 
-1.94) (F(1,23)=17.3, p<0.001) (Figure 4.15). HT stroke mice had a lower 
vascular density in the left cortex (Bregma -1.94) than control stroke mice 
(F(1,23)=4.8, p<0.040, data not shown). Additionally, GLUT-1+-area was 
increased in stroke mice compared to sham mice in left cortex (Bregma -1.94: 
F(1,23)=4.5, p<0.046) and right caudate putamen (F(1,22)=4.6, p<0.043) 
(Figure 4.16).

4.3.4.4 NO and reactive oxygen species (ROS) levels

NO and ROS levels were determined in serum samples obtained before 
sacrifice (Figure 4.17). NO production was quantified indirectly by the 
determination of nitrates/nitrites using an ozone chemiluminescence-based 
assay. A reduction in NO levels was detected in stroke animals with no evident 
diet effect (F(1,23)=12.6, p<0.002). ROS levels were also indirectly quantified 
by analyzing the level of lipid peroxidation. No changes were detected.

4.3.4.5 Psd95, Bdnf, and GLUT-I mRNA expression

The expression of Bdnf, as a regulator of neurogenesis, and Psd-95, as 
postsynaptic marker, were determined by qPCR (Figure 4.18). All HT-mice 
showed an up-regulation in Psd-95 expression without differences between 
hemispheres (F(1,23)=6.5, p<0.018). In addition, Bdnf was higher expressed 
in stroke HT-mice (F(1,10)=5.6, p<0.040) than in sham HT-mice. The effect 
of HT in vascular integrity was evaluated by quantifying the mRNA levels of 
GLUT-1 as a capillary density marker. No changes were detected (data not 
shown).
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Figure 4.14: Immunohistological stainings for ionized calcium-binding adapter molecule-1 
(IBA-1) in brains of HT and control fed mice 35 days after surgery. All stroke 
mice showed a higher IBA1+-area than sham mice in (A) the cortex (bregma -1.94) 
(p<0.046), hippocampus (p<0.019), in both left (p<0.002) and right (p<0.002) 
thalamus, (B) cortex (bregma 0.62) (p<0.027), and in both left (p<0.037) and 
right (p<0.001) caudate putamen. (B) Notably, in the corpus callosum only in 
stroke-control mice a heightened IBA1+-area was found compared to sham-control 
mice (p<0.011). Moreover, only in stroke mice in the right thalamus (p<0.006) and 
in the right caudate putamen (p<0.001) IBA1+-area was increased compared to 
their corresponding left hemispheric part. In the cortex at bregma 0.62 HT-diet 
lowered IBA1+-area compared to control diet in both sham and stroke mice 
(p<0.039). While in the corpus callosum IBA1+-area was decreased by HT-diet 
only in stroke mice (p<0.022). (C) Representative images of IBA-1 staining in 
cortex (bregma 0.62). Values represent mean ± SEM.
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Figure 4.15: 

Figure 4.16: 

Immunohistological stainings for GLUT-1 in brains of HT and control fed mice 
35 days after surgery. (A-E) Vascular density was increased in control stroke than 
control shams in the left cortex (Bregma -1.94) (p<0.001). HT stroke mice had a 
lower vascular density in the left cortex (Bregma 0.62) than control stroke mice 
(p<0.040, data not shown). Values represent mean ± SEM.

Immunohistological stainings for GLUT-1 in brains of HT and control fed mice 
35 days after surgery. (A-E) GLUT-1+-area was increased in stroke mice compared 
to sham mice in left cortex (Bregma -1.94: p<0.046) and right caudate putamen 
(p<0.043). Values represent mean ± SEM.
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Figure 4.17: 

Figure 4.18: 

ROS and NO levels in serum samples obtained 35 days after surgery. (A) ROS level 
evaluated by analyzing TBARS (B) NO production quantified by using an ozone 
chemiluminiscence-based assay. A reduction of NO levels was detected in stroke 
animals (p<0.002). Values represent mean ± SEM.

mRNA expression of (A) Psd95, (B) Bdnf in frontal parts of the brain 35 days after 
surgery. (A) All HT-mice showed an up-regulation in Psd- 95 expression without 
differences between hemispheres (p<0.018). (B) Bdnf was higher expressed in 
stroke HT-mice (p<0.018) than in sham HT-mice. Values represent mean ± SEM.
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4.4 DISCUSSION

Although ischemic stroke is one of the main causes of death and disability 
worldwide, the only medical treatment for this disease is reperfusion by using 
recombinant tissue plasminogen activator or by endovascular thrombectomy 
with medical devices. However, the risk of hemorrhage, and the narrow 
therapeutic window makes it urgent to find other treatment options focused 
not only on reperfusion but on neuroprotection as well. In this sense, it 
has been previously described that olive oil and an olive leaf extract exert 
a neuroprotective effect in ischemic rats [241, 273]. Oleuropein, another 
polyphenol from olive oil and a precursor of HT, has also demonstrated to be 
neuroprotective in a mouse model of focal cerebral ischemia [274]. However, 
a comprehensive analysis of the effect of HT as a therapeutic approach in an 
in vivo stroke model is lacking. The present study shows that a HT-diet could 
be used as a therapeutic approach in stroke recovery by improving: i) learning, 
short term memory and grip strength, ii) CBF and FC, and iii) different 
parameters related to neurogenesis and neuroinflammation.

Motor functions, behavior and cognition are severely affected after focal 
ischemia and decisive in the quality of life of stroke patients [275, 276]. In our 
previous study, we described that a multicomponent diet, Fortasyn, improved 
grip strength in male mice [238]. In the current study, we show that HT 
improved grip strength on the trapeze, highlighting the potential restorative 
effect of this single dietary compound on motor network connections. 
Exploring the HT effects on behavior and motor skills, no diet effects were 
detected neither in the open field, DVC nor the pole test. Notably, in this study 
DVC were used for the first time to study individual mouse locomotion via 
calculation of DVC metric measures (activity, walked distance, walked velocity, 
total turnings, laterality index) during day- and nighttime before and after 
surgery. This novel approach helped to reveal a decreased nighttime activity in 
stroke mice 1 week after surgery. Notably, during the nighttime of the second 
postsurgery week, only stroke mice showed a left turning preference. This 
latter result is in line with standard behavioral tests like the corner test used 
in preclinical stroke studies [277, 278]. Short-term memory of mice was also 
evaluated with the novel object recognition test (ORT). Here, mice on HT-diet 
visited the novel object more frequently than mice on control-diet. Similarly, 
in the PPI test, HT-fed mice showed a higher startle amplitude to the basal and 
final startle stimulus of 120dB control-mice. Altogether, ORT and PPI results 
suggest that HT improves short-term memory and promotes non-associative 
learning processes such as habituation, being a promising approach to reduce 
stroke-associated cognitive deficits.
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Moreover, with rsfMRI alterations in neuronal functional architecture, both in 
animal models and in humans has been found after ischemic stroke [279]. In a 
human study, it was demonstrated that the alteration of sensorimotor function 
after a stroke correlated with a loss of interhemispheric connectivity between 
sensory-motor regions, and that this disruption normalized partially weeks 
after the infarction [280]. Thus, in patients with stroke, changes in neuronal 
activity are closely associated with functional recovery. The increase in rsfMRI 
activity in the supplementary motor cortex, the lateral premotor cortex and the 
superior parietal cortex in the first 14 days after infarction correlates with an 
improvement in motor function of the upper extremities during this period 
[281]. In the present study we also investigated brain diffusivity with DTI 
as an imaging biomarker for white and gray matter (GM) integrity. Here, we 
revealed only impaired GM microstructure in the stroke mice on control diet 
measured by a decreased FA accompanied by an increased MD at seven days 
poststroke in the right hippocampus and right motor cortex compared to their 
corresponding left counterpart. This effect was not visible in stroke mice on 
HT diet which is in line with our previous study in which a multicomponent 
diet improved functional and structural connectivity after stroke [238].

In our study, the HT-diet improved functional and also structural connectivity 
between several cerebral regions in the stroke animals. We suggest that these 
improvements in connectivity could be related to the increase in the grip 
strength of HT-fed mice as well as with their higher habituation and improved 
short-term memory described above and on the up-regulation of different 
neurogenic markers that will be mentioned later.

CBF alterations are also clinically associated with cognitive and motor 
dysfunction, especially after stroke [282]. In fact, we already described that 
a post-stroke diet intervention can improve CBF [238, 283]. Other phenolic 
compounds such as resveratrol have shown to increase CBF in the frontal cortex 
of healthy humans after a task performance [284]. Moreover, in a rat ischemic 
model, resveratrol increased hippocampal CBF [285]. Our results show that an 
acute therapeutic approach with a HT-diet was able to significantly increase 
CBF in the right hippocampus of all mice on HT-diet, and to mitigate the 
decreased CBF in the left hippocampus stroke-control mice. Additionally, in 
the left cortex, HT-diet also increased CBF after stroke. The positive effect 
of HT on this parameter probably underlies the improvement in short-term 
memory and learning processes described above.

CBF is linked to a balanced production of NO. The particular effect of NO 
varies depending on the stage of evolution along the ischemic process and on 
the cellular source of NO [286, 287]. Of the three NOS isoforms responsible 
for NO production, the activity of neuronal NOS and inducible NOS results 
detrimental while endothelial NOS activation is related with neuroprotective 
effects. We have previously shown in stroke patients that an initial elevation 
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of NO favors neurological recovery while a latter elevation predicts growth of 
the infarct volume [288]. In the present study we have observed a significant 
decrease in serum NO concentration in stroke animals. This decrease has also 
been reported by ours and other research groups, and may be attributed to the 
low profile of L-arginine, the NO precursor, in stroke patients [288– 290].

A burst in ROS follows after a stroke insult damaging cellular macromolecules 
and leading to cell death and tissue loss [291]. HT has been consistently 
described as an antioxidant compound in several models [292]. Therefore, 
we evaluated if the HT-diet was able to modulate the oxidative level in serum 
samples obtained from mice after sacrifice. The fact that no changes were 
detected in any experimental group, not even between sham and stroke animals, 
seems to indicate that 35 days after surgery may be too late to detect changes in 
serum ROS levels. In fact, in a previous study with hypoxic mice we observed 
that ROS brain levels begin to normalize two hours after the insult [293]. As 
previously mentioned, further analysis with more animals should be carried 
out, both in serum and in brain samples, and at time-points closer to surgery 
to re-evaluate the temporal profile of NO production and the particular 
isoenzymes of NOS modulated by HT and to analyze the antioxidant capacity 
of HT-diet after stroke.

HT has shown its anti-inflammatory capacity in different models [294–296] 
and although its particular effect on microglia-mediated neuroinflammation 
remained unexplored other phenolic compounds such as oleuropein have been 
shown to attenuate microglia activation [297]. The decreased level of IBA-1 
immunoreactivity 35 days after stroke in the cortex and corpus callosum of 
mice on the HT-diet corroborates that HT can also reduce the inflammatory 
environment after stroke. This effect is probably involved in the improved 
impairments of stroke mice on a HT-diet and points to the interest of carrying 
out future experiments to deepen into the activity of HT on neuroinflammation.

Neurogenesis is an important process in stroke recovery and a number of 
therapeutic strategies to promote this process after ischemic events have been 
investigated with poor outcomes [298]. Stroke insult also involves synaptic 
degradation which dampens the activity of the CNS. Bdnf is a neurotrophin 
that regulates synaptic connections, synapse structure, neurotransmitter release 
and synaptic plasticity [299]. Moreover, Bdnf is required for the induction of 
neurogenesis and lack of this protein can lead to a lack of neurogenic response 
in a heterozygous knockout mice model [300]. Additionally, the postsynaptic 
protein Psd95 is also involved in the regulation of synaptic plasticity and 
synaptogenesis. Previous studies demonstrate that the administration of olive 
leaf or oil polyphenol extracts increases Bdnf levels in the olfactory lobes and 
hippocampus [301, 302]. The synaptogenic potential of HT has been also 
reported in prenatally stressed rats in which HT prevented the stress-induced 
downregulation of Bdnf [303]. In accordance, in our study the expression of 
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Psd95 was significantly induced in all HT-fed mice. Unfortunately, no diet effect 
was found on amount of DCX+ cells. However, the HT-diet only induced 
Bdnf expression in stroke HT-mice, suggesting a difference in the response 
between Bdnf and DCX [304]. Although further analyses at the protein level 
are necessary, it is remarkable that HT, a single compound, exhibits these 
promising effects.

4.5 CONCLUSIONS

The data presented here indicate that a post-stroke intervention with a HT- 
enriched diet favour the recovery after ischemic stroke by ameliorating stroke- 
associated learning and motor impairments. This effect, probably linked to 
an increase in CBF, functional and structural connectivity and to its anti- 
inflammatory and neurogenic potential, makes HT an interesting and safety 
compound to be further tested in ischemic stroke treatment.
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Figure 4.19: 

SUPPLEMENTARY MATERIALS: https://www.mdpicom/2072-6643/11/10/ 
2430/s1, Table 4.1. Excluded mice per experiment. Table 4.2. Sequence of 
the PCR primers used in this study. (Used abbreviations: Bdnf, brain derived 
neurotrophic factor; GLUT-1, glucose transporter 1; Psd-95, postsynaptic 
density protein 95; HPRT, hypoxanthine guanine phosphoribosyl transferase; 
B2M, beta-2 microglobulin). Figure 4.19. A detailed explanation of the 
calculations on the aforementioned DVC metric measures. Figure 4.20. 
Individual locomotion via digital ventilated cage (DVC) metrics measures. (A) 
activity, (B) walked distance, (C,D) walked velocity, (E) total turns and (F,G) 
laterality index, during day- and nighttime before and after surgery. No diet 
effects were found on DVC metrics. Notably, several stroke effects were found: 
i.e., During nighttime, only stroke mice were less active after surgery over 
time (p< 0.026) comparing presurgery with postsurgery week 1. Only during 
nighttime, stroke mice (p< 0.028) showed a left turning preference (laterality) 
comparing presurgery with postsurgery week.
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A detailed explanation of the calculations on the aforementioned DVC metric 
measures.
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Table 4.1: Excluded mice per experiment.
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Figure 4.20: Individual locomotion via digital ventilated cage (DVC) metrics measures. (A) 
activity, (B) walked distance, (C, D) walked velocity, (E) total turnings and (F, 
G) laterality index, during day- and nighttime before and after surgery. No diet 
effects were found on DVC metrics. Notably, several stroke effects were found: i.e. 
During nighttime, only stroke mice were less active after surgery over time (p<.026) 
comparing presurgery with postsurgery week 1. Only during nighttime, stroke mice 
(p<.028) showed a left turning preference (laterality) comparing presurgery with 
postsurgery week 2.
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Digital ventilated cages (DVC) metrics

DVC were used to study individual locomotion via calculation of DVC metric 
measures (activity, walked distance, walked velocity, total turnings, laterality 
index) during day- and nighttime before and after surgery. No diet effects were 
found on DVC metrics.

Activity

PRESURGERY TO POSTSURGERY WEEK 1: No effects of both types of 
surgery (stroke and sham) were found on daytime activity. During night- time, 
only stroke mice were less active after surgery over time (F(1,12)=5.3, p<.040).

PRESURGERY TO POSTSURGERY WEEK 2: While sham mice were more 
active (F(1,12)=6.7, p<.024) during daytime, stroke mice were more active 
(F(1,12)=6.3, p<.028) during nighttime.

PRESURGERY TO POSTSURGERY WEEK 3: While during daytime both 
sham and stroke mice were more active (Sham: F(1,12)=11.5, p<.005; 
Stroke: F(1,12)=5.3, p<.040), during nighttime stroke mice were more active 
(F(1,12)=11.4, p<.006).

PRESURGERY TO POSTSURGERY WEEK 4: While during nighttime stroke 
mice were more active (F(1,12)=5.3, p<.040), during daytime sham mice were 
more active (F(1,12)=5.7, p<.035).

PRESURGERY TO POSTSURGERY WEEK 5: While during nighttime both 
sham and stroke mice were more active (Sham: F(1,12)=5.1,7p<.044; Stroke: 
F(1,12)=9.4, p<.010), during daytime sham mice were more active (F(1,12)=6.7, 
p<.024).

Walked distance

PRESURGERY TO POSTSURGERY WEEK 1:  No effects of both types of surgery 
(stroke and sham) nor diet effects were found on daytime walked distance. 
During nighttime, only sham mice walked less after surgery (F(1,12)=12.0, 
p<.005).

PRESURGERY TO POSTSURGERY WEEK 2:  During both day- and nighttime, 
sham mice walked less comparing presurgery with post- surgery week 2 
(Daytime: F(1,12)=9.8, p<.009; Nighttime: F(1,12)=24.0, p<.001).
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PRESURGERY TO POSTSURGERY WEEK 3: During daytime sham mice 
walked less comparing presurgery with postsurgery week 3 (F(1,12)=10.4, 
p<.007).

PRESURGERY TO POSTSURGERY WEEK 4: Only during day- time, both 
sham and stroke mice walked less comparing presurgery with postsurgery week 
4 (Sham: F(1,12)=16.9, p<.001; Stroke: F(1,12)= 7,3p<.019).

PRESURGERY TO POSTSURGERY WEEK 5: While during daytime all sham 
mice walked less (F(1,12)=12.5, p<.004), during nighttime all stroke mice 
walked more comparing presurgery with postsurgery week 5 (F(1,12)=9.6, 
p<.009).

Walked velocity

PRESURGERY TO POSTSURGERY WEEK 1:  During both day- and nighttime, 
both stroke (Daytime: F(1,12)=36.4, p<.001; Nighttime: F(1,12)=21.0, 
p<.001) and sham (Daytime: F(1,12)=8.1, p<.015; Nighttime: F(112)=3 .0, 
p<.001) mice walked slower after surgery.

PRESURGERY TO POSTSURGERY WEEK 2-5: No effects were found.

Turnings

PRESURGERY TO POSTSURGERY WEEK 1: During both day- and nighttime, 
only sham (Daytime: F(1,12)= .7,4p<.019; Nighttime: F(1,12)=42.5, p<.001) 
mice turned less often after surgery.

PRESURGERY TO POSTSURGERY WEEK 2: During both day- and nighttime, 
only sham (Daytime: F(1,12)=12.3, p<.004; Nighttime: F(1,12)=9.5, p<.010) 
mice turned less often after surgery.

PRESURGERY TO POSTSURGERY WEEK 3: No effects were revealed.

PRESURGERY TO POSTSURGERY WEEK 4: During nighttime, only stroke 
mice turned more often after surgery (F(1,12)=7.8, p<.016).

PRESURGERY TO POSTSURGERY WEEK 5: While during daytime only 
stroke mice turned more often (F(1,12)=7.8, p<.016), during nighttime both 
sham and stroke mice turned more often (Sham: F(1,12)=5.2, p<.041; Stroke: 
F(1,12)=17.5, p<.001).
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Laterality

PRESURGERY TO POSTSURGERY WEEK 1: No effects were found.

PRESURGERY TO POSTSURGERY WEEK 2: Only during nighttime, stroke 
mice (F(1,12)=6.0, p<.031) showed a left turning preference (laterality).

PRESURGERY TO POSTSURGERY WEEK 3-5: No effects were found.





SUMMARIZING DISCUSSION
                                                                                                                                       

This thesis introduces a novel software for analysis of 24/7 behavioral data, 
which we applied to research involving animal models of stroke. We have 
developed a method for data collection and analysis that opens up a new avenue 
of research in neuroscience that was not previously accessible, through the 
application of data mining methods to detect patterns in movement behavior.

Section 1.2 discusses the importance of movement analysis in research, 
diagnosis and treatment of neurological diseases. It also addresses the shift from 
traditional methods of locomotion and behavioral analysis towards automated 
HCM in rodent model research, and the need that this creates for software 
to manage, process and analyze the resulting data. Section 1.3 provides the 
technical background relevant to the development of the Traja software.

Chapter 2 presents Traja, a Python package for analysis of trajectory data that 
was built for use in scientific research. In order to support future developers, an 
explanation of the software architecture and design is provided.

Then, we demonstrate how Traja may be used in research with mouse models 
of stroke by analyzing automated HCM data. In Chapter 3, Traja is applied to 
automated HCM data from mice receiving a multicomponent diet treatment 
for stroke, Fortasyn. The results demonstrate mild improvement of function, 
as measured by activity and distance travelled (§3.3.1). In contrast to OF, 
automated analysis of DVC trajectory data with Traja was able to detect 
differences in walked distance and velocity in the present female stroke animal 
model during the post-surgery period [147]. Previously, neither time nor diet 
differences on locomotion (distance, velocity) have been found in the OF [147].

In Chapter 4, the methods developed in Chapter 3 are extended to a larger 
study involving treatment of a stroke mouse model with hydroxytyrosol (HT), 
the major phenolic component of olive oil. Results from using Traja with DVC 
compared with other motor and behavioral tests in that no diet effects were 
detected neither in the open field nor the pole test. Traja with DVC were used 
for the first time to study individual mouse locomotion via calculation of DVC 
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metric measures (activity, walked distance, walked velocity, total turnings, 
laterality index) during day- and nighttime before and after surgery. This 
approach helped to reveal decreased nighttime activity in stroke mice 1 week 
after surgery, which was not found in the traditional OF test. Additionally, 
during the nighttime of the second postsurgery week, only stroke mice showed 
a left turning preference. This result is in line with standard behavioral tests like 
the corner test used in preclinical stroke studies [277, 278], suggesting that Traja 
with DVC can be used to supplement traditional tests for observing behavioral 
phenotypes over broad periods and in high resolution. The use of Traja in this 
research demonstrates the potential for home cage mouse tracking combined 
with trajectory data mining and analysis for the use of nutritional interventions 
to accelerate recovery following stroke in mice.

5.1 ADVANCES IN HCM DATA COLLECTION

Recent technological advances allow for increased automation of some 
elements of laboratory research. In the case of research with rodents, the most 
significant change is the shift towards automated HCM for phenotyping. 
Previously, research using rodent models relied solely on conventional methods 
of locomotion analysis and behavioral testing. Automated HCM, which allows 
for constant monitoring of the movement or behavior of rodents in their home 
environments, has many advantages over these more traditional methods. 
These include increased efficiency, decrease in interactions between researchers 
and animals, increased sensitivity and variety of behaviors measured, and the 
ability to track rodents 24 hours a day.

5.1.1 Improving Animal Welfare in Biological Research

The development of animal laboratory science within Europe over the last 
century has been associated with increasingly stringent standards for animal 
welfare. Increasing awareness of animal welfare in research is supported by the 
general agreement by researchers with the principle of minimizing unnecessary 
animal suffering in scientific research [305]. Notably, the Three R’s (3Rs) 
are commonly referenced guiding principles for ethical use of animals in 
testing, derived from Russell and Burch’s book “The Principles of Humane 
Experimental Technique” [306]:

1. Replacement: methods that avoid or replace use of animals in testing

2. Reduction: methods that provide comparable levels of information 
from fewer animals

3. Refinement: methods that alleviate or minimize potential pain, 
suffering and distress, and enhance animal welfare for the animals 
used.
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The book highlights the expected improvement of animal welfare with 
increased efficiency of methods:

It is widely recognized that the humanest possible treatment of experimental 
animals, far from being an obstacle, is actually a prerequisite for successful 
animal experiments. Since the Second World War, in particular, this principle 
has been increasingly accepted; and the intimate relationship between humanity 
and efficiency in experimentation will recur constantly as a major theme in the 
present book.

In particular, methods involving automated analysis of home cage data with 
HCM are potentially beneficial for reduction of animals needed, since they 
extend the temporal range of behavioral signal gathered. They are also relevant 
for refinement, since they reduce the need for manual handling and stressful 
experiments. Thus, improvements in efficiency of animal experiments enabled 
by technological advances such as HCM typically correspond with improved 
animal welfare.

HCM can greatly reduce the amount of time and manpower needed to 
complete experiments, since behavior is tracked automatically even without 
researchers present. This can allow scientists to collect much more data and 
carry out many more experiments than was previously possible, often at a lower 
cost [14]. Automated HCM data can additionally be supplemented with the 
use of traditional behavioral tests to provide further information about animal 
models.

It has been shown that the experimenter can affect the outcomes of behavioral 
tests in rodents [307–309]. Automated HCM can reduce the impact of this 
potential confounding factor by decreasing the amount of interaction between 
researchers and animals. This can not only reduce stress for rodents, but also 
lessen the effects of subjectivity or researcher bias [310]. It can also reduce 
stress for animals by eliminating the need to frequently remove them from 
their environments, as the behavioral tracking can rather be carried out in the 
home cage [311]. For these reasons, automated HCM may help increase the 
reproducibility of research.

In contrast to traditional behavioral tests, automated HCM expands the range 
of behaviors that can be easily measured in animal models (Table 5.1). For 
example, in addition to tracking overall activity in their home environments, 
constant tracking of rodents enables the measurement of how much time 
is spent on particular behaviors (e.g., unhealthy mice may spend less time 
grooming than their healthy counterparts) [13]. Many systems of automated 
HCM also measure food and water consumption. These behaviors have been 
shown to vary in different rodent disease models [13, 312].

Efficiency

Animal welfare
and reproducibility

Range of behaviors
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Unlike traditional locomotion analysis, automated HCM can be used 24 hours 
a day. Behavioral tests are usually carried out during the workday, which is when 
mice are least active; automated HCM makes it possible to measure behavior 
at night when rodents are most active, even when no researchers are in the lab. 
It also makes it possible to measure changes in animals’ circadian rhythm [93]. 
Additionally, traditional behavioral tests are usually brief and only capture 
a short snapshot of behavior, while automated HCM allows for tracking of 
animals for extended periods of time [11]. These factors allow HCM to have 
increased sensitivity over traditional behavioral tests, and potentially detect 
very small changes in animals.

Digital Ventilated Cages (DVC, Tecniplast S.p.A., Buguggiate (VA), Italy), the 
system used for automated HCM in the studies presented in this thesis, provide 
the particular advantages of space-efficiency (as they can fit in normal home 
cage racks) and minimal disruption of animals’ environment (since DVC, 
unlike some other automated HCM systems, are identical in size and layout to 
traditional Individually Ventilated Cages).

Table 5.1: Comparison of rodent behavioral tests.

5.1.2 HCM Validity

Due to the novelty of the data type (there are no similar datasets available for 
comparison, and none reported in the literature for stroke models), it is difficult 
to compare our HCM results with those of other experiments. In this direction, 
the method for computing walked distance is validated on the Fortasyn dataset 
against EthoVision XT 14 (Supplementary Figure 1 [147]) to demonstrate 
results comparable with software widely used for phenotyping mice models 
of stroke and neurological diseases. The validity of centroid observation in 
comparison with video detection was previously demonstrated by [92]. Such 
phenotyping systems do not allow analyzing HCM data sources such as DVC 
or non-proprietary sources, thus cannot process the 24/7 data collected in 
this research (Figure 4.1). Therefore, although systems like EthoVision are 
widely used, they lack customization, transparency and extensibility of open 
source projects such as Traja which are needed to process novel data sources 

Validation of DVC

Validation of Traja

Constant tracking
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(see Table 5.2 for a comparison). Researchers using HCM data derived from 
non-proprietary sources thus are currently unable to test efficacy of nutritional 
interventions using off-the-shelf phenotyping software. The results presented 
here are the first reported for extensive 24/7 home cage monitoring for stroke 
mouse models with data derived from the DVC system.

As a free, open source toolkit, Traja allows for an improvement in the 
reproducibility of innovative methodologies (Figure 5.1), such as data-driven 
model discovery, and can be a useful tool for behavioral research, in particular 
analysis of locomotion.

In order for the advantages of automated HCM described above to be fully 
realized, researchers must have a reliable system of organizing and analyzing the 
large amounts of data generated. This highlights a need for software such as 
Traja that can fulfill this role.

Figure 5.1: 

5.2 TRAJA AS A TOOL FOR ANIMAL BEHAVIORAL ANALYSIS

Before Traja, there were no toolkits available in Python for modeling multivariate 
time-series data with the purpose of deep learning prototyping. The Python 
programming language is the de facto language for machine learning and 
high throughput data analysis (Figure 5.2). Therefore, it is more valuable to 
researchers to have software such as Traja written in the multi-purpose language 
Python as opposed to other popular scientific programming languages such as 
R or MATLAB. For example, R libraries such as Trajr [108] that allow working 
with the high throughput DVC data used in this study do not support advanced 
data mining methods such as prototyping deep learning methods, which 
require specialized linear algebra libraries, readily available in Python, to manage 
the massively parallel computations of GPU-accelerated computing (see Table 

Various state of the art neural network architectures for time series data modeling 
recently implemented in Traja including autoencoder, variational autoencoder [313], 
and AVAEGAN [314]. Trajectories are decomposed into subtrajectories which can 
be processed by neural networks specialized for tasks such as prediction, classification 
and data generation.

see Traja’s design 
principles in 

Chapter 2
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5.2 for a comparison of several popular libraries). By contrast, Python-based 
libraries draw on the strength of the Python open source community [315] 
and the wide range of statistical and numerical analysis packages available, such 
as PyTorch [192]. Further, the data preprocessing which is required when 
working with high volume data such as that used in these studies often requires 
general-purpose computational techniques, such as database querying and 
storage, parallel processing, memory management, and methods to improve 
performance - methods which are much easier to implement in Python than 
in R. Additionally, most state-of-the-art algorithms for time-series data analysis 
are implemented first in Python before becoming available in R, making 
Python a natural choice for creating a collaborative, open-source library to 
support trajectory analysis research.

Figure 5.2: 

Table 5.2: 

Traja includes a high-level application programming interface (API) that enables 
computing complex functions with a few lines of code. Many computational, 
preprocessing, and data modeling methods relevant to multivariate time-series 
data analysis are available, ranging from velocity and acceleration, to complex 
time series models like recurrent neural networks. The goal of Traja’s design 
was to allow minimal configuration and maximal extensibility. The pandas 
accessor design pattern allows data scientists as well as scientific programmers 
new to Python to work with a consistent and well-documented API, and to 
quickly explore and visualize data.

Programming language interest over time as indicated by proportion of Google 
searches [316].

Representative comparison of software for animal HCM data analysis. Traja is 
primarily designed for data scientists working with HCM data.
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In addition, Traja is the first library available to animal researchers for 
prototyping deep learning models for trajectory data (Table 5.2), particularly 
HCM data (Figure 5.3). Other software available for analysis of data for HCM 
relies on complex or expensive data recording equipment [104], is limited to 
black box software [317] or are written in programming languages which are 
not well-adapted to the goal of automated pattern discovery, such as R [108] 
and thus less flexible. For example, in recent months at the time of writing Traja 
has received several feature contributions from the open source community, 
while most of the other libraries (eg, Trajr, Adehabitat, and MouseMove) have 
received none.1

Figure 5.3: 

5.2.1 Limitations of HCM

As a tool designed for data scientists, applying Traja to DVC data requires some 
programming skills, which are difficult to acquire without extensive training. 
This puts it in the same category as other libraries used by ecologists and 
animal behavior researchers such as MouseMove [318], DeepLabCut [153], 
Adahabitat [160], and Trajr [108]. Further, as a tool for data analysis, it is still 
subject to issues in the collection of raw data, also known as the garbage in, 
garbage out principle. Researchers using HCM data for behavioral tests must 
be trained to handle missing data, for example, due to cage displacements or 
signal errors, which can affect statistical analysis. Methods such as HCM are 
not a silver bullet for behavioral analysis and are not immune to the various 
complexities of managing animal experiments.

The increasing availability of data derived from sensors is associated with a 
wider tendency in the sciences towards unsupervised, probabilistic learned 
categories of behaviors.2 This is a crucial paradigm shift in the understanding 

Unsupervised learning of behavioral motifs with sequential models such as RNNs 
can lead to the creation of a library of phenotypes, via methods enabled in Traja 
(§2.1.9) such as clustering of trajectories in the latent space.

1 https://github.com/traja-team/traja/graphs/contributors
2 A discussion of the “probabilistic revolution” in cognitive science and artificial intelligence is 
  given by [319].

Advantages of
Traja

Data-driven
behavional analysis
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of behavior, and is part of an increasingly greater dependence on probablistic 
signals, as opposed to direct empirical observations. The ability to combine 
HCM data from multiple experiments would allow development of a library of 
phenotypes leveraging probability calculations (Figure 5.3) [320]. For example, 
an open source software project B-SOiD [154] allows unsupervised (unlabelled) 
clustering of behaviors from video recordings of mice. As Isaac Newton’s laws 
of motion gradually replaced an Aristotelian conception of physics, reliance 
on data-driven models of behavior provide reason to hope for improved 
computational models to aid understanding the world. The reader interested in 
the treatment of computational modeling in the context of behavioral analysis 
is directed to [321]. Thus, there exists both a technological and methodological 
gap between traditional analysis based on manual behavioral tests and HCM 
data sources. As discussed in §5.2.1, the trend towards availability and usage 
of high volume data for phenotyping places greater reliance on researcher’s 
computational and statistical skills in the laboratory. Recommendations for 
closing the methodological gap are provided in the Concluding Remarks 
(§5.6). Traja, the software presented in this thesis, helps to bridge these gaps by 
providing an open source Python toolkit for advanced trajectory data mining 
to support researchers handling HCM data.

One major obstacle for the validation of novel methods in automated animal 
locomotion analysis is the lack of extant experimental data. This presents a 
chicken-and-egg problem where methods cannot be validated because the 
raw data is not substantiated and thus not collected. Further improvements 
in software for HCM are expected as animal tracking, analytical tools, and 
computational approaches become standardized. Data-driven approaches 
are generally expected to augment and in some cases supplant hand-crafted 
approaches in data-heavy fields such as bioinformatics, as the amount of data 
and processing power continues to increase exponentially.

5.3 TRAJA APPLIED TO MOUSE STROKE MODEL

The impact of stroke on motor behavior such as locomotion has been 
extensively studied, and indicators such as gait abnormality are evident within 
the first days after stroke [322]. Mouse models of stroke and other neurological 
conditions are useful for identifying early treatments, diagnostic indicators, 
and preventative factors.

Diet is a major modifiable risk factor for neurological conditions such as stroke 
[68, 69, 323]. Nutrients and dietary patterns play an important role in brain 
development, physiology, and functioning [324–326]. For example, a survey 
of the literature of dietary fat in rodents on learning and memory identifies 
the overall deleterious effect of high-fat diets on the brain [327]. Diet also has 
the potential to be used as a preventative measure or treatment for stroke. 

Outlook for HCM
software

Dietary treatment
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As discussed in Chapters 3 and 4, dietary treatments such as Fortasyn and 
hydroxytyrosol have been shown to improve health in neurological conditions, 
in particular via their effects on cardiovascular health. Often, the open field 
and corner test are used to identify the efficacy of treatments in rodent models, 
however they are time-intensive and are prone to experimenter bias. For 
example, open field did not identify changes in post-surgery walked distance 
and velocity in female stroke animal model during the post-surgery period while 
analysis of DVC trajectory data did [147]. Also, decreased nighttime activity 
was identified with DVC and Traja but not traditional OF test in stroke mice 1 
week after surgery. Additionally, during the nighttime of the second postsurgery 
week, only stroke mice showed a left turning preference. A comparison of the 
outcome of traditional systems with results with HCM and Traja is provided in 
§5.3.1. Software like Traja augments the ability of researchers to automatically 
identify patterns in locomotion data, thus supporting the development of 
novel behavioral tests through advanced data mining (see §5.4 for an overview 
of planned extensions to Traja) and real-time analysis at virtually unlimited 
scale [92].

5.3.1 HCM results compared with other behavioral tests

Chapters 3 and 4 demonstrated the application of Traja to position data 
collected with DVC to enable analysis of the neurobehavioral indicators 
activity, distance travelled, velocity, total turns, laterality and effect of treatment 
within a home cage environment. Chapter 3 demonstrated the application of 
Traja in an experiment over a 1-month period involving dietary intervention 
with Fortasyn following stroke. Chapter 4 demonstrated analysis of home 
cage centroids over several months for a similar, more extensive experiment 
involving a Mediterranean diet-based intervention. HCM data allows more 
extensive analyses than traditional techniques, since it represents the behavior 
of the subject 24/7. Derivative methods are thus able to identify subtle patterns 
which may not be visible to the unaided eye or within the bounds of controlled 
experiments. In Chapter 4, HCM was carried out over the entire experiment 
(Figure 4.1), while behavioral tests were performed only occasionally during 
the inactive phase during the day.

Distinctive of the HCM data approach combined with Traja for analysis is 
the ability to quantify the home cage activity and laterality. In Chapter 3, as 
measured with DVC and Traja, we were able to identify that mice showed 
a left turn preference in the home cage following stroke, whereas this was 
undetectable with traditional behavioral tests. This turning bias was found 
exclusively following stroke (Chapter 4) [47] and significant differences were 
observed following exercise intervention in stroke [96]. These results confirm 
previous results with corner test where stroke mice exhibited preference towards 

Turn preference
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the nonimpaired (ipsilateral) side in distal middle cerebral artery occlusion 
(MCAo) [148, 149] as well as combined distal and proximal MCAo [150], in 
contrast to sham mice which showed no directional bias. Interestingly, turn bias 
following surgery was not observed in subjects following distal MCAo [63].

Additionally, the temporal resolution of HCM data is much greater than that 
of the data collected using the open field test, which could potentially allow 
for the detection of smaller variations in activity during recovery. The results 
obtained in this research suggest further investigation is warranted for the use 
of HCM and the automatic phenotyping and behavioral testing of mice in 
their home cages.

In Chapter 3, we observed a significant increase in activity with HCM over 
the 3 weeks following recovery (Figure 3.2), which is assumed to be a standard 
observation in ischemic stroke mouse models. This behavioral difference 
during recovery has also been observed by measuring the performance of mice 
on other behavioral tests such as open field [68]. This suggests that HCM can 
reliably measure overall activity in rodent models of neurological conditions.

In both the Fortasyn and HT experiments, the diet effects are either subtle 
or not observed with DVC-based tracking in the home cage, however overall 
recovery from stroke, as measured by activity and turning bias, was observed. 
This indicates that HCM combined with software like Traja can be a useful 
addition to analysis of behavior in research on neurodegenerative diseases such 
as stroke.

Other methods, such as the open field test, allow the comparison of activity and 
laterality during experimentation. However, the ability to observe differences 
in activity and laterality within arbitrary time intervals allows the adaptation of 
HCM analysis to methodological constraints in a wide range of experiments. A 
recent survey of continuous monitoring in home cage analysis covered periods 
ranging from 3 days to 4 weeks [14]. Such extensive monitoring provides more 
data which can be used to mine behavioral phenotypes which may not manifest 
in short periods. Further, varying time scales reveal a range of patterns in animal 
movement, with implications for behavioral phenotyping [328]. Extensive 
animal tracking allows accessing methods which are only available at broad 
time scales (days or weeks) and not observable in shorter durations, such as 
changes in circadian rhythms or overall activity [329].

5.4 OTHER APPLICATIONS OF TRAJA

Traja is demonstrated here as a tool for analyzing behavior of stroke mouse 
models, however other neuropsychiatric models are also relevant. Behavior is 
a prognostic indicator for a range of neuropsychiatric rodent models such as 
anxiety and depression [330, 331].

Activity

Time intervals in
observation
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Applying recent advances in data collection and analysis such as automated 
HCM to animal models of disease requires balancing the desirable high validity 
of animal models with practical constraints, particularly for neuropsychiatric 
models where construct validity is often poorly defined across species [330, 
332].

In addition, the same or similar methods which are used for animal locomotion 
analysis have relevance to other domains such as pedestrian [157] or vehicle [333] 
traffic modeling, and recent methods such as deep learning-based models which 
improve learning of long-term dependencies are equally relevant to sequence 
learning for stock market price forecasting [334] and music generation [335].

While the scientific community has several choices of tools for video-based 
analysis of mouse behavior, Traja has the potential to change the research 
landscape for prototyping and collaborating on the development of advanced 
methods for HCM data analysis. For example, it is currently being extended 
for visualizing the phase space of the latent variables in a neural ordinary 
differential equation model of the Fortasyn dataset. Traja presents a unifying 
standard for data scientific and machine learning approaches with time series 
data that enables researchers to utilize prior knowledge and focus their efforts 
on algorithms, modelling and exploration, rather than boilerplate code and 
software engineering.

Future additions to Traja include fractal methods, such as recurrence plots 
[336], visualizations of the latent space of recurrent neural networks, and 
neural ordinary differential equations [141]. As open source software, features 
are regularly added and bugs are publically tracked in the issue tracker.

5.5 RECOMMENDATIONS FOR FUTURE RESEARCH

As sensors continue to shrink and can be easily implanted in mouse home cages, 
methods such as HCM can be expected to become standard additions to the 
neuroscientist toolset. Nutritional and other interventions, which currently 
take months or years for comparison of efficacy, could potentially yield 
diagnostic information in real-time with HCM. The data produced by real-time 
monitoring tools provides unprecedented opportunity to mine patterns relevant 
to behavior as are found in aging and neurological disease. Some promising areas 
of research in this direction include statistical and machine learning methods 
for high-throughput data such as real-time, unsupervised pattern recognition 
of complex behaviors [125], anomaly detection, and application of advanced 
behavioral time-series analysis methods such as topological data analysis [337] 
and manifold learning [338]. Such methods will allow development of a library 
of behaviors and phenotypes, bringing the potential of data mining to rapidly 
accelerate drug discovery and research into treatments for diseases such as 
stroke within the coming years.
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5.6 CONCLUDING REMARKS

HCM combined with flexible tools for data mining like Traja are useful 
additions to the computational neuroscientist’s toolbox for preclinical animal 
research, particularly for stroke mouse behavioral phenotyping. These studies 
demonstrate the usefulness of applying Traja to DVC data for estimating 
the effect of nutritional intervention in stroke mice. The results indicate the 
usefulness of 24/7 HCM data for both confirming and augmenting results 
found in traditional behavioral tests. The major limitations of this approach 
are the required programming skills needed to handle the data and the lack 
of existing public datasets for validating patterns mined from the data. As 
additional tools enable behavioral data mining such as advanced statistical 
algorithms and widespread placement of sensors further enable automated 
behavioral phenotyping, researchers will find increasing opportunities to share 
their data and collaborate on projects across departments and disciplines.

Shifts from behavioral analysis tests towards data-heavy approaches such 
as automated HCM reflect a more general shift in scientific research from a 
top-down to a more bottom-up data-driven approach. The classical scientific 
method is based on the formation of hypotheses and then the collection of data 
to support or disprove these hypotheses. Data was historically scarce and often 
time-consuming and labor-intensive to collect, and the traditional scientific 
method was designed with this reality in mind. The hypothesis driven model 
was generally the most effective way to build an understanding of processes in 
a world with limited data. Nowadays, technological advances have changed the 
reality of data collection, and data is much more readily and cheaply available 
than ever before. This abundance necessitates a new approach to scientific 
research, in which researchers work backwards from copious data to identify 
trends and conclusions that can be reached [339]. Advances in computing play 
a vital role in this process, as they enable processing of this data. Thus, software 
like Traja is at the forefront of this change in scientific research, as it allows for 
the identification of trends in data without experimenter biases.

With the current pace of technological development, the shift towards 
data-driven science is likely to only accelerate. Mobile and Internet of Things 
(IoT) devices are predicted to generate 90 zettabytes of data by 2025, nearly a 
half of the total data expected to exist at that time [340].

If biological scientists embrace and leverage the new technologies available, this 
data-heavy approach to research has the potential to revolutionize the field and 
accelerate the pace of discovery. From a technologically optimistic perspective, 
one can suppose that, given sufficient data, any pattern which is visible in 
nature will be able to be modelled using techniques similar to those discussed 
in this work.
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However, data-based research methods do have limitations. For example, they 
do not necessarily provide insight into the principles underlying observable 
phenomena, in the same way that a camera pointing out the window can 
“recognize” repetitive events such as people passing by, but without integrating 
with other data sources would be rather limited at understanding the underlying 
causes of the activity.3 Thus, new data-driven research techniques are most 
powerful when used alongside traditional methods to augment the current 
capabilities of biological research.

                                                         
3 example from Noam Chomsky [341]
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SUMMARY
                                                                                                                                                    

This thesis introduces a novel, freely available software, Traja, which was 
developed for the analysis of homecage trajectory data from mouse models of 
stroke.

§1.2 presents the biological context of the thesis and addresses the importance 
of movement analysis in research, diagnosis and treatment of neurological 
diseases. We also discuss the shift from traditional methods of locomotion and 
behavioral analysis towards automated HCM in research with rodent models, 
and the need that this creates for software to manage, process and analyze 
the resulting data. §1.3 provides the technical background relevant to the 
development of the Traja software.

Chapter 2 presents Traja, a Python package built for analyzing trajectory 
data. It provides an explanation of the software architecture and design and 
demonstrate various methods useful for preprocessing, analyzing, and mod- 
eling trajectory data, using data derived from the study on multinutrient 
intervention after ischemic stroke in mice [48]. It was published as Traja: A 
Python toolbox for animal trajectory analysis in “Journal of Open Source 
Software” [336].

Then, we demonstrate how Traja may be used in research with mouse models 
of stroke by analyzing mouse homecage trajectory data. Chapter 3 is based on 
the paper Automated Analysis of Stroke Mouse Trajectory Data With Traja 
[48], which was published in “Frontiers in Neuroscience”. In this study, we 
used Traja to analyze trajectory data from stroke-induced mice receiving a 
fortified diet treatment, Fortasyn. We demonstrated the usability of Traja for 
analysis of mouse positions in terms of activity (§3.3.1), distance travelled 
(§3.3.2), velocity (§3.3.3), and turns and laterality (§3.3.4). Chapter 4 is based 
on the paper Hydroxytyrosol, the major phenolic compound of olive oil as acute 
therapeutic strategy after ischemic stroke, which was published in “Nutrients” 
[47]. Here, we extended the methods developed in Chapter 3 to a larger study 
involving treatment of a stroke mouse model with Hydroxytyrosol (HT) also 
referred to as a Mediterranean diet. We used Traja to analyze the effects of light 
phase and HT treatment on activity, distance travelled, walking velocity, total 
turnings, and laterality index 24/7 (§4.5). The results of these two studies 
indicate that Traja can be successfully applied to trajectory data mining and 
analysis, providing insight to researchers and demonstrating the potential for 
home cage mouse tracking in neurological research.
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Finally, Chapter 5 provides a unifying discussion for the thesis. It addresses 
recent advances in technology used for behavioral analysis, particularly auto- 
mated home cage monitoring, and how these create a need for software like 
Traja. We also further discuss the capabilities and advantages of Traja, and 
the applications of the software presented in this thesis. Finally, we consider 
other possible applications of Traja and reflect on how the software fits into the 
changing landscape of scientific research today.
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NEDERLANDSE SAMENVATTING
                                                                                                                                                    

Dit proefschrift introduceert een nieuwe, vrij beschikbare software, Traja, die 
ontwikkeld is voor de analyse van homecage trajectory data van muismodellen 
voor beroerte.

§1.2 presenteert de biologische context van het proefschrift en gaat in op het 
belang van bewegingsanalyse voor onderzoek, diagnose en behandeling van 
neurologische aandoeningen. De verschuiving van traditionele methodes 
van bewegingsanalyse en gedragsanalyse naar geautomatiseerde HCM in on- 
derzoek met knaagdiermodellen, en de behoefte die hierdoor ontstaat aan 
software om de resulterende gegevens te beheren, te verwerken en te analy- 
seren worden besproken. §1.3 geeft de technische achtergrond die relevant is 
voor de ontwikkeling van de Traja software.

Hoofdstuk 2 presenteert Traja, een Python pakket gebouwd voor het analy- 
seren van looppatronen. Het geeft uitleg over de architectuur en het ontwerp 
van de software en demonstreert verschillende methoden die nuttig zijn voor 
het voorbewerken, analyseren en modelleren van looppatronen, aan de hand 
van gegevens uit de studie over multinutriënten interventie na ischemische 
beroerte bij muizen.

Vervolgens demonstreren we hoe Traja kan worden gebruikt in onderzoek met 
muismodellen voor stroke door het analyseren van gegevens over het looppa- 
troon in muizenkooien. Hoofdstuk 3 is gebaseerd op het gepubliceerde artikel 
Automated Analysis of Stroke Mouse Trajectory Data With Traja [48]. In deze 
studie gebruikten we Traja om traject gegevens van stroke-geïnduceerde muizen 
op een multicomponenten dieet interventie, te analyseren. We hebben de 
bruikbaarheid van Traja aangetoond voor de analyse van muisposities in termen 
van activiteit (§3.3.1), afgelegde afstand (§3.3.2), snelheid (§3.3.3), en draaiingen 
en lateraliteit (§3.3.4). Hoofdstuk 4 is gebaseerd op het gepubliceerde artikel 
Hydroxytyrosol, the major phenolic compound of olive oil as acute therapeutic 
strategy after ischemic stroke [47]. Hier hebben we de methoden ontwikkeld in 
Hoofdstuk 3 naar een grotere studie waarbij de behandeling van een beroerte 
muismodel met Hydroxytyrosol (HT) ook wel aangeduid als een mediterraan 
dieet. We gebruikten Traja om de effecten van HT behandeling op activiteit, 
afgelegde afstand, loopsnelheid, totale draaiingen, en lateraliteitsindex 24/7 
te analyseren (§4.5). De resultaten van deze twee studies tonen aan dat Traja 
met succes kan worden toegepast voor traject datamining en analyse, hierbij 
inzicht verschaffend aan onderzoekers en de potentie aantonend van thuiskooi 
muistracking in neurologisch onderzoek.
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De discussie in het proefschrift behandelt recente ontwikkelingen in tech- 
nologie die worden gebruikt voor gedragsanalyse, in het bijzonder geautoma- 
tiseerde thuiskooimonitoring, en hoe deze een behoefte creëren aan software 
zoals Traja. We bespreken verder de mogelijkheden en voordelen van Traja, 
en de toepassingen van de software die in dit proefschrift worden gepresen- 
teerd. Tenslotte staan we stil bij andere mogelijke toepassingen van Traja en 
denken we na over hoe de software past in het veranderende landschap van het 
wetenschappelijk onderzoek van vandaag.
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Table .3: Contributions to third-party projects

Project  Contribution
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various packages as well as the base template2 developed by André Miede.

Python [344] and the NumFocus developer community (Matplotlib [164], 
Numpy [344], pandas [345], scipy [158], etc.).

PyTorch [192] for allowing prototyping of deep neural networks with a 
painless, Pythonic API.

GeoPandas [346] for demonstrating the capabilities of the pandas accessor 
functionality and sharing code for their continuous integration pipeline.

conda-forge [347] and the community for support developing a con- 
tinuous integration pipeline and packaging support on Windows, Mac and 
Linux.

Trajr [108] R package inspired several implementations used in Traja.

                ______________________________
1 Inspiration for this section comes from Rasmus Diederichsen’s thesis [342]
2 http://bitbucket.org/amiede/classicthesis
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All animal experiments described in this thesis were carried out in accor- 
dance with international European ethical standards (European Directive 
2010/63/EU) and were approved and pre-registered by the Animal Ethics 
Committee (called the Dierexperimentencommissie; DEC, RU-DEC 2014- 1 
1 & RU-DEC 2017-0021) of the Radboud University Medical Center (Rad- 
boudumc) and reported according to the ARRIVE guidelines. All applicable 
international, national, and institutional guidelines for the care and use of an- 
imals were followed. Our studies were also in concurrence with the European 
regulations on ethics and responsible conduct regarding scientific commu- 
nication. The research data presented in this thesis and obtained during this 
PhD at the department of Medical Imaging, Anatomy (Radboudumc) were 
archived according to Findable, Accessible, Interoperable and Reusable (FAIR) 
principles.

Findable All raw and processed digital data described in this thesis are stored 
on the server of the Department of Medical Imaging, Anatomy (Radboudumc) 
and backed-up daily on the local Radboudumc server. The data can be found at 
the Department of Medical Imaging, Anatomy, (Radboudumc).

Accessible The data and protocols described in this thesis are included in 
published articles and can be obtained on request from the Department of 
Medical Imaging, Anatomy, Radboudumc, Nijmegen, the Netherlands. The 
digital data of chapter 2, 3, and 4 are also stored on the departments’ NAS and 
could be made available after contacting the corresponding author.

Interoperable The data presented in this thesis are documented in a formal, 
accessible, shared, and broadly applicable language for knowledge representa- 
tion.

Reusable The data shown in this thesis are adequately documented to be 
reusable for further research and analysis. The data will be saved for 15 years 
after termination of the study (July 1, 2031). To ensure interpretability of the 
data, all filenames, primary and secondary data, metadata, descriptive files and 
program code and scripts used to provide the final results are documented 
along with the data.
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For a successful research Institute, it is vital to train the next generation of 
young scientists. To achieve this goal, the Donders Institute for Brain, Cogni- 
tion and Behaviour established the Donders Graduate School for Cognitive 
Neuroscience (DGCN), which was officially recognised as a national gradu- 
ate school in 2009. The Graduate School covers training at both Master’s and 
PhD level and provides an excellent educational context fully aligned with the 
research programme of the Donders Institute.
The school successfully attracts highly talented national and international 
students in biology, physics, psycholinguistics, psychology, behavioral science, 
medicine and related disciplines. Selective admission and assessment centers 
guarantee the enrolment of the best and most motivated students.
The DGCN tracks the career of PhD graduates carefully. More than 50% 
of PhD alumni show a continuation in academia with postdoc positions 
at top institutes worldwide, e.g. Stanford University, University of Oxford, 
University of Cambridge, UCL London, MPI Leipzig, Hanyang Univer- 
sity in South Korea, NTNU Norway, University of Illinois, North Western 
University, Northeastern University in Boston, ETH Zürich, University of 
Vienna, etc. Positions outside academia spread among the following sectors: 
specialists in a medical environment, mainly in genetics, geriatrics, psychiatry 
and neurology. Specialists in a psychological environment, e.g. as specialist in 
neuropsychology, psychological diagnostics or therapy. Positions in higher 
education as coordinators or lecturers. A smaller percentage enters business 
as research consultants, analysts or head of research and development. Fewer 
graduates stay in a research environment as lab coordinators, technical sup- 
port or policy advisors. Upcoming possibilities are positions in the IT sector 
and management position in pharmaceutical industry. In general, the PhDs 
graduates almost invariably continue with high-quality positions that play an 
important role in our knowledge economy.
For more information on the DGCN as well as past and upcoming de- fenses please 
visit: http://www.ru.nl/donders/graduate-school/ donders-graduate/




