3 research outputs found

    Observing Sea States

    Get PDF
    Sea state information is needed for many applications, ranging from safety at sea and on the coast, for which real time data are essential, to planning and design needs for infrastructure that require long time series. The definition of the wave climate and its possible evolution requires high resolution data, and knowledge on possible drift in the observing system. Sea state is also an important climate variable that enters in air-sea fluxes parameterizations. Finally, sea state patterns can reveal the intensity of storms and associated climate patterns at large scales, and the intensity of currents at small scales. A synthesis of user requirements leads to requests for spatial resolution at kilometer scales, and estimations of trends of a few centimeters per decade. Such requirements cannot be met by observations alone in the foreseeable future, and numerical wave models can be combined with in situ and remote sensing data to achieve the required resolution. As today's models are far from perfect, observations are critical in providing forcing data, namely winds, currents and ice, and validation data, in particular for frequency and direction information, and extreme wave heights. In situ and satellite observations are particularly critical for the correction and calibration of significant wave heights to ensure the stability of model time series. A number of developments are underway for extending the capabilities of satellites and in situ observing systems. These include the generalization of directional measurements, an easier exchange of moored buoy data, the measurement of waves on drifting buoys, the evolution of satellite altimeter technology, and the measurement of directional wave spectra from satellite radar instruments. For each of these observing systems, the stability of the data is a very important issue. The combination of the different data sources, including numerical models, can help better fulfill the needs of users

    Towards an Integrated Assessment of Sea-Level Observations Along the U.S. Atlantic Coast

    Get PDF
    Sea levels are rising globally due to anthropogenic climate change. However, local sea levels that impact coastal ecosystems often differ from the global trend, sometimes by a factor of two or more. Improved understanding of this regional variability provides insights into geophysical processes and has implications for coastal communities developing resilience to ongoing sea-level rise. This dissertation conducts an investigation of sea level and its contributing processes at multiple spatial scales. Focusing on primarily interannual time-scales and data-driven approaches, new data sources and technologies are utilized to reduce current uncertainties. First, sea-level trends are assessed over the global ocean and at coastlines using data from the recently launched ICESat-2 satellite. These trends agree well with independent measurements, while also filling observational gaps along undersampled coastlines and at high-latitudes. Next, the spatial focus is narrowed to the U.S. East Coast, which is experiencing exceptionally high rates of relative sea-level rise, largely due to land subsidence. By incorporating new state-of-the-art estimates of land-ice melt, an existing Bayesian hierarchical space-time model is expanded to assess the relative contributions of sea surface height and vertical land motion to 20th century relative-sea level change. Model results confirm previous findings that identified regional-scale geological processes as the primary driver of spatial variability in East Coast relative sea level. By rigorously quantifying uncertainties, constraints are placed on the current state of knowledge with clear directions for future research. Finally, small-scale vertical land motion in Hampton Roads, VA is investigated using the remote-sensing technology of Interferometric Synthetic Aperture Radar (InSAR). Two different data sources and processing strategies are implemented which independently reveal substantial rates of vertical land motion that vary over short spatial scales. The results highlight the importance of vertical land motion in exacerbating negative impacts of relative sea-level rise such as flooding and inundation. Overall, this study leverages new spaceborne sensors, an innovative statistical model, and state-of-the-art processing strategies to enhance our understanding of ongoing sea-level change

    Machine learning tools for pattern recognition in polar climate science

    Get PDF
    This thesis explores the application of two novel machine learning approaches to the study of polar climate, with particular focus on Arctic sea ice. The first technique, complex networks, is based on an unsupervised learning approach which is able to exploit spatio-temporal patterns of variability within geospatial time series data sets. The second, Gaussian Process Regression (GPR), is a supervised learning Bayesian inference approach which establishes a principled framework for learning functional relationships between pairs of observation points, through updating prior uncertainty in the presence of new information. These methods are applied to a variety of problems facing the polar climate community at present, although each problem can be considered as an individual component of the wider problem relating to Arctic sea ice predictability. In the first instance, the complex networks methodology is combined with GPR in order to produce skilful seasonal forecasts of pan-Arctic and regional September sea ice extents, with up to 3 months lead time. De-trended forecast skills of 0.53, 0.62, and 0.81 are achieved at 3-, 2- and 1-month lead time respectively, as well as generally highest regional predictive skill (>0.30> 0.30) in the Pacific sectors of the Arctic, although the ability to skilfully predict many of these regions may be changing over time. Subsequently, the GPR approach is used to combine observations from CryoSat-2, Sentinel-3A and Sentinel-3B satellite radar altimeters, in order to produce daily pan-Arctic estimates of radar freeboard, as well as uncertainty, across the 2018--2019 winter season. The empirical Bayes numerical optimisation technique is also used to derive auxiliary properties relating to the radar freeboard, including its spatial and temporal (de-)correlation length scales, allowing daily pan-Arctic maps of these fields to be generated as well. The estimated daily freeboards are consistent to CryoSat-2 and Sentinel-3 to within <1< 1 mm (standard deviations <6< 6 cm) across the 2018--2019 season, and furthermore, cross-validation experiments show that prediction errors are generally ≤4\leq 4 mm across the same period. Finally, the complex networks approach is used to evaluate the presence of the winter Arctic Oscillation (AO) to summer sea ice teleconnection within 31 coupled climate models participating in phase 6 of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP6). Two global metrics are used to compare patterns of variability between observations and models: the Adjusted Rand Index and a network distance metric. CMIP6 models generally over-estimate the magnitude of sea-level pressure variability over the north-western Pacific Ocean, and under-estimate the variability over the north Africa and southern Europe, while they also under-estimate the importance of regions such as the Beaufort, East Siberian and Laptev seas in explaining pan-Arctic summer sea ice area variability. They also under-estimate the degree of covariance between the winter AO and summer sea ice in key regions such as the East Siberian Sea and Canada basin, which may hinder their ability to make skilful seasonal to inter-annual predictions of summer sea ice
    corecore