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ABSTRACT The broad accessibility of affordable and reliable recording equipment and its relative ease of
use has enabled neuroscientists to record large amounts of neurophysiological and behavioral data. Given
that most of this raw data is unlabeled, great effort is required to adapt it for behavioral phenotyping or
signal extraction, for behavioral and neurophysiological data, respectively. Traditional methods for labeling
datasets rely on human annotators which is a resource and time intensive process, which often produce data
that that is prone to reproducibility errors. Here, we propose a deep learning-based image segmentation
framework to automatically extract and label limb movements from movies capturing frontal and lateral
views of head-fixed mice. The method decomposes the image into elemental regions (superpixels) with
similar appearance and concordant dynamics and stacks them following their partial temporal trajectory.
These 3D descriptors (referred as motion cues) are used to train a deep convolutional neural network (CNN).
We use the features extracted at the last fully connected layer of the network for training a Long Short Term
Memory (LSTM) network that introduces spatio-temporal coherence to the limb segmentation.
We tested the pipeline in two video acquisition settings. In the first, the camera is installed on the right side of
the mouse (lateral setting). In the second, the camera is installed facing the mouse directly (frontal setting).
We also investigated the effect of the noise present in the videos and the amount of training data needed, and
we found that reducing the number of training samples does not result in a drop of more than 5% in detection
accuracy even when as little as 10% of the available data is used for training.

INDEX TERMS Deep networks, motion detection, CNN, LSTM, optical flow, spatiotemporal, neuroscience,
behavioral phenotyping.

I. INTRODUCTION
Neuroscience is becoming increasingly reliant on quantitative
data. The availability of affordable computing and sensing
methods has now made it possible to record milliseconds
resolution videos of behaving mice while monitoring their
neuronal activity simultaneously. A general trend in behav-
ioral neuroscience is to record videos of the mice in a con-
trolled but uninterrupted environment for extended periods of
time. One of the commonly used controlled environments is
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to allow the mice walk on a spherical or cylindrical treadmill
in a head-fixed position. This allows the mice to walk freely
on the treadmill with minimal motion of their torso, while
reducing the stress associated to head-fixation. The video
cameras are usually placed either beside, above, below or
in front of the mice. The acquired video data is annotated
manually, frame by frame. As increasingly large volumes of
data are generated, manual annotation becomes impractical
for two reasons; the impossibility to scale up to hundreds of
thousands of frames and the lack of reproducibility. Thus,
high quality research calls for reliable automatic methods to
replace manual labeling of animal behavior.
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Some of the commonly used methods for limb annotation
either use specific hardware for motion tracking or model the
statistical properties of the background and the animal (back-
ground subtraction). Hardware based approaches are usually
difficult to reproduce in new scenarios. And background
modelling is vulnerable to noisy images andmoderate periods
with lack of significant motion. Detecting only individual
body parts of a moving animal becomes also challenging.
In addition, due to motion and the change of perspective,
limbs do not appear rigid throughout the video. They present
relevant deformations from frame to frame. In these cases,
traditional object recognition methods do not perform well.
Robust appearance-based methods solve these shortcomings
by learning a classifier [1] focused on diverse sets of image
patches with the body part to be tracked. Here, we develop
a pipeline that performs limb tracking by image segmen-
tation, combining appearance-based features and temporal
coherence. We use a spatio-temporal segmentation of mouse
body parts relying on two neural networks. The first one,
a convolutional neural network (CNN), learns features from
sub-regions of the video which are similar in appearance and
exhibit coherent motion patterns. We name these descriptors
motion tubes. For example, a motion tube might encode
the spatio-temporal representation of a mouse paw across a
relatively short timewindow (See Figure1).We definemotion
sequence as the chronologically ordered concatenation of
motion tubes, which in turn represents the time evolution
of these coherent sequences. Finally, we use a Long-Short-
Term-Memory (LSTM) network to predict the probability
of these motion sequences of being part of the mice limbs.
Experimental results show promising tracking accuracy even
when only a small portion of training data is used. We also
evaluate our approach against two state-of-the-art limb track-
ing algorithms, and show significant improvements, espe-
cially with noisy recordings.

II. RELATED WORK
Typical setups for motion tracking in neuroscience applica-
tions include a closed environment (either a room or a box),
video cameras, an awake animal preparation and a set of
control systems [2]. In this article, we will focus on motion
tracking (with emphasis on limb tracking) of laboratory ani-
mals for behavioral phenotyping or medical assessment pur-
poses. Based on the intended use and nature of algorithms,
existing tracking approaches can be divided into three cate-
gories; hardware-based, software-based aided by specialized
hardware and software-based without specialized hardware.

Kain et al. [3] proposed an explicit hardware-based leg
tracking method for automated behavior classification in
Drosophila flies. In such setup, the legs of head-fixed flies
walking on a spherical treadmill are marked with fluorescent
dyes. Multiple mounted cameras are then employed to track
ad record 15 gait features in real-time. This approach has the
advantage to enable real-time experiments, but it cannot gen-
eralize to other limb tracking applications unless a specific
hardware setup is established. Moreover, the dependency on

photo-sensitive dyes decrease the robustness of the system.
Similar approaches are reported in [4]–[10].

Wang et al. [11] introduced a hardware-assisted pipeline
for identifying micro-behaviors in small animals. This is
achieved by employing Microsoft Kinect cameras along with
regular video cameras to record movement of freely behav-
ing rodents from three different perspectives. The IR depth
images from the Kinect are used to extract the three dimen-
sional shape of rodents by background subtraction. Five
pixel-based features extracted from the resultant 3D blobs are
fed into Support Vector Machines for behavior classification.
Although the pipeline is not exclusively used for motion
tracking, the use of depth cameras is a competitive alternative
for motion tracking. This approach relies on specific hard-
ware, therefore it cannot be applied in every environments
since the Kinect motion sensors need specific ambient condi-
tions for optimal performance.

Monteiro et al. [12] took a similar approach to [11] and
used Microsoft Kinect depth cameras for video capture.
Instead of background subtraction, they introduced a rough
temporal context by encapsulating morphological features of
multiple frames for motion tracking. Morphological features
of each frame are then concatenated to introduce temporal
context and used to train a decision tree for behavior classi-
fication. Similar to [11], this approach is also amenable for
motion tracking, given the introduced temporal context.

Palmér et al. [13] introduced a paw-tracking algorithm
for hand prehension and gesture tracking in mice. The algo-
rithm is framed as a pose estimation problem. Each digit is
modeled as a combination of three phalanges (bones), where
each bone is fit to an ellipsoid. For 4 digits, there are a
total of 12 ellipsoids. The palm and forearm are modeled
by ellipses, whereas the forearm by an elliptic paraboloid.
Therefore, 16 parameters define the paw digits (four degrees
of freedom per digit), four constant vectors represent the
metacarpal bones and 6 parameters describe the position and
rotation of the palm of the paw. Furthermore, the forearm can
rotate along all three axes around the wrist. This amounts to a
total of 22 parameters. In each frame, these ellipsoids are fit
to the body part edges. The article does not report any quan-
titative results. This approach is useful if the gesture tracking
problem is treated as pose estimation with a temporal context.
In subsequent work, Palmér et al. [14] reduced the degrees of
freedom to 19 and optimized the computing strategy.

Mathis et al. [1] proposed a deep learning-based tool,
called DeepLabCut, which estimated the pose of lab animals
in each frame. Their proposed model is built on top of the
DeeperCut algorithm [15]. The original DeeperCut approach
was developed for multi-person pose estimation, which con-
sists of three parts: object detectors, pairwise term and pose
estimators. Object detectors are used for identifying body
parts and pairwise terms exploit anatomical knowledge to
develop a refined model of body segments. The pose esti-
mator then translates this knowledge into pose. The paper
proposes to add a pre-trained Deep Residual Network fol-
lowed by deconvolutional layers on top of this architecture.
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FIGURE 1. Master Flowchart: The image slice in the tubes Mi,j represents a specific superpixel and the corresponding fixed window which encloses it
in frame i and its various matches tracked through time. Double headed arrow represents the flow of time, so superpixel at time i − 1 was the
predecessor of superpixel at position i . The shaded 3D structures on the left represent the 3D motion tubes formed by stacking Dcnn superpixels
together chronologically while the blue-bordered matrix on the right represents the motion sequence. An enlarged view of a motion tube with its
constituent superpixel shaded in green is shown in Fig. 2. The individual feature vector extracted from the tube (formed by a specific superpixel
number j from frame number i ) is represented by a row vector of length Lf as xl,m = [xl,1, xl,2, ..., xl,Lf

]. Dcnn represents the depth of motion tube
and Dlstm represents the length of motion sequence which is given as input to the LSTM. A single motion sequence is formed by stacking feature
vectors extracted from Dlstm motion tubes by the CNNs in correct chronological sequence.

The model is trained on manually annotated data of mice and
drosophila flies. Consistent RMSE (error measured between
location of body parts predicted by pipeline and human anno-
tators) was achieved despite a 90% decrement in training
frames. Due to its end-to-end training nature, DeepLabCut
represents a significant contribution, although the pose is esti-
mated frame by frame and temporal information is discarded.

Most of the approaches above either require specialized
setups or they ignore the temporal properties of motion and
try to solve the tracking problem as a frame-localized phe-
nomenon. Here we propose a dense segmentation supervised
approach for tracking regions of interest (ROI), limbs in this
case, which are moving coherently.

More specifically, the approach is targeted towards limb
tracking in situations where the limbs might appear and
exhibit motion similar to other body parts, such as the tail.

Because of motion and the change of perspective, limbs do
not appear rigid throughout the video. Since they deform from
frame to frame, traditional object recognition methods do not
perform well.

III. MATERIALS AND METHODS
In this section, we provide a brief introduction to the experi-
mental methods and computational concepts we used to build
our pipeline.

A. ANIMAL EXPERIMENTS
Experimental procedures were carried out as approved by
the Princeton University Institutional Animal Care and Use
Committee and performed in accordance with the animal
welfare guidelines of the National Institutes of Health.
The same preparations we employed in our behavioral
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analysis were also used for some imaging experiments. For
a complete description of the surgical and behavioral prepa-
rations refer to [16], [17]. We used N = 4 males 12- to 16-
week-old C57BL/6J mice (Jackson Laboratory), housed in
reversed light cycle. Mice underwent anesthesia (isoflurane,
5% induction, 1.0-2.5% maintenance) and a custom-made
two-piece headplate [18] was attached to the animal’s head.
A 3mm or 5mm-wide craniotomy was drilled over the para-
normal area of cerebellar lobule VI. After 15 hrs delay for
animal recovery the top plate was removed for delivery of
AAV1.Syn.GCaMP6f.WPRE.SV40 [Penn Vector Core, lot
AV-1-PV2822] virus ( [17]). All animals were placed back
in their home cage for 2 weeks of recovery.

Animals were first habituated to a cylindrical or spherical
treadmill that rotates along a single axis for repeated intervals
over 5 days of incremental exposure. After habituation, ani-
mals were exposed to a variety of stimuli. Some of the movies
were taken from animals that were undergoing eyeblink con-
ditioning [17]. Training consisted of repeated parings of two
stimuli, either whisker-puff/eye-puff or light/eye-puff, sepa-
rated by intervals of 250 or 440ms respectively. This training
often induced movements in an otherwise-still mouse. The
stimuli consisted of (i) a periorbital airpuff (10-20psi, 30ms in
duration, delivered via a plastic needle placed 5mm from the
cornea and pointed at it, (ii) a flash of light (400nm, 500ms),
or (iii) an airpuff to whisker vibrissae (2-3psi, 800ms).

B. NOTATION AND METHOD OVERVIEW
In table 1 we summarize the notation employed in the rest of
the manuscript. As a general rule, we use bold face capital
letters to denote tensors, (normal) capital letters to denote
scalars, bold face small letters to denote vectors and normal
small letters to denote indices. To be consistent, I denotes
the whole video (consisting of T frames with W × H pix-
els each), Ii denotes only the i-th frame of the video, Ii,j
denotes j-th superpixel of the i-th frame. We use a window
of a fixed size Ws × Hs per superpixel (see section III-C).
We will consistently use i for frame index in a video and
j for j-th superpixel in a video frame. If an index appears
in small brackets, it corresponds to the exact locations of
the matrix elements. For example, Ii(xk , yk ) corresponds to
a pixel (element) in I at k-th x and k-th y location in
frame i.
Figure 1 summarizes the main three steps of the proposed

method. Given a video I consisting of T frames:

1) For each frame, we compute the superpixels of the
image. For each superpixel, we look Dcnn frames into
the past, we find the closest matches for the superpixel
in the time axis, and we stack them in chronological
order to construct what we name motion tubesMi,j, i.e.
a tensor of size Ws × Hs × Dcnn for each superpixel j
of frame i.

2) We extract appearance features from each motion tube
using a trained CNN as feature extractor. It will produce
a feature vector of length Lf for each motion tube.

TABLE 1. Notation.

The CNN parameters are previously learned with a
training set containing motion tubes from limb and non
limb regions (see III-C).

3) We stack sets of Dlstm features extracted from the
CNNs to construct the motion sequences Xi,j of size
Dlstm × Lf . Each motion sequence is used to train a
LSTM that performs the image segmentation taking
into account the temporal coherence of the motion
tubes (see III-D for more details).

In the following subsections, we detail the methods we
used to build the motion tubes, extract the feature vectors and
obtain the LSTM output for each sequence.

C. MOTION TUBES
Motion tubes are defined as 3D arrays containing pixel clus-
ters with similar motion fields across time. We first reduce
the complexity of a frame by grouping all the pixels into
superpixels and then track their progression through time.
A superpixel refers to a polygonal part of an image, larger
than a normal pixel, that is rendered in a similar color
and brightness [19]. To overcome the computational cost
of over-segmenting a frame into superpixels, we used the
efficient SLIC (Simple Linear Iterative Clustering) method
proposed by Achanta et al. [20].
Superpixels (especially the ones located in mice skin) may

have very similar appearance regardless of their state of
motion. To effectively use superpixels, we introduce tem-
poral context to them, treating time as the third dimension.
In addition, superpixels differ in shape and size. In order to
find where a superpixel is located in the next frame (motion
path), we propose to use optical flow tracking [21]. Notice
that the shape of the superpixels forming the motion tube is
deformable. To make the method computationally tractable,
we used a fixed sized window to construct the tube (Ws×Hs).
In addition, temporal window slices from superpixels of the
motion tube (along the depth dimension) may not necessarily
refer to the same fixed spatial locations in successive frames,
as body parts migrate along the image coordinates. Fig. 2
shows an example of a superpixel tracked backwards through
time. The depth of the tube (Dcnn) is controlled by the user
and can be varied to change the extent of temporal context
captured by the tube.
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FIGURE 2. Enlarged view of how the constituent superpixel of a motion tube is tracked backwards through time. The superpixel shaded in green color is
forming the tube whose closest relatives are tracked backward in time.

More formally, let’s assume we are dealing with a video
with W, H and T dimensions (width, height and number of
frames), being Ii(xk , yk ) each pixel at position xk and yk in
frame i. SLIC algorithm clusters all these pixels in Ii into
N superpixels. The superpixels generated from current frame
are not guaranteed to be present on the same spatial coordi-
nates in the next (or previous) frame. Also, a direct temporal
link between superpixels generated from the current frame to
superpixels generated in the next (or previous) frame cannot
be established. However, the apparent motion of superpixel
centroids can give a rough estimate for its closest relatives in
the next (or previous) frame if we assume that there aren’t
any abrupt changes in luminosity, shape and position of the
objects in successive frames. We establish a temporal link
between the superpixel in the current frame and its closest
match in previous or next frame and we stack them up to
generate a 3D tube.

To generate the motion tubes of depth Dcnn for the N
superpixels per each frame i ∈ 1 . . . T , we proceed as follows:

1) We compute the optical flow from the 3D struc-
ture I representing the video (being Ii the i-th
frame). We store it in a flow tensor F of size
W × H × 2× T − 1. Fi represents the optical flow
associated to frame i. The optical flow refers to the
modelling of apparent motion between two succes-
sive frames. It was introduced by the American psy-
chologist James J. Gibson in the 1940s [21], and it
has been consistently used to model the perception of
movement by the observer [22]–[25]. In the field of
robotics and computer vision, optical flow is used in
image processing and control of navigation including
motion detection, object segmentation, time-to-contact

information, the focus of expansion calculations, lumi-
nance, motion-compensated encoding, and stereo dis-
parity measurement [25]. In our case, the optical flow
offers a solution for tracking the temporal behaviour of
superpixels in successive frames of a video. We used
the Python implementation from openCV [26] of the
Lucas-Kannade algorithm [27].

2) We compute the centroid Ci,j of each j-th superpixel
(consisting of a subimage Si,j with a fixed sizeWs×Hs)
from every frame i.

3) We estimate the coordinates of the centroid on the
previous frame i− 1 using the current coordinates and
the optical flow vector.

4) We compute the distance from the estimated centroid
Ci−1,j and all the superpixels in the previous frame.

5) We add the window of fixed size Ws × Hs centered
on the closest centroid at frame i − 1 to the motion
tubeMi,j.

Notice that the procedure of locating the closest match
of superpixels in previous frames allows to handle situ-
ations where two superpixels converge in time (typically
because the limb regions shrink as movement dynam-
ics evolve). The algorithm 1 details the main steps of
the procedure that outputs N motion tubes for each
frame.
To reduce the dimensionality of the data and to extract

meaningful appearance features, we use a 4-layer Convo-
lutional Neural Network (CNN) [28]. We conjecture that
since we train the CNN to learn how to discriminate between
limb/non limb categories from motion tubes, the features
extracted will be more descriptive than hand crafted ones.
The input to the first convolutional layer is a tensor with the
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Algorithm 1Motion Tubes Construction
Result: Motion tubes for the superpixel centered at Ci,j
. k = 0; M = { };
if i < Dcnn then

F Not traversed the minimum
number of frames yet while Number of available frames
is less than required (i < Dcnn) do

Append Ii to I at position i;
Append Fi to F at position i;

end
else

Start from 1st superpixel (j = 0)
while we have available superpixels (j < N) do

Start from current frame i (k = 0)
while we haven’t traversed backwards Dcnn frames
(k < Dcnn) do

if current frame i (k==0) then
Place Ssi,j at last location of the tube

else
Find centroid Ci,j of superpixel Si,j and store
it in (xsj, ysj).

Project it onto frame Ii−k using the
optical flow vector as (xsj∗, ysj∗) =

(xsj, ysj)+ Fi−k (xsj, ysj).

Find distance between the centroid of
projected superpixel and the centroids of all
superpixels in previous frame and store it in
Ds:. The closest relative of superpixel with
centroid (xj, yj) is the one returned by
Cs
i,j∗ = argmin(Ds:).

Append the superpixel Si,j∗ at locationDcnn−
k of motion tubeMi−k,j.

end
k = k + 1;

end
j = j+ 1

end
end

motion tube M of size Ws× Hs× Dcnn where Ws and Hs
represents spatial dimensions while Dcnm represents the tube
depth. The output of the CNN is a binary value (limb/non
limb) for each input motion tube. Nevertheless, we extract
as a feature vector v1 the values obtained from the last fully
connected layer, of length Lf . Particularly we used 64 values
(neurons at the last fully connected layer) in our experiments.
Table 2 details the parameters for each layer used in this
paper.

D. MOTION SEQUENCES
Motion sequences integrate several temporally consecutive
motion tubes to learn a sequential classifier that performs the

TABLE 2. Parameter values for the layers.

image segmentation for limb tracking. For a given superpixel
j in frame i, we extract a one dimensional motion tube vector
v1. Then we do the same process for the closest match of
this superpixel in the previous frame and extract another
one dimensional feature vector x2. We repeat the process
for the previous Dlstm frames. Finally we stack all these one
dimensional feature vectors to form the motion sequence
V = [v1; v2; . . . ; vDlstm ] of size Dlstm × Lf . We compute one
motion sequence per superpixel and we train a LSTM Neural
Network [29] to predict the probability of the sequence of
belonging to a limb.

E. TRAINING DATA FOR THE CNN AND LSTM REGRESSORS
We use a CNN for feature extraction and a LSTM for image
segmentation. In both cases we train these models to provide
a probability of the superpixel of being limb /non limb.
The training data is generated by manually annotating limbs
in video frames. The limbs (moving or still) are labeled
accurately by tracing their boundaries and then extracting a
mask.

We use a mean squared error loss for the regression
task. Nevertheless, training data are annotated in binary
terms (limbs / non limb) at a pixel level (segmentation
mask). To provide a continuous value for all the pix-
els contained in the j-th superpixel Ii,j(x, y), the regres-
sion target used is proportional to the intersection of the
superpixel and the annotated segmentation mask. We first
select all the xj, yj pixels belonging to the superpixel j, and
assign a regression target value to that superpixel using
eq.1.

Yj∗ =
{(x, y)|x ∈ xj, y ∈ yj ∧ I (xj, yj) = 1}

{(x, y)|x ∈ xj, y ∈ yj}
(1)

The masks of superpixels with Yj∗ ≤ 0.1 are clipped to 0
(non limb). This ’limb-ness’ score is then associated to every
pixel within such superpixel j. These new pixel values are
used to generate a dense segmentation frame with the same
width and height as the original frame. A simple thresholding
on such segmentation frame produces a mask. Such mask
can be compared to the manually annotated ground truth for
evaluation.

IV. DATA SET AND EXPERIMENTS
A. DATA SET
The pipeline is tested on two types of video data, frontal and
lateral videos (camera located at the right side of the mice).
Both sets of videos are acquired at 120 frames per second
and have a resolution of 240×320 pixels. Each of the frontal
videos is 239 frames long while each of the lateral videos is

37896 VOLUME 8, 2020



W. Abbas et al.: Limbs Detection and Tracking of Head-Fixed Mice for Behavioral Phenotyping Using Motion Tubes and Deep Learning

FIGURE 3. Example of how a label is given to a superpixel. First, the original frame is over-segmented into superpixels. To find out the
target label for a superpixel, shaded in green in (a), the corresponding superpixel, also shaded in green in (b) is extracted and then
evaluated according to Eq. 1.

767 frames long. The frontal videos have a high amount of
salt and pepper noise as well as equipment noise while the
lateral videos are relatively noise free. In order to evaluate
the quality of the videos, we calculated the average value
of SNR (signal-to-noise-ratio) across all video frames (4.8db
and 18.db for the frontal and lateral cases respectively). Typ-
ical frames from both lateral and frontal annotated videos are
shown in Fig. 4a and 4c.

Three frontal video (717 frames) and two lateral videos
(1534 frames) were annotated by three human annotators
independently. The degree of agreement between the three
human annotators is higher than 95% on average, therefore
the annotation is reliable to be used for training and testing
purposes.

B. PIPELINE DETAILS
1) MOTION TUBES GENERATION
We have experimented with a tube depth of 9 frames (75 ms).
The size of the superpixels is controlled by N (number
of superpixels in a frame). To construct the motion tubes,
we extracted a 61 × 61 patch centered on each superpixel
and we resized it to 41 × 41 pixels. The tubes can only be
generated once we have traversed at least Dcnn frames of
the video, so with a video length of 239 frames, Dcnn = 9,
N = 100 we will have a total of 230 × 100 tubes, and the
resulting data will have dimensions 41× 41× 9× 23000.

2) BUILDING MOTION SEQUENCES FROM FEATURES
EXTRACTED BY CNN
We trained a CNN on the motion tubes with an input layer,
4 hybrid layers, a dropout layer (ratio = 0.5), a fully con-
nected layer with 64 elements and a regression layer. The
hybrid layers consist of a convolutional layer, a reLu layer,

a batch normalization layer and an average pooling layer with
following parameter values.

Once trained, we used the CNN as a feature extractor.
We applied it to each motion tube and kept only the 64
features extracted by the fully connected layer. These fea-
tures contain appearance and temporal information from each
superpixel.

3) LIMBS DETECTION BY LSTM
The features generated by the CNN are used to create motion
sequences for the LSTMs with Dlstm = 15 (15 features-
vectors-deep sequences). Hence, a superpixel is represented
by 15 spatio-temporal feature vectors of length 64 each (Lf =
64) stacked together in a chronologically ordered temporal
sequence. So for a video of 239 frames, with a motion tube
depth of 9 frames and motion sequence depth of 15 frames,
the first motion sequence will be available after 24 frames
which will leave 239−24 = 215 frames. With 100 superpix-
els in each frame, feature length of 64 and motion sequence
depth of 15, we will end up with a training data of 15× 64×
21500 motion sequences. We trained an LSTM with 6 layers
(input, three layers with 64, 32, and 16 cells, a fully connected
and a regression layer). The input to the LSTM is a motion
sequence Mi,j (generated by each superpixel j in frame i)
and the output is the amount of limb-ness (a value between
0 and 1, describing our confidence on a given superpixel to
belong to a limb) calculated by equation 1. To obtain a binary
mask, we simply apply a threshold (0.5). It is to be noted
that at the training stage, we clipped all the target values
below 0.1 to 0, but we keep the clipping threshold at 0.5 at
inference stage to reduce the probability of false positives.
All the superpixels with a limb-ness value greater than this
threshold are considered to be parts of limbs.
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FIGURE 4. A sample frame with limbs annotated from a lateral video.

C. EXPERIMENTS
To evaluate the effectiveness of proposed pipeline, we per-
formed the experiments on both frontal videos and lateral
videos in three settings:

1) SETTING 1
We trained the proposed pipeline on one video (239 training
frames for frontal videos and 767 training frames for lateral
videos) and tested it on the other video (2 videos in frontal
settings with 478 frames and one video in lateral setting with
767 frames).

2) SETTING 2
We trained the proposed pipeline on 30% of the available
frames and tested it on remaining 70% frames. This translates
to 217 training frames for frontal videos (239 frames per
video, 3 videos, 717 total frames, 217 for training and 500 for
testing) and 460 training frames for lateral videos (767 frames
per video, 2 videos, 1534 total frames, 460 for training and
1074 for testing).

3) SETTING 3
In setting 3, we trained the proposed pipeline on 10% of the
available frames and tested it on remaining 90% frames. This
translates to 72 training frames for frontal videos (239 frames
per video, 3 videos, 717 total frames, 72 frames for training
and 645 for testing) and 154 training frames for lateral videos
(767 frames per video, 2 videos, 1534 total frames, 154 for
training and 1380 for testing).

V. RESULTS
We conducted both qualitative and quantitative analysis of
the proposed pipeline. For qualitative analysis, we superim-
posed detection results for limbs onto the original videos. The
videos can be found in supplementary and multimedia data
associated with the article. For quantitative analysis, we cal-
culated the precision (TP/(TP+FP)), recall (TP)/(TP+FN ),
detection accuracy (TP + TN )/(TP + TN + FP + FN ) and
Jaccard Index [30]. In frame Ii, the limb is represented by
mask ILi and the detected limb is represented by mask IL

∗

i ,

TABLE 3. Performance for lateral videos in settings 1-3.

then the Jaccard Index is defined as:

Ji =
ILi ∩ I

L∗
i

ILi ∪ I
L∗
i

(2)

If the Jaccard Index is higher than a threshold (0.5 for all
the settings in this paper), we conclude we have detected the
limb, and vice versa.

A. LATERAL VIDEOS
A sample of an annotated frame from lateral videos is
depicted in Fig. 4a. The corresponding detection results are
overlaid on a sample frame in Fig. 4b. In order to understand
the impact of the number of frames used for training the
pipeline, we conducted experiments with lateral videos in
the three settings described above. Particularly, in setting
one, we used one video for training and one video for test-
ing (767 frames for training and 767 frames for testing or
6.3 seconds of video for training and 6.3 seconds for test-
ing). In the second setting, we used 30% frames for training
and 70% frames for testing (460 frames for training and
1074 frames for testing or 3.8 seconds of video for training
and 8.9 seconds for testing). In the third setting, we used 10%
frames for training and 90% frames for testing (154 frames
for training and 1380 frames for testing or 1.3 seconds of
video for training and 11.5 seconds for testing). The results
for these three settings are summarized in table 3.

B. FRONTAL VIDEOS
Compared to the lateral videos, frontal videos contain a
higher amount of noise (both salt and pepper and equipment
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TABLE 4. Performance for frontal videos in settings 1-3.

noise) and present more occlusion of the limbs. Therefore,
limbs are not always identifiable from the body or back-
ground. For this reason, the detection and tracking perfor-
mance are worse than in the case of lateral videos. A sample
annotated frame is shown in Fig. 4c while Fig. 4d shows the
detection results for a predicted segmentation overlaid on the
original frame. The quantitative results for settings 1, 2 and 3
(as described above) are shown in table 4.
As evident from tables 3, and 4, the detection performance

does drop as we reduce the number of training samples.
However, the drop in performance is moderate with respect
to the reduction in the number of samples (A maximum drop
of 8.1% in accuracy for lateral videos while a maximum drop
of 4.2% in accuracy for frontal videos against a 60% drop of
number of training samples).

C. TRACKING PRECISION EVALUATION
To evaluate the tracking performance of the proposed pipeline
with respect to state-of-the-art methods, we computed the
centroids of the front left limb in frontal videos and hind right
limbs in lateral videos in both manually annotated (Ground
Truth) and predicted frames.We compared them qualitatively
by plotting the annotated and actual tracks side by side
and then compared them quantitatively by finding the mean
distance between the manually annotated and the predicted
positions (centroids) according to equation 3.

Dpi =
√
(xcG − x

c
P)

2 + (xcG − y
c
P)

2 (3)

where xcG and ycG are the coordinates in the ground truth
frames and xcP and ycP are the coordinates in the predicted
frames. We found that the manually annotated and predicted
limbs are separated on average by 3.84 pixels in frontal videos
and 2.24 pixels in lateral videos. We compared the lateral
video results with the Haar cascades method defined in [16].
The separation grows to 9.5 pixels.

We also compared the performance of our approach with
more accurate approaches: the Deeplabcut method pro-
posed in [31] and the DeepPoseKit software toolkit [32].
This recent open software addresses the speed and robust-
ness problems in animal pose estimation tasks. Authors
employ two efficient multi-scale deep-learning models,

FIGURE 5. Actual path and path predicted by our approach and
DeepLabcut [31] of front left limb in a frontal video. The path is
calculated by finding centroids of the front left limb in each frame and
then plotting its y coordinate against its x coordinate.

FIGURE 6. Actual path and path predicted by our approach and
DeepLabcut [31] of hind right limb in a lateral video. The path is
calculated by finding centroids of hind right limb in each frame and then
plotting its y coordinate against its x coordinate.

TABLE 5. Tracking mean squared error of the trajectories in the frontal
and lateral settings.

called Stacked DenseNet and Stacked Hourglass, and a fast
GPU-based peak-detection algorithm for estimating keypoint
locations with subpixel precision. Authors report similar level
of accuracy as of the contemporary methods with a signif-
icant speedup. To make the comparison fair, we trained the
Deeplabcut and DeepPoseKit on the same videos. The mean
distance between the Deeplabcut obtained coordinates and
the ground truth centroids was 5.5 pixels in the frontal videos
and 6.35 pixels in the lateral videos. Similarly, the best per-
forming DeepPoseKit instance (Stacked Hourglass) obtained
3.97 and 5.39 mean distance respectively. In Figures 5 and 6
we plot the limb tracks in both experiments, and Table 5
summarizes the results of the tracking precision experiments.

VI. CONCLUSION AND FUTURE WORK
We have proposed a deep learning-based solution to anno-
tate behavioral data. In a typical behavioral neuroscience
data set, researchers aim to identify limbs in every frame.
Conventional techniques rely on a frame by frame image
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segmentation or object detection. Our approach is based on
the notion that limbs are regions of the frames which fea-
ture specific and learnable spatio-temporal characteristics.
We defined the notion of motion tubes and motion sequences,
that use compact representations (superpixels) to simultane-
ously extract appearance and temporal features on videos.
We used features learned by training a CNN for a segmen-
tation task instead of hand crafted approaches. We obtained
promising results on two different acquisition conditions
(lateral and frontal videos) and under different noise patterns.

We have developed this approach under the assumption
that the nimal, in this case the mouse, is head-fixed. There-
fore, for our approach to work in freely moving animals,
additional steps need to be included.

To further enhance the effectiveness of the proposed
approach, future work can be undertaken in the following
directions:
• Building of motion tubes by a locally trained network
instead of using optical flow.

• Perform Tube depth and width parameter optimization.
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