534 research outputs found

    Prescribing Challenges after Bariatric Surgery

    Get PDF
    Obesity is an increasing problem in the UK, with over half the population being overweight or obese. The use of gastric surgery is increasing, with a 5% increase in 2016/17 compared to 2015/16. However, little is known about ideal drug formulations after bariatric surgery. An exploratory literature search of research databases was carried out to address this. We found that there was a dearth of high-quality primary studies available, with many studies using low numbers of participants. The major finding was of the need for increased vigilance and monitoring of patients after surgery

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    Egocentric Vision-based Action Recognition: A survey

    Get PDF
    [EN] The egocentric action recognition EAR field has recently increased its popularity due to the affordable and lightweight wearable cameras available nowadays such as GoPro and similars. Therefore, the amount of egocentric data generated has increased, triggering the interest in the understanding of egocentric videos. More specifically, the recognition of actions in egocentric videos has gained popularity due to the challenge that it poses: the wild movement of the camera and the lack of context make it hard to recognise actions with a performance similar to that of third-person vision solutions. This has ignited the research interest on the field and, nowadays, many public datasets and competitions can be found in both the machine learning and the computer vision communities. In this survey, we aim to analyse the literature on egocentric vision methods and algorithms. For that, we propose a taxonomy to divide the literature into various categories with subcategories, contributing a more fine-grained classification of the available methods. We also provide a review of the zero-shot approaches used by the EAR community, a methodology that could help to transfer EAR algorithms to real-world applications. Finally, we summarise the datasets used by researchers in the literature.We gratefully acknowledge the support of the Basque Govern-ment's Department of Education for the predoctoral funding of the first author. This work has been supported by the Spanish Government under the FuturAAL-Context project (RTI2018-101045-B-C21) and by the Basque Government under the Deustek project (IT-1078-16-D)

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research

    STQS:Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring

    Get PDF
    Sleep scoring is an important step for the detection of sleep disorders and usually performed by visual analysis. Since manual sleep scoring is time consuming, machine-learning based approaches have been proposed. Though efficient, these algorithms are black-box in nature and difficult to interpret by clinicians. In this paper, we propose a deep learning architecture for multi-modal sleep scoring, investigate the model's decision making process, and compare the model's reasoning with the annotation guidelines in the AASM manual. Our architecture, called STQS, uses convolutional neural networks (CNN) to automatically extract spatio-temporal features from 3 modalities (EEG, EOG and EMG), a bidirectional long short-term memory (Bi-LSTM) to extract sequential information, and residual connections to combine spatio-temporal and sequential features. We evaluated our model on two large datasets, obtaining an accuracy of 85% and 77% and a macro F1 score of 79% and 73% on SHHS and an in-house dataset, respectively. We further quantify the contribution of various architectural components and conclude that adding LSTM layers improves performance over a spatio-temporal CNN, while adding residual connections does not. Our interpretability results show that the output of the model is well aligned with AASM guidelines, and therefore, the model's decisions correspond to domain knowledge. We also compare multi-modal models and single-channel models and suggest that future research should focus on improving multi-modal models

    Limbs detection and tracking of head-fixed mice for behavioral phenotyping using motion tubes and deep learning

    Get PDF
    The broad accessibility of affordable and reliable recording equipment and its relative ease of use has enabled neuroscientists to record large amounts of neurophysiological and behavioral data. Given that most of this raw data is unlabeled, great effort is required to adapt it for behavioral phenotyping or signal extraction, for behavioral and neurophysiological data, respectively. Traditional methods for labeling datasets rely on human annotators which is a resource and time intensive process, which often produce data that that is prone to reproducibility errors. Here, we propose a deep learning-based image segmentation framework to automatically extract and label limb movements from movies capturing frontal and lateral views of head-fixed mice. The method decomposes the image into elemental regions (superpixels) with similar appearance and concordant dynamics and stacks them following their partial temporal trajectory. These 3D descriptors (referred as motion cues) are used to train a deep convolutional neural network (CNN). We use the features extracted at the last fully connected layer of the network for training a Long Short Term Memory (LSTM) network that introduces spatio-temporal coherence to the limb segmentation. We tested the pipeline in two video acquisition settings. In the first, the camera is installed on the right side of the mouse (lateral setting). In the second, the camera is installed facing the mouse directly (frontal setting). We also investigated the effect of the noise present in the videos and the amount of training data needed, and we found that reducing the number of training samples does not result in a drop of more than 5% in detection accuracy even when as little as 10% of the available data is used for training

    Spatio-Temporal Texture Features for Presentation Attack Detection in Biometric Systems

    Get PDF
    Spatio-temporal information is valuable as a discriminative cue for presentation attack detection, where the temporal texture changes and fine-grained motions (such as eye blinking) can be indicative of some types of spoofing attacks. In this paper, we propose a novel spatio-temporal feature, based on motion history, which can offer an efficient way to encapsulate temporal texture changes. Patterns of motion history are used as primary features followed by secondary feature extraction using Local Binary Patterns and Convolutional Neural Networks, and evaluated using the Replay Attack and CASIA-FASD datasets, demonstrating the effectiveness of the proposed approach
    • …
    corecore