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Abstract

This thesis explores the application of two novel machine learning approaches to the
study of polar climate, with particular focus on Arctic sea ice. The first technique,
complex networks, is based on an unsupervised learning approach which is able to
exploit spatio-temporal patterns of variability within geospatial time series data
sets. The second, Gaussian Process Regression (GPR), is a supervised learning
Bayesian inference approach which establishes a principled framework for learning
functional relationships between pairs of observation points, through updating prior
uncertainty in the presence of new information. These methods are applied to a
variety of problems facing the polar climate community at present, although each
problem can be considered as an individual component of the wider problem relating
to Arctic sea ice predictability.
In the first instance, the complex networks methodology is combined with GPR in
order to produce skilful seasonal forecasts of pan-Arctic and regional September
sea ice extents, with up to 3 months lead time. De-trended forecast skills of 0.53,
0.62, and 0.81 are achieved at 3-, 2- and 1-month lead time respectively, as well as
generally highest regional predictive skill (> 0.30) in the Pacific sectors of the Arctic,
although the ability to skilfully predict many of these regions may be changing over
time.
Subsequently, the GPR approach is used to combine observations from CryoSat-2,
Sentinel-3A and Sentinel-3B satellite radar altimeters, in order to produce daily
pan-Arctic estimates of radar freeboard, as well as uncertainty, across the 2018–2019
winter season. The empirical Bayes numerical optimisation technique is also used to
derive auxiliary properties relating to the radar freeboard, including its spatial and
temporal (de-)correlation length scales, allowing daily pan-Arctic maps of these fields
to be generated as well. The estimated daily freeboards are consistent to CryoSat-2
and Sentinel-3 to within < 1 mm (standard deviations < 6 cm) across the 2018–2019
season, and furthermore, cross-validation experiments show that prediction errors
are generally ≤ 4 mm across the same period.
Finally, the complex networks approach is used to evaluate the presence of the
winter Arctic Oscillation (AO) to summer sea ice teleconnection within 31 coupled
climate models participating in phase 6 of the World Climate Research Programme
Coupled Model Intercomparison Project (CMIP6). Two global metrics are used to
compare patterns of variability between observations and models: the Adjusted Rand
Index and a network distance metric. CMIP6 models generally over-estimate the
magnitude of sea-level pressure variability over the north-western Pacific Ocean, and
under-estimate the variability over the north Africa and southern Europe, while they
also under-estimate the importance of regions such as the Beaufort, East Siberian
and Laptev seas in explaining pan-Arctic summer sea ice area variability. They also
under-estimate the degree of covariance between the winter AO and summer sea ice
in key regions such as the East Siberian Sea and Canada basin, which may hinder
their ability to make skilful seasonal to inter-annual predictions of summer sea ice.





Impact statement

Concerted efforts have been made in recent decades to better understand how climate-
change-induced sea ice loss is manifested within the various regions which make up
the Arctic Ocean, and furthermore how these changes affect our ability to predict
the state of sea ice cover on time-scales ranging from a few days to a few years. This
sea ice prediction problem is multifaceted, and is an important area of research for
a variety of end-users including indigenous communities, industrial shipping and
coastal resupply vessels, as well as eco-tourism. The results presented in this thesis
represent contributions to this on-going area of research.
On the one hand, our ability to make reliable sea ice predictions depends on our
understanding of how different climatic processes combine together to drive sea ice
variability on different time-scales. Secondly, we require high-resolution data sets
relating to these different climatic processes in order to provide the best possible
observations for our forecast model to learn from in a statistical sense, and also to
initialise our model with, in a dynamical sense. Finally, our forecast model itself
must be sophisticated enough so that it can separate the key predictive patterns
from noise within our training data, and capture the large signature of variability
that exists within the observational sea ice record.
At the time of publication of the results presented in chapter 3, the outlined forecast
model had produced the highest forecast skill score of pan-Arctic September sea
ice extent anomalies (up to 3-month lead time), of any statistical or dynamical
model presented in the literature at that time. This model has also been used
each year since 2019 to provide periodic submissions of seasonal September sea ice
extent forecasts to the Sea Ice Prediction Network’s on-going Sea Ice Outlook (SIO)
program. The SIO is a community-led, platform which is constantly changing to
meet end-user needs, and combines individual sea ice forecasts to provide the most
probable picture of end-of-summer ice conditions, as well as better understanding
the drivers of inter-annual sea ice variability.
The results presented in chapter 4 outline the first observation-based daily estimates
of pan-Arctic radar freeboard, which can be considered the base product for deriving
sea ice thickness. This product could potentially be a big step forward for assessing
how synoptic scale weather patterns drive sea ice thickness variability on sub-weekly
timescales, and furthermore it could also provide an uplift to users of dynamical sea
ice forecast models and sea ice data assimilation systems, given that key predictive
information of the sea ice cover resides in its thickness distribution.
Finally, the results presented in chapter 5 provide critical information relating to
perhaps why the latest generation of coupled climate models fail to accurately reflect
one of the major atmospheric processes that drives summer sea ice variability, and
subsequently, why they under-perform at operational seasonal predictions of summer
Arctic sea ice, thus potentially bridging the gap between potential and operational
dynamical model forecasts.
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Chapter 1

Introduction

Over the past four decades, the inexorable growth in technology and subsequently the

availability of Earth-observation and model data has been unprecedented. With each

passing day, measurements from satellite, airborne, and ground-based missions extend

our observational record of the changes occurring across the various components of

the climate system, and technological advancements allow us to model numerous

realisations of the Earth’s climate, with increasingly high resolution and fidelity.

Hidden within these data are the fingerprints of the physical processes that govern

climate variability over a wide range of spatial and temporal scales, and it is the task

of the climate scientist to separate these patterns from noise. Given the wealth of

data now at our disposal, machine learning methods are becoming the tools of choice

in climate science for a variety of applications ranging from data assimilation, to sea

ice feature detection from space. In this thesis, the application of machine learning

methods to the study of polar climate is explored, with particular focus on Arctic

sea ice, however it is worth noting that the tools which will be presented are quite

generic and can, in principle, be applied to most geospatial time series data sets.

This chapter presents a general overview of Arctic sea ice, discussing recent and

projected changes, while taking insights from both observational and model data.

Chapter 2 then introduces the machine learning concepts which will be used in this

thesis, and furthermore outlines the research objectives pertaining to each subsequent

chapter.

1.1 Arctic sea ice

Arctic sea ice is a major component of the northern-hemisphere polar climate

system. Climatologically, it acts as a barrier which both reflects incoming solar

radiation (Light et al., 2008) and regulates the rate of energy exchange between the

1
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Figure 1.1: Map of the Arctic seas with the average seasonal maximum sea ice extent
(March) between 1979 and 2020 overlain in cream (15.3× 106 km2), and the average seasonal
minimum sea ice extent (September) between 1979 and 2020 overlain in blue (6.0× 106 km2).
Data from the National Snow and Ice Data Center (NSIDC; Cavalieri et al. 1996).

atmosphere and ocean (Maykut 1978; Kurtz et al. 2011), and furthermore acts to

re-circulate salt around the upper ocean (Toudal & Coon, 2001). Culturally, it is

an integral platform for travel and subsistence (Aporta 2009; Dammann et al. 2018;

Panikkar et al. 2018), and ultimately for maintaining strong relationships between

local communities and the surrounding landscape (Segal et al., 2020). Ecologically, it

provides a natural habitat for various endemic species (Moore & Huntington, 2008)

and is thought to play a crucial role in the efficiency of both primary (Stroeve et al.,

2021) and secondary (Sakshaug et al. 1994; Stirling 1997) productivity rates.

The launch of the Nimbus-7 NASA satellite in late 1978 was a remarkable step

forward for polar monitoring. Fitted with a multichannel microwave radiometer,

its ability to measure passive microwave emissions from orbit meant that, for the

first time, pan-Arctic (basin-wide) measurements up to 84.5◦ N of Arctic sea ice

concentration (the area fraction of sea ice for a given pixel) could be obtained every

two days (Cavalieri et al., 1996). This then advanced to daily observations up to 87.2◦

N in July 1987, and finally 89.18◦ N in January 2008 with the launch of the Defense

Meteorological Satellite Program (DMSP) F-8 and F-17 satellites respectively. This

has provided a continuous record of sea ice concentration, sea ice area (concentration

multiplied by pixel area), sea ice extent (generally defined as the sum of pixel areas

for which concentration values exceed 15%), and subsequently the dramatic seasonal

2



cycle of sea ice growth and retreat that occurs in the Arctic each year (see Figure

1.1). During this cycle, the ice cover shrinks to over half its winter extent each

summer, and grows to over twice its summer extent each winter, by a magnitude

which is primarily controlled by two opposing thermodynamic feedback mechanisms

that operate over either the spring–summer period, or autumn–winter period. As the

sun rises in the spring and atmospheric temperatures begin to increase, the Arctic

melt season begins. Incoming (short-wave) solar radiation is absorbed by the sea ice

and areas of open ocean, and the melting of snow on the top-surface of the sea ice

facilitates the formation of pools of surface melt water, known as melt-ponds. These

melt-ponds dramatically alter the surface-albedo characteristics of the sea ice, which

initiates a positive feedback mechanism as the lower-albedo melt-ponds are able to

absorb more short-wave radiation, which acts to precipitate increased melt until the

underlying ocean is exposed. This then leads to larger heat uptake by the ocean,

causing enhanced warming and further melt of sea ice from the bottom (Curry et al.,

1995). Following large summer sea ice melt events however, the timing of ice growth

is delayed (Markus et al., 2009), and subsequently the ocean is able to radiate more

heat to the atmosphere (Holland et al., 2011). When ice growth does begin, the new

ice is relatively thin, and so a stabilising negative feedback mechanism is established

by which the sea ice is able to grow more easily over winter (Notz & Bitz, 2017).

New sea ice which grows during this winter period, and which subsequently melts in

the following summer is known as first-year ice, whereas ice which persists through

the melt season is known as multi-year ice. Satellite-derived ice motion vectors allow

us to track the life cycle of sea ice as it circulates around the Arctic Ocean, thus

giving an indication of ice age (i.e., first-year or multi-year ice; Maslanik et al. 2011;

Tschudi et al. 2019). On long time-scales this dynamic ice circulation is primarily

driven by two major ocean currents that exist within the Arctic (Figure 1.2). These

include the Beaufort Gyre; an anticyclonic (clockwise) current which circulates large

quantities of freshwater around the western Arctic (Proshutinsky et al. 2009; Giles

et al. 2012) and simultaneously advects sea ice in and out of the Beaufort Sea (Kwok

et al. 2013; Petty et al. 2016a), and the Transpolar Drift Stream; an ocean current

which transports sea ice from the Eurasian seas out of the Fram Strait southward –

a passage where approximately 10% of the Arctic’s sea ice area budget inside the

Arctic basin is exported each year (Smedsrud et al., 2017). The strength of these

ocean currents is largely modulated by large-scale atmospheric pressure patterns,

which drive surface winds during different phases of the North Atlantic Oscillation

(Kwok, 2000), and subsequently the Arctic Oscillation (see section 1.1.3). Figure 1.3a

shows the average spatial distribution of autumn–spring Arctic sea ice age derived

from ice motion vectors, where we can see that the older multi-year ice (> 1 year)

is generally situated along the western Arctic, north of Greenland and within the

Beaufort and Chukchi seas, whereas first-year ice (< 1 year) generally makes up the
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Figure 1.2: The average circulation of Arctic Ocean surface currents between 2011 and
2020. These data contain a polar hole at ∼ 88◦ N, which the limit of coverage for this
particular satellite (CryoSat-2) due to its orbit inclination. Data from the Center for Polar
Observation and Modelling (CPOM; internally sourced).
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Figure 1.3: The average autumn–spring (October–April) Arctic (a) sea ice age and (b)
thickness between 2010/11 and 2019/20. Sea ice age and thickness data from NSIDC (Tschudi
et al., 2019) and the Alfred Wegener Institute (AWI; Ricker et al. 2017) respectively.
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Eurasian and peripheral seas. In Figure 1.3b we also notice how thicker ice generally

coincides with older multi-year ice and vice versa (Tschudi et al. 2016; Liu et al.

2020). In this example, the average autumn–spring thickness of multi-year ice between

2010/11 and 2019/20 was 2.2 metres, while first-year ice was 0.85 metres. Basin-wide

observations of sea ice thickness were made possible by the launch of satellite radar

and laser altimeters, beginning with the European Space Agency’s (ESA) ERS-1

and -2 radar altimeters in 1991, which provided thickness estimates up to 81.5◦ N

(e.g., Laxon et al. 2003). Since then, several altimeters have been instrumental in

advancing the spatio-temporal availability of thickness observations, to the current

date where basin-wide estimates are available up to 88◦ N for each month between

October and April (see section 4.1 for further details).

1.1.1 Recent trends and variability

After the formation of the Intergovernmental Panel on Climate Change (IPCC)

in 1988, a worldwide collaborative initiative began, with a focus on improving our

understanding of Earth’s climate system, as well as the rate and scale of climate

change and its possible drivers. Research facilities from around the globe periodically

provide evidence based on observational data and model studies, which are then

collated into a series of assessment reports e.g., AR4 (Solomon et al., 2007), AR5

(Stocker et al., 2013), and AR6 (Arias et al., 2021), which summarise the changes

occurring across the various components of the climate system. This section outlines

some of the key changes in the Arctic sea ice cover that have occurred over recent

decades, taking particular examples from observational data sets.

Figure 1.4 shows the daily evolution of pan-Arctic sea ice extent between 1979

and 2020, along with the long-term trend associated with each day. Noticeably, the

observed trend across all days is negative, meaning that the Arctic sea ice cover has

been diminishing over the past four decades. The largest rate of decline is seen in

the summer and autumn months, with an average maximum trend of ∼ −84, 000

km2 per year in October, and the smallest rate of decline in May (∼ −36, 000 km2

per year). Looking at the regional and seasonal patterns of sea ice concentration

trends (Figure 1.5), we see that sea ice is in decline in nearly all regions of the Arctic

(for trends with a magnitude larger than 0.5% per year), and for all seasons. The

dominant regions of winter–spring sea ice loss have occurred in the Sea of Okhotsk,

Bering, Labrador, Barents and Greenland seas, and in summer–autumn the Beaufort,

Chukchi, East Siberian, Kara and Laptev seas. Previous studies (Onarheim et al.

2018; Stroeve & Notz 2018) analysed regional trends in March and September sea

ice extent, and found that September trends in the East Siberian Sea explain as

much as 27% of the total trend in pan-Arctic September sea ice extent, and that

the March trends in the Sea of Okhotsk and Barents Sea together explain 54% of
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Figure 1.4: Daily pan-Arctic sea ice extent between 1979 and 2020. The shaded region
represents the trend in sea ice extent for each day of the year. Data from NSIDC (Fetterer
et al., 2017).
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Figure 1.5: Linear trends in sea ice concentration between 1979 and 2020, for each season.
Winter = December–March; spring = April–May; summer = June–September; autumn =
October–November. Data from NSIDC (Cavalieri et al., 1996).
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Figure 1.6: Z-score of pan-Arctic sea ice extent anomalies between 1978 and 2021. Plot
updated from Stroeve & Notz (2018). Data from NSIDC (Fetterer et al., 2017).

the total trend in pan-Arctic March sea ice extent. Furthermore, relative to the

period 1979–1989, regions such as the East Siberian, Kara, Laptev, Chukchi seas,

and Hudson Bay have lost over 80% of their September sea ice cover, while areas

such as the Barents Sea and Sea of Okhostk have lost almost 50% and 30% of their

March ice cover respectively (Stroeve & Notz, 2018).

Sea ice extent also exhibits significant inter-annual variability. The year 2007 for

example was record-breaking in terms of its anomalously low summer (September) sea

ice cover, falling 2.5 standard deviations below the 1981–2010 long-term mean, which

was then broken in September 2012 by an extent which fell 3 standard deviations

below the mean (Stroeve & Notz, 2018). Despite this, the sea ice cover made

remarkable recoveries in the following years, falling 2 and 1.5 standard deviations

below the 1981–2010 mean in September 2008 and 2013 respectively (Figure 1.6).

Figure 1.6 is an updated version of the analysis presented by Stroeve & Notz (2018),

which shows the number of standard deviations (i.e., Z-score) that each monthly

mean pan-Arctic sea ice extent value fell above or below the 1981–2010 reference

mean, for all years between 1978 and 2021. The largest deviation from the long-term

average to date was in October 2020, for which sea ice extent fell over 3.7 standard

deviations below its 1981–2010 mean. Regionally, Onarheim et al. (2018) showed

that the Beaufort, Chukchi, East Siberian, Laptev and Kara seas together explain
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Figure 1.7: Linear trends in the date of (a) melt onset and (b) freezeup, and (c) the length
of the melt seasonal (freezeup − melt onset) between 1979 and 2017. Data from NSIDC
(Steele et al., 2019).

88% of the inter-annual variability in pan-Arctic September sea ice extent between

1950 and 2013, and the Sea of Okhotsk, Baffin Bay, Barents and Greenland seas

explain 86% of the inter-annual variability in pan-Arctic March sea ice extent over

the same period – chapters 3 and 5 take a closer look at the spatio-temporal patterns

of inter-annual sea ice variability.

Seasonal changes in the ice cover also include a lengthening of the Arctic melt season

(Markus et al. 2009; Stroeve et al. 2014a; Bliss & Anderson 2014). Figure 1.7 shows

trends associated with the date of sea ice melt onset, freezeup and subsequently the

length of the melt period between 1979 and 2017 (negative trends indicate the event

at a given pixel, e.g., melt onset, is occurring earlier, and positive trends indicate the

event is occurring later). On average we can see that melt onset is occurring earlier

in the year, with an average trend of approximately −3 days per decade, and that

the date of ice-freezeup is occurring later, with an average trend of approximately

+7 days per decade. This has resulted in an overall lengthening of the melt season

by approximately +10 days per decade. Some of the largest trends have occurred in

the Barents Sea, with average trends of roughly −8, +15, and +23 days per decade

for the date of melt onset, freezeup, and the length of the melt season respectively.

While observations of sea ice thickness are sparse in space and time, Kwok (2018)

collated a wide array of observational data sets spanning 1958–2018, including in-situ

buoy data, upward-looking sonar, and satellite altimetry and scatterometer data

to deduce regional trends in sea ice thickness, volume, and age. They found that

Arctic sea ice has undergone basin-wide thinning over this period, having lost over

50% of its multi-year ice cover since 1999, whilst also reporting downward trends in

winter ice volume between 2003–2018 of almost −3000 km3 per decade (Kwok, 2018).

Figure 1.8 shows trends in winter sea ice age between 1984–2020, where the largest

trends occur in the Canada basin, reaching magnitudes as high as −2.7 years per
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Figure 1.8: Linear trends in winter (December–March) sea ice age within the Arctic Ocean
between 1984 and 2020 (left), and the cumulative percentage of sea ice within the Arctic
Ocean belonging to each age category, in years (right). Plot inspired by Stroeve & Notz
(2018). Data from NSIDC (Tschudi et al., 2019).

decade. We also notice the relative proportion of winter sea ice older than 5 years

has reduced from over 30% in the 1980s, to now less than 2%, and that the Arctic

has shifted to a predominantly seasonal ice cover, with approximately 80% of ice

now being less than 1 year old.

1.1.2 Drivers of sea ice trends

Deducing the drivers behind observed changes in any component of the climate

system requires careful consideration of cause and effect. While causal inference

methods can in some cases elucidate physical drivers (e.g., Runge et al. 2019a), such

approaches generally do not take into account physical laws, and so one must make

certain that any analysis components are not confounded (i.e., there is not some

unknown ‘third-party’ variable driving the relationship we see between two or more

other variables), and also that the direction of causality is clearly understood (Pearl &

Mackenzie, 2018). Climate models offer a natural pathway to studying causality as we

can control for the influence of a given process when performing a particular climate

simulation, and then assess any changes in subsequent experiments by allowing for

its influence. One common example which has been highlighted in previous IPCC

assessment reports is whether the increase in anthropogenic (human-produced) CO2

emissions since the pre-industrial era has directly caused global surface temperatures

to increase. This has been tested in climate models by controlling for this anthro-

pogenic forcing and assessing the evolution of surface temperature anomalies between

1850 and the present day (e.g., Gillett et al. 2021). Figure 1.9 illustrates this by
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Figure 1.9: Evolution of global mean surface temperature anomalies relative to the period
1880–1919, under natural forcing conditions (left) and natural + anthropogenic CO2 forcing
(right). The shaded teal region represents the range of uncertainty projected by individual
model runs from CMIP6. The pale green line represents the multi-model mean. Observations
from the Met Office Hadley Centre (HadCRUT5; Morice et al. 2021).

taking a number of model runs from 20 of the latest generation of climate models

submitted to phase 6 of the World Climate Research Programme (WCRP) Coupled

Model Intercomparison Project (CMIP6; Eyring et al. 2016), where we notice that

the natural forcing scenario alone (Figure 1.9 left) cannot explain the increasing

trend in global mean surface temperature anomalies seen in the observational data –

note that natural forcing implies that atmospheric CO2 concentrations only change

through natural processes such as changes in incoming solar radiation and volcanic

activity. On the other hand, when models also take into account the anthropogenic

forcing (Figure 1.9 right), they are, on average, able to reproduce the observed trends.

Subsequent analysis of this result in AR6 recently led to the conclusion that “it

is unequivocal that human influence has warmed the global climate system since

pre-industrial times.” (IPCC, 2021).

In the context of Arctic air temperatures, warming has occurred at over twice the

rate of the global average (Serreze & Francis 2006; Screen & Simmonds 2010), and

seasonally, lower troposphere temperatures have increased by at least four times

as much in winter as they have in summer (Bintanja & Van der Linden, 2013).

This Arctic amplification is thought to be due to changes in the surface albedo

characteristics over the Arctic, caused by the continued sea ice decline, as well as

other factors including (but not limited to) increased cloud cover (Kay & L’Ecuyer

2013; Jun et al. 2016), atmospheric heat transport to the Arctic (Zhang et al., 2008),

and downwelling longwave radiation from increased CO2 emissions (Notz & Stroeve,

2016) – see also Stroeve & Notz (2018) for further details. This warming pattern

over the Arctic is directly correlated with increased sea ice loss in both observations

and models (e.g., Gregory et al. 2002; Stroeve & Notz 2015), which indirectly points

to the increase in anthropogenic CO2 emissions being the primary driver of sea ice

loss over the last century. From these findings, Notz & Stroeve (2016) regressed
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cumulative CO2 emissions against observed September sea ice area and found that

each metric ton of CO2 released to the atmosphere corresponds to approximately

3 ± 0.3 m2 of sea ice loss in September. A further study by Niederdrenk & Notz

(2018) framed this in the perspective of global mean surface temperatures, and found

that each 1◦C of temperature increase corresponds to between 3 and 4 million km2

of sea ice loss in summer.

Another factor which can cause changes in Earth’s climate is internal variability,

i.e., natural changes as a result of the chaotic nature of the interactions between

different components of the climate system that occur in the absence of any radiative

forcing (Hawkins & Sutton, 2009). This variability can therefore act to augment

or suppress any underlying trends caused by anthropogenic forcing, particularly on

shorter time-scales (Swart et al. 2015; Notz 2015). For example, in terms of global

surface temperature anomalies, IPCC (2021) concluded that the contribution of

internal variability to the temperature trends between 1850–2019 was likely between

−0.2◦C and 0.2◦C, and as such the warming trend cannot be explained by internal

variability alone. On the other hand, Ding et al. (2017) estimated that between

30–50% of the trend in September sea ice area can be explained by internal variability,

and Notz (2017) stated that the trends in sea ice decline between 2003–2012 were

amplified by rapid ice loss events such as September 2007, which are considered to

be extreme events compatible with internal variability.

Sea ice loss into the 21st century Much recent attention has gone into estimating

the approximate point at which the Arctic will become seasonally ice-free1 (e.g.,

Stroeve et al. 2007; Jahn 2018; Notz & Community 2020; Årthun et al. 2021) as

atmospheric temperatures continue to increase and the ice cover continues to thin and

retreat. In the context of CO2 emissions, Notz & Stroeve (2016) estimated that the

Arctic is likely to become ice-free between August and September, with an additional

800± 300 Gt of anthropogenic CO2 emissions, and furthermore ice-free between July

and October with an additional 1400± 300 Gt of CO2. In terms of an ice-free date,

climate models are the obvious tool of choice for constraining the uncertainty in future

projections. In the previous section, internal variability was highlighted as one of the

major sources of uncertainty in short-term climate predictions, however possibly the

largest uncertainty in long-term (e.g., 50–100 year) future projections comes from

the uncertainty in future anthropogenic CO2 emissions; commonly referred to as

scenario uncertainty2. In the IPCC assessment report AR5, this uncertainty was

described in terms of the amount of radiative forcing (in Wm−2) that the Earth

will experience by the year 2100, with model experiments outlining three major

1Ice-free conditions generally refers to less than 1 million km2 of ice area.
2A third factor which also contributes to model uncertainty and which dominates over decadal

time scales is the response of a given model to climate fluctuations due to model physics; often
referred to as response uncertainty. See Figure 2 of Hawkins & Sutton (2009).
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Figure 1.10: March (left) and September (right) sea ice area evolution between 1950 and
2100 from 30 CMIP6 models following different shared socioeconomic pathways (SSPs).
The solid lines correspond to the mean across all model ensembles, and the shaded areas
correspond to ±1 standard deviation around the mean. The number of ensembles used to
generate each curve is given in the parentheses in the plot legend. The dashed horizontal line
corresponds to ‘ice-free’ conditions (1× 106 km2). Plot adapted from Notz & Community
(2020).

scenarios, or Representative Concentration Pathways (RCPs): RCP2.6, RCP4.5, and

RCP8.5 (Van Vuuren et al., 2011). The development of these scenarios however, is

an on-going process, with RCPs just the first stage. In AR6, model projections from

CMIP6 now follow the next phase of emissions scenarios, which have been termed

Shared Socioeconomic Pathways (SSPs; O’Neill et al. 2014). As well as environmental

changes, SSPs aim to incorporate changes in societal factors including governance,

technology and demographic changes, and furthermore describe how society adapts

to and/or mitigates the effects of climate change. The current SSPs range from 1 to

5, where SSP1 is considered a sustainable future with increased emphasis on human

well-being and consumption oriented towards low material growth, while in SSP5

social and economic growth are tied to continued fossil-fuel development, such that

energy-intensive lifestyles expand across the globe (see Riahi et al. 2017 for further

details). To allow for consistency between previous assessment reports, these SSPs

have been integrated with RCPs, with some example scenarios given as: SSP1-2.6,

SSP2-4.5, and SSP5-8.5 (Van Vuuren et al., 2014).

Figure 1.10 shows the evolution of pan-Arctic sea ice area between 1950 and 2100

for the months of March and September, from 30 different models submitted to

CMIP6. In terms of September sea ice, we can see that on average the models report

that the Arctic will be seasonally ice-free by the middle of the 21st century, albeit

with significant uncertainty. In fact, Jahn (2018) stated that the uncertainty on

ice-free dates can be as large as 6 decades in the lower forcing scenarios owing to

enhanced internal variability, and also in the same study showed that limiting the

degree of surface warming from 2◦C to 1.5◦C could reduce the probability of ice-free

summers in 2100 from 100% to 30%. In the March panel in Figure 1.10, the ice

cover survives until the end of the century for SSP1-2.6 and 2-4.5, although shows
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significant decline between ∼2060–2100 for SSP5-8.5.

1.1.3 Drivers of sea ice variability

Predicting the state of the Arctic sea ice cover on time-scales ranging from a few

days to a few years can be equally as much of a challenge as modelling its long-term

evolution into the 21st century, and ultimately hinges upon our understanding of

the various physical processes that occur on different time-scales, but function in

a combined way to produce the eventual state of sea ice. These processes can be

generally categorised into the following:

• A long-term external driver (e.g., anthropogenic CO2 emissions) which impacts

many aspects of the cryosphere (Hanna et al. 2012; Mernild et al. 2013; Notz

& Stroeve 2016).

• Annual- to sub-seasonal (> 1 year to < 2 months) scale mechanistic drivers

that contain some level of predictability, including: snow cover (Romanovsky

et al. 2010; Crawford et al. 2018), spring-time humidity (Kapsch et al., 2013),

melt-ponds (Schröder et al., 2014), atmospheric pressure patterns (Cohen et al.

2014, 2020), and sea-surface temperatures (Venegas & Mysak 2000; Vinje 2001;

Balmaseda et al. 2010; Zhang 2015).

• Chaotic events with predictability similar to that of weather (on the order of 2

weeks), e.g., the Great Arctic Cyclone of 2012 (Overland et al., 2012).

Chapters 3 and 5 of this thesis focus on the inter-annual patterns of sea ice variability,

and subsequently explore seasonal mechanisms for sea ice predictability. These

mechanisms are often referred to as teleconnections in the climate science community,

and can be considered as significant correlations between different components of the

climate system over a wide range of spatial and temporal scales (Wallace & Gutzler,

1981). Specifically, the mechanism of sea ice persistence is utilised in chapter 3 to

explore seasonal sea ice forecasting of the September sea ice minimum. Persistence

refers to an inherent memory of sea ice extent/area anomalies whereby anomalies

of the same sign recur, generally over a period of a few months – or even up to a

year when considering thickness or volume persistence (Guemas et al., 2016). This

is illustrated in Figure 1.11 by computing lagged correlations of pan-Arctic sea ice

extent anomalies for each month of the year, where we notice the high degree of

correlation in the first few leading months. What is also noticeable is that, after the

point of maximum correlation loss (marked by the crosses), there is a re-emergence

pattern (circles), at which point correlations begin to increase. For initial months in

spring, there is a loss of correlation over the summer and a re-emergence of correlation

in the proceeding autumn, and vice versa for autumn anomalies through winter.
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Figure 1.11: Lagged correlations (persistence) of pan-Arctic sea ice extent anomalies
between 1979 and 2020. Lead refers to moving forwards in time, hence lead 1 for the initial
month of January refers to the correlation between January and the proceeding February.
Crosses denote the point of maximum de-correlation for each initial month, and the circles
the point of re-emergence (see main text). Data from NSIDC (Fetterer et al., 2017).

This sea ice re-emergence feature occurs due to the sea ice cover ‘imprinting’ spring

anomalies of the opposite sign in sea-surface temperatures around the location of the

ice edge, which then persist through the summer and are returned to the sea ice as

it grows in autumn – and similarly for autumn-to-spring/summer re-emergence (see

Blanchard-Wrigglesworth et al. 2011 and Day et al. 2014 for further details).

In chapter 5, the role of large-scale winter atmospheric pressure patterns in driving

the inter-annual variability of summer sea ice area is explored. Related to this

pressure pattern is a feature known as the Arctic Oscillation (AO; Thompson &

Wallace 1998), which corresponds to the leading mode of variability (see section 2.3.1)

in mean sea-level pressure data north of 20◦ N. Previous studies (Rigor et al. 2002;

Williams et al. 2016) have highlighted the pathway which connects the winter AO to

summer sea ice as follows: a positive winter AO (anomalously low mean sea-level

pressure) is coincident with (a) a weakening of the Beaufort Gyre, which reduces

the amount of west-to-east ice advection, (b) a strengthening of the Transpolar

Drift Stream, which increases ice export out of the Fram Strait, and (c) an increase

in cyclonic ice motion in the Eurasian–Pacific sectors of the Arctic, which causes

increased ice divergence and facilitates new ice formation. Once the melt season then

begins, these expanses of relatively thin ice are more susceptible to melting, thus

generally leading to anomalously low sea ice area by the end of summer.

Exploiting the predictive power associated with these various teleconnections requires

tools which can isolate regions of variability and model their connectivity structure,

whilst also accounting for any prior understanding of how we expect these patterns

to emerge. The next chapter provides a background to some of the core principles of

machine learning, and subsequently outlines the specific methods used to accomplish

these objectives.

14



Chapter 2

Machine learning principles

2.1 Introduction

Machine learning is a field dedicated to the development of generalised models

which are able to identify regularities, or patterns, within a given data set. The

following chapter outlines two novel techniques for exploiting such patterns within

climate time series data; techniques belonging to the sub-fields of supervised and

unsupervised learning, and which have been widely applied in a number of fields

beyond polar climate science. First, a brief discussion on the general aims of

supervised learning is outlined, before moving on to a comprehensive overview of

regression analysis. From first principles, linear Ordinary Least Squares (OLS)

regression is introduced as the foundation from which all regression models inherently

stem, before subsequently building towards the first novel technique of this thesis,

Gaussian Process Regression (GPR). Although excellent works on regression analysis

already exist in the literature (see e.g., Bishop 2006 and Rasmussen & Williams 2006),

the methods are presented here as a self-contained piece of text in order to show how

GPR is in fact just an advanced non-parametric adaptation of the simple linear OLS

model, yet is a powerful tool for learning relatively complex functions. The chapter

then turns to a discussion on unsupervised learning, where Principal Component

Analysis (PCA) is outlined as the standard tool for investigating spatio-temporal

patterns within climate time series data, and sets the scene for the second novel

technique of this thesis, which is an alternative method for dimensionality reduction

based on cluster analysis. The final section of this chapter shows how clustering

leads naturally to a complex network representation of the climate system, and

subsequently outlines the advantages of using networks as graphical representations

of real physical systems, arguing that the approach provides advantages over PCA in

terms of interpretability and flexibility for being incorporated into other models.
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2.2 Supervised learning

Consider the case where we have two sets of (one-dimensional) observations

x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T, such that together they comprise a

data set D of n pairs of observations D = (x,y) = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
These observations could correspond to measurements at n different points in time,

or similarly at n different spatial locations at a given instant in time. Now suppose

that we wish to learn about the process, or function, which relates each pair of

observation points:

y = f(x). (2.1)

This is the fundamental basis of supervised learning, where typically x is defined

as the set of inputs, y as the set of outputs (or targets), such that collectively D
becomes the training set of observations which enables us to learn about the function

f . In climate science we are often interested in f as it (a) gives us some insight

into the relationship between two or more physical processes and (b) allows us to

make predictions about them. For example, what do I expect the value of yn+1 to

be, given D? This is essentially the goal of time series forecasting, and once we are

confident in our model f(x), answering this question is relatively straight forward.

We simply supply the learnt function with a test input, e.g., x∗ = xn+1, in order to

produce the equivalent function value at the nth + 1 point in time:

f∗ = f(x∗). (2.2)

Supervised learning can further be sub-divided into the frameworks of regression and

classification. Regression problems concern output variables which are continuous by

nature and as such include almost all available climate time series data products.

Conversely, classification problems handle discrete output variables, which are typi-

cally generated by the assignment of class labels that may correspond to the state of

the output variable at a given instant in time. Figure 2.1 shows an example time

series measuring sea ice concentration at some location in the Arctic Ocean. Sea

ice concentration is a continuous variable and as such this time series could easily

correspond to the outputs of a regression problem. On the other hand, we could

discretise this time series by defining class labels which correspond to different ranges

of sea ice concentration values, for example:

yi =

1 if ai ≥ 15%

0 otherwise
,

where ai is the sea ice concentration value at time i. The vector y = (y1, y2, . . . , yn)T

then becomes the set of binary values which, in this case, describe the presence 1 or

16



1980 1990 2000 2010 2020

0

20

40

60

80

100

se
a

ic
e

co
n

ce
nt

ra
ti

on
(%

)

0

1

cl
as

s
la

b
el

Figure 2.1: Sea ice concentration represented as both a continuous (black) and discrete
(blue) variable. A class label is assigned for sea ice concentration values such that if the sea
ice concentration value is ≥ 15%, then the class label = 1, and subsequently the class label
= 0 otherwise.

absence 0 of sea ice at a particular location in the Arctic Ocean, and could therefore

be used as the outputs in a (binary) classification problem.

The remainder of this chapter focuses on regression problems, where output variables

are continuous.

2.2.1 Regression analysis

The aim of regression analysis is to learn about functional relationships between

inputs and continuous outputs, and to subsequently make predictions of the outputs

based on this learning. The notation hereafter follows that of the input-output pairs

defined in section 2.2 although, for convenience, an additional column vector of ones

is introduced to the inputs, such that xT becomes a n× 2 matrix.

Linear ordinary least squares regression Let us begin by considering a simple

parametric linear regression model, where it is assumed that input-output pairs (xi, yi)

are linearly related by a set of regression parameters βββ, but have been corrupted by

some amount of unobserved random noise εi, such that Equation (2.1) becomes:

y = f(x) + εεε = xTβββ + εεε, (2.3)

or equivalently 
y1

y2
...

yn

 =


f(x1)

f(x2)
...

f(xn)

+


ε1

ε2
...

εn

 =


1 x1

1 x2
...

...

1 xn


[
β0

β1

]
+


ε1

ε2
...

εn

 .
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In this case, the outputs are simply linear functions of the inputs such that the

model contains two parameters β0 and β1, which govern the offset and gradient of

the function values respectively. This type of model has desirable properties in that

the optimal estimated solution for the parameters βββ is analytically tractable via the

method of Ordinary Least Squares (OLS) regression, which can be understood as

the model which chooses the values of βββ that minimise the error function:

EOLS(β̂ββ) = (y− xTβ̂ββ)T(y− xTβ̂ββ)

= yTy− 2β̂ββ
T
xy + β̂ββ

T
xxTβ̂ββ.

(2.4)

Here the notation β̂ββ is to differentiate the estimated regression parameters through

OLS regression, from the true parameters βββ. From Equation (2.4) we notice that it is

possible to find a unique solution for the values of β̂ββ for which EOLS(β̂ββ) is minimum,

by first deriving the partial derivatives with respect to β̂ββ:

∂EOLS(β̂ββ)

∂β̂ββ
= −2xy + 2xxTβ̂ββ, (2.5)

and then setting this solution to zero, so we arrive at (xxT)β̂ββ = xy – the normal

equations for linear OLS regression. Finally, if the inverse (xxT)−1 exists, then simply

computing the scalar product between the normal equations and this inverse gives

the solution for the optimal estimated regression parameters:

β̂ββ = (xxT)−1xy. (2.6)

The solution above constitutes the learning phase of regression analysis, however

beyond the actual values of β̂ββ, we are often interested in predicting the function

values at new test points x∗ (e.g., where we do not have observations of the output

variable). As outlined in section 2.2, this is achieved by providing the model with a

set of test inputs:

fff∗ = f(x∗) = xT
∗ β̂ββ. (2.7)

The Gauss-Markov theorem states that the OLS solution for linear regression in

Equation (2.6) is the best linear unbiased estimator. This means that if we consider

the training outputs to be a set of random samples yj = xTβββj +εεεj drawn from some

overall population y = xTβββ, then OLS regression essentially finds the parameters

β̂ββj which minimise Equation (2.4) for the given sample set j, not for the population

itself. OLS regression is unbiased because if this process was repeated for an infinite

number of independently drawn (random) samples, such that j = {1, 2, . . . ,∞}, the

expected value (average) of the OLS regression parameters E[β̂ββ] would be identical

to that of the true population E[β̂ββ] ≡ βββ. It is also the best because the variance of β̂ββ,

across all j, would be the smallest compared to any other linear unbiased estimator.
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Figure 2.2: Synthetic example of 1-D linear OLS regression. (a) The black line shows the
function from which the data are generated (before being corrupted by Gaussian noise). The
teal line is the estimated function after linear OLS regression fff∗. (b) Repeating the process
in (a) 10,000 times for samples drawn from the same function, but with independent noise
contents. For visualisation purposes the input-output pairs are not shown, and also only the
first 500 (out of 10,000) derived regression lines are shown.

In other words, any other model we might use to estimate β̂ββ that found a smaller

variance σ2
β̂ββ

than the OLS solution would be biased (E[β̂ββ] 6= βββ), and one which was

unbiased (E[β̂ββ] ≡ βββ) would have a larger variance than the OLS solution. This is

commonly referred to as the bias-variance trade-off.

Figure 2.2 provides a synthetic example of linear OLS regression to illustrate the

concepts outlined above. In Figure 2.2a, a set of 10 evenly spaced values are generated

between 0 and 1 to represent the inputs x, and subsequently the set of random

outputs yj are generated by passing x through the linear function f(x) = xTβββ,

where β0 = −0.30 and β1 = 0.60, before finally adding zero-mean Gaussian noise to

each of the outputs in order to simulate noisy real-world data. The aim is to then

recover the values of βββ using the training set Dj = (x,yj) in a linear OLS regression

framework. Using Equation (2.6), the magnitude of the linear regression parameters

is slightly overestimated, with β̂j0 = −0.34 and β̂j1 = 0.64, however by repeating this

process 10,000 times (Figure 2.2b), we find a much closer estimate of the true values

by averaging across all samples, with E[β̂ββ0] = −0.299 and E[β̂ββ1] = 0.603. We can also

see in this case how multiple data sets allow us to build up an estimate of uncertainty

in an OLS regression model, which can be quantified by computing the standard

deviation of the regression parameters across all 10,000 samples: σ
β̂ββ0

= 0.179 and

σ
β̂ββ1

= 0.301. This is of limited use for observational products however, as in reality

we often only have access to one data set and so cannot perform regression analysis

on thousands of random samples. In any case, later sections will show how, by

adopting a Bayesian approach, uncertainties can be generated with the predictions

even for one data set. For now, let us advance the current framework, so that the

OLS model is able to model non-linear relationships between inputs and outputs.
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Figure 2.3: Synthetic example of 1-D non-linear OLS regression using polynomial basis
functions with m = 5. The colours are consistent with the linear example, although the pale
green curve in (b) represents the mean across all 10,000 estimated functions (cannot be seen
in the linear case as the OLS solution very closely matches the true regression parameters).

Non-linear ordinary least squares regression One of the assumptions of the

Gauss-Markov theorem is that the outputs are linear functions of the inputs; an

example of which was shown in Figure 2.2. This poses a potential limitation, for if

the training data exhibit non-linear relationships then this type of model will fail to

accurately learn the desired function f . A way to free this type of model from such

limitations is to map the inputs to a higher dimensional feature space using a set of

fixed basis functions φ(x), such that Equation (2.3) becomes:

y = f(φ(x)) + εεε = φ(x)Tβββ + εεε. (2.8)

These basis functions allow non-linear relationships to be modelled between inputs

and outputs whilst remaining linear in the parameters, and hence adhering to the

linearity assumption of the Gauss-Markov theorem. One example of this mapping is

the polynomial basis function: φ(xi) = (1, xi, x
2
i , x

3
i , . . . , x

m
i )T, such that φ(x) is a

Vandermonde matrix which projects the inputs to the space of powers, up to the

mth order. Note however that in this instance, the number of parameters increases

from two in Equation (2.3) to m+ 1:


y1

y2
...

yn

 =


f(φ(x1))

f(φ(x2))
...

f(φ(xn))

+


ε1

ε2
...

εn

 =


1 x1 x21 x31 . . . xm1
1 x2 x22 x32 . . . xm2
...

...
...

...
...

1 xn x2n x3n . . . xmn





β0

β1

β2

β3
...

βm


+


ε1

ε2
...

εn

 .

Figure 2.3 shows an example of OLS regression where a non-linear relationship

exists between inputs and outputs. In this case, the same data generating process

is repeated as for the linear case, except the function f now draws samples from
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Figure 2.4: Synthetic examples of 1-D OLS polynomial regression for a variety of model
complexities (increasing order of polynomial basis functions). As the number of model
parameters increases the model begins to fit to the noise content of the data, until N = 10
where the model passes through every training point.

some multivariate Gaussian distribution (Gaussian distributions are explored in

detail later). This time, learning the function values is achieved by mapping the

inputs using a set of polynomial basis functions where m = 5 (hence the model

has N = 6 parameters), and implementing the parametric OLS regression model

as before with Equation (2.6). We can now see that although the model is linear

in the parameters, the estimated function values are non-linear functions of the

inputs. One important point to note however, is what happens when the number of

parameters is varied in an OLS regression model. With N = 6 parameters in Figure

2.3a, the predictions are somewhat poor in areas with larger noise content. This

is commonly referred to as over-fitting, when a model fits to the random noise in

the data, thus leading to biased predictions. Over-fitting is a specific limitation of

the OLS method, which in this case exacerbated by the complexity of the model –

large N1, however note how in Figure 2.3b the bias is reduced by averaging across

10,000 samples. Figure 2.4 illustrates the over-fitting problem with regards to model

complexity by attempting to learn the same function as in Figure 2.3, except with

a variety of polynomial basis functions with increasing number of parameters from

N = 2 to N = 10. In the case where N = 2 (i.e., linear), the model is not flexible

1Over-fitting can also be a consequence of small n. With sufficient training points, OLS regression
will reduce the severity of over-fitting for a given model complexity. See Figure A.1.
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enough to explain the non-linear relationship between inputs and outputs, however

as the number of parameters increases, we notice a better fit for the model. If a

preference were to be given for a particular model based on EOLS(β̂ββ), then it would

ultimately be the case where N = 10, as the function values pass through every

training point such that EOLS(β̂ββ) = 0. This ‘perfect’ fit however, has come at a price.

With N = 10 there is significant over-fitting and subsequently the predictions do not

give a good representation of the true function f . Clearly then there is a trade-off

between minimising EOLS(β̂ββ) and mitigating over-fitting. The next section turns to

regularised least squares regression as an alternative parametric regression model

which attempts to minimise the effect of over-fitting by exploiting the bias-variance

trade-off in order to reduce the complexity of the model.

Regularised least squares regression In the previous section, we examined how

over-fitting in OLS regression can produce statistical models that do not generalise

well. This section continues with the feature space projection of the inputs, although

for convenience hereafter uses the notation φφφ = φ(x). Regularised Least Squares

(RLS) regression amends the OLS error definition in Equation (2.4) by which the

sum of the squared residuals are minimised, subject to some condition:

ERLS(β̂ββ) = (y−φφφTβ̂ββ)T(y−φφφTβ̂ββ) subject to ‖β̂ββ‖pp ≤ α. (2.9)

Here ‖·‖p represents the Lp vector norm, and α is a constant. Geometrically, ‖β̂ββ‖pp ≤ α
can be visualised as a penalty constraint in the space of parameters, where the distance

in parameter space to the OLS derived solution β̂ββ must not be greater than some

distance α. Revisiting the over-fitting problem from Figure 2.4 and comparing the

variance of the regression parameters σ2
β̂ββ

for each model, we notice that as the model

complexity increases, so does σ2
β̂ββ
, as the estimated regression parameters become

very large. This is a specific case of Runge’s phenomenon in polynomial regression

(Runge, 1901), however large σ2
β̂ββ

can also occur in OLS regression when using multiple

predictor variables (inputs) which are collinear. For example, if xT were a n ×D
design matrix, where D < n, collinearity would exist if a given column of xT could

be linearly predicted by another column of xT. RLS regression therefore aims to

mitigate this problem by shrinking the values of β̂ββ until ‖β̂ββ‖pp ≤ α. Common choices

of p are p = 1 or p = 2, such that distances are given by

‖β̂ββ‖11 ≡ |β̂ββ| = |β̂0|+ |β̂1|+, . . . ,+|β̂m|

‖β̂ββ‖22 ≡ β̂ββ
T
β̂ββ = β̂20 + β̂21+, . . . ,+β̂2m.

In the case where p = 1 we arrive at Lasso regression (Tibshirani, 1997), and similarly

Ridge regression for p = 2 (Hoerl & Kennard, 1970). Figure 2.5 shows the geometric

22



−1.0 −0.5 0.5 1.0

β̂0

−1.0

−0.5

0.5

1.0 β̂1

α

p = 1
α = 0.5

(a)

−1.0 −0.5 0.5 1.0

β̂0

−1.0

−0.5

0.5

1.0 β̂1

p = 2

α

α = 0.5

(b)

Figure 2.5: Parameter shrinkage for the cases of (a) Lasso and (b) Ridge regression. The

circular scatter point is the OLS derived parameter solution β̂ββ, with the EOLS(β̂ββ) contours
shown by the teal circles. The shaded regions represent a distance α from the origin, according
to the Lp norm. RLS regression shrinks the values of β̂ββ along the OLS contours until reaching
the shaded region. The new parameters are given by the diamond scatter point.

representation of the penalty constraint for both Lasso and Ridge models, where the

model contains 2 regression parameters (note that the same principles apply to any

number of dimensions). We can see how Lasso regression is able to shrink parameters

all the way to zero, whereas Ridge regression will typically shrink values close to zero

(due to the geometric shape of the Lp vector norm). This parameter shrinkage has

the effect of reducing the effective model complexity, and hence over-fitting.

By using Lagrange multipliers it is possible to derive an analytical solution for

Ridge regression, although note that Lasso regression does not have an equivalent

closed form solution. The expression of Equation (2.9) in the Lagrangian form is

given as:

ERLS(β̂ββ, λ) = EOLS(β̂ββ) + λF (β̂ββ), where F (β̂ββ) = β̂ββ
T
β̂ββ − α

and λ is the Lagrange multiplier (also known as the regularisation coefficient).

Expanding the notation above, we then arrive at:

ERLS(β̂ββ, λ) = (y−φφφTβ̂ββ)T(y−φφφTβ̂ββ) + λ(β̂ββ
T
β̂ββ − α)

= yTy− 2β̂ββ
T
φφφy + β̂ββ

T
φφφφφφTβ̂ββ + λβ̂ββ

T
β̂ββ − λα.

(2.10)

The regularisation coefficient λ can be seen as the parameter which minimises

over-fitting by controlling the effectiveness of the quadratic penalty term β̂ββ
T
β̂ββ,

where generally an appropriate value can be estimated through cross-validation (see
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Figure 2.6: Synthetic example of 1-D (a,b) OLS and (c,d) Ridge polynomial regression
(N = 10). The regularisation coefficient is set to lnλ = −12.2 for the Ridge regression case.
Colours are consistent with Figures 2.2 and 2.3.

appendix A.1). Section 2.2.2 however will outline a more principled and efficient

Bayesian approach for estimating such ‘free’ parameters. In any case, the partial

derivatives of Equation (2.10) with respect to β̂ββ are given as:

∂ERLS(β̂ββ, λ)

∂β̂ββ
= −2φφφy + 2φφφφφφTβ̂ββ + 2λβ̂ββ, (2.11)

whereby setting to zero and re-arranging for β̂ββ leads to the optimal estimated Ridge

regression parameters:

β̂ββ = (φφφφφφT + λIII)−1φφφy, (2.12)

where III is the identity matrix. Figure 2.6 compares OLS and RLS (Ridge) regression,

using a set of polynomial basis functions where N = 10. Immediately we notice how

the over-fitting problem is minimised in the RLS case, as the variance of the regression

parameters has been reduced considerably. We also notice how the average across

10,000 samples has a slightly higher bias in the RLS case, although has significantly

smaller variance. In this case the bias could be improved perhaps by a more suitable

choice of basis functions, as polynomial functions suffer inherent limitations. In the

coming sections, kernel functions will be outlined as a natural way to alleviate the

issue of choice of basis function, although for now, the next section explores how the

current parametric regression model can be advanced into a probabilistic engine with

Bayesian linear regression.
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Bayesian linear regression The Bayesian framework explores the regression

problem from a probabilistic viewpoint. In this case, rather than deriving point

estimates of the regression parameters as in Equations (2.6) and (2.12), the aim

is to instead derive a distribution of values, where the collection of values form a

Gaussian probability distribution. This therefore allows uncertainty estimates to be

computed on both the parameters and the predictions, from a single training set

alone. Consider once again the standard supervised learning problem, but with some

additional information:

y = f(φφφ) + εεε = φφφTβββ + εεε , εεε ∼ N (0, σ2). (2.13)

Specifically, the random noise εεε is considered to be independent and identically

distributed Gaussian noise, with mean 0 and variance σ2. Given this model, each

observation point yi is assumed to be a random variable drawn independently from a

Gaussian distribution – known as the likelihood distribution, which can be computed

as a conditional probability distribution over the outputs:

p(y|φφφ,βββ) =
n∏
i=1

1√
2πσ2

exp

(
− (yi −φφφiβββ)2

2σ2

)
=

1

(2π)n/2
1

|VVV |1/2 exp

(
− 1

2
(y−φφφTβββ)TVVV −1(y−φφφTβββ)

)
.

(2.14)

Here φφφTβββ and VVV = σ2III correspond to the mean and covariance of the multivariate

likelihood distribution respectively. From the definition above we can see that any

Gaussian distribution can be defined explicitly in terms of its mean and covariance

(or variance in the case of a univariate distribution). It is also worth noting that the

probabilistic equivalent of OLS regression involves the maximisation of the log of the

likelihood function above – known as maximum likelihood, and while this does provide

a framework in which to derive uncertainty estimates on both the parameters and

the predictions, the approach still suffers from the problems of over-fitting (Bishop,

2006). The upcoming discussion however will show how a penalty constraint similar

to RLS regression arises naturally in the Bayesian approach.

Next, a prior Gaussian probability distribution is assigned over the regression

parameters, which incorporates any beliefs about how the parameters are expected

to behave. Without a-priori information, the prior is typically chosen to be broad

and centred on zero to reflect uncertainty in the magnitude and sign of the regression

parameters respectively. For completeness however, a generalised prior with mean µµµ

and covariance ΣΣΣ is given here, such that βββ ∼ N (µµµ,ΣΣΣ), or equivalently:

p(βββ) =
1

(2π)n/2
1

|ΣΣΣ|1/2 exp

(
− 1

2
(βββ −µµµ)TΣΣΣ−1(βββ −µµµ)

)
. (2.15)
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Note that the prior is independent of the observations D. By using Bayes’ Law, the

prior and likelihood distributions can be combined to give a posterior distribution,

which describes the updated probability of the parameters, given the observations:

p(βββ|y,φφφ) =
p(y|φφφ,βββ)p(βββ)

p(y|φφφ)
. (2.16)

The term in the denominator here is the marginal likelihood, which will be discussed

in more detail in section 2.2.2. For now it can be considered as a normalisation

term which integrates (marginalises) over the regression parameters, and ensures

that probabilities in the posterior sum to one:

p(y|φφφ) =

∫
p(y|φφφ,βββ)p(βββ) dβββ. (2.17)

The nature of conjugate priors (see Raiffa & Schlaifer 1961) means that the product

of the Gaussian prior and Gaussian likelihood results in a posterior distribution

which is also Gaussian. As such, the posterior must take the typical quadratic form:

p(βββ|y,φφφ) =
1

(2π)n/2
1

|Σ̃ΣΣ|1/2
exp

(
− 1

2
(βββ − µ̃µµ)TΣ̃ΣΣ

−1
(βββ − µ̃µµ)

)
. (2.18)

The aim is to then produce a solution for the posterior mean µ̃µµ and covariance Σ̃ΣΣ.

This is achieved by first evaluating the numerator in Equation (2.16) to produce the

un-normalised posterior:

p(βββ|y,φφφ) ∝ exp

(
− 1

2
(y−φφφTβββ)TVVV −1(y−φφφTβββ)− 1

2
(βββ −µµµ)TΣΣΣ−1(βββ −µµµ)

)
. (2.19)

At which point, the matrix identity ATBA + ATCA ≡ AT(B + C)A can be used

to complete the square in order to give:

p(βββ|y,φφφ) ∝ exp

(
− 1

2
βββT(φφφVVV −1φφφT + ΣΣΣ−1)βββ + βββT(φφφVVV −1y + ΣΣΣ−1µµµ) + C

)
, (2.20)

where C is a constant which contains terms that are independent of βββ. Finally, by

recognising that the quadratic term inside the exponent of Equation (2.18), or in

fact any Gaussian distribution, can be written as:

−1

2
(βββ − µ̃µµ)TΣ̃ΣΣ

−1
(βββ − µ̃µµ) = −1

2
βββTΣ̃ΣΣ

−1
βββ + βββTΣ̃ΣΣ

−1
µ̃µµ+ C, (2.21)

we can notice the equivalence between this alternative form and Equation (2.20).

The mean and covariance of the un-normalised posterior are then given simply as:

µ̃µµ =
(
φφφVVV −1φφφT + ΣΣΣ−1

)−1(
φφφVVV −1y + ΣΣΣ−1µµµ

)
Σ̃ΣΣ = (φφφVVV −1φφφT + ΣΣΣ−1)−1.

(2.22)
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Figure 2.7: Synthetic example of 1-D Bayesian Linear Regression, using the same data as
in Figure 2.2, hence φφφ = x. The top density plots show the prior (left), likelihood (middle)
and posterior (right) distributions. The black cross-hair is the location of the true parameters
βββ from which the data were generated. The predicted function values and uncertainty range
in the scatter plot (bottom) are computed from Equation (2.23).

The solution for µ̃µµ is often referred to as the maximum a posteriori (MAP) estimate

of the parameters, as the mean of a Gaussian distribution is also its mode. The square-

root of the diagonal elements in Σ̃ΣΣ then gives the standard deviation (uncertainty)

on each of the regression parameters. Note that it is not necessary to normalise the

posterior solution as per Equation (2.16) here, as this does not change the location

of the mean, or alter the covariance. Finally, generating predictions now come in the

form of a Gaussian distribution where, for a given set of test inputs φφφ∗, the posterior

predictive distribution is given as fff∗ ∼ N (f̄ff∗,σσσ
2
fff∗

), with mean f̄ff∗ and covariance

σσσ2fff∗ :

f̄ff∗ = φφφT∗ µ̃µµ

σσσ2fff∗ = φφφT∗ Σ̃ΣΣφφφ∗.
(2.23)

Figure 2.7 revisits the linear regression problem from Figure 2.2, although now from

the Bayesian perspective. The linear case is presented here for ease of visualisation,

although the same principles apply to any number of dimensions. In this example,

a broad zero-mean prior distribution is assigned over the parameters p(βββ) before

inspecting the data, at which point the likelihood function can be computed p(y|φφφ,βββ),
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which provides a distribution of βββ values which most likely explain the set of ob-

servations. Finally, combining the prior and likelihood gives rise to the posterior

distribution over the parameters p(βββ|y,φφφ), where we can see how the uncertainty in

the parameters is reduced relative to the likelihood, corresponding to an update in

the probability of the MAP estimate.

At this point it is worth drawing some parallels between Bayesian linear regression

and Ridge regression, in order to keep track of the principles that have been outlined

so far. Specifically, consider the following zero-mean prior distribution over the

parameters βββ ∼ N (0, λ−1III), where λ is a constant. For this prior, one obtains a

posterior mean equal to µ̃µµ =
(
φφφVVV −1φφφT + λIII

)−1
φφφVVV −1y. By then also considering

the special case where VVV = III, we notice how the Bayesian solution reverts to Ridge

regression: µ̃µµ = β̂ββ =
(
φφφφφφT + λIII

)−1
φφφy. Recall how λ plays an important role in

governing model complexity in Ridge regression by controlling the effectiveness of the

quadratic penalty term λβββTβββ. In the Bayesian framework, the quadratic penalty term

becomes (βββTΣΣΣ−1βββ)/σ2; the effectiveness of which is controlled by any parameters

which make up the prior covariance matrix (see section 2.2.2). From this it is possible

to see how the seemingly complex Bayesian linear regression basis function model

can be traced back to its origins in linear OLS regression (Equation 2.6). The coming

sections will show how this also holds for Gaussian process regression, however before

moving onto this, the next section introduces kernel functions; a key concept in the

progression to a non-parametric framework for regression analysis.

Kernel functions So far this chapter has been concerned with linear parametric

models, where the aim has been to estimate a vector of parameters β̂ββ, or similarly a

multivariate distribution of parameters p(βββ|y,φφφ), and to generate predictions through

linear combinations of the test inputs (e.g., Equation 2.7). Basis functions have

been outlined as a tool for allowing such linear models to be flexible in terms of

learning both linear and non-linear functions, however in some cases, restricting

a given model to a particular set of basis functions (e.g., polynomials) may limit

the class of functions the model is able to learn. An alternative approach is to

generate predictions in terms of a kernel function (Aizerman 1964; Boser et al. 1992)

whereby, rather than explicitly choosing a set of fixed basis functions which represent

a projection to some higher dimensional feature space, the kernel function defines

them implicitly. For example, consider the simple case where we have a set of inputs

x = (x1, x2), and we wish to map them to a higher dimensional feature space using

a second-order polynomial basis function, so that φ(x) = (1, x1, x2, x
2
1, x

2
2, x1x2)

T,

hence φ(x) : R2 → R6. A kernel function k(x,x′) represents an inner product in
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some higher dimensional feature space, which in this example corresponds to:

k(x,x′) = φ(x)Tφ(x′) = 1 + x1x
′
1 + x2x

′
2 + x21x

′2
1 + x22x

′2
2 + x1x

′
1x2x

′
2. (2.24)

Notice here how this definition still requires explicit reference to the polynomial

basis functions, however a way to circumvent this is by using what is known as the

kernel trick, whereby k(x,x′) is computed without explicitly performing the mapping

φ(·). In other words, a kernel function can be defined which in principle represents

an inner product in some higher dimensional feature space, but in reality is just a

function of the inputs x and x′:

k(x,x′) = (1 + xTx′)2 = 1 + 2x1x
′
1 + 2x2x

′
2 + x21x

′2
1 + x22x

′2
2 + 2x1x

′
1x2x

′
2. (2.25)

Working backwards, we notice how the kernel function above is equivalent to the inner

product of the 6-dimensional feature space vector (1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2),

despite never having explicitly entered that space (note that this is just a scaled

version of the solution in Equation 2.24). This is a particularly useful property of

kernel functions for a few reasons. For one, it allows kernel functions to be created

which represent inner products in potentially infinite-dimensional feature spaces,

and secondly, observations which may contain unique individual components (e.g., a

long-term increasing trend due to climate change, together with a periodic seasonal

cycle), can be modelled more effectively by noticing that the sum and/or product of

multiple kernel functions, is itself a kernel function. For example:

k(x,x′) = k1(x,x
′)
(
k2(x,x

′) + k3(x,x
′)
)
. (2.26)

To set the stage for Gaussian process regression in the next section, the following

discussion shows how the Bayesian linear regression basis function model implicitly

defines a kernel function, and subsequently leads to a particular class of regression

known as linear smoothers (Hastie & Tibshirani, 1990). For convenience, consider

the case where the posterior predictive mean (Equation 2.23) is evaluated at the

location of the training inputs, such that φφφ∗ = φφφ. By then expanding φφφT∗ µ̃µµ, we notice

how the solution can be expressed as a linear combination of the training outputs:

f̄ff∗ =
n∑
i=1

(φφφT∗ Σ̃ΣΣφφφTi yi)/σ
2 +φφφT∗ Σ̃ΣΣΣΣΣ−1µµµ = h(x∗)y +φφφT∗ Σ̃ΣΣΣΣΣ−1µµµ, (2.27)

or for a zero-mean prior:

f̄ff∗ = h(x∗)y. (2.28)

Here h(x∗) = (φφφT∗ Σ̃ΣΣφφφ)/σ2 represents an inner product in the feature space defined

by ψ(x∗) = (Σ̃ΣΣ
1/2
φφφ∗)/σ, hence the Bayesian linear regression basis function model
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Figure 2.8: The equivalent kernel h(x∗) (left), evaluated at the location of the training
inputs (x∗ = x), using polynomial basis functions, with n = 200 and m = 6. A profile (white
line) is extracted along the kernel at x∗ = 0 (right), illustrating the localised nature of this
weight function (training locations closer to x∗ are assigned higher weights). Adapted from
Bishop (2006).

implicitly defines a kernel function h(x∗) = ψ(x∗)
Tψ(x), known as the equivalent

kernel, or idealised weight function (Silverman, 1984). Equation (2.28) is therefore a

linear smoother, whereby predictions at test input locations are given by a weighted

average (smoothing) of the outputs, with weights defined by h(x∗). We can see

this more clearly in Figure 2.8, by extracting the corresponding weight vector for

the test input x∗ = 0, and noticing how the equivalent kernel produces a form of

localised weighting, with training points closer to x∗ being assigned higher weights

than those further away. It is also interesting to note that by evaluating the pre-

dictive distribution at the training locations, the equivalent kernel is equal to the

posterior predictive covariance matrix, scaled by the noise precision factor (inverse

variance) h(x∗) = σσσ2fff∗σ
−2 (cf. Equation 2.23). From this it is clear to see why kernel

functions are often referred to as covariance functions, although it should be noted

that this is only the case for positive semi-definite kernels; which can be understood

as a symmetric kernel k(x,x′) ∈ Rn×n (as in Figure 2.8), whose eigenvalues are

strictly non-negative, and for any arbitrary vector υυυ ∈ Rn, the following condition is

held: υυυTk(x,x′)υυυ ≥ 0 (see section 4.1 of Rasmussen & Williams 2006 for more details).

The next section introduces the first of the novel machine learning approaches

of this thesis, Gaussian process regression. This technique incorporates all of the

principles that have been outlined so far, into a powerful non-parametric probabilistic

framework for learning complex functions, and forms the basis of results presented

in chapters 3 and 4.
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Gaussian process regression In the section on Bayesian linear regression, Gaus-

sian distributions were outlined as useful tools for defining probability distributions

over random variables. An extension to this are Gaussian processes, which define the

properties of stochastic (random) functions. Rasmussen & Williams (2006) define

a Gaussian Process (GP) as a collection of random variables, any finite number of

which form a joint Gaussian distribution. As an example, the random variables

a ∼ N (µµµa,ΣΣΣaa) and b ∼ N (µµµb,ΣΣΣbb) could be considered to form a joint Gaussian

distribution c (see Figure 2.9), whose mean µµµ and covariance ΣΣΣ can be broken down

into a set of partitions, which together describe the mean and covariance of (and

between) a and b:

c ∼ N (µµµ,ΣΣΣ) ≡
[
a

b

]
∼ N

([
µµµa

µµµb

]
,

[
ΣΣΣaa ΣΣΣab

ΣΣΣba ΣΣΣbb

])
. (2.29)
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µµµa

µµµb

Figure 2.9: Synthetic example of two random variables a ∼ N (µµµa,ΣΣΣaa) and b ∼ N (µµµb,ΣΣΣbb)
forming a joint Gaussian distribution c, whose mean and 3 standard deviations are marked
by the teal cross and ellipse respectively.

In Gaussian Process Regression (GPR), the functional relationship between inputs

and outputs

y = f(x) + εεε , εεε ∼ N (0, σ2) (2.30)

is considered to be a GP, where once again εεε is assumed to represent independent

and identically distributed random noise with mean 0 and variance σ2. Learning the

function f(x) is then achieved through the Bayesian principles that were outlined

previously, however in this case rather than placing prior distributions over parameters,

prior probabilities are placed over all possible functions directly. As it happens, this

results in a very useful non-parametric approach to learning functions, as only two
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properties are needed to explicitly define a GP prior over functions:

f(x) ∼ GP(m(x), k(x,x′)). (2.31)

Specifically, a mean m(x) and covariance k(x,x′), or kernel, function:

m(x) = E[f(x)]

k(x,x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
.

(2.32)

In principle, GPR then assigns higher prior probabilities to functions which exhibit

similar characteristics to those defined by the choice of m(x) and k(x,x′). The

covariance function in particular bares significant importance, for it can describe a

wide variety of properties, including whether the function is perhaps periodic, or

orientation dependent (anisotropic), or smooth, or non-stationary (the smoothness

varies for different locations of x), or simply linear et cetera. A very common

covariance function is the squared exponential function:

k(x,x′) = σ2f exp

(
− ‖x− x′‖2

2`2

)
, (2.33)

also known as the Gaussian kernel, or radial basis function. The term ‖·‖ computes

the Euclidean distance between the vectors x and x′, and σ2f and ` are known as

hyperparameters of the covariance function, where each takes a real value greater than

zero (see section 2.2.2). The squared exponential covariance function is a particularly

smooth class of kernels, which actually corresponds to the linear combination of

an infinite number of Gaussian basis functions (see e.g., MacKay 1998). From the

definition above, we notice that the covariance function takes two arbitrary inputs,

which in the case of GPR, correspond to either the training inputs x, or the test

inputs x∗. Given the choice of GP prior, it is therefore possible to construct a series

of kernel functions that reflect the prior covariance over all possible combinations of

inputs:

K = k(x,x) + VVV , VVV = σ2III

kkk∗ = k(x∗,x∗)

k∗ = k(x,x∗).

(2.34)

In the traditional Bayesian setting, deriving the posterior predictive function values

fff∗ is then achieved by updating the prior mean and covariance estimates. To do this,

the same principles from Equation (2.29) can be used to show how fff∗ and y form a

joint Gaussian distribution under the GP prior:[
fff∗

y

]
∼ N

([
m(x∗)

m(x)

]
,

[
kkk∗ kT

∗

k∗ K

])
, (2.35)
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where it follows that the marginal distributions (under the prior) of both fff∗ and y

are given as:

fff∗ ∼ N
(
m(x∗), kkk∗

)
, y ∼ N

(
m(x),K

)
. (2.36)

Next, in order to generate the conditional distribution p(fff∗|y,x∗,x), Equation (2.35)

needs to be conditioned on the outputs y. This is achieved by computing the inverse

of each of the relevant partitions of the joint prior covariance, using the following

identity after Press et al. (1992):[
kkk∗ kT

∗

k∗ K

]−1
=

[
ΣΣΣ−1kkk∗ ΣΣΣ−1

kT
∗

ΣΣΣ−1k∗
ΣΣΣ−1K

]
=

[
Z −ZkT

∗K−1

−K−1k∗Z K−1 + K−1k∗ZkT
∗K−1

]
(2.37)

where

Z =
(
kkk∗ − kT

∗K−1k∗
)−1

.

The quadratic form of the conditional Gaussian p(fff∗|y,x∗,x) can then be broken

down into its individual partitions:

−1

2
(fff∗ − f̄ff∗)Tσσσ−2fff∗ (fff∗ − f̄ff∗) =

− 1

2

(
fff∗ −m(x∗)

)T
ΣΣΣ−1kkk∗

(
fff∗ −m(x∗)

)
− 1

2

(
fff∗ −m(x∗)

)T
ΣΣΣ−1

kT
∗

(
y−m(x)

)
− 1

2

(
y−m(x)

)T
ΣΣΣ−1k∗

(
fff∗ −m(x∗)

)
− 1

2

(
y−m(x)

)T
ΣΣΣ−1K

(
y−m(x)

)
.

(2.38)

Using the same principles as in Equation (2.20), the mean f̄ff∗ and covariance σσσ2fff∗
of the posterior predictive distribution for GPR can be computed by completing

the square and utilising the equivalent expression for the Gaussian quadratic from

Equation (2.21):

f̄ff∗ = m(x∗) + kT
∗K−1

(
y−m(x)

)
σσσ2fff∗ = kkk∗ − kT

∗K−1k∗.
(2.39)

Figure 2.10 presents a synthetic example of GPR, using the same observations as in

the non-linear OLS example from Figure 2.3. Here the GP prior over functions is

given as zero-mean, with covariance defined by the squared exponential kernel (Equa-

tion 2.33). From Figure 2.10a we can see more clearly how the GP prior represents a

prior over functions, as there are in principle an infinite number of possible functions

which could be drawn from the shaded region. In this case, three different possibilities

are shown. The predictions using GPR (Figure 2.10b) appear to be an improvement

over the OLS basis function model from Figure 2.3, with significantly less over-fitting

in areas with larger noise content. Furthermore we can see how GPR provides
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Figure 2.10: Synthetic example of 1-D GPR, using a zero-mean squared exponential
covariance function (σ2

f = 1, ` = 0.2). (a) The shaded area represents the prior space of
functions, from which 3 random samples have been drawn (teal curves). The black curve is
the true function f we aim to estimate. (b) The posterior predictive mean (teal curve) and
uncertainty (1 standard deviation), computed from Equation (2.39).

the added benefit of uncertainty estimates, where in this case the true function lies

within 1 standard deviation (shaded region) of the posterior predictive mean estimate.

Once again, it is worth drawing parallels between GPR and some of the concepts

which were outlined in the previous sections. First, consider the Bayesian linear

regression problem from Equation (2.13), where the outputs were assumed to be

linear functions of the inputs f(φφφ) = φφφTβββ. This means that any given value of βββ

produces a corresponding value of the function f(φφφ). Therefore, placing a prior over

the regression parameters automatically places a prior over functions, and as such,

Bayesian linear regression corresponds to a specific example of GPR which assigns

higher probabilities to linear functions. For a generic prior over the parameters

βββ ∼ N (µµµ,ΣΣΣ), the corresponding prior mean and covariance function for GPR follows:

m(x) = φφφTE[βββ] = φφφTµµµ

k(x,x′) = φφφTE[βββTβββ]φφφ = φφφTΣΣΣφφφ,
(2.40)

which leads to the posterior predictive GPR equations:

f̄ff∗ = φφφT∗µµµ+φφφT∗ΣΣΣφφφ
(
φφφTΣΣΣφφφ+ VVV

)−1(
y−φφφTµµµ

)
σσσ2fff∗ = φφφT∗ΣΣΣφφφ∗ −φφφT∗ΣΣΣφφφ

(
φφφTΣΣΣφφφ+ VVV

)−1
φφφTΣΣΣφφφ∗.

(2.41)

Although expressed here in a different form, this produces an identical solution to

that of Equation (2.23). The only difference is that in the Bayesian linear regression

problem, a N ×N parameter matrix (φφφVVV −1φφφT + ΣΣΣ−1)−1 must be inverted, while in

the GPR case it is a n× n covariance matrix (φφφTΣΣΣφφφ+ VVV )−1. From these equations,

we can also see how GPR is a linear smoother, with a weight function defined by

φφφT∗ΣΣΣφφφ
(
φφφTΣΣΣφφφ+ VVV

)−1
– or equally kT

∗K−1 from Equation (2.39).
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2.2.2 Bayesian model selection

At some points throughout the GPR workflow, various decisions were made in

some form or another, whether related to the choice of prior covariance function,

or by assigning values to each of the possible hyperparameters. The concluding

discussion on Bayesian linear regression briefly mentioned how the hyperparameters

play a key role in reducing over-fitting, therefore conceivably optimal values should be

assigned to each of these in order to generate reliable predictions. Generally speaking,

any unique choice of GP prior (i.e., choice of m(x), k(x,x′) and hyperparameters)

produces a unique model with which to undertake the supervised learning problem,

however deciding on which model is most suitable for a given application may not

be immediately obvious. Model selection is therefore concerned with finding the

model that is most preferred by the data; which as it turns out, can be achieved

rather effectively through the Bayesian principles that have already been outlined.

Consider for a moment a generic GP prior over functions with mean and covariance

function given by m(x) and k(x,x′) respectively. This prior can be referred to as a

specific model Λi, out of any number of different models i = {1, 2, . . . , I} which may

perhaps assign different classes of prior covariance functions, or different values for

their hyperparameters. Through the Bayesian formalism, the posterior probability

of any given model can be expressed as:

p(Λi|y,x) ∝ p(y|x,Λi)p(Λi).

By then assuming that each model has equal prior probability p(Λ1) = p(Λ2) = . . .

et cetera, the distribution p(y|x,Λi) provides a direct indication as to which model

is more likely to have generated the data. Notice that p(y|x,Λi) was already

introduced as the marginal likelihood (also known as the evidence) in Equation

(2.17), which corresponded to integrating over the regression parameters in Bayesian

linear regression. In the non-parametric GPR approach, the marginal likelihood

corresponds to integrating over the function values – which was also already done in

Equation (2.36). Writing it in full here, we have:

p(y|x,Λi) =
1

(2π)n/2
1

|K|1/2 exp

(
− 1

2
(y−m(x))TK−1(y−m(x))

)
. (2.42)

Finding the model which then maximises the log of the marginal likelihood:

ln p(y|x,Λi) = −n
2

ln 2π − 1

2
ln |K| − 1

2
(y−m(x))TK−1(y−m(x)), (2.43)

leads to a very common model selection technique in Bayesian statistics known as

empirical Bayes (Bernardo & Smith, 2009), or type-II maximum likelihood (Berger,

2013). This technique corresponds to maximising the probability of the observations
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Figure 2.11: Bayesian model selection through the empirical Bayes approach. The contour
map shows values of the log marginal likelihood for different combinations of hyperparameters
σ̃2 and `. The true values from which the data were generated are given by the black cross-hair
σ̃2 = 0.045, ` = 0.5. The teal cross-hair is then the values which maximise the log marginal
likelihood function σ̃2 = 0.054, ` = 0.68.

y under the choice of model Λi, and provides a very useful solution to the model

selection problem. For one, it allows all of the available training data to be used

for determining the most optimal model (as opposed to alternative approaches such

as cross-validation, where the training data must be divided into disjoint training

and validation sets). Secondly, through inspection of Equation (2.43), we can see

how this technique not only selects the model which best fits the data (given by

−(y−m(x))TK−1(y−m(x))/2), but also penalises complex models (via − ln |K|/2),

and as such directly embodies the principles of Occam’s razor whereby, given two

models which fit the data equally well, the log marginal likelihood will show preference

towards the model with lower complexity (see chapter 5 of Rasmussen & Williams

2006 for an illuminating discussion).

As a final segment to this discussion on supervised learning, Figure 2.11 presents

a synthetic example of the empirical Bayes approach, which attempts to learn a set

of hyperparameters θθθ = (`, σ2f , σ
2)T for the squared exponential covariance function

from Equation (2.33) . Here ` is often referred to as the correlation length scale, which

controls the smoothness of the function values, and can be equated to a distance in

the input space for which the observations are expected to to remain correlated. σ2f
is then a scaling factor which governs the variance of the function values, and σ2 is

the noise variance which is added to the diagonal entries of the covariance matrix

(e.g., Equation 2.34). In this synthetic example, the set of observations are generated
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by drawing n = 100 samples from a multivariate Gaussian distribution with mean

0 and covariance given by the squared exponential function, with hyperparameters

` = 0.5, σ2f = 2.2, σ2 = 0.1. After Sollich (2005), it is possible to then define

σ̃2 = σ2/σ2f = 0.045 and work with the set of hyperparameters θθθ = (`, σ2f , σ̃
2)T, such

that σ2f can be optimised analytically to obtain σ2f = n−1(y−m(x))TK̃
−1

(y−m(x)),

where K̃ = exp(−‖x−x′‖2/2`2) + σ̃2III. This way, only ` and σ̃2 need to be optimised

numerically. Maximising the log marginal likelihood in Figure 2.11 leads to the

recovered hyperparameters σ̃2 = 0.054 and ` = 0.68, which are relatively close to

the true values. Note however that this approach generates point-estimates of the

hyperparameters, whereas in the fully Bayesian approach, distributions of values

are typically generated through Bayes’ Law. Assigning prior distributions over the

hyperparameters however, requires the evaluation of numerous integrals (see section

3.5 of Bishop 2006), which is no longer analytically tractable. In this situation

approximation techniques such a Markov Chain Monte Carlo sampling are required

(e.g., Neal 1993), which in many cases can be computationally prohibitive.

2.3 Unsupervised learning

The previous section was concerned with learning the function which mapped

a set of one-dimensional inputs x to a set of one-dimensional outputs y. This can

of course be extended to higher dimensions by incorporating multiple predictor

variables as additional columns of xT, or similarly modelling multiple outputs, which

then formulates a multi-task learning problem (see section 6.1). In contrast, the

unsupervised learning framework dispenses with the outputs and instead aims to

explore the hidden properties which are unique to the set of input observations only.

In most practical applications, unsupervised learning deals with high-dimensional

data sets (i.e., where the number of columns of xT is large), and the goal is to project

the key features within those data onto a lower-dimensional subspace, or manifold,

through some form of dimensionality reduction. In the case of climate data, the set

of observations x often corresponds to time series information measuring a particular

component of the Earth’s climate at n regularly sampled points in time and at P

fixed geographical locations, such that xT is a n× P matrix, where P � n. Section

1.1.3 outlined how teleconnections are often associated with large-scale patterns of

variability of a particular climate field, such as sea-level pressure variability over the

Arctic Ocean in the case of the Arctic Oscillation (AO). It therefore seems reasonable

to expect that if the set of inputs were, for example, a reanalysis data set containing

estimates of sea-level pressure north of 60◦, then many of the columns of xT would

be correlated in some way due to the influence of the AO. This means that many of

the columns of xT provide redundant information and superfluous dimensionality to

our data, and what would perhaps be more useful is if we could extract the dominant
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patterns, or modes, of variability related to the AO itself. In climate science we are

often interested in these dominant (lower-dimensional) modes of variability as, for

one, high-dimensional spaces are typically undesired due to observations becoming

increasingly sparse with increasing dimensionality (Bellman, 2015), but also because

these modes more generally contain key predictive information about the state of the

climate system. It is therefore not uncommon for unsupervised learning to be used as

a precursor for prediction (forecasting) purposes in a supervised learning framework

(see chapter 3). In the following sections, two approaches towards unsupervised

learning are outlined. First, a brief overview of principal component analysis is

provided, which can be thought of as the industry standard for analysing spatio-

temporal patterns in climate time series data sets. Following which, the second

novel machine learning technique of this thesis is introduced, which is based on a

combination of cluster analysis and complex network theory.

2.3.1 Principal component analysis

Principal Component Analysis (PCA) – also known as Empirical Orthogonal

Function (EOF) analysis – is a method for dimensionality reduction which has a long

history in climate data science, and has been used extensively in applications ranging

from analysis of climatological teleconnections (Kutzbach 1967; North et al. 1982;

Zhang et al. 1997; Thompson & Wallace 1998; Ambaum et al. 2001) to time series

forecasting (Lorenz 1956; Walsh 1980; Tangang et al. 1998). PCA aims to decompose

a given data set into dominant spatial and temporal modes of variability, known as

the EOFs and Principal Components (PCs) of the data respectively. The derived

modes correspond to a set of orthogonal vectors which retain specific fractions of

the variance of the input signal, where each consecutive mode describes a decreasing

percentage of explained variance relative to the previous modes. Commonly, the mode

which explains the highest percentage of variance of the input signal is referred to as

the leading EOF or PC of that particular data field, and indeed many climatological

teleconnections can be defined as such, including e.g., the North Atlantic Oscillation

(Ambaum et al., 2001), or the El Niño Southern Oscillation (Zhang et al., 1997).

Consider the case where we have a de-trended (zero-mean) time series data

set x = {xxxp}Pp=1 representing n regularly sampled observations in time xxxp =

(x1p, x2p, . . . , xnp), at P fixed geographical locations, such that x ∈ RP×n. The

data are first weighted by an appropriate grid cell weighting X = {xxxp√wp}Pp=1, which

may correspond to wp = cos(ωp) for a regular latitude-longitude grid (ωp is the

latitude of grid cell p), or simply wp = dp for an area grid (dp is the area in km2

of grid cell p). The linear temporal covariance of the weighted data matrix is then
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given as:

Cij =
1

P − 1

P∑
p=1

(Xpi − E[Xi])(Xpj − E[Xj ]), (2.44)

where E[Xi] is the average of all grid points at time index i (this is not generally

zero, as the grid points are de-trended independently). Note here how the definition

of the covariance matrix involves an inner product, therefore in theory the kernel

trick (discussed in section 2.2.1) could be used to represent this inner product in

some higher-dimensional feature space, leading to an alternative non-linear form

of PCA known as kernel PCA (Schölkopf et al., 1998) – see also other non-linear

extensions such as Non-linear Laplacian Spectral Analysis (Giannakis & Majda,

2012). For simplicity, the linear definition above is used here. Next, solving the

eigendecomposition problem leads to:

CV = VS, (2.45)

where V is a n× n matrix whose columns are the set of orthogonal2 eigenvectors of

C, which are, in fact, the temporal modes of variability, or PCs, of the input signal.

The diagonal matrix S then contains the eigenvalues of C, where generally speaking,

the eigenvector which corresponds to the largest eigenvalue, is the direction along

which the variance of the input data is largest. The fraction of variance explained

by mode i, for example, is given by Sii/
∑n

j=1 Sjj . Each subsequent column of V

then explains, in a statistical sense, a decreasing percentage of variance of the input

signal, in a direction that is orthogonal to the previous leading vectors. Deriving the

spatial modes of variability is achieved by first computing:

U = XVS−1/2, (2.46)

and subsequently dividing by the grid cell weights. Here U is a P × n matrix whose

columns are ordered in terms of decreasing explained variance of the input signal, and

S−1/2 is a diagonal matrix whose entries are defined by (
√

S11
−1
,
√

S22
−1
, . . . ,

√
Snn
−1

).

Figure 2.12 shows an example of the 3 leading spatial modes of variability

in winter (December, January, February) sea ice concentration anomalies in the

Arctic, generated via PCA. The input data here X ∈ R48879×43 were taken from

the National Snow and Ice Data Center (NSIDC; Cavalieri et al. 1996 – see section

1.1). Concentration anomalies then correspond to de-trending each grid cell between

1979 and 2021. The leading mode of variability here explains approximately 22%

of the variance of the input signal, where we can see how each subsequent mode

explains a lower percentage of variance than the last. The darker colours in each

2A way to check that the columns of V are orthogonal is by confirming that VTV = III.
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(a) (b) (c)

Figure 2.12: Modes of winter (DJF) sea ice concentration variability (EOFs) between
1979 and 2021, from PCA. (a) Leading mode explaining ∼ 22% of the variability of the
input signal. (b) Second leading mode explaining ∼ 13% variability. (c) Third leading mode
explaining ∼ 10% variability.

EOF map show the dominant regions of winter sea ice variability, where colours

provide an indication as to the phase nature of the variability. For example, regions

which are blue are out of phase with areas which are red, meaning that when one

area experiences higher than average concentration, the other experiences lower

than average concentration. In the next two sections, clustering is outlined as an

alternative framework for deriving similar spatio-temporal patterns of variability,

and also information about higher-order structures of the climate system by adopting

a complex network approach.

2.3.2 Cluster analysis

Cluster analysis is an alternative method for dimensionality reduction which

has been utilised across a wide variety of disciplines ranging from ecology (James

& McCulloch 1990; McKenna Jr 2003), through to social education (Myers III &

Fouts, 1992), and forensic psychology (Spaans et al., 2009). Its applications in polar

climate science have historically been for the purpose of detecting sea ice properties

from satellite radiometers (Comiso, 1983, 1986) and altimeters (Kwok et al., 1992),

and more recently for investigating high-latitude atmospheric aerosol and particle

patterns (Dall et al. 2017, 2018; Lange et al. 2018). Generally, cluster analysis can be

considered as an approach which seeks to group data points together into a number of

distinct partitions, or clusters, based on some metric of similarity. These definitions of

‘similarity’ and ‘clusters’ are somewhat heuristic, which has resulted in a plethora of

clustering algorithms being developed over recent decades, and subsequently choosing

the most suitable one for a particular problem may not be immediately obvious –

the reader is referred to Jain et al. (1999) and Saxena et al. (2017) for excellent

reviews on the many types of algorithms available. In this section, a grid-based

clustering algorithm is introduced for identifying modes of variability within climate
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time series data products; an approach which has previously been explored in the

context of mid-latitude sea-surface temperature patterns (Fountalis et al., 2014). In

the application here, this approach is extended to polar climate data sets.

Consider once again the zero-mean, grid-cell-weighted P × n data matrix of

observations X from section 2.3.1. From here, the pairwise correlations are computed

between all grid points:

Rpq =

∑n
i=1(Xpi − E[Xp])(Xqi − E[Xq])√∑n

i=1(Xpi − E[Xp])2
∑n

i=1(Xqi − E[Xq])2
. (2.47)

Notice the difference between this definition and Equation (2.44). In the PCA appli-

cation, C was a n×n covariance matrix, whereas here R is a P×P correlation matrix.

Furthermore, E[Xp] equates here to the average across the temporal dimension at

grid point p, which in this example is in fact zero. In any case, the correlation matrix

above is used to define the similarity between grid cells, which will establish whether

cells should be grouped together to form a cluster. This grid-based approach follows

a greedy algorithm, whereby individual grid cells continuously search for neighbours

to group with, providing the correlation between them exceeds a certain threshold. In

the fashion of a greedy algorithm, this form of local clustering aims to be heuristically

optimal in the sense that small-scale homogeneities identified with local clustering

will approximate the large-scale homogeneities across the whole data set (Cormen

et al., 2009). Subsequently, for grid cells to form a cluster Ck, 3 criteria must be

adhered to. The first states that the minimum number of grid cells in any cluster

must be at least 2:

• |Ck| ≥ 2.

The second states that, for any two grid cells p and q that are both part of a cluster

Ck, there must be a connected path (or continuous function h) that joins p to q:

• ∀ (p, q) ∈ Ck, h : [0, 1]→ Ck such that h(0) = p and h(1) = q.

Finally, the third condition states that the average correlation of all grid cells in each

cluster must be greater than a pre-defined threshold factor τ :

•

∑
p 6=q∈Ck

Rpq

|Ck|(|Ck| − 1)
> τ,

which here is defined as the mean of all positive correlation values (from R) whose

associated p-values are less than some pre-defined significance level η. The p-values

can be computed from a 1-sided t-test:

t-score = Rpq

√
n− 2

1− R2
pq

. (2.48)
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Figure 2.13: 80 spatially contiguous clusters (η = 0.01, see main text) generated from
de-trended winter sea ice concentration time series data between 1979 and 2021. Each cluster
represents a region of sea ice concentration which has behaved homogeneously over the length
of the observational period.

Clustering then proceeds based on the above criteria until no further grid cells can

be added to any cluster. After which, a second round of clustering is performed,

whereby clusters are merged together providing the three outlined criteria are still

upheld. This is achieved by a similar process to the generation of the initial clus-

ters, except rather than grid cells searching for neighbours, clusters instead search

for neighbouring clusters to determine whether, if merged, the average correlation

between all the grid cells in a newly merged cluster exceeds τ . The neighbouring

cluster with the greatest average correlation above τ after merging is then chosen.

This continues until no further clusters can be merged.

Figure 2.13 shows the resultant clusters after performing the grid-based algorithm

to the winter sea ice concentration data set described in section 2.3.1, with a

significance level of η = 0.01 (see also Figure A.3 for comparisons with η = 0.05

and η = 0.10). The clusters are defined by a set of spatially contiguous areas,

where each area represents a region of sea ice concentration that has behaved in

a homogeneous way over the length of the time series record, and in this case

corresponds to a particular spatial mode of sea ice variability (analogous to EOFs).

We can immediately see here how clustering acts as a dimensionality reduction

method, as the input data X have been decomposed from the original space of

P = 48879 grid cells to N = 80 clusters. By adopting a complex network approach

next, further information can then be extracted from these clusters, such as which

represent the dominant, or leading, modes of sea ice variability, and subsequently

how each are connected via a set of statistical interdependencies.
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2.3.3 Complex networks

Networks provide a relatively simple and visual framework with which to analyse

and display large volumes of data that typically represent complex physical systems.

Their use across multiple disciplines has grown considerably over recent decades, with

intuitive applications in computer science and social networks (Albert & Barabási

2002; Newman 2003; Boccaletti et al. 2006; Cohen & Havlin 2010) – known as

structural networks, to more abstract applications in e.g., neuroscience (Zhou et al.

2007; Morabito et al. 2015; delEtoile & Adeli 2017), seismology (Abe & Suzuki, 2006),

and climate science (Tsonis & Roebber 2004; Tsonis et al. 2006; Donges et al. 2009,

2015; Fountalis et al. 2014, 2018; Dijkstra et al. 2019) – known as functional networks.

Climate network analysis was first introduced by Tsonis & Roebber (2004), and has

subsequently proven to be a powerful tool kit for extracting significant statistical

relationships from the multitude of entangled interactions within the climate system,

and is a useful complement to standard methods of analysing patterns of climate

variability, such as PCA (Donges et al., 2015). In general, a network can be seen as

a group of vertices, or nodes, whereby each node k may be connected to any other

node in the network l via a weighted edge, or link. In the common example of social

networks, people are represented by nodes and their relationships by links. The weight

of the link then depends on the strength of the relationship existing between the two

people (nodes). In the case of the climate network, a network, or graph, of N nodes

may correspond to time series data GGG = {gggk}Nk=1 representing n regularly sampled

observations in time gggk = (g1k, g2k, . . . , gnk), at N fixed geographical locations, and

the links may represent statistical interdependencies between any pair of node time

series gggk and gggl. In the application outlined here, the N clusters identified from the

grid-based algorithm in the previous section (e.g., Figure 2.13) are used to represent

the nodes of a complex network, and they subsequently form a connected graph

by generating weighted links between them. To do this, the cumulative anomaly

time series of each network node is computed, which is taken as the sum of the

grid-cell-weighted de-trended time series of all cells within each respective network

node:

gggk =
∑
p∈Ck

Xp, (2.49)

where gggk represents the temporal mode of variability of each network node, and

as such can be considered analogous to the PCs derived from PCA. Next, the link

weights www are calculated as the temporal covariance between two network node

anomaly time series:

wkl =
1

n− 1

n∑
i=1

(gik − E[gggk])(gil − E[gggl]). (2.50)
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Note that the weights are not normalised, such that the weight of the link is

proportional to the power of the anomaly time series gggk and gggl in nodes Ck and

Cl, rather than just their correlation value (Fountalis et al., 2014). Furthermore,

although the link weights have been defined based on linear covariance here, this

could in theory be altered to incorporate non-linear metrics such as, e.g., mutual

information (Donges et al., 2009), event synchronisation (Malik et al. 2012; Boers

et al. 2014), or transfer entropy (Runge et al., 2012). The structure of the network

can then be represented in an adjacency matrix M ∈ RN×N , that describes how all

of the nodes are connected across the network:

Mkl =

wkl if k 6= l

0 otherwise
, (2.51)

where the fact that the diagonal entries are zero implies that the network contains

no self-loops (i.e., a node does not connect to itself). Chapter 3 will show how the

adjacency matrix is a particularly useful concept, as it easily allows the connected

structure of the network to be incorporated into other models, such as graph kernels

(Vishwanathan et al., 2010) for regression analysis. Finally, the weighted degree, or

strength, of a given network node Sk is defined here as the sum of the absolute value

of all its associated link weights:

Sk =
N∑
l=1

|Mkl|. (2.52)

The node with the highest strength is commonly referred to as the hub of the network

(Tsonis & Roebber, 2004), and represents the leading mode of variability of the input

data set X. The links between nodes can then be seen as a proxy for teleconnections,

which in this example are inherently instantaneous, as the covariance-based link

weights are computed at zero-lag. The network framework can however be easily

adapted to incorporate lagged correlations, and also additional components of the

climate system (e.g., atmospheric and/or oceanic variables), at which point the

network becomes a multi-layer network (see chapter 5).

Figure 2.14 shows the complex network representation of winter sea ice concen-

tration anomalies, based on the clusters identified in Figure 2.13 (see also Figure

A.4 for a comparison with clusters based on η = 0.05 and η = 0.10). Here we can

see how the dominant mode of winter sea ice concentration variability (i.e., the

node with the highest strength) extends from the Labrador Sea, through Baffin

and Hudson bays, and up to the Canadian Archipelago. We also notice how the

node links highlight a similar out-of-phase relationship between the east and west

Atlantic (and Pacific) sectors of the Arctic (similar to the leading EOF in Figure
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Figure 2.14: Complex network of winter sea ice concentration. The network can be
visualised as node points (left) which take the centre position of each cluster from Figure
2.13, where the size of the node is proportional to the area of the cluster. Links signify the
temporal covariance between network nodes, where the width of each link is proportional to
the covariance. Only links which have a p-value < 0.1 are shown here, to aid visualisation.
The network can also be visualised by weighting each grid cell by the strength of the node in
which that cell belongs (right), producing a strength map of the network.

2.12), represented here by the strong negative network links. Each individual sector

then shows the same phase of variability, given by the positive links. From this it is

possible to see how complex networks and PCA are complementary in their ability to

exploit spatio-temporal patterns of variability, however it could be argued that the

network framework provides some advantages. Specifically, the network approach

does not impose orthogonality constraints between modes, and it also does not mask

patterns of lower variance. Furthermore, the network framework can in principle be

used to derive higher-order information about the input data, such as the rate of

information flow between nodes. This section does not go into further detail as these

metrics do not form the basis of results presented in subsequent chapters, however

the interested reader is referred to Donges et al. (2009, 2015) for more information.

2.4 Thesis aims

This thesis explores the application of the two previously outlined machine

learning techniques, Gaussian process regression and complex networks, to a variety

of problems facing the polar climate science community at present. Although these

problems may seem broad in scope, they can each be considered as components of the

larger sea ice prediction problem, and furthermore they provide individual frameworks
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to showcase the flexibility of each of the novel machine learning methodologies. The

results which will be presented are:

• In chapter 3 the problem of providing reliable seasonal predictions of the

September sea ice cover will be addressed. September is the point of maximum

sea ice melt in the Arctic, and as such it is a crucial time of the year for a wide

variety of communities who rely on sea ice forecasts for safe and cost-effective

passage through the Arctic. This study will look to exploit the predictability

mechanism of sea ice persistence by computing complex networks of sea ice

concentration data from the preceding June, July and August, and subsequently

pass the connected structure of each of these networks into a Gaussian process

regression forecast model in the form of a random walk graph kernel, in order

to ultimately predict regional and pan-Arctic September extents for all years

between 1985 and 2019.

• In chapter 4 the problem of merging multiple observation sets and improving

data coverage will be considered. Satellite altimeters have been groundbreaking

in our ability to remotely monitor the changes in Arctic sea ice thickness that

have occurred over the past decade, however generating pan-Arctic observations

typically takes up to one month. This has implications for our ability to

understand how various chaotic events, such as weather, affect sea ice thickness

on shorter time-scales, and also our ability to provide accurate initial conditions

for seasonal sea ice forecasts in dynamical models. In this work, the Gaussian

process regression methodology will be explored as a way to combine radar

freeboard observations from the European Space Agency’s altimeters: CryoSat-

2, Sentinel-3A and Sentinel-3B, in order to produce daily pan-Arctic estimates

of radar freeboard, along with uncertainty.

• Chapter 5 will assess the ability of the latest generation of coupled climate

models to reflect one of the key atmospheric drivers of summer sea ice variability,

and subsequently discuss the consequences for seasonal sea ice predictions in

these dynamical models. Specifically, the complex networks methodology will be

used to compare the dominant spatio-temporal patterns of variability in winter

sea-level pressure, summer sea ice concentration, and subsequently compare the

degree of connectivity between the winter Arctic Oscillation and summer sea

ice concentration in both observations and CMIP6 models by using two metrics

for comparing sets of networks. An assessment of how this teleconnection may

be changing over time will also be outlined for both observations and models,

as ice conditions change due to the effects of anthropogenic warming.
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Chapter 3

Skilful sea ice forecasting

The following chapter is based on the article “Gregory, W., Tsamados, M., Stroeve,

J. and Sollich, P., (2020). Regional September Sea Ice Forecasting with Complex

Networks and Gaussian Processes. Weather and Forecasting, 35(3), pp.793-806.”

A novel statistical forecast model is presented which is able to generate reliable

predictions of both pan-Arctic and regional September sea ice extents, with up

to 3 months lead time. Here the complex network framework is used in order to

exploit spatio-temporal patterns of sea ice concentration variability in the preceding

3 months of summer (June, July and August), which are then incorporated into

a supervised learning linear Gaussian process regression forecast model to predict

September extents. The regional forecasts are performed over 9 Arctic regions which

encompass the most likely maritime navigation routes at the point of the summer

minimum. Comparisons of the forecast skill achieved with this model are made with

statistical and dynamical model forecasts from the existing literature, using either

the metric of ‘skill score’ or ‘anomaly correlation coefficient’. The score of pan-Arctic

and various regional forecasts are also broken down across different portions of the

time series record to understand whether the predictability of various regions may

be changing over time.

3.1 Introduction

Across all months, September has exhibited one of the fastest rates of decline in

Sea Ice Extent (SIE) since 1979 (Overland & Wang 2013; Serreze & Stroeve 2015),

as well as the largest inter-annual variability (Stroeve & Notz, 2018). Significant

anomalies such as the 1996 maximum and the 2007 and 2012 minima contribute

largely to this variability and make seasonal predictions difficult. The extreme 2007

minimum in particular led to the initiation of the Sea Ice Outlook (SIO) project
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by the Study of Environmental Arctic Change (SEARCH), with the initial aim of

providing annual summaries of the expected pan-Arctic September SIE. In 2014 this

was formally turned in to the Sea Ice Prediction Network through U.S. interagency

funding, and expanded to include regional forecasts of September Sea Ice Concentra-

tion (SIC), sea ice probability, first ice-free date and first ice-advance date. Starting

each May, the SIO solicits predictions of the September sea ice cover from the sea

ice community based on forecasts made on the 1st day of June, July and August.

Approaches vary from fully coupled ice-ocean-atmosphere or ice-ocean dynamical

models, to statistical models and heuristic and/or best guesses. The ability of these

forecast models to accurately capture the variability of Arctic sea ice, with lead times

of days to months, is becoming increasingly important from an ecological, economical

and societal standpoint. The opening of the Northern sea route for example has the

potential to reduce the shipping route between Europe and Asia by 5000 nautical

miles in comparison to the Suez Canal (Lee & Song, 2014), hence advanced timing of

this opening, on the order of months, can make for cost-effective planning (Egúıluz

et al., 2016).

While fully coupled climate models are intuitively the model of choice for sea ice

forecasting, with a number of studies reporting high de-trended prediction skill

(Chevallier et al. 2013; Sigmond et al. 2013; Wang et al. 2013; Msadek et al. 2014; Pe-

terson et al. 2015; Bushuk et al. 2017), on average past summaries of SIO submissions

(Stroeve et al. 2014c; Hamilton & Stroeve 2016) have shown that generally dynamical

models do not significantly out-perform their statistical model counterparts. In fact

the majority of models participating in the SIO (both statistical and dynamical) only

perform relatively successfully when sea ice anomalies occur close to the long-term

trend. This leaves a window open to explore statistical models, which have in some

cases shown promise in exploiting sources of predictability with up to 4 months lead

time (Lindsay et al. 2008; Schröder et al. 2014; Yuan et al. 2016; Stroeve et al. 2016;

Petty et al. 2017; Ionita et al. 2019).

This chapter presents a statistical approach that exploits spatio-temporal variability

within the sea ice record via construction of complex networks based on monthly mean

fields of SIC from June, July and August. These networks are then utilised within

a Gaussian Process Regression (GPR) model in order to predict both pan-Arctic

and regional September monthly mean SIE anomalies, for all years between 1985

and 2019. In the context of real-time forecasts, this would correspond to forecasts

being made on July 1st (June data), August 1st (July data), and September 1st

(August data), with forecast validation made on October 1st. Hence forecast lead

times extend from 1 to 3 months.

Section 2.3.3 has shown how complex networks provide a relatively new perspec-

tive with which to extract statistical relationships from the multitude of entangled

interactions within the climate system, which were referred to as climatology tele-
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connections. Such teleconnections have been studied for much of the last century

(Walker & Bliss 1932; Wallace & Gutzler 1981; Glantz et al. 1991), and also in recent

years for the similar purpose of Arctic sea ice prediction (Yuan et al. 2016; Comeau

et al. 2019). GPR is then a natural complement to complex networks, whereby

the construction of kernel functions for random graphs (networks) has been studied

extensively (Kondor & Lafferty 2002; Smola & Kondor 2003; Vishwanathan et al.

2010; Spielman 2010; Urry & Sollich 2013), and provides the ability to integrate the

network information directly into the regression model in the form of Gaussian prior

and likelihood distributions (see section 3.3.2). To our knowledge, this is the first

time this methodology has been implemented for the purpose of sea ice forecasting.

This chapter is structured as follows: section 3.2 provides an overview of the data

used for this study, section 3.3 describes the implementation of the complex networks

and GPR methodology used for this study, results are presented in section 3.4,

followed by a discussion (section 3.5) and conclusions (section 3.6).

3.2 Data

For the generation of the complex networks, monthly mean SIC fields between

1979 and 2018 were extracted from the National Snow and Ice Data Center (NSIDC)

based on the NASA Team sea ice algorithm applied to passive microwave brightness

temperatures (Cavalieri et al., 1996). Multiple satellites comprise this data record:

Nimbus-7 SMMR (1979 – 1987), the DMSP F-8, F-11 and F-13 SSM/Is (1987 – 2007),

and finally the DMSP F-18 SSM/I (2007 – 2017). To extend beyond 2018, these data

are combined with the 2019 near-real-time daily SIC fields from NSIDC (Maslanik

& Stroeve, 1999), which are averaged to generate the corresponding monthly fields.

Data sets are provided on a polar stereographic 25×25 km grid, which are re-gridded

here to a polar stereographic 100 × 100 km grid prior to the calculation of the

grid-based pairwise correlations (Equation 2.47), for computational reasons. Grid

cell area information (used to generate area-weighted time series, see section 3.3.1)

was also extracted from NSIDC’s pixel area tools library. Finally, it should be noted

that the time varying polar hole in the SIC data is filled for the purpose of this study.

This is achieved by simply filling the hole with the mean SIC value at 0.5◦ below the

hole latitude, for each respective year.

To predict SIE on a regional level, the Arctic is separated into 9 geographic areas which

surround the Arctic coastlines and encompass the most likely maritime navigation

routes (Figure 3.1) – the data mask for these areas is also available from NSIDC

(Fetterer et al., 2010). Here SIE is defined as the sum of grid cell areas for which

SIC values are greater than or equal to 15%. A monthly mean value of extent is

produced for each year by calculating the SIE for each day in September and then

taking an average over all days.
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Figure 3.1: Regional Arctic areas used for September SIE forecasting (from Fetterer et al.
2010). 1: Baffin Bay, 2: Greenland Sea, 3: Barents Sea, 4: Kara Sea, 5: Laptev Sea, 6: East
Siberian Sea, 7: Chukchi Sea, 8: Beaufort Sea, 9: Canadian Archipelago.

3.3 Methods

3.3.1 Complex networks

The process of generating complex networks from monthly mean SIC data (for

June, July and August) follows the steps outlined in sections 2.3.2 and 2.3.3. The

key points are briefly summarised again here. First, x = {xxxp}Pp=1 is defined as a

linearly de-trended (zero-mean) time series data set representing n regularly sampled

observations of sea ice concentration anomalies in time xxxp = (x1p, x2p, . . . , xnp), at P

fixed geographical locations, such that x ∈ RP×n. The data are then area-weighted

X = {xxxp
√

wp}Pp=1, with wp being the area in km2 of grid cell p (data are on a polar

stereographic grid), before subsequently computing pairwise correlations between

all grid cells (Equation 2.47). Following this, the grid-based clustering algorithm

outlined in section 2.3.2 is used to generate SIC network nodes, with a significance

level of η = 0.01. The cumulative anomaly time series of each network node gggk then

corresponds to the sum of all grid cells belonging to each cluster (Equation 2.49), and

the links between nodes www are generated as the linear temporal covariance between

the anomaly time series of each node (Equation 2.50). For a given network, the

collection of all node time series is then referred to as GGG = {gggk}Nk=1, such that GGGT is

a n×N matrix.

As the SIC networks are used to make predictions of September SIE for all

years between 1985 and 2019, it is worth commenting on how the network structure

varies over time, as new networks are created for each forecast year. Figure 3.2

provides a visual illustration of this for August SIC data as an example. The network
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Figure 3.2: Network nodes and teleconnection links derived from linearly de-trended
monthly mean August SIC data. The length of the time series used to create each network
extends from 1979 to the years marked above each image. Each network area node Ck
represents a clustering of grid cells. The thickness of each of the links here is proportional to
the link weight wij (temporal covariance) between each pair of nodes. Only links which have
a p-value < 0.1 are shown here to aid visualisation. See Equation (2.52) for the definition of
node strength.

structure appears to vary significantly across the 34-year period shown here. Further

investigation is required as to whether this variation is due to actual changes in sea

ice behaviour or the fact that the length of the time series n used to construct each

network is not constant. For example, the network labelled 1986 is constructed with

n = 8, whereas the network labelled 2019 is constructed with n = 41 (time series

begin at 1979). This does coincide with significant differences in the threshold factor

τ , and subsequently the number of network nodes, as shown in Figure 3.3. Networks

generated with shorter time series show a much larger value of τ which means that

SIC grid cells will only cluster with neighbouring cells if the correlation between

them is significantly large. As this is only likely to occur for perhaps the first few
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Figure 3.3: For networks based on linearly de-trended monthly mean SIC data from June,
July and August, the variation in the number of network nodes N and also the threshold
factor τ are shown here for all years between 1985 and 2019.

neighbouring cells, the resultant network hosts a very large number of nodes which

contain a very small number of grid cells. Indeed it may be necessary to impose

a pre-defined threshold of τ for years with shorter time series, although this goes

beyond the scope of this study.

3.3.2 Gaussian process regression

Consider once again the supervised learning problem from section 2.2, which

describes the functional relationship between inputs and outputs:

y = f(GGG) + εεε , εεε ∼ N (0, σ2), (3.1)

where εεε represents independent and identically distributed Gaussian noise with mean

0 and variance σ2. In the application here, y corresponds to n observations of

September SIE anomalies and GGG the n observations of the cumulative SIC anomalies

(Equation 2.49) from N network nodes. Note that the n observations used for training

extend from (and include) 1979 to the year preceding the forecast year. For example

if the forecast year is 2019 then n = 40, hence a new SIC network and GPR model

are constructed for each forecast year. The aim of the model training is therefore

to investigate the unknown relationship between the nodes of a given SIC network

and the target September SIE. Here, this relationship is assumed to be linear, such

that f(GGG) = GGGTβββ, and subsequently the implementation becomes a Bayesian linear

regression. As f(GGG) is a Gaussian process (see section 2.2.1), it can therefore be

completely defined by its mean (which is taken to be zero) and covariance function:

f(ΨΨΨ) ∼ GP(0, k(ΨΨΨ,ΨΨΨ)). (3.2)
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Here ΨΨΨ represents arbitrary function inputs, which correspond to either the training

inputs GGG, test inputs GGG∗, or a combination of both. Test inputs are used to make

predictions after the model training and are given here as the nth + 1 entries that GGG

would have if it were continued by another year, i.e., SIC anomalies of the year being

forecast. A series of covariance functions can therefore be defined for all training and

test inputs as:

K = k(GGG,GGG) = GGGTΣΣΣGGG+ σ2III

kkk∗ = k(GGG∗,GGG∗) = GGGT
∗ΣΣΣGGG∗ + σ2

k∗ = k(GGG,GGG∗) = GGGTΣΣΣGGG∗,

(3.3)

where ΣΣΣ is the prior covariance matrix over the regression parameters βββ (see Equation

2.15), and is given here as a random walk matrix (Urry & Sollich 2013; see references

therein) which takes the form ΣΣΣ = σ2f exp(`M). M is then an adaptation of the

adjacency matrix from Equation (2.51), which here corresponds to a symmetric

transition matrix with off-diagonal elements containing the absolute teleconnection

weights wkl between nodes of the SIC network (Equation 2.50), and diagonal elements

containing the negative strength of a given node:

Mkl = |wkl| for k 6= l, Mkk = −Sk = −
N∑
j 6=k
|wkl|. (3.4)

The remaining undefined variables (`, σ2f , σ
2) are the hyperparameters of the prior

covariance function. In this case, ` is known as the random walk ‘time’ parameter

which controls the correlation between the regression parameters βββ. As ` becomes

large, the correlations between regression parameters (off-diagonal elements of ΣΣΣ)

become large, and more long-ranged. At ` = 0, the parameters are un-correlated, each

having variance σ2f . These hyperparameters are optimised here using the empirical

Bayes approach, which maximises the log marginal likelihood function from Equation

(2.43), and is re-stated here for convenience:

ln p(y|GGG) = −n
2

ln 2π − 1

2
ln |K| − 1

2
yTK−1y. (3.5)

Following the example in section 2.2.2, it is possible to define σ̃2 = σ2/σ2f and work

with the set of hyperparameters θθθ = (`, σ2f , σ̃
2)T. This way σ2f can be optimised

analytically to obtain σ2f = n−1yTK̃
−1

y, where K̃ = GGGTΣ̃ΣΣGGG+ σ̃2III, and Σ̃ΣΣ = exp(`M)

(Sollich, 2005), such that only ` and σ̃2 need to be optimised numerically.

With the optimal hyperparameters found, the GPR model is then fully determined

and forecasts of September SIE anomalies f̄∗ and their corresponding variance σ2f∗
are given by:

f̄∗ = kT
∗K−1y

σ2f∗ = kkk∗ − kT
∗K−1k∗.

(3.6)
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3.4 Results

3.4.1 Pan-Arctic September sea ice extent forecasts

Forecasts of pan-Arctic September SIE anomalies are performed for all years be-

tween 1985 and 2019, based on monthly mean SIC fields from June, July and August.

Each forecast is performed by GPR as explained above, with GGG representing linearly

de-trended SIC data (for all network nodes) taken in the relevant month (June, July

or August), and y the corresponding pan-Arctic September SIE. As explained in

the previous section, for each forecast a new network of area nodes and hence a

GPR model is constructed in order to ensure predictors capture the variability of

the sea ice record over the period leading up to the year being forecast. Accordingly,

optimal hyperparameters for the GPR are also determined separately for each forecast.

Before presenting the results, the definition of de-trended forecast skill Sfff∗ is given

as the explained variance in the target variable y (e.g., observed de-trended pan-Arctic

September SIE) relative to the de-trended forecast result fff∗ = (f̄∗1, f̄∗2, . . . , f̄∗n)

from Equation (3.6). Explicitly, 1− Sfff∗ is the ratio of the mean squared prediction

error to the variance of these targets around their mean E[y]:

Sfff∗ = 1−
1
n

∑n
i=1(yi − f̄∗i)2

1
n

∑n
i=1(yi − E[y])2

. (3.7)

Furthermore, as comparisons will be made to other studies, the definition of the

anomaly correlation coefficient (ACC) is also given as the linear cross-correlation

coefficient between fff and y from Equation (2.47), which is re-stated here:

ACCfff∗y =

∑n
i=1(f̄∗i − E[fff∗])(yi − E[y])√∑n

i=1(f̄∗i − E[fff∗])2
∑n

i=1(yi − E[y])2
. (3.8)

Figure 3.4 displays the results of the pan-Arctic September SIE forecasts. The

de-trended result shows remarkable skill of 0.53 at 3-month lead time using a single

layer predictor (in the sense that GPR can be viewed as a single-layer SIC network),

and increasing skill thereafter of 0.62 and 0.81 at 2 and 1 months respectively.

Furthermore it is apparent from Figure 3.4 that each of the three forecasts appear to

have performed better in the latter section of the time series (e.g., after approximately

1992). Therefore if the de-trended skill is calculated between 1993 and 2019, we

notice an increase in skill for all lead times; from 0.53, 0.62, 0.81 to 0.58, 0.66, 0.88

respectively. The skill value of anomaly persistence between 1985 and 2019 is given

here as 0.18, 0.52 and 0.88 at 3-, 2-, and 1-month lead times respectively, hence the

GPR model out-performs persistence at 3 and 2 months, although at 1 month the skill
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GPR forecast (July data). Skill with trend: 0.87

GPR forecast (August data). Skill with trend: 0.92

Figure 3.4: Predictions of pan-Arctic September SIE based on networks of monthly mean
SIC data from June, July and August (3, 2 and 1 months lead time respectively). (a)
De-trended forecast fff∗ showing predictive skills (Equation 3.7) of 0.53, 0.62, and 0.81 for
forecasts based on June, July and August SIC networks respectively. (b) Forecasts with
trend, with respective skills of 0.84, 0.87 and 0.92. The shaded areas in both plots represents
the forecast standard deviation σfff∗ .

of persistence is greater. Comparing these forecast results to recent statistical studies,

Lindsay et al. (2008), Schröder et al. (2014), Petty et al. (2017) and Ionita et al.

(2019) each presented skill scores for statistical forecasts of pan-Arctic September

SIE. Skill values for each respective study were given as: [0.63, 0.81, 0.96 (with trend)

at 3, 2, 1 months, respectively], [0.41 (de-trended) at 3-4 months], [0.45, 0.49, 0.59

(de-trended) at 3, 2, 1 months, respectively], and [0.78, 0.81 (de-trended) at 3, 2

months respectively]. Similarly, Yuan et al. (2016) reported de-trended ACC scores

of [0.75, 0.82, 0.90 at 3, 2, 1 months respectively]; the de-trended ACC scores for

the forecasts in this study are similar at 0.77, 0.83, 0.90 for the same respective lead

times.

Looking to dynamical forecast comparisons, Sigmond et al. (2013), Wang et al. (2013),

Msadek et al. (2014) and Bushuk et al. (2017) each presented de-trended ACC scores

for various coupled model forecasts of pan-Arctic sea ice. Approximate results for

each respective study were given as [0.55, 0.75, 0.90], [0.55, 0.65, 0.75], [0.60, 0.70,
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0.81], and [0.50, 0.60, 0.70] for lead times of 3, 2, and 1 months respectively.

It should be noted that forecast skills presented above are not directly comparable

as the period of analysis is not consistent between all studies. However given that

the skill scores in this study out-perform the majority of the studies above, and that

the analysis here is conducted over a longer time period should give an indication as

to the exceptional performance of the combined complex network–GPR approach,

for the presented lead times.

3.4.2 Regional September sea ice extent forecasts

Regional forecasts of September SIE are also performed to assess the model’s

performance beyond the single pan-Arctic metric and to be more in-line with the

needs of a wider range of Arctic communities. As stated previously, 9 geographic

regions have been chosen (Figure 3.1). These exclude the Bering Sea, Sea of Okhotsk,

and Hudson Bay, as these regions are ice-free in September. In a similar vein, the

Central Arctic has also been excluded as this is generally the location of the core ice

pack, such that predictions there would be of limited use for many groups.

Similar to section 3.4.1, a new SIC network is constructed for each forecast year and

the hyperparameters for the GPR are optimised separately for each forecast year

and region.

Figure 3.5 displays the results of the regional September SIE forecasts. Across all

lead times, predictions are generally most successful in regions towards the Pacific

sector, with highest de-trended skill achieved in the Canadian Archipelago, Beaufort,

Chukchi, East Siberian, and Laptev seas. Beyond 1-month lead time the GPR

model consistently achieves poor prediction skill in Baffin Bay, and both Greenland

and Barents seas, with Baffin Bay showing poor predictability for all lead times.

Predictability appears to suffer in regions which have undergone significant changes

in behaviour over the satellite record. For example, in the Kara Sea, the GPR model

achieves very high de-trended skill between 1985 and 2006 (0.52, 0.59, 0.68 at 3-, 2-,

and 1-month lead time respectively), however between 2007 and 2019 this skill drops

significantly (-1.25, -0.44, and 0.35 for the same respective lead times), ultimately

having a negative impact on the overall score. This change in predictability is

likely due to a sudden change in the inter-annual variability of SIE in the Kara Sea

after 2007 (see Figure 3.5b), such a change which would be extremely difficult for a

statistical model to adapt to. The opposite can be said for other regions, in that the

dominant window of predictability lies in the latter half of the time series record (i.e.,

after 2007). Regions such as the Canadian Archipelago, Beaufort, Chukchi, and East

Siberian seas show significantly higher de-trended prediction skill between 2007 and

2019 than between 1985 and 2006 (Figure 3.6). See also Table 3.1 for a summary of
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Figure 3.5: Predictions of regional September SIE based on networks of monthly mean SIC
data from June, July and August. (a) De-trended forecast. (b) Forecasts with trend. The
shaded areas in all plots represent the forecast standard deviation σfff∗ .

the de-trended prediction skills for each region, and between different time windows.

Looking again to comparison studies of regional sea ice forecasting using statistical

models, Lindsay et al. (2008) made regional predictions of the September mean SIE

at 3-month lead time. Reported skill values (with trend) were given as: 0.77, 0.74,

0.18, 0.08, and -0.67 for the Barents, Kara, Laptev, East Siberian and Beaufort seas

respectively. In this study, skill values (also with trend) for the same respective

regions at 3-month lead time are given as: 0.04, 0.54, 0.45, 0.66, and 0.65. Ionita

et al. (2019) made similar predictions in the East Siberian Sea, with de-trended skill

of 0.69, 0.78 at 3- and 2-month lead time respectively. Skills here are given as 0.48

and 0.47 at 3- and 2-month lead time respectively.

In terms of regional dynamical forecasts, Bushuk et al. (2017) reported de-trended

ACC scores for all Arctic regions in a coupled model forecast. Here, other than the

Greenland Sea at 3-month lead time, the equivalent de-trended ACC scores exceed

theirs in all regions for each of the three respective lead times. Again, these skill

57



Skill 1985-2019 / 1985-2006 / 2007-2019 |
ACC 1985 - 2019

June data July data August data

Pan-Arctic 0.53 / 0.32 / 0.65 | 0.77 0.62 / 0.43 / 0.73 | 0.83 0.81 / 0.63 / 0.91 | 0.90
Baffin Bay (1) 0.11 / 0.07 / 0.30 | 0.35 0.15 / 0.38 / -0.95 | 0.51 0.25 / 0.24 / 0.30 | 0.51
Greenland Sea (2) -0.17 / -0.09 / -0.51 | -0.23 0.30 / 0.29 / 0.30 | 0.56 0.74 / 0.72 / 0.82 | 0.88
Barents Sea (3) 0.10 / 0.10 / 0.07 | 0.34 0.29 / 0.27 / 0.31 | 0.54 0.69 / 0.67 / 0.77 | 0.83
Kara Sea (4) 0.40 / 0.52 / -1.25 | 0.67 0.53 / 0.59 / -0.44 | 0.74 0.67 / 0.68 / 0.35 | 0.83
Laptev Sea (5) 0.25 / 0.22 / 0.16 | 0.52 0.53 / 0.46 / 0.62 | 0.73 0.62 / 0.52 / 0.84 | 0.80
East Siberian Sea (6) 0.48 / 0.34 / 0.64 | 0.70 0.47 / 0.48 / 0.44 | 0.70 0.63 / 0.62 / 0.63 | 0.82
Chukchi Sea (7) 0.26 / 0.12 / 0.46 | 0.54 0.31 / 0.18 / 0.48 | 0.65 0.56 / 0.53 / 0.59 | 0.79
Beaufort Sea (8) 0.34 / -0.07 / 0.57 | 0.71 0.51 / 0.36 / 0.59 | 0.77 0.71 / 0.63 / 0.76 | 0.86
Canadian Archipelago (9) 0.33 / 0.03 / 0.57 | 0.59 0.40 / 0.12 / 0.62 | 0.65 0.66 / 0.47 / 0.82 | 0.84

Table 3.1: De-trended regional forecast skill values for predictions of September SIE based
on monthly mean SIC data from: June, July and August. Skill values (Equation 3.7) are
calculated between three periods: 1985–2019, 1985–2006 and 2007–2019. De-trended ACC
scores (Equation 3.8) are also given for the period 1985–2019. Labels 1 - 9 correspond to
area labels in Figure 3.1.

metrics are not completely comparable due to different analysis periods.

3.5 Discussion

Several studies have linked sea ice persistence to high forecast skill of the pan-

Arctic SIE metric with lead times ranging from 1 to 3 months (Drobot et al. 2006;

Lindsay et al. 2008; Petty et al. 2017; Ionita et al. 2019). In this study, forecasts of

pan-Arctic SIE out-perform the majority of both statistical and dynamical forecast

models presented in the previous section despite the poor performance between 1985

and 1993, which is likely due to lack of observations in the GPR model training.

Indeed heuristic ‘rules-of-thumb’ are available for deciding the minimum number

of observations required to effectively model a given statistical problem (Bishop,

2006), although here we could pragmatically say that this minimum number should

equate to the point after which the model is able to make accurate and precise future

predictions. Nevertheless, with increasing demand for reliable forecasting of useful

sea ice components, which is the focal point of the phase 2 of the Sea Ice Prediction

Network (SIPN2), arguably regional forecasts of SIE and alternative metrics hold

more importance than those of a single pan-Arctic extent. Therefore while skilful

forecasts have been achieved for pan-Arctic SIE, this must be transferable to other

regions to be useful for the various groups that are dependent on sea ice forecasts.

Here, regional forecasts of SIE have proven to be relatively successful at 3-month lead

time. Regions with high de-trended forecast skill (Canadian Archipelago, Beaufort,

Chukchi, East Siberian, Laptev and Kara seas) coincide with areas which have been

shown to contribute most to the decline in September SIE since 1979 (Onarheim

et al., 2018). Similarly, regions with relatively poor de-trended forecast skill (Barents

Sea, Greenland Sea and Baffin Bay) are those which show little variability in their

September extents and in fact have been shown to contribute most to the decline
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in March SIE since 1979 (Onarheim et al., 2018). In any case, future work must

move to accurate predictions of spatio-temporal trends and derivation of metrics

such as the location of the sea ice edge, and sea ice probability – in line with the

SIPN2 mission statement. On this note, Increasing the present methodology to

4-month lead time (May SIC data) has been tested, however the resultant de-trended

prediction skill is very poor for both the pan-Arctic and regional cases. This may be

in part related to the spring predictability barrier which has been observed in model

studies (Bonan et al. 2019; Bushuk et al. 2020), whereby May sea ice anomalies are

unable to persist through to September (see also section 1.1.3). Irrespective of this,

the methodology presented here can be advanced in order to achieve improved sea

ice predictability. In terms of the GPR model the prior covariance function can be

adapted such that we move away from a strictly linear system and instead allow for

(a)

3-month lead time 2-month lead time 1-month lead time

(b)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
De-trended forecast skill

Figure 3.6: Skill by Arctic region for predictions of de-trended September SIE based on
networks of monthly mean SIC data from June, July and August (3-, 2- and 1-month lead
time respectively). (a) De-trended skill calculated between 1985 and 2019. (b) De-trended
skill calculated between 1985 and 2006. (c) De-trended skill calculated between 2007 and
2019. See Table 3.1 for values.

59



fully non-parametric and non-linear fits (Sollich & Halees 2002; Girard et al. 2003;

Rasmussen & Williams 2006; Sarkar et al. 2019). Furthermore one could provide

an alternative Gaussian prior than the typical uniform zero-mean which is currently

given to all network nodes. In the alternative case each node is assigned a different

prior as necessary. In terms of the network framework, this also has the ability to

grow in terms of complexity. Currently the implementation is rather simple with

a single-layer network of SIC being used as a predictor. With the incorporation

of multi-layer networks (Boccaletti et al., 2014) comes the ability to incorporate

multiple climate variables within the regression forecasts. This may in turn lead to

increasing the forecast lead time and skill (see section 6.1 for further discussion).

3.6 Conclusions

Forecast submissions to the SIO project have shown that statistical models

still have the ability to be competitive with their dynamical model counterparts,

within the inter-annual time frame (Stroeve et al. 2014c; Hamilton & Stroeve 2016).

Although with apparent increasing temporal variability in the sea ice record (Holland

et al., 2010) these statistical models need to be sufficiently complex in order to remain

competitive. Not only this, the sea ice record shows significant spatial variability

that can be seen across the observed SIE records (Figure 3.5). Complex networks are

a method that exploits such spatio-temporal variability for purposes ranging from

improving understanding of climatological teleconnections, to time series forecasting;

as presented here. Forecasts of pan-Arctic September SIE have shown to be successful

within a GPR forecast model and result in competitive de-trended skill values with the

literature to date: 0.53, 0.62, and 0.81 at 3-, 2-, and 1-month lead time respectively.

Regional forecasts made across the same time frame also show competitive de-trended

skill in the Canadian Archipelago, Beaufort, Chukchi, East Siberian, Laptev and

Kara seas, with skill values typically greater than 0.3. Improving forecast skill beyond

3 months requires development of the complex network and GPR methodology. The

predictability of summer sea ice conditions using only concentration has been shown

to diminish beyond 3 months (Drobot et al. 2006; Lindsay et al. 2008; Petty et al.

2017; Ionita et al. 2019). Extending the forecast window to 6 months or even to 1 year

would require the incorporation of multiple climate variables (hence multi-layered

networks) to capture sources of predictability such as ocean heat advection effects on

summer sea ice conditions (Serreze & Stroeve, 2015) and possibly sea ice re-emergence

patterns (Blanchard-Wrigglesworth et al. 2011; Bushuk et al. 2014), among many

others.
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Chapter 4

Data fusion and optimal

interpolation of radar freeboards

The following chapter is based on the article “Gregory, W., Lawrence, I.R. and

Tsamados, M., (2021). A Bayesian approach towards daily pan-Arctic sea ice

freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations.

The Cryosphere, 15, 2857–2871.” A supervised learning approach for deriving daily

pan-Arctic estimates of radar freeboard is outlined, one which can be applied to any

problem which seeks to enhance data coverage in the presence of sparse observations.

Here, data sets from three separate satellite altimeters: CryoSat-2, Sentinel-3A, and

Sentinel-3B, are combined in a Gaussian process regression framework to produce

daily pan-Arctic estimates of radar freeboard, and uncertainty, between December

2018 and April 2019. The empirical Bayes approach is also used to learn the free

hyperparameters of the model, which allows daily estimates of auxiliary products

related to radar freeboard spatial and temporal correlation length scales to be derived.

An analysis of the regional uplift in temporal resolution which is achieved by moving

from the more generally reported monthly-averaged running means of radar freeboard,

to that of a daily product is also shown. The chapter then ends by making time series

comparisons of the daily radar freeboard anomalies with ERA5 reanalysis snowfall

data in order to assess whether the estimated daily fields are able to capture real

physical radar freeboard variability at sub-weekly time-scales.

4.1 Introduction

Estimates of Arctic sea ice thickness are crucial for a variety of purposes ranging

from monitoring the volumetric response of sea ice to long-term climatic change

(Slater et al., 2021), to understanding the consequences of climate change for Arctic
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ecosystems, whose productivity rates are driven by the sea ice thickness distribution

(Sakshaug et al. 1994; Stirling 1997; Stroeve et al. 2021). Furthermore, our ability to

provide reliable forecasts of future sea ice conditions is inherently dependent on the

availability of observations which allow us to exploit sources of sea ice predictability

(Guemas et al., 2016). Initialising climate models with observations of sea ice thick-

ness for example has been shown to considerably improve seasonal sea ice forecasts

compared to those initialised with sea ice concentration (Chevallier & Salas-Mélia

2012; Doblas-Reyes et al. 2013; Day et al. 2014b; Collow et al. 2015; Bushuk et al.

2017; Allard et al. 2018; Blockley & Peterson 2018; Schröder et al. 2019; Ono et al.

2020; Balan-Sarojini et al. 2021).

In recent decades, advancements in satellite altimetry have enabled sea ice thickness

to be estimated from space. This is achieved by measuring the sea ice freeboard; that

is, the height of the sea ice surface relative to the adjacent ocean, and converting it

to thickness by assuming hydrostatic equilibrium and bulk values of the ice, ocean,

and overlying snow densities – and also snow depth (Laxon et al. 2003; Quartly et al.

2019). CryoSat-2 was the first radar altimeter launched with a specific focus on

polar monitoring, and while it has been pivotal in improving our understanding of

polar climate, its long repeat sub-cycle means that 30 days are required in order to

generate pan-Arctic coverage (up to 88◦ N). The same is true for the ICESat-2 laser

altimeter, launched in 2018, whose capability to estimate total (snow) freeboard, at

monthly timescales, has been recently demonstrated (Kwok et al., 2019). Other radar

altimeters in operation such as Sentinel-3A and Sentinel-3B have slightly shorter

repeat cycles (27 days) however only extend to 81.5◦ latitude. With this in mind,

the maximum temporal resolution that can be achieved for pan-Arctic freeboard

from one satellite alone is 1 month. Increasing the resolution leads to a stepwise

drop in spatial coverage until arriving at 1 day of observations for which less than

20% coverage is achieved for latitudes below 83◦ N, with tracks averaged to a 25

km2 grid spacing (Lawrence et al. 2019; see also Tilling et al. 2016 for a similar

analysis using 2 days of observations). This poses a significant limitation in our

ability to both understand physical processes that occur on sub-monthly timescales,

and in capturing the temporal variability of sea ice thickness, which could provide

information on sea ice forecasts.

Recent studies have found ways to improve temporal coverage through the merging

of different satellite products. Ricker et al. (2017) for example, merged thickness

observations from CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS) satellites

to produce pan-Arctic thickness fields at weekly timescales. Furthermore, Lawrence

et al. (2019) showed that radar freeboard observations from CryoSat-2, Sentinel-3A,

and Sentinel-3B can be merged to produce pan-Arctic coverage below 81.5◦ N every

10 days. While both of these studies are significant improvements in temporal resolu-

tion, a daily pan-Arctic freeboard and/or thickness product does not yet exist. The
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Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) sea ice thickness

model (Zhang & Rothrock, 2003) is a commonly used substitute for observations when

evaluating sea ice thickness in climate models, and is available at daily resolution.

PIOMAS assimilates daily sea ice concentration and sea-surface temperature fields,

and despite assimilating no information on sea ice thickness, it has been shown to

be generally consistent with in situ and submarine observations (Schweiger et al.,

2011), as well as exhibiting similar mean trends and annual cycles to both ICESat

and CryoSat-2 satellites (Schweiger et al. 2011; Laxon et al. 2013; Schröder et al.

2019). However it generally over-estimates thin ice regions and under-estimates thick

ice regions (Schweiger et al. 2011; Stroeve et al. 2014b), giving a mis-representation

of the true ice thickness distribution.

This chapter exploits the consistency between CryoSat-2 (CS2), Sentinel-3A

(S3A) and Sentinel-3B (S3B) radar freeboards (Lawrence et al., 2019) in order to

produce a gridded pan-Arctic freeboard product, hereafter referred to as CS2S3, at

daily resolution between December 2018 and April 2019. The method, Gaussian

process regression (see chapter 2), aims to learn functional mappings between pairs of

observation points in space and time by updating prior probabilities in the presence of

new information - Bayes’ theorem. Through this novel supervised learning approach,

it is possible to move beyond the typical assessment of satellite-based radar freeboard

variability with simple running means, and instead move closer towards understanding

drivers of radar freeboard variability on sub-weekly time-scales with a daily product

(see section 4.5). While many previous studies have reported statistical interpolation

methods under a variety of names, e.g., Gaussian process regression (Paciorek &

Schervish 2005; Rasmussen & Williams 2006), kriging (Cressie & Johannesson 2008;

Kang et al. 2010; Kostopoulou 2021), objective analysis (Le Traon et al., 1997), and

optimal interpolation (Ricker et al., 2017), each of these methods contain the same

approach to learning functional mappings and the same key set of predictive equations.

Despite this, the method is almost infinitely flexible in terms of its application and

model setup. Section 4.3 for example will show how the model here differs from

e.g., Ricker et al. (2017) through the unique choices of input-output pairs, as well as

choice of prior over functions, and approach to learning model hyperparameters.

The chapter is structured as follows: section 4.2 introduces the data sets which are

used within this study, section 4.3 outlines the specific implementation of Gaussian

process regression unique to this study and presents an example of how pan-Arctic

radar freeboard estimates can be achieved on any given day. Section 4.4 evaluates

the interpolation performance through a comparison with the training inputs, and

cross-validation experiments. Section 4.5 then provides an assessment of the improved

temporal variability achieved by the use of a daily product, before finally ending

with conclusions in section 4.6.

63



4.2 Data

The following section outlines the processing steps applied to CS2, S3A and S3B

along-track data for generating the radar freeboard observations used as inputs to

the Gaussian process regression model, as well as listing auxiliary data sets used.

4.2.1 Freeboard

Note that radar freeboard (the height of the radar scattering horizon above the

local sea surface) is distinct from sea ice freeboard (the height of the snow-ice interface

above the local sea surface). To convert radar freeboard to sea ice freeboard, a priori

information on snow depth, density, and radar penetration depth are required. This

study focuses solely on radar freeboard so as not to impose new sources of uncertainty.

Radar freeboard can be considered as the ‘base product’, from which pan-Arctic

daily estimates of sea ice freeboard and thickness can later be derived. For this

study, along-track radar freeboard was derived for CS2 (synthetic aperture radar

(SAR) and synthetic aperture radar interferometric (SARIN) modes), S3A and S3B

in a two-stage process that is detailed in full in Lawrence et al. (2019). First, raw

Level-0 (L0) data were processed to Level-1B (L1B) waveform data using ESA’s

Grid Processing On Demand (GPOD) SARvatore service (Dinardo et al., 2014). At

the L0 to L1B processing stage, Hamming-weighting and zero-padding were applied,

both of which have been shown to be essential for sea ice retrieval and which are not

included in the ESA standard processing of S3 data at this time (Lawrence et al.,

2019) – they are however applied during ESA’s CS2 processing chain. Next, L1B

waveforms were processed into radar freeboard following the methodology outlined

in Lawrence et al. (2019) – based on that of Tilling et al. (2018) – and accounting for

the Sentinel-3A and -3B (S3) retracking bias, as suggested in their conclusion. After

subtracting the extra 1 cm retracking bias, 2018–2019 winter-average freeboards from

CS2, S3A and S3B fall within 3 mm of one another (see Lawrence 2019). Notably,

the standard deviation on the S3A(B)CS2 difference is comparable to the standard

deviation on S3AS3B (σ=6.0(6.0)(5.9) cm for S3ACS2(S3BCS2)(S3AS3B)). Since

S3A and S3B are identical in instrumentation and configuration, differing only in

orbit, this suggests that any CS2S3A(B) radar freeboard differences are the result of

noise and the fact that the satellites sample different sea ice floes along their different

orbits, rather than due to biases relating to processing. Such consistency between

data from individual satellites permits the combination of data from all three; thus

in the following methodology, data from the three satellites are propagated as a

single data set (CS2S3). It is also worth noting that while GPOD-derived CS2 radar

freeboards are not compared with the ESA L2 baseline D product here, Lawrence

et al. (2019) applied the same L1B → L2 processing to GPOD L1B and ESA L1B
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(baseline C) data and found a radar freeboard difference of ∼ 6 mm, which can be

attributed to the fact that the GPOD L1B data do not contain the stack standard

deviation parameter which is used for filtering lead and floe waveforms in the ESA

L1B → L2 processing chain. This means that the product presented in this chapter

can effectively be considered as version 1.0, while awaiting the availability of ESA

Sentinel-3 Level-2 data which are processed to be consistent with CS2 (i.e., with

Hamming weighting and zero padding applied).

4.2.2 Auxiliary data

In order to produce pan-Arctic estimates of radar freeboard on a given day,

information on the maximum sea ice extent on that day is required. For this, daily

sea ice concentration fields were extracted between December 2018 and April 2019

from the National Snow and Ice Data Center (NSIDC). These fields correspond to the

NASA Team sea ice algorithm applied to passive microwave brightness temperatures

from the Nimbus-7/SMMR (Scanning Multichannel Microwave Radiometer), DMSP

(Defense Meteorological Satellite Program)/SSM/I (Special Sensor Microwave/Im-

ager), and DMSP/SSMIS (Special Sensor Microwave Imager/Sounder), which are

provided on a 25× 25 km polar stereographic grid (Cavalieri et al., 1996). Grid cells

containing sea ice were then selected as those with a concentration value ≥ 15%.

Section 4.3 makes distinctions between first-year ice (FYI) and multi-year ice (MYI)

zones in order to perform computations related to the model setup. For this, the

Ocean and Sea Ice Satellite Application Facility (OSI-SAF) daily ice type product

(OSI-403-c; Aaboe et al. 2016), derived from DMSP/SSMIS, Metop/ASCAT and

GCOM-W/AMSR-2 satellites is used. These data are provided on a 10 × 10 km

polar stereographic grid.

Finally, section 4.5 utilises the NSIDC-defined sea ice regions (Fetterer et al., 2010)

in order to perform a regional analysis of the temporal variability of the daily CS2S3

product, as well as making comparisons with daily ERA5 snowfall reanalysis data

(ERA5, 2017). Daily snowfall data were generated for each day between December

2018 and April 2019 by computing the sum of 24-hourly reanalysis fields.

4.3 Methods

This section revisits the method of Gaussian process regression, and outlines

how it can be used to produce gridded pan-Arctic radar freeboard observations on

any given day. In the example presented here, along-track freeboard observations

from each satellite are averaged on a 25× 25 km polar stereographic grid. NSIDC

sea ice concentration, and OSI-SAF ice type data are also re-gridded to the same grid.
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For a given day t, we have gridded freeboard observations from CS2, S3A and

S3B satellites (z1(t), z2(t) and z3(t) respectively). The number of observations from

each satellite varies such that z1(t) = {z1(t)i}n1(t)
i=1 , z2(t) = {z2(t)i}n2(t)

i=1 , z3(t) =

{z3(t)i}n3(t)
i=1 where some, but not all, of the observations between z1(t), z2(t) and

z3(t) are co-located in space. Let us then define z(t) as a n(t) × 1 vector
(
n(t) =

n1(t) +n2(t) +n3(t)
)

which is generated by concatenating the freeboard observations

from each of the three satellites. Repeating this step for ± τ consecutive days in a

window around day t, means that T = 2τ + 1 number of z(t) vectors are combined in

order to produce a single n×1 vector
(
n = n(t− τ) + . . .+n(t) + . . .+n(t+ τ)

)
of all

observations z. In this case τ is chosen to be 4, hence 9 days of observations are used

in the model training. This results in the majority of grid cells having been sampled

at least once over this period, thus reducing the prediction uncertainty at any given

grid cell. Figure 4.1 shows how, in this example, the spatial coverage is improved

from ∼ 23% to ∼ 72% by using 9 days of observations instead of 1. It is also worth

noting that freeboard measurements from different satellites which are co-located in

space and time are treated as separate observation points in the proposed workflow,

where the average percentage of co-located points on any given day between CS2,

S3A, and S3B; CS2 and S3A; CS2 and S3B; and S3A and S3B is < 1%, ∼ 4%,

∼ 4%, and ∼ 8% respectively. The aim is to then understand the function which

maps the freeboard observations to their respective space-time positions in order

to make predictions at unobserved locations on day t. This corresponds to a 3-D

implementation of the supervised learning problem outlined in e.g., Equation (2.30),

which is given here as:

z = f(x,y, t) + εεε , εεε ∼ N (0, σ2). (4.1)

Once again, εεε represents independent and identically distributed Gaussian noise

with mean 0 and variance σ2. The zonal and meridional grid positions of the

freeboard observations are then given by the n× 1 vectors x and y respectively, and

finally t is a n× 1 vector which contains the time index of each observation point

t =
(
{(t− τ)i}n(t−τ)i=1 , . . . , {(t)i}n(t)i=1 , . . . , {(t+ τ)i}n(t+τ)i=1

)
. For convenience, the

collective training inputs are also defined as ΦΦΦ = (x,y, t), such that f(x,y, t) ≡ f(ΦΦΦ).

Section 2.2.1 showed how Gaussian Process Regression (GPR) enables the function

f to be learned from the training set of inputs ΦΦΦ and outputs z, and subsequently

enables predictions to be made for a new set of test inputs ΦΦΦ∗ = (x∗, y∗, t). Here

the test inputs correspond to the zonal and meridional grid positions of where the

predictions will be made. For now, let us assume that this corresponds to one grid

cell which contains sea ice on day t (i.e., a grid cell within the grey mask shown in

Figure 4.1). Recall from Equation (2.31) that by assuming f is a Gaussian Process
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Figure 4.1: Gridded tracks from (a) CS2, (b) S3A, and (c) S3B on a 25 × 25 km polar
stereographic grid, respectively covering approximately 11%, 7% and 7% of the total NSIDC
NASA Team sea ice extent (grey mask) on day t = 1st of December 2018. By combining the
three satellites (d), this coverage is increased to approximately 23%. Combining t± 4 days
of gridded tracks (e), the coverage is increased further to approximately 72% of the total sea
ice extent. The white ice type contour (from OSI-SAF) shows the boundary between thick
MYI and thin FYI, on day t.

(GP), a particular class of mean and covariance function must be chosen in order to

specify which type of functions to give preference to:

f(ΨΨΨ) ∼ GP(m(ΨΨΨ), k(ΨΨΨ,ΨΨΨ′)),

where ΨΨΨ represents arbitrary function inputs (either the training ΦΦΦ or test inputs

ΦΦΦ∗). In this case, a constant value is assigned for the prior mean m(ΨΨΨ), which is

given as the mean of CS2 FYI freeboards from the 9 days prior to the first day

of training data, i.e., from (t − τ − 9) to (t − τ − 1). The reason that only FYI

freeboards are used is that with fewer observation points, GPR has less evidence to

support significantly different freeboards from m(ΨΨΨ). From Figure 4.1e we can see

that there are generally fewer observation points in the (FYI) coastal margins, hence

predictions here will likely remain close to m(ΨΨΨ). In the MYI zone however, there

are a large number of observations (more evidence) to support freeboards which may

be different from m(ΨΨΨ), so the choice of m(ΨΨΨ) will likely have little effect on the
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prediction values here. The prior covariance k(ΨΨΨ,ΨΨΨ′) is given here as the anisotropic

Matérn covariance function:

k(ΨΨΨ,ΨΨΨ′) = σ2f
(
1 +
√

3d(ΨΨΨ,ΨΨΨ′)
)

exp
(
−
√

3d(ΨΨΨ,ΨΨΨ′)
)
, (4.2)

with Euclidean distance d(ΨΨΨ,ΨΨΨ′) in space and time given by:

d(ΨΨΨ,ΨΨΨ′) =
‖ψψψx −ψψψ′x‖

`x
+
‖ψψψy −ψψψ′y‖

`y
+
‖ψψψt −ψψψ′t‖

`t
.

In the above definition, σ2f , `x, `y, and `t (and also σ2 from Equation 4.1) are the

model hyperparameters, each taking a real value > 0. Similar to the example outlined

in section 2.2.2, σ2f controls the overall variance of the function values, while `x, `y

and `t are the correlation length scales (one for each dimension), describing how far in

the input space (metres or days) the observations are expected to remain correlated.

Let us now refer to θθθ = (σ2f , `x, `y, `t, σ
2)T as the collection of all hyperparameters.

Here the empirical Bayes approach (see section 2.2.2) is used to select values of θθθ

which maximise the log marginal likelihood function:

ln p(z|ΦΦΦ, θθθ) = −n
2

ln 2π − 1

2
ln |K| − 1

2
(z−m(ΦΦΦ))TK−1(z−m(ΦΦΦ)), (4.3)

where

K = k(ΦΦΦ,ΦΦΦ) + σ2III.

It is also worth noting that as well as optimising the model hyperparameters, the

choice of prior covariance function was established by evaluating Equation (4.3)

on a variety of different covariance functions, where the Matérn was found to be

favourable, producing the highest log marginal likelihood.

With the model fully determined, predictions of radar freeboard can then be

generated at the test locations ΦΦΦ∗. As outlined in Equation (2.39), this corresponds

to evaluating the mean f̄∗ and variance σ2f∗ of the posterior predictive distribution:

f̄∗ = m(ΦΦΦ∗) + k(ΦΦΦ,ΦΦΦ∗)K
−1(z−m(ΦΦΦ))

σ2f∗ = k(ΦΦΦ∗,ΦΦΦ∗)− k(ΦΦΦ,ΦΦΦ∗)K
−1k(ΦΦΦ∗,ΦΦΦ).

(4.4)

Now that the framework is in place to generate a predictive distribution of radar

freeboard values for a given set of training and test locations, let us explore how

this is implemented in practice. Due to the need to invert a matrix of size n × n
(i.e., K), GPR has run time complexity O(n3), which means that if the number of

training points is doubled, then the run time is increased by a factor of 8. As K

must be inverted at every iteration step when optimising the model hyperparameters,
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Figure 4.2: Estimating freeboard for one grid cell. (a) A posterior distribution of freeboard
values is to be estimated at the location of the white pixel on day t. The white circle
corresponds to a distance of 300 km from the pixel, and the gridded tracks are the CS2
and S3 observations on day t. (b) The prior covariance k(ΦΦΦ∗,ΦΦΦ), which is the covariance
between the test input ΦΦΦ∗ (the white pixel), and all the training inputs ΦΦΦ that lie within
a 300 km radius, for each of the 9 days of training data. (c) Probability density functions
showing the prior distribution of function values (dashed), with mean m(ΦΦΦ∗) = 0.056 m and
1 standard deviation

√
k(ΦΦΦ∗,ΦΦΦ∗) = 0.167 m, as well as the posterior predictive distribution

(solid) showing the estimated freeboard value at the location of the white pixel on day t as
f̄∗ = 0.314 m, with 1 standard deviation of σf∗ = 0.028 m.

GPR becomes increasingly computationally expensive with increasing n. For this

reason, an iterative approach to the predictions is taken here: for a particular day

t, predictions of radar freeboard are generated at each grid cell by using only the

available training data that exist within a 300 km radius (see Figure 4.2). The

69



(a) (b)

0.0 0.1 0.2 0.3 0.4
Radar freeboard (m)

0.00 0.01 0.02 0.03 0.04
Absolute uncertainty (m)

Figure 4.3: (a) Gridded CS2S3 radar freeboard from Gaussian Process Regression. (b)
The absolute uncertainty (1 standard deviation), corresponding to the square root of the
predictive variance from Equation (4.4). Both images correspond to estimates on the 1st of
December 2018, at a grid resolution of 25× 25 km.

process shown in Figure 4.2 is essentially repeated for every grid cell which contains

sea ice, until producing a pan-Arctic field on day t. While this does effectively mean

that observations beyond 300 km distance are considered to be uncorrelated, it does

have the advantage of both computational efficiency, and it allows spatial variation

to be freely incorporated into the length scales `x, `y, `t (and hence spatial variation

into the smoothness of the function values). This seems sensible given the different

scales of surface roughness that exist between FYI and MYI (Nolin et al., 2002).

Furthermore, 300 km can be considered a reasonable distance in estimating the

spatial covariance between inputs given that freeboard observations are correlated

up to a distance of at least 200 km due to along-track interpolation of sea level

anomalies (Tilling et al. 2018; Lawrence et al. 2018).

Figure 4.3 shows the result of repeating the steps in Figure 4.2 for every grid cell

which contains sea ice on day t. The freeboard values here correspond to the mean of

the posterior distribution f̄∗, and the uncertainty as the square root of the variance

term σf∗ . Notice that the CS2S3 freeboard appears smoother than if we were to

simply average the training observation points (e.g., Figure 4.1e). This is because

GPR estimates the function values f , while it was stated in Equation (4.1) that the

observations z are the function values corrupted by random Gaussian noise. We

also notice how the uncertainty in the estimation of the freeboard values increases

in locations where there are fewer training data, and is typically highest in areas

where there are no data at all (e.g., the polar hole above 88◦ N). Section 4.5 provides

further discussion relating to the predictive uncertainty of the CS2S3 field, looking

particularly at the Canadian Archipelago and the Greenland, Iceland and Norwegian
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Figure 4.4: The 25× 25 km gridded (a) zonal, (b) meridional, and (c) temporal correlation
length scales which maximise the log marginal likelihood function (Equation 4.3) for the 1st

of December 2018. The black contour also corresponds to the FYI/MYI contour for the 1st

of December 2018.

seas, where uncertainties are consistently higher than other regions of the Arctic.

See also Figures B.1 and B.2 for sensitivity tests, which shows how the predictions

and uncertainty estimates in Figure 4.3 are affected by varying the number of days

of observations used to train the model.

As a final point related to the methodology, given that the predictions are gener-

ated iteratively, it is possible to construct daily spatial maps of each of the model

hyperparameters that maximise the log marginal likelihood function. Of particular

importance are perhaps the correlation length scale parameters, as these could be of

use in other applications such as localisation techniques in sea ice data assimilation

systems (Sakov & Bertino 2011; Massonnet et al. 2015; Zhang et al. 2018, 2021).

Previous studies have estimated the average spatial length scales of sea ice thickness

anomalies across a range of coupled climate models (Blanchard-Wrigglesworth &

Bitz, 2014) and reanalysis products (Ponsoni et al., 2019) to be typically in the

range of 500–1000 km. In this approach, the maximum spatial length scales of radar

freeboard are capped at 600 km as this is the maximum distance between any pair

of grid cells used during the model training (similarly the temporal length scales are

capped at 9 days). Nevertheless, from Figure 4.4 we notice some interesting features.

Specifically, that larger spatial length scales typically coincide with the thicker MYI

zone, as well as some localised features around the East Siberian–Chukchi seas, and

the Kara and Laptev seas. We also notice some presence of anisotropy (i.e., at a

given pixel, `x 6= `y), particularly in the area north of Greenland, and some regions

of the Beaufort Sea. This could be explained by the presence of ridges and other

deformation features which form in a preferential orientation relative to the apparent

stress regime (Kwok 2015; Petty et al. 2016b). Some of the lowest correlation length

scales occur in the peripheral seas, which is perhaps related to more dynamic ice

conditions and uncertainty related to spatial sampling in these regions (see section
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Date
µ (m)
CS2-CS2S3

σ (m)
CS2-CS2S3

µ (m)
S3A-CS2S3

σ (m)
S3A-CS2S3

µ (m)
S3B-CS2S3

σ (m)
S3B-CS2S3

RMSE (m)
CS2-CS2S3

RMSE (m)
S3A-CS2S3

RMSE (m)
S3B-CS2S3

201812 0.001 0.051 0.000 0.057 -0.001 0.057 0.051 0.057 0.057
201901 0.001 0.049 0.001 0.056 -0.002 0.055 0.049 0.056 0.055
201902 0.000 0.050 0.000 0.055 -0.001 0.055 0.050 0.055 0.055
201903 0.001 0.050 0.000 0.056 -0.001 0.057 0.050 0.056 0.047
201904 0.001 0.053 0.000 0.061 -0.001 0.061 0.053 0.061 0.061
all months 0.001 0.051 0.000 0.057 -0.001 0.057 0.051 0.057 0.057

Table 4.1: Mean (µ), standard deviation (σ), and RMSE of the daily difference between
gridded CS2, S3A and S3B tracks and co-located CS2S3 points, for all days between the 1st

of December 2018 and the 24th of April 2019. Also computed for all days in each respective
month.
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Figure 4.5: Comparison of daily gridded CS2S3 freeboard against daily (a) CS2, (b) S3A,
and (c) S3B gridded freeboard tracks, for all days between the 1st of December 2018 and
the 24th of April 2019. In each case, the freeboard values are directly compared in the
scatter-density plot (dashed line shows y = x). The distribution of the error is given by the
histograms below each scatter plot (1σ either side of the mean µ is shaded in grey). Only
values within ±3σ of the mean are shown for the histogram plots.

4.5 for further discussion). With regards to temporal length scales, we see that radar

freeboard observations are correlated over much of the Arctic over the 9 day training

period, except for the Canadian Archipelago and some areas of the Greenland, Iceland

and Norwegian Seas (also discussed further in section 4.5).

4.4 Validation

In this section various metrics are used to assess the GPR model in terms of

training and prediction. First, CS2S3 daily freeboards are compared against the
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training inputs in order to derive average errors across the 2018–2019 winter season,

before evaluating the predictive performance of the model through cross-validation

experiments. Note that hereafter, all CS2S3 fields are generated at 50 × 50 km

resolution, and CS2 and S3 along-track data are averaged to the same 50× 50 km

polar stereographic grid, for computational efficiency.

4.4.1 Comparison with training inputs

Here the performance of the GPR model is assessed during training; that is, an

assessment of the errors between the gridded CS2S3 field, and CS2 and S3 gridded

tracks, for all days between the 1st of December 2018 and the 24th of April 2019.

In general, caution should be applied when evaluating training performance, as a

model which fits the training data well may be fitting to the noise in the observations

(over-fitting), leading to poor predictive performance. Meanwhile, a model which

under-fits the training data is equally undesired (recall from section 2.2.1 however

that over-fitting is inherently mitigated in the GPR method). In the model outlined

in Equation (4.1), the freeboard observations from CS2 and S3 corresponded to the

function values plus random Gaussian noise. Therefore by comparing the CS2S3

freeboard values from Equation (4.4) to the training data, the difference should

correspond to zero-mean Gaussian noise. In Figure 4.5 differences are computed (CS2-

CS2S3, S3A-CS2S3, S3B-CS2S3) for all days, where we can see that the difference

(error) follows a normal distribution, centred approximately on 0. The average daily

difference µ between CS2S3 and CS2 (or S3) is ≤ 1 mm, with standard deviation on

the difference σ < 6 cm (see also Figure B.3 where training errors are compared for

interpolations run at different spatial grid resolutions for 1 day). Furthermore, we

can see that the Root Mean Square Error (RMSE) between CS2S3 and the training

inputs is equivalent to the standard deviation of the difference, which can only occur

when the average bias is approximately 0. Notably, each of the standard deviations

is approximately equal to the ∼ 6 cm uncertainty on 50 km grid-averaged freeboard

measurements, determined from a comparison of S3A and S3B data during tandem

phase of operation (see Figure B.4). A breakdown of average errors for each month

are given in Table 4.1, however it should be noted that rounding is likely to play a

role in many of the presented statistics. For example, we can see that the CS2-CS2S3

mean difference for the ‘all months’ case is reported as 0.001 m, and similarly for

S3A-CS2S3 we have 0.000 m. If these values are expanded, we arrive at 0.00078 m

and 0.00024 m respectively, hence the apparent difference between means CS2-CS2S3

and S3A-CS2S3 is almost halved.
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4.4.2 Cross-validation

The previous section showed that CS2S3 freeboards closely resemble CS2 and

S3 observations (the training data), however this does not give an indication as to

how well the model performs in predicting at unobserved locations. An independent

set of radar freeboard observations would allow CS2S3 freeboards to be validated

at locations unobserved by CS2 or S3 on any given day, however in the absence

of these, alternative metrics must be used to evaluate the predictions. Commonly,

data from the airborne mission Operation IceBridge are used to validate sea ice

freeboard and/or thickness observations, however as only 6 days were collected in a

small area around north of Greenland in 2019, there are insufficient data points here

to realistically draw any conclusions about the CS2S3 freeboards on larger temporal

and spatial scales. K-fold cross-validation (see appendix A.1) is a useful tool when

validation data are limited, however models must be run K number of times (ideally

where K = n), incurring significant computational expense when n is large (as it is

in this case). A pragmatic solution is opted for here: the predictive performance of

the model is tested by removing different combinations of each of the S3 satellites

from the training data, re-generating the predictions with the remaining subset, and

subsequently evaluating predictions on the withheld set. For example, in the first

instance daily pan-Arctic predictions are generated across the 2018–2019 period,

except that both S3A and S3B are withheld from the training set. Predictions are

then evaluated from each day against observations from S3A and S3B. In the next

instance, the same process is repeated except that only S3A are withheld from the

training set (whilst retaining S3B), and S3A are used as the validation set. In the

final scenario, S3B are withheld from the training set and used as the validation

set. It should be noted however, that this approach only allows predictions to be

validated below 81.5◦ N, and at locations where sea ice concentration values are

≥ 75%. This is because 81.5◦ N is the limit of spatial coverage of S3 satellites,

and during the processing of both CS2 and S3 along-track data, diffuse waveforms

which sample grid cells with lower than 75% concentration are discarded (Lawrence

et al., 2019). Figure 4.6 compares predictions for each of the previously mentioned

scenarios, across all days in the 2018–2019 winter period. As expected, the mean

and spread of error in the predictions is largest in the case where only CS2 is used

to train the model, with µ = −0.002 m, σ = 0.074 m and µ = −0.004 m, σ = 0.073

m relative to S3A and S3B observations respectively. The mean and spread of error

then decreases slightly with the incorporation of either S3A or S3B, with µ = −0.001

m, σ = 0.072 m and µ = −0.003 m, σ = 0.072 m respectively. The mean error across

all validation tests is consistently ≤ 4 mm, showing that the model is able to make

reliable predictions at unobserved locations. It therefore seems reasonable to expect

that with the inclusion of all 3 satellites, the predictions at unobserved locations are
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Date
µ (m)
S3A-

CS2S3(-S3)

σ (m)
S3A-

CS2S3(-S3)

µ (m)
S3B-

CS2S3(-S3)

σ (m)
S3B-

CS2S3(-S3)

µ (m)
S3A-

CS2S3(-S3A)

σ (m)
S3A-

CS2S3(-S3A)

µ (m)
S3B-

CS2S3(-S3B)

σ (m)
S3B-

CS2S3(-S3B)

201812 -0.002 0.073 -0.004 0.072 0.001 0.072 -0.002 0.072
201901 -0.001 0.071 -0.004 0.071 0.002 0.070 -0.003 0.070
201902 -0.002 0.072 -0.003 0.071 0.000 0.071 -0.002 0.070
201903 -0.003 0.074 -0.005 0.075 0.000 0.072 -0.004 0.073
201904 -0.002 0.079 -0.005 0.076 0.001 0.076 -0.003 0.076
all months -0.002 0.074 -0.004 0.073 0.001 0.072 -0.003 0.072

Table 4.2: Mean (µ) and standard deviation (σ) of the daily difference between gridded S3A
and S3B tracks and co-located CS2S3 points, with different combinations of S3 observations
removed from the training data.
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Figure 4.6: Scatter-density plots and error distributions of the GPR predictions for all days
between the 1st of December 2018 and the 24th of April 2019, with different combinations of
S3 satellites removed from the training data. (a) Model trained using only CS2 observations,
validated against S3A. (b) Model trained using only CS2 observations, validated against S3B.
(c) Model trained using only CS2 and S3B observations, validated against S3A. (d) Model
trained using only CS2 and S3A obsevations, validated against S3B. Grey shading is used
to indicate 1σ either side of the mean µ for each histogram. Only values within ±3σ of the
mean are shown for the histogram plots.

at least as good as ≤ 4 mm error, if not better. A breakdown of equivalent statistics

is presented for each month in Table 4.2, although RMSE is not included here as it is

again consistent with the standard deviation in each case. See also Figures B.5 and

B.6 which show the uplift in the actual predictions and uncertainty estimates brought

by the inclusion of all three satellites, as opposed to any one of the cross-validation

experiments outlined above.

4.5 Assessment of temporal variability

Finally, to showcase the capabilities of the CS2S3 product, this section turns to

an assessment of temporal variability. Within 9 sectors of the Arctic the mean CS2S3
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Figure 4.7: Comparison of CS2S3 time series and 31-day running means of CS2 and S3
across 9 Arctic sectors. Sectors are defined based on Fetterer et al. (2010), and are available
from NSIDC. GIN: Greenland, Iceland, and Norwegian Seas; ESS: East Siberian Sea; CAA:
Canadian Archipelago. Values presented for each graph correspond to the mean (in metres)
of each time series. All means are computed across the period 11th of December 2018 to 12th

of April 2019 (the period where all four time series are available). Note that S3 time series
are not included in the Central Arctic as much of this region overlaps with the S3 polar hole
> 81.5◦ N. Grey lines are the benchmark time series to test the efficacy of the model (see
main text).

freeboard is calculated for each day of the 2018–2019 winter season to produce a

time series of radar freeboard evolution for each sector. The 31-day running mean

freeboard from CS2, S3A and S3B is also plotted to demonstrate the increase in

variability when moving from a monthly to a daily product. The 9 Arctic sectors

are taken from NSIDC (Fetterer et al., 2010) and include Baffin and Hudson Bays,

Greenland, Iceland and Norwegian (GIN), Kara, Laptev, East Siberian, Chukchi,

Beaufort seas, the Canadian Archipelago (CAA), and the central Arctic.

In Figure 4.7 we can see how the day-to-day variability is increased with the

CS2S3 product, compared to the CS2 and S3 31-day running means. Generally, the

mean of the CS2S3 time series lies within 3 mm of CS2 and S3 (approximately in

line with the results of the cross-validation presented in section 4.4.2), however large

discrepancies exist in the GIN Seas (up to 1.1 cm), the CAA (up to 1.3 cm), and

Baffin and Hudson Bays (up to 1.2 cm in December 2018). This is perhaps not

surprising given the larger uncertainty in radar freeboard in shallow-shelf seas and

at coastal margins, relating to higher uncertainty in interpolated sea level anomalies
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Figure 4.8: The number of training points used to predict radar freeboard at each grid cell
at 50× 50 km resolution, shown as an average across all days between the 1st of December
2018 and the 24th of April 2019. The contour lines mark the boundaries between the 9 NSIDC
regions: (1) Baffin and Hudson bays, (2) Greeland, Iceland, and Norwegian (GIN) Seas, (3)
Kara Sea, (4) Laptev Sea, (5) East Siberian Sea (ESS), (6) Chukchi Sea, (7) Beaufort Sea,
(8) Canadian Archipelago (CAA), (9) central Arctic.

(Lawrence et al., 2019). Indeed, we can see that the difference between the 31-day

running means (CS2-S3A(B)) in the CAA is also large, at 1.1(1.9) cm. The GIN

region includes the area east of Greenland, one of the most dynamic regions which

carries MYI exported out of the Fram Strait southward. Being such a dynamic

region, it is likely that the difference in spatial sampling of the three satellites may

drive discrepancies between the 31-day running means. Note that the GIN Seas,

the CAA, and Baffin and Hudson Bays also coincide with where some of the largest

uncertainty in the CS2S3 daily field is observed (e.g., Figure 4.3b), as well as the

lowest spatial and temporal freeboard correlation length scales (Figure 4.4), which

may be, in part, a reflection of the discrepancies between CS2 and S3 freeboards in

these locations, but also due to the limited amount of data available in these regions

across the 9-day training period. We can see from Figure 4.8 that the number of

training points used to inform on predictions in the coastal margins (including the

CAA, GIN Seas, and Baffin and Hudson Bays) is, on average . 200 points, whereas

in the central regions (central Arctic, Beaufort, Chukchi, East Siberian, Laptev, and

Kara seas), the number of training points is typically > 500. A natural question

is then whether the variability seen in the time series in Figure 4.7 represents real

physical signal, or is just noise related to observational uncertainty. To address

this question, the potential issue of spatial sampling is first considered by creating

a ‘benchmark’ time series (see Figure 4.7). For this, a ‘static’ background field is

initially computed by averaging all CS2 and S3 gridded tracks between the 1st of
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Figure 4.9: Time series of CS2S3 daily radar freeboard anomalies with daily ERA5 snowfall
(cm snow water equivalent; SWE). The corresponding contour for FYI and MYI zones are
given in the accompanying spatial plot, where each pixel represents a location which has
remained either FYI or MYI for the entire 2018–2019 winter season. The linear correlation
coefficient (r) between radar freeboard anomalies and snowfall are given for each zone.

December 2018 and the 24th of April 2019, and then re-generating the predictions

for each day as per the GPR model, except that the training data now sample from

the background field along the CS2 and S3 track locations of the respective days

used in the model training. It should therefore be expected that the benchmark

predictions for each day be approximately equivalent in areas where there are a

significant amount of training data and to see variability in areas where there are less

data, which can be explained by tracks sampling different locations of the background

field on different days. This is typically what is seen in Figure 4.7, where there is

almost zero day-to-day variability of the benchmark time series in regions such as

the Beaufort, Chukchi, East Siberian and Laptev seas, but slight variability in the

coastal margins. As a second test, the evolution of daily CS2S3 radar freeboard

is also compared to daily ERA5 snowfall data, building on the work of Lawrence

(2019). Assuming that the radar pulse fully penetrates the sea ice snow cover, radar

freeboard is expected to change with snowfall by two distinct mechanisms: (a) snow

loading of sea ice will depress the sea ice floe into the ocean, reducing the sea ice

freeboard and therefore also the radar freeboard, (b) because of the slower speed of

radar propagation through snow compared to air, additional snowfall will further slow
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down the pulse, resulting in delayed receipt of the echo at the satellite, equating to a

reduced radar freeboard. Thus, under the assumption of full snow penetration, radar

freeboard is expected to decrease with increasing snowfall according to these two

mechanisms. In Figure 4.9 the average of each field is computed over FYI and MYI

zones for each day, since surface roughness and snow depth typically show different

characteristics over the two ice types (Tilling et al., 2018), and therefore variability of

radar freeboard with snowfall may also show different signals. Freeboard anomalies

are then generated by subtracting a second-order polynomial fit to each of the time

series. In contrast to expectations, a strong positive correlation of 0.52 is observed

over FYI, and a medium positive correlation of 0.41 over MYI. While it goes beyond

the scope of this study to investigate the specific drivers of this correlation, these

results appear to challenge conventional assumptions of full snow penetration at

Ku-band frequency. The derived correlation of 0.52 and 0.41, together with the

benchmark test, suggest that the CS2S3 data are able to capture physical radar

freeboard variability at sub-weekly time-scales.

4.6 Conclusions

This chapter presented a methodology for deriving daily gridded pan-Arctic

radar freeboard estimates through Gaussian process regression, a Bayesian infer-

ence technique. An example was shown of how this method uses 9 days of gridded

freeboard observations from CryoSat-2 (CS2), Sentinel-3A (S3A) and Sentinel-3B

(S3B) satellites in order to model spatio-temporal covariances between observation

points, and make pan-Arctic predictions of radar freeboard, with uncertainty esti-

mates, on any given day at 25 × 25 km resolution. This product is referred to as

CS2S3. The empirical Bayes approach was also highlighted as a way to estimate the

hyperparameters which define the covariance function, and to subsequently derive

pan-Arctic estimates of the spatial and temporal correlation length scales of radar

freeboard. An evaluation of the model performance was then carried out for both

training and predictions at 50×50 km resolution for computational efficiency. For the

training points, CS2S3 freeboards were compared to gridded CS2 and S3 freeboards

at co-located points for all days across the 2018–2019 winter season, where the

differences were found to follow a normal distribution, with mean errors ≤ 1 mm,

and standard deviations < 6 cm. The predictive performance of the model was then

evaluated for latitudes below 81.5◦ N and at locations where sea ice concentration is

≥ 75%, based on a cross-validation approach whereby different combinations of S3

freeboards were withheld from the training set of observations, the daily predictions

were then re-generated, and the withheld data were used to validate the predictions.

The general prediction error was also found to be normally distributed, with mean

errors ≤ 4 mm, and standard deviations < 7.5 cm. Finally, the improved temporal
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variability of a daily pan-Arctic freeboard product was presented by comparing time

series of CS2S3 freeboards, with 31-day running means from CS2 and S3 observations,

in 9 different Arctic sectors. The mean of the CS2S3 time series were generally

within 3 mm of the 31-day running mean time series from CS2 and S3, except for

the Canadian Archipelago and the Greenland, Iceland and Norwegian seas, where

prediction uncertainty is large due to significant discrepancies between CS2 and S3

freeboards. Two pieces of analysis were then presented to conclude that the variabil-

ity seen in the CS2S3 radar freeboard time series is related to real physical signal

rather than noise related to observational uncertainty. One based on a benchmark

where predictions were generated from a static field for all days across the 2018–2019

winter season, and another where time series of daily radar freeboard anomalies were

compared against daily ERA5 snowfall data over first-year ice (FYI) and multi-year

ice (MYI) zones. Linear correlation coefficients between freeboard and snowfall in

these regions were given as 0.52 over FYI, and 0.42 over MYI, suggesting that the

daily fields produced by Gaussian process regression are able to capture real radar

freeboard variability. Interestingly, the positive correlation between radar freeboard

seemingly contradicts conventional assumptions of full snow penetration at Ku-band

radar frequency, and remains the subject of future investigation. The improved

temporal variability from a daily product is a hopeful prospect for improving the

understanding of physical processes that drive radar freeboard and/or thickness

variability on sub-monthly timescales. Of course, an investigation into the drivers of

the temporal variability in the CS2S3 field would be an additional way to validate

the product, although this goes beyond the scope of the study here. This chapter

concludes that the Gaussian process regression method is an extremely robust tool

for modelling a wide range of statistical problems, from interpolation of geo-spatial

data sets, as presented here and in other works (Le Traon et al. 1997; Ricker et al.

2017), to time series forecasting (e.g., chapter 3). The Gaussian assumption holds

well in many environmental applications, and the fact that the Gaussian process prior

can take any number of forms, so long as the covariance matrix over the training

points is symmetric and positive semi-definite, means that the model can be tailored

very specifically to the problem at hand.

80



Chapter 5

Climate connectivity in general

circulation models

The following chapter uses the unsupervised learning complex networks methodology

to establish how well the latest generation of coupled climate models participating in

phase 6 of the World Climate Research Programme Coupled Model Intercomparison

Project (CMIP6) are able to reflect the spatio-temporal patterns of variability in

northern-hemisphere winter sea-level pressure and Arctic summer sea ice concentra-

tion over the period 1979–2020. Two specific global metrics are introduced as ways

to compare patterns of variability between CMIP6 sea-level pressure networks and

ERA5 atmospheric reanalysis, as well as between CMIP6 sea ice concentration net-

works and three satellite-derived observational data sets. These metrics include the

Adjusted Rand Index, and a network distance metric which compares the degree of

connectivity between two geographic regions. Subsequently, the regional connectivity

between the winter Arctic Oscillation and summer sea ice concentration network

nodes is evaluated in the observations and CMIP6 models over the same period,

as well as an assessment of how this teleconnection may be changing over time as

the ice cover changes. A discussion is then presented outlining the implications of

any differences in the representation of this teleconnection between observations and

models, in the context of seasonal dynamical model predictions of summer sea ice.

5.1 Introduction

Understanding the drivers of inter-annual sea ice variability has important conse-

quences for our ability to make reliable sea ice predictions on seasonal to inter-annual

time-scales (e.g., section 1.1.3). A number of studies for example have highlighted

various climatological teleconnections as key drivers of sea ice variability, including
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land-ice interactions (typically via the atmosphere; Serreze et al. 1995; Overland

et al. 2012; Matsumura et al. 2014; Crawford et al. 2018), atmosphere-ice (Deser

et al. 2000; Kapsch et al. 2013; Park et al. 2018; Olonscheck et al. 2019), ocean-ice

(Venegas & Mysak 2000; Vinje 2001; Zhang 2015), and ice-ice (Schröder et al. 2014;

Bushuk et al. 2017), suggesting inherent sources of sea ice predictability across the

various components of the climate system. Furthermore, coupled climate models

have demonstrated a horizon of sea ice predictability beyond 12 months lead time

based on so-called ‘perfect-model’ experiments (Holland et al. 2011; Tietsche et al.

2014; Day et al. 2014; Bushuk et al. 2019), however in reality, regional operational

summer sea ice forecasts (in models) appear to be strongly controlled by a ‘spring

predictability barrier’ (Bonan et al., 2019), which is governed by the date of melt

onset in the preceding spring (Bushuk et al., 2020). This leads to the question as to

how well climate models reflect the teleconnections known to drive summer sea ice

variability, given the gap between perfect-model and operational regional forecast

skill in those models (Bushuk et al., 2019). Recent work has gone into investigating

physically-based mechanisms for sea ice predictability (Bushuk et al. 2017; Bonan &

Blanchard-Wrigglesworth 2020; Giesse et al. 2021) in order to assess whether the

shortfalls in operational climate model forecasts can, in part, be attributed to a

lack of representation of such mechanisms across a wide range of general circulation

models (GCMs).

This chapter pursues a similar line of investigation, looking specifically at the Arctic

Oscillation (AO) teleconnection (Thompson & Wallace, 1998), whose winter pattern

has been shown to explain up to 22% of the variability in pan-Arctic September

sea ice extent (Park et al., 2018). Historically, the dominant spatio-temporal modes

of winter sea-level pressure variability have been somewhat mis-represented in the

majority of GCMs participating in previous phases of the Coupled Model Intercom-

parison Project (CMIP), e.g., CMIP3 (Miller et al. 2006; Cattiaux & Cassou 2013)

and CMIP5 (Jin-Qing et al. 2013; Gong et al. 2016), which naturally has implications

for the representation of the AO to sea ice teleconnection in those models. Here, the

spatio-temporal patterns (modes) of variability in both winter sea-level pressure and

summer sea ice concentration, and also the presence of the winter AO to summer

sea ice teleconnection are assessed over the period 1979–2020, in 31 of the latest

generation of GCMs submitted to CMIP6 (Eyring et al., 2016), as well as how

this teleconnection may be changing over time as the ice cover thins and is more

susceptible to atmospheric forcing (Maslanik et al. 1996; Mioduszewski et al. 2019).

The complex networks methodology (section 2.3.3) is used here to derive climatologi-

cal teleconnections which are traditionally defined as the leading mode of variability

in their respective climate fields, in order to assess which regions the models show

are the dominant locations of either winter sea-level pressure or summer sea ice

concentration variability, and also how similarly the models reflect the regional
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responses of summer Arctic sea ice to different phases of the winter AO.

This chapter is structured as follows: section 5.2 introduces the sea ice observations,

atmospheric reanalysis, and CMIP6 model data that are used to generate complex

networks of the respective sea ice and atmospheric fields. In section 5.3 the complex

networks methodology is revisited, as well as outlining two global metrics which are

used to describe similarities and differences between networks. Section 5.4 presents

the results of the networks generated from the 31 different CMIP6 models and

discusses their similarities and differences relative to the observations and reanalysis

data, and furthermore evaluates the presence of the winter AO to summer sea ice

teleconnection across all models. A discussion and conclusions are then given in

section 5.5.

5.2 Data

5.2.1 Observations

For analysing summer sea ice concentration variability in the observations, the

average of monthly mean June, July, August and September (JJAS) sea ice concen-

tration fields are computed between 1979 and 2020 from three separate observational

data sets based on the series of multi-frequency passive microwave satellite obser-

vations since October 1978. These include the National Snow and Ice Data Center

(NSIDC) NASA Team (Cavalieri et al., 1996), and Bootstrap (Comiso, 2017) products,

as well as the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) OSI-450

(1979–2015) and OSI-430-b (2016–2020) products (OSI-SAF 2017; Lavergne et al.

2019). Three different products are used as each has subtle variations in their summer

variability, from how each account for new melt-pond formation (Comiso et al., 2017).

Each of the three data sets apply separate processing algorithms to passive microwave

brightness temperatures derived from multiple satellites across the historical record:

Nimbus-7 SMMR (1979–1987), the DMSP F-8, F-11 and F-13 SSM/Is (1987–2007),

and finally the DMSP F-18 SSM/I (2007–2020). These data are provided on 25 ×
25 km polar stereographic (NASA Team and Bootstrap), and EASE (OSI-450 and

OSI-430-b) grids, which are re-gridded to a common 50 × 50 km polar stereographic

grid using a nearest neighbour interpolation here for computational reasons. Grid

cell area information (used to generate area-weighted time series, see section 5.3.1)

was also extracted from NSIDC’s pixel area tools library.

5.2.2 Atmospheric Reanalysis

The AO is typically defined as the leading mode of variability in mean sea-level

pressure data north of 20◦ N (Thompson & Wallace, 1998). As a proxy for an
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Table 5.1: CMIP6 models used in this study.

Model No. Ensembles

ACCESS-CM2 1
ACCESS-ESM1-5 1
BCC-CSM2-MR 1
CAMS-CSM1-0 1
CanESM5-CanOE 1
CanESM5 20
CAS-ESM2-0 1
CESM2 1
CESM2-WACCM 3
CMCC-CM2-SR5 1
CMCC-ESM2 1
CNRM-CM6-1 6
CNRM-ESM2-1 1
EC-Earth3 1
EC-Earth3-Veg 2
FGOALS-g3 1
FIO-ESM-2-0 1
GFDL-CM4 1
GFDL-ESM4 1
HadGEM3-GC31-LL 3
HadGEM3-GC31-MM 4
IPSL-CM6A-LR 6
MIROC6 3
MIROC-ES2L 1
MPI-ESM1-2-HR 1
MPI-ESM1-2-LR 1
MRI-ESM2-0 1
NESM3 1
NorESM2-LM 1
NorESM2-MM 1
UKESM1-0-LL 5

observational record of the winter AO here, the average of monthly mean December,

January, February and March (DJFM) mean sea-level pressure data is computed

north of 20◦ N, from ERA5 reanalysis (ERA5, 2017) between 1979–2020. Only

one reanalysis product is used due to the high consistency of sea-level pressure

fields between different reanalyses over the Arctic region (Graham et al., 2019). As

December data are not available for the year 1978 for ERA5, the winter period in

1979 corresponds to the average of January, February and March data. Sea-level

pressure fields are output on a 2◦ × 4◦ latitude-longitude grid.

Section 5.5 also makes use of the Pan-Arctic Ice Ocean Modeling and Assimilation

System (PIOMAS) sea ice thickness model (Zhang & Rothrock, 2003) to help explain

some of the features related to the winter AO to summer sea ice teleconnection.

PIOMAS is a coupled ice-ocean model that assimilates observed sea ice concentration

and sea-surface temperatures (open water only), and is forced by NCEP-NCAR

atmospheric reanalysis. Although it is a model, it has been shown to be relatively
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consistent with in-situ and submarine observations (Schweiger et al., 2011), and

generally has consistent biases with CMIP3/5 models relative to observational data,

in terms of its ice thickness distribution (Stroeve et al., 2014b). Furthermore, it is

able to provide consistent coverage over the observational period.

5.2.3 CMIP6 model outputs

The seasonal patterns of variability in sea ice concentration, and mean sea-level

pressure are assessed in 31 different GCMs participating in CMIP6. In order to

compare with recent observations, monthly averaged model outputs from historical

runs (1979–2014) are combined with ScenarioMIP run SSP5-8.5 (Gidden et al., 2019)

to extend the analysis period to 2020, hence only model ensembles which contain

historical and ScenarioMIP outputs for both sea ice concentration and mean sea-level

pressure are considered in this work. As detailed above, the corresponding winter

(DJFM) and summer (JJAS) averages are computed for mean sea-level pressure and

sea ice concentration outputs respectively. Sea ice concentration outputs are also

re-gridded to the same 50 × 50 km polar stereographic grid as the observational data

sets, and mean sea-level pressure outputs are re-gridded to a 2◦×4◦ latitude-longitude

grid. The chosen models, along with their respective number of available ensembles

are summarised in Table 5.1.

5.3 Method

5.3.1 Complex networks

Generating complex networks follows the methodology outlined in section 2.3.3.

The key steps are summarised here, as well as presenting an example DJFM sea-level

pressure network from ERA5, and JJAS sea ice concentration networks from the

observations.

Recall that a climate network of N nodes corresponds to time series dataGGG = {gggk}Nk=1

representing n regularly sampled observations in time gggk = (g1k, g2k, . . . , gnk) at N

fixed geographical locations, and the links represent statistical interdependencies

between any pair of node time series gggk and gggl. In more detail, let us define

x = {xxxp}Pp=1 as a de-trended (zero-mean) time series data set (e.g., DJFM mean sea-

level pressure anomalies or JJAS sea ice concentration anomalies), which represents

n = 42 regularly sampled observations in time xxxp = (x1p, x2p, . . . , xnp) at P fixed

geographical locations, such that x ∈ RP×n. The N network nodes are then derived

by implementing the grid-based clustering algorithm to the input data set (section

2.3.2), so that the dimensionality of x is reduced from P to N . Links between

the nodes are then generated by first computing the cumulative anomaly time
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series of each network node, which for a given node Ck, is taken as the sum of the

grid-cell-weighted de-trended time series of all cells within that node:

gggk =
∑
p∈Ck

xp
√

wp, (5.1)

where wp = cos(θp) for a regular latitude-longitude grid (θp is the latitude of grid

cell p), or simply wp = dp for a polar stereographic area grid (dp is the area in km2

of grid cell p). Subsequently, the link weight between two nodes k and l is calculated

as the temporal covariance between two network node anomaly time series:

wkl =
1

n− 1

n∑
i=1

(gik − E[gggk])(gil − E[gggl]). (5.2)

Finally, the strength of a given network node Sk is defined as the sum of the absolute

value of all its associated link weights:

Sk =
N∑
l=1

|wkl|. (5.3)

Recall that the node with the highest strength generally represents the leading

mode of variability of the input data set x, and by this definition, the node with

the highest strength belonging to the network of mean sea-level pressure data is

equivalent to the AO. Note also that this network framework allows for weighted links

between nodes of a single network (as detailed above), and also between nodes of

multiple networks (i.e., between nodes of sea-level pressure and sea ice concentration),

which is used to assess the winter AO to summer sea ice teleconnection in section 5.4.3.

Figure 5.1a shows the network structure of DJFM mean sea-level pressure data

from ERA5. In this case we can see how the network nodes correspond to a set

of spatially contiguous areas, where for a given node, each grid cell is weighted by

the strength of the node in which that cell belongs. As mentioned, the node with

the highest strength in Figure 5.1a is equivalent to the spatial pattern of variability

of the AO, therefore from this map we can see that the AO corresponds to the

large node situated over the majority of the Arctic Ocean, Greenland, the Canadian

Archipelago, and parts of northern Russia. The weighted links then illustrate how

each of the nodes have co-varied relative to each other over the period 1979–2020,

and indeed we notice the out-of-phase relationship (negative covariance) between the

AO node and the mid-latitude Atlantic sector; highlighting the dipole nature of the

North Atlantic Oscillation (Hurrell et al., 2003).

It is also possible to extract the temporal component of variability from the ‘AO

node’ (Figure 5.1b), which produces a very consistent signal with the standard AO
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Figure 5.1: (a) Complex network of DJFM mean sea-level pressure from ERA5. Only links
which have a corresponding p-value < 0.10 are shown here to aid visualisation. (b) The
standardised (Std.) leading temporal mode of variability (dashed curve), extracted from the
ERA5 network node with the highest strength. The number in parentheses corresponds to the
linear correlation coefficient with the DJFM AO index from NOAA (see main text), available
from https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily ao index/ao.shtml.

index as defined by the National Oceanic and Atmospheric Administration (NOAA),

highlighting the robustness of the complex networks method. It is worth noting

however that in Figure 5.1b, and indeed for the rest of this manuscript, the sign

of the temporal component of each node of the winter sea-level pressure networks

(from ERA5 and CMIP6 data) is reversed in order to be consistent with the standard

AO index, for which positive AO index values correspond to low atmospheric pres-

sure, and similarly negative AO index values correspond to high atmospheric pressure.

Figure 5.2 shows similar networks for JJAS sea ice concentration, from each

of the observational products. Here we can see how the leading spatio-temporal

modes of summer sea ice variability (i.e., highest node strengths) are typically in

the East Siberian and Laptev seas, as well as the Canada basin. Each observational

product generally shows the same structure of largely positive covariance between

network nodes, and the out-of-phase connection between the Fram Strait and the

Pacific sector. The magnitude of the node strengths between the observational data

sets somewhat varies in the dominant regions of variability, with the Bootstrap

product showing the largest strengths in the East Siberian and Laptev seas. In the

next section we introduce two global metrics for deriving quantitative measures of

similarity between networks.

5.3.2 Metrics for comparing networks

Before introducing the two metrics which are used to compare similarities between

complex networks, it is worth saying a few words about what information we can

expect to obtain when comparing models and observations/reanalysis. Due to the

fact that any CMIP6 model ensemble is in its own phase of internal variability (e.g.,
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Figure 5.2: Complex networks of JJAS sea ice concentration from (a) NASA Team, (b)
Bootstrap, and (c) OSI-SAF data sets, computed between 1979–2020. Only links which have
a p-value < 0.10 are shown here to aid visualisation.

Hawkins & Sutton 2009; Notz 2015), we cannot expect to find consistency in the sign

and magnitude of anomalies between e.g., the ERA5 AO time series, and that of any

one model ensemble (and similarly for sea ice), therefore it would not be prudent to

perform any analysis which makes direct comparisons of the temporal modes between

any observational and CMIP6 network nodes. We can however expect a model

with accurate physics to reproduce similar dominant regions of variability as the

observations, and the same sign and magnitude of the inter-connected links between

nodes, e.g., the strong negative coupling between the AO and sea-level pressure

anomalies in the north Atlantic, and the weak negative coupling with the north

Pacific (see Figure 5.1a), and similarly we can expect the same regional responses of

Arctic sea ice to different phases of the AO between observations and models. The

two metrics introduced in the coming sections provide a way to quantify similarities

in the locations which the observations and models define as the dominant regions

of variability, and the connectivity of these regions, without explicitly comparing

network node time series.

Adjusted Rand Index The Adjusted Rand Index (ARI; Hubert & Arabie 1985) is

a metric which is often used to evaluate similarities between sets of clusters (Steinley,

2004), and as such it is used here to compare how two networks have clustered

grid cells together to form their spatially contiguous set of network nodes, and

subsequently their spatial patterns of either sea-level pressure or sea ice concentration

variability. To understand the ARI, it is worth briefly introducing the (un-adjusted)

Rand Index by following the example outlined by Rand (1971). First, consider two

different synthetic networks which have clustered grid cells together in two distinct
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Table 5.2: Synthetic example of cell clusters to illustrate the concept of the Rand Index
(see main text), after Rand (1971).

Cell pairs ab ac ad ae af bc bd be bf cd ce cf de df ef Total

Together in both X 1
Separate in both X X X X X X X X X 9
Mixed X X X X X 5

ways:

Network1 (N1) = [(a, b, c), (d, e), (f)]

Network2 (N2) = [(a, b), (c, d), (e, f)].

In these two simple network constructions, there are 3 nodes in each network, where

each node contains a clustering of cells labelled a–f . The Rand Index then measures

similarities and differences in the clustering of these cells by analysing all the possible

cell pairings between the two networks (see Table 5.2). In this example there are a

total of 10 similarities (grid cells which are clustered together in both networks and

grid cells which are separate in both networks) out of a possible 15 pairings, which

gives a Rand Index score of 10/15 = 0.67. The ARI is then an update of the Rand

Index, which takes into account the fact that grid cells could be clustered together

by chance. This can be understood more clearly by creating a contingency table

(also known as a confusion matrix) of the synthetic cell clusters above:

N1\N2 Node 1 Node 2 Node 3 Sums

Node 1 P11 = 2 P12 = 1 P13 = 0 a1 = 3

Node 2 P21 = 0 P22 = 1 P23 = 1 a2 = 2

Node 3 P31 = 0 P32 = 0 P33 = 1 a3 = 1

Sums b1 = 2 b2 = 2 b3 = 2

where each entry describes the number of grid cells which are common to network

nodes i and j from networks N1 and N2 respectively. The ARI is then given as:

ARI =

∑
ij

(Pij

2

)
−
[∑

i

(
ai
2

)∑
j

(bj
2

)]
/
(
P
2

)[∑
i

(
ai
2

)
+
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j

(bj
2

)]
/2−
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i

(
ai
2

)∑
j

(bj
2

)]
/
(
P
2

) = 0.07, (5.4)

where P is the total number of grid cells (in this case P = 6). In plain terms, the ARI

is equivalent to the normalised deviation of the Rand Index from the expected number

of cell pairs between all nodes (Steinhaeuser & Chawla, 2010), and therefore varies

between 0 (totally dissimilar clustering) and 1 (identical clustering). Computing

the ARI between e.g., the NASA Team and OSI-SAF summer sea ice concentration

networks produces a value of 0.69, showing relatively consistent clustering (as seen

qualitatively in Figure 5.2).
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Network distance metric The network distance metric (D; Fountalis et al. 2015)

provides a way to compare networks in terms of both the spatial extent of their

network nodes, and also their node strengths. Recall that node strength incorporates

information about the connectivity of a particular node (i.e., the magnitude of all its

connected links), hence when comparing the strength of a particular region between

models and observations, it is possible to infer which one has a larger degree of

co-variability across the network. This allows us to deduce whether models over- or

under-estimate the magnitude of variability of a particular region without comparing

node time series. Consider for example the underlying map of node strengths in Figure

5.2. D can be computed by first taking the sum of the absolute difference between

two of these ‘strength maps’ M1 and M2 (e.g., NASA Team and OSI-SAF), and then

normalising by the sum of the absolute difference between random permutations of

both network strength maps, M̂1 and M̂2:

D = 1−
∑P

p=1 |M1p −M2p|∑P
p=1 |M̂1p − M̂2p|

. (5.5)

A value of D = 1 means that both networks are identical in their node strengths and

spatial extent of nodes, whereas a value close to D = 0 implies that the two networks

are as similar as a random assignment of node strengths to grid cells. Computing

D between the NASA Team and OSI-SAF summer sea ice concentration networks

produces a value of 0.86.

The combination of ARI and D allows us to infer various properties between two

networks. For example, when ARI = 1 and D = 0, this suggests that two networks

agree in terms of which grid cells have behaved homogeneously over the length of

the time series record in order to cluster together to form network nodes, however

they disagree in terms of the magnitude of variability of the nodes. On the other

hand, if ARI is close to 0 and D is close to 1, then this implies that the magnitude

of variability across the networks are relatively consistent, however the geographic

areas which are clustered together to form network nodes are considerably different.

Two networks can then be considered identical if ARI and D = 1.

5.4 Results

5.4.1 Sea-level pressure networks in CMIP6

For every available ensemble from each of the CMIP6 models outlined in Table

5.1, individual complex networks of DJFM sea-level pressure are computed between

1979 and 2020, and then ARI and D metrics are computed relative to the ERA5
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Figure 5.3: ARI and D metrics for winter sea-level pressure (SLP) networks computed for
every ensemble member for 31 different CMIP6 models (74 realisations), relative to ERA5
atmospheric reanalysis. The semi-transparent colours represent individual ensemble members
(where the number of ensembles is greater than 1), and the opaque colours are the mean of
all ensemble members. The mean and standard deviation across all points are given by µ
and σ respectively.
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Figure 5.4: Winter sea-level pressure networks from (a) CNRM-CM6-1 (ensemble: r6i1p1f2)
and (b) MIROC-ES2L (ensemble: r1i1p1f2). The CNRM-CM6-1 model produces ARI and
D values 0.76 and 0.80 respectively, while the MIROC-ES2L model produces values 0.50 and
0.04 respectively. Only links which have a corresponding p-value < 0.10 are shown here to
aid visualisation.

sea-level pressure network. In Figure 5.3 we can see how the spread in D values

across all model ensembles is over twice as large as for the ARI values, which

suggests large inter-model disagreement on the degree of connectivity of network

nodes, and hence the magnitude of regional sea-level pressure variability. Note that

the apparent linear relationship between ARI and D is to be expected, given that

both metrics encapsulate information related to the spatial agreement of network

nodes between models and ERA5. Across all models, CNRM-CM6-1 produces the

most similar network structure to ERA5, with ARI = 0.76 and D = 0.80. Figure

5.4 shows the corresponding network for CNRM-CM6-1, and also MIROC-ES2L.

The MIROC-ES2L model produces the most dissimilar network structure relative

to ERA5, with ARI and D of 0.50 and 0.04 respectively. The networks show how
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Figure 5.5: (a)-(b) The spatial patterns of winter sea-level pressure variability (node
strengths) from (a) ERA5, and (b) the average of all 74 CMIP6 model ensemble members.
(c)-(d) The percentage of variance in mean northern-hemisphere winter sea-level pressure
explained (e.g., Björnsson & Venegas 1997) by network nodes in (c) ERA5, and (d) the
average of all 74 CMIP6 model ensemble members.

the CNRM-CM6-1 model produces the relatively consistent node of high strength

over the Arctic Ocean (similar to ERA5), and also shows the same strong negative

linkage with the mid-latitude Atlantic sector, and weak linkage with the Pacific

sector. On the other hand, the MIROC-ES2L model shows significantly different

regions of variability than ERA5, and also weaker connectivity, with overall weaker

link weights and very low strength over the Arctic Ocean. Figure 5.5a-b shows the

average of each of the network strength maps across all of the CMIP6 model ensemble

members, and compares this with the ERA5 strength map. While this removes

the ability to identify individual network nodes and their links, it does allow us to

qualitatively assess how CMIP6 models, on average, represent the spatial patterns of

winter sea-level pressure variability and their degree of connectivity. We notice for

example, that on average CMIP6 models represent the spatial pattern of the AO

relatively well, although slightly under-estimate its node strength. Furthermore, node

strengths in the north-western Pacific Ocean appear to be over-estimated on average,

while they are under-estimated over north Africa, and southern Europe. In Figure

5.5c-d, the percentage of variance in mean northern-hemisphere sea-level pressure

anomalies that is explained by each ERA5 network node, and the average of CMIP6

nodes is also shown (the mean sea-level pressure anomalies in CMIP6 models are
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computed for each individual model ensemble, and then the percentage of variance

is computed between this signal and its own respective sea-level pressure network

nodes). We can see that the nodes centred over the Arctic Ocean explain the highest

percentage of variance in northern-hemisphere sea level pressure in both ERA5 and

CMIP6 networks, however the models under-estimate the relative importance of

the north Atlantic and north Africa–southern Europe region in explaining winter

sea-level pressure variability. It is also worth mentioning that although the CMIP6

models identify the north Pacific as a region of strong co-variability (Figure 5.5b),

the percentage of variance explained by this region is relatively low. This can occur

due to the fact that network nodes which are larger in spatial extent will naturally

show higher covariance with other regions (and hence node strengths), because the

temporal component of variability of a given node corresponds to the sum of all grid

cell time series within that node (see Equation 5.1). If however a node’s physical

correlation (i.e., standardised covariance) with the mean sea-level pressure signal is

relatively weak, then this results in a squared reduction in percentage of variance

explained (recall, percentage of variance explained = correlation2).

5.4.2 Sea ice concentration networks in CMIP6

Individual complex networks of JJAS sea ice concentration are now computed

between 1979 and 2020 for every available ensemble from each of the CMIP6 models,

and then ARI and D metrics are computed relative to the NASA Team, Bootstrap and

OSI-SAF sea ice concentration networks. In Figure 5.6 we see a lower spread in ARI

values than compared to the D values which, similar to the sea-level pressure networks,

suggests that the models show large disagreement on the degree of connectivity of

network nodes, and hence the magnitude of regional sea ice concentration variability.

What is perhaps noticeable is that the models which appear to perform better in

terms of their summer sea ice ARI and D scores, are not necessarily the same as

those that score well for their winter sea-level pressure networks – discussed further

in section 5.5. Figure 5.7 shows sea ice concentration networks from the MIROC6

and the CAMS-CSM1-0 models. The MIROC6 model produces closer patterns of

variability to the observations than other CMIP6 models, with ARI values of 0.48

(NASA Team), 0.48 (Bootstrap), 0.47 (OSI-SAF), and D values of 0.66 (relative to

each observational network). Having said that, we can see that the spatial extent and

strength of the node in the Beaufort Sea–Canada basin is somewhat under-estimated,

and the node strength in the Laptev Sea is over-estimated, and interestingly its

link between the Beaufort Sea and the East Siberian Sea is negative. It does

however produce consistent out-of-phase network links between the Fram Strait and

the Eurasian–Pacific sectors of the Arctic. The CAMS-CSM1-0 model produces

a more dissimilar score with ARI values of 0.33 (NASA Team), 0.30 (Bootstrap),
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Figure 5.6: ARI and D metrics for summer sea ice concentration (SIC) networks computed
for every ensemble member for 31 different CMIP6 models (74 realisations). ARI and D
are computed relative to NASA Team (top), Bootstrap (middle) and OSI-SAF (bottom)
observational networks. The symbols and colours of each point are consistent with Figure
5.3.

0.33 (OSI-SAF), and D values of 0.28 (NASA Team), 0.30 (Bootstrap), and 0.29

(OSI-SAF). The low D values are being caused by the significant over-estimation in

link weights, and hence node strengths, in the Greenland, Iceland, and Norwegian

seas, Barents Sea, East Siberian Sea and Laptev Sea (notice how the link weights

and node strengths in this model are in some cases an order of magnitude higher

than the observational networks).

Figure 5.8a-b shows the average of each of the network strength maps across both

the observational data, and across all of the CMIP6 model ensemble members. Here

we notice that, on average, the models show the dominant regions of variability are
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Figure 5.7: Summer sea ice concentration networks from (a) MIROC6 (ensemble: r1i1p1f1)
and (b) CAMS-CSM1-0 (ensemble: r1i1p1f1). The MIROC6 model produces average ARI
and D values of 0.48 and 0.66 respectively (average of metrics computed relative to NASA
Team, Bootstrap and OSI-SAF networks), while the CAMS-CSM1-0 model produces average
values of 0.32 and 0.29 respectively. Only links which have a corresponding p-value < 0.10
are shown here to aid visualisation.

in the East Siberian and Laptev seas, although the node strengths are somewhat

over-estimated relative to the observations. Furthermore, while the observations

outline the Beaufort Sea–Canada basin as the region of highest connectivity (more so

than the East Siberian–Laptev seas), the models show relatively little connectivity

here on average. Figure 5.8c-d also shows the percentage of variance in pan-Arctic

summer sea ice area that is explained by each observational network (averaged),

and the average of CMIP6 model ensembles. In this case the models generally

under-estimate the importance of regions such as the Beaufort, East Siberian and

Laptev seas in explaining the variance in pan-Arctic summer sea ice area, and over-

estimate the percentage of variance explained in regions such as the Barents Sea

and parts of the Eurasian basin. Once again, it is also noticeable how the regions of

highest strength are not necessarily the ones which explain the highest percentage of

variance in pan-Arctic sea ice area in the models, which suggests that the models

may be over-estimating the spatial extent of the network nodes in the Eurasian

seas; causing them to covary more strongly with other nodes despite having perhaps

weaker physical correlation with the pan-Arctic sea ice area signal.

5.4.3 AO to sea ice teleconnection

This section now turns to an investigation of the winter AO to summer sea ice

teleconnection, beginning by illustrating how the network framework can be used
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Figure 5.8: (a)-(b) The average spatial patterns of summer sea ice concentration variability
(node strengths) from (a) the three observational data sets, and (b) all 74 CMIP6 model
ensemble members. (c)-(d) The percentage of variance in pan-Arctic summer sea ice area
explained by network nodes in (c) the three observational data sets, and (d) the average of
all 74 CMIP6 model ensemble members.

to exploit this relationship in the observational and reanalysis data by effectively

considering both winter sea-level pressure and summer sea ice concentration networks

as individual layers within a multi-layer network (Boccaletti et al., 2014). After

which, a brief investigation of whether this teleconnection may be changing over time

is carried out, before ultimately performing the same analysis for each of the CMIP6

models. A discussion of the results in this section is then presented in section 5.5.

Observations In this section, the leading temporal mode of variability from the

ERA5 sea-level pressure network is used to define the time series corresponding to

the winter AO (i.e., the dashed time series in Figure 5.1b). Links are then generated

between the winter AO and summer sea ice as the temporal covariance (Equation

5.2) between this AO time series, and each of the nodes of the summer sea ice

concentration networks from each of the observational data sets. In Figure 5.9, the

same concept as the strength maps shown previously is used, but instead each grid

cell is weighted by the link weight (temporal covariance) between the AO and sea

ice concentration node time series. In the first row of Figure 5.9 the link weights

are computed using the entire observational period (1979–2020), where we notice

a very strong anti-correlation between the winter AO and summer sea ice in the

East Siberian Sea across all observational products (standardising the link weight
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Figure 5.9: Network link weight between the DJFM ERA5 ‘AO node’ (dashed time series
from Figure 5.1b), and each of the JJAS sea ice concentration network nodes, computed
between (first row) 1979–2020, (second row) 1979–1999, and (third row) 2000–2020. The
columns from left to right show the corresponding maps for NASA Team, Bootstrap, and
OSI-SAF data sets. Stippling denotes links with p-values less than 0.05.

for this node produces correlation coefficients of −0.65, −0.57, and −0.66 for the

NASA Team, Bootstrap and OSI-SAF data sets respectively). Furthermore, all

of the summer sea ice nodes in the Eurasian–Pacific sector of the Arctic exhibit

varying degrees of anti-correlation with the winter AO, while the Atlantic sector

shows largely positive covariance, and is particularly strong in the Fram Strait region.

If the covariance is then analysed between the first half (1979–1999) and second

half (2000–2020) of the observational record (second row and third row of Figure 5.9

respectively) we notice some interesting patterns. In particular, the correlation across

the whole Eurasian–Pacific sector of the Arctic has been more strongly negative

since the year 2000, especially within the Canada basin. The reverse of sign in

the Canada basin may not be significant given the moderate degree of positive

correlation between 1979–1999, however the strong negative correlation between

2000–2020 implies that positive AO winters (anomalously low sea-level pressure) now

typically lead to anomalously low summer sea ice concentration anomalies across

both the eastern and western Arctic, whereas previously this typically only occurred
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Figure 5.10: ARI and D metrics for comparing observation and CMIP6 model summer sea
ice concentration networks and the winter AO to summer sea ice teleconnection, for every
ensemble member for 31 different CMIP6 models (74 realisations). ARI and D are computed
relative to NASA Team (top), Bootstrap (middle), and OSI-SAF (bottom) observational
networks. Network distance values (D) are computed from observation and model ‘link maps’
as shown in Figure 5.9. The symbols and colours of each point are consistent with Figure 5.3.

in the eastern Arctic. It is also worth noting that summer sea ice in the Atlantic

sector has generally remained positively correlated with the winter AO over both

halves of the observational period – see section 5.5 for further discussion.

CMIP6 models For each CMIP6 model ensemble, the temporal component is

extracted from the leading mode of winter sea-level pressure variability (the node

with the highest strength), and the covariance-based link weight is computed with

each node of its respective summer sea ice concentration network. Figure 5.10 shows
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Figure 5.11: Covariance-based link weights between the winter AO node time series and
each node of the summer sea ice concentration network, between 1979 and 2020 for (a)
MIROC6 (ensemble: r1i1p1f1) and (b) EC-Earth3-Veg (ensemble: r4i1p1f1). The MIROC6
model produces average ARI and D values 0.47 and 0.56 respectively, while the EC-Earth3-
Veg model produces values 0.26 and 0.97 respectively. Stippling denotes links with p-values
less than 0.05.

an adaptation of the network comparison metrics shown in Figure 5.6. In this case,

rather than computing the distance metric D as the normalised sum of the difference

between observational and CMIP6 model strength maps, the corresponding ‘link

maps’ are created for each model ensemble (i.e., the equivalent of the maps shown

in Figure 5.9), and D is computed relative to the observational link maps. The

ARI metric is computed as before, hence ARI values presented in Figures 5.6 and

5.10 are identical. The values reported in Figure 5.10 are for link weights computed

over the entire period (1979–2020), and with an average distance values of 0.26,

0.27 and 0.26 relative to NASA Team, Bootstrap and OSI-SAF respectively, we can

see that the models perform quite poorly at replicating the observed network links

between the winter AO and summer sea ice – recall that for D = 0, the two maps

are as dissimilar as a random assignment of link weights to grid cells. The equivalent

plots for the periods 1979–1999 and 2000–2020 are shown in Figures C.1 and C.2

respectively. Figure 5.11 shows two examples of CMIP6 ensemble member link maps

for the winter AO to summer sea ice teleconnection between 1979 and 2020. The

MIROC6 model was shown in Figure 5.7 to be a network which produced relatively

similar patterns of summer sea ice variability compared to the observations, and

here is one of the models with the highest similarity score in terms of its AO to

sea ice teleconnection, with D values of 0.43 (NASA Team), 0.43 (Bootstrap), and

0.41 (OSI-SAF). We can see that it also captures the strong negative covariance

linkage with the East Siberian Sea, however it over-estimates the connection within

the Laptev Sea, and does not capture the negative link with the Beaufort Sea, or

strong positive link with the Fram Strait. The EC-Earth3-Veg model produces the
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Figure 5.12: The average covariance-based link weights between the winter AO node
time series and each node of the summer sea ice concentration networks, across both the
observations (left column) and all CMIP6 model ensemble members (right column). Each
row shows the link weights computed over different parts of the time series record: 1979–2020
(first row), 1979–1999 (second row) and 2000–2020 (third row).

lowest D scores, at 0.06 (NASA Team), 0.07 (Bootstrap), and 0.06 (OSI-SAF). This

is both due to the difference in sign of many of the AO to sea ice node link weights

compared to the observations (e.g., Kara and Beaufort seas), and also due to its

inability to represent the similar regions of sea ice variability as the observations.

Figure 5.12 shows the average teleconnection link weights between the winter AO

and summer sea ice concentration node time series, for both the observations and the

average of all CMIP6 ensemble members. Generally, the models agree on the sign of

the network links between the winter AO and summer sea ice in the East Siberian

and Laptev seas, however the magnitude of this connection is under-estimated on

average. The models also do not capture the positive connection with the Kara
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and Barents seas, and also do not show the same transition to an overall negative

connection in the Eurasian–Pacific sectors between 2000–2020. Instead, the Canada

basin region remains moderately positively correlated over the entire record.

5.5 Discussion and Conclusions

In this chapter, the complex networks methodology was used to derive spatio-

temporal patterns of variability in northern-hemisphere winter sea-level pressure and

Arctic summer sea ice concentration over the period 1979–2020, and to subsequently

understand the spatio-temporal network connectivity between the winter Arctic

Oscillation (AO) and summer sea ice cover over the same period. These patterns

were analysed in both satellite observational data sets and ERA5 atmospheric

reanalysis, and also from 31 of the latest generation of General Circulation Models

(GCMs) participating in the most recent phase of the Coupled Model Intercomparison

Project (CMIP6). Two global metrics were also introduced for comparing patterns of

variability between two networks: the Adjusted Rand Index and a network distance

metric. Together these allowed an assessment of how CMIP6 models perform

at replicating the patterns of both winter sea-level pressure, and summer sea ice

concentration variability, relative to ERA5 and the observations respectively.

Recall from section 1.1.3 how the mechanism which relates the winter AO to summer

sea ice was outlined: a positive winter AO (anomalously low mean sea-level pressure)

is coincident with (a) a weakening of the Beaufort Gyre, which reduces the amount

of west-to-east ice advection, (b) a strengthening of the Transpolar Drift Stream

(TDS), which increases ice export out of the Fram Strait, and (c) an increase in

cyclonic ice motion in the Eurasian–Pacific sectors of the Arctic (Rigor et al., 2002),

which causes increased ice divergence and facilitates new ice formation. Once the

melt season begins, these expanses of relatively thin ice are then more susceptible to

melting, thus generally leading to anomalously low sea ice area by the end of summer.

Figure 5.9 showed how the observations support various aspects of this hypothesis,

by the fact that the strong negative covariance in the East Siberian Sea means that

following a positive winter AO, this region typically experiences anomalously low sea

ice area in the summer, as the ice has undergone thinning and subsequent melting in

the spring–summer. The positive covariance in the Fram strait region suggests that

following positive AO winters we see an increase in sea ice in this area, which is due

to positive AO events strengthening the TDS, resulting in large quantities of ice being

advected towards the Atlantic sector (Rigor et al. 2002; Ricker et al. 2018). The

fact that we see an overall shift towards more strongly negative covariance between

1979–1999 and 2000–2020 across the whole Eurasian–Pacific sector is likely due to the

significant reductions in the thicker multi-year ice cover that have occurred in this

region over recent decades (Maslanik et al. 2007; Kwok 2018). Between 1979–1999
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the substantially thicker ice cover in the western Arctic was able to withstand the

thinning caused by increased ice divergence from a weakened Beaufort Gyre during

positive AO events, thus allowing it to survive through the melt season. More

recently however, a thinner ice cover means areas of open water are more likely to

form during the periods of increased ice divergence in the western Arctic, leading to

the growth of new ice which is more susceptible to dramatic ice melt throughout the

spring–summer.

The inability of certain CMIP6 models to accurately reflect the dominant regions

of winter sea-level pressure or summer sea ice concentration variability, and their

connectivity structure, could be due to a number of factors. Figure 5.5 showed that,

compared to the reanalysis, on average CMIP6 models replicate the spatial patterns

of winter sea-level pressure relatively well, however they generally over-estimate the

magnitude of variability over the north Pacific, and under-estimate the magnitude

over the Arctic Ocean and the north Atlantic; consistent with previous analysis of

CMIP5 models (Jin-Qing et al. 2013; Gong et al. 2016). A recent study by Gong

et al. (2019) suggested that the strong north Pacific pattern of variability in GCMs

is likely due to the over-estimation of the strength of the stratospheric polar vortex

(interestingly, a persistent feature of models with lower vertical resolutions in their

atmospheric components), which causes enhanced coupling of atmospheric circulation

between the north Pacific and north Atlantic.

In terms of summer sea ice, Figure 5.8 illustrated how CMIP6 models show

discrepancies in the regions which govern summer sea ice variability, and that they

generally under-estimate the contributions from regions such as the Beaufort, East

Siberian and Laptev seas (Pacific sector) in explaining pan-Arctic summer sea ice

area variability; and similarly over-estimate contributions from the Barents Sea

and Eurasian basin (Atlantic sector). The biases in the Atlantic sector are likely

related to the model’s over-estimation of the sea ice extent in these regions, as in

reality these regions are now largely ice-free in summer (hence the observations

show little variability). Meanwhile, biases in the Pacific sector are more likely due

to the poor representation of the spatial sea ice thickness distribution in models,

which was previously shown to be an issue in CMIP5 models (Stroeve et al., 2014b),

and also recently for a subset of CMIP6 models (Watts et al., 2021). The sea ice

thickness distribution strongly determines how susceptible regions are to melting in

the summer (Massonnet et al., 2018), as thicker ice effectively dampens the amount

of energy transfer between the atmosphere and ocean. Figure 5.13 shows the average

regional summer sea ice thickness in the Beaufort, East Siberian and Laptev seas from

both PIOMAS and 25 of the CMIP6 models used in this study (thickness outputs

were not available for BCC-CSM2-MR, CAMS-CSM1-0, CAS-ESM2-0, FGOALS-g3,

FIO-ESM-2-0 and CanESM5-CanOE at the time of this study). On average, CMIP6

models report higher average thickness than PIOMAS in each region, which could
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Figure 5.13: The average summer sea ice thickness from 25 CMIP6 models (49 realisations)
and PIOMAS, in the Laptev Sea (top left), East Siberian Sea (top right) and Beaufort Sea
(bottom). PIOMAS is given by the bold red curve, and the average of all CMIP6 models is
given by the bold black curve.

explain their under-estimation of sea ice concentration variability.

The regional biases in sea ice thickness estimates from CMIP6 models could be related

to several factors which determine sea ice transport and hence the ice thickness

distribution, including biases in surface winds, ice rheology, and ocean heat fluxes

(Stroeve et al. 2014b; Watts et al. 2021). Given then that positive winter AO

events typically act to pre-condition the ice for increased melting (Williams et al.,

2016), models which may perhaps reflect the spatio-temporal patterns of winter

sea-level pressure variability well, may still mis-represent the effects of the winter

AO on summer sea ice because the ice is too thick, and subsequently, they therefore

under-estimate the amount of variability that these sea ice regions explain in terms

of pan-Arctic summer sea ice area. To briefly test this hypothesis, Figure 5.14

shows the average CMIP6 winter AO to summer sea ice teleconnection (as in Figure

5.12), although this time computed only for a subset of 15 model ensembles which

show the lowest average Root Mean Square Error (RMSE) in terms of their mean

sea ice thickness relative to PIOMAS in the East Siberian, Laptev, and Beaufort

seas. Comparing this with Figure 5.12, we notice that when only considering the

models with thinner regional sea ice, the magnitude of covariance between the winter

AO and summer sea ice in the East Siberian–Laptev seas is increased, and that

between 1979–1999 and 2000-2020 there is evidence of the Beaufort Sea becoming
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Figure 5.14: Average winter AO to summer sea ice teleconnection for 15 CMIP6 model
ensembles with the lowest average Root Mean Square Error (RMSE) in mean sea ice thickness
relative to PIOMAS in the East Siberian, Laptev, and Beaufort Seas. (a) Links computed
between 1979–2020, (b) 1979–1999, (c) 2000–2020.

more negatively correlated, although still with a lower magnitude than shown in the

observations.

Framing these results in the perspective of dynamical sea ice forecasts, the accuracy

of seasonal to inter-annual sea ice predictions in GCMs ultimately hinges upon

their ability to reproduce the physical processes that drive sea ice variability, and

subsequently their ability to reflect the geographic regions which are responsible for

explaining the overall variability in summer sea ice area. Recent years have shown

the improvement in seasonal predictions brought by initialising dynamical models

with observations of sea ice thickness (Chevallier & Salas-Mélia 2012; Doblas-Reyes

et al. 2013; Day et al. 2014; Collow et al. 2015; Bushuk et al. 2017; Allard et al.

2018; Blockley & Peterson 2018; Schröder et al. 2019; Ono et al. 2020; Balan-Sarojini

et al. 2021). Therefore, reducing sea ice thickness biases in GCMs could improve

the representation of the winter AO to summer sea ice teleconnection and begin to

bridge the gap between perfect-model and operational sea ice forecasts.
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Chapter 6

Summary and outlook

This chapter provides a general summary of the key results presented in this thesis,

as well as outlining areas for potential development related to each theme. Where

applicable, a discussion is also presented on how the methodologies can be transferred

to alternative applications for possible future work.

6.1 Chapter 3: Skilful sea ice forecasting

In chapter 3 a statistical framework was introduced for producing skilful seasonal

forecasts of regional and pan-Arctic September sea ice extents, by combining the

complex networks methodology with Gaussian process regression, through the use

of a random walk graph kernel. Forecasts were made up to 3 months lead time by

exploiting the predictability mechanism of sea ice persistence, whereby networks of

sea ice concentration were created in the 3 preceeding months (June, July, August),

and then used to predict September extents. The forecast results produced the highest

skill scores of de-trended pan-Arctic September sea ice extent of any statistical or

dynamical model presented in the literature at that time, at 0.53, 0.62, and 0.81 for

3-, 2-, and 1-month lead times respectively.

Section 3.5 also briefly mentioned how when increasing to 4 months lead time with

this methodology, the forecast skill drops considerably – which was owed to the

inability of May sea ice anomalies to persist through to September (e.g., Figure 1.11).

It was also discussed how the network framework could be adapted to incorporate

additional components of the climate system, as a way to potentially improve the

forecast skill beyond 3 months. Figure 6.1 illustrates this by including networks of

northern-hemisphere (> 40◦ N) sea-surface temperature anomalies in the forecast

model. We notice how using only sea ice concentration information in May yields a

forecast skill of 0.00, however by including sea-surface temperatures, this increases to
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Figure 6.1: May predictions of pan-Arctic September sea ice extent anomalies based on
networks of monthly mean Sea Ice Concentration (SIC) data (orange), or SIC and sea-surface
temperature (SST) networks (teal). Shaded area reflects the predictive uncertainty (± 1σ
around the mean).

0.20. This enhanced predictability from sea-surface temperatures is likely related to

the sea ice reemergence teleconnection whereby spring sea ice concentration anomalies

imprint anomalies in sea-surface temperatures around the location of the ice edge,

which are then able to persist through to the summer minimum.

Also outlined in chapter 3 was the need for spatial sea ice forecasts of alternative

metrics, such as sea ice concentration, or sea ice probability, which would perhaps

prove more useful to end-users of sea ice forecasts. In the simplest case, the Gaussian

Process Regression (GPR) methodology could be used to independently predict

September sea ice concentration anomalies or sea ice probability for each grid cell

of e.g., a sea ice concentration time series data set. Alternatively, it would seem

reasonable to expect grid cells that are within a given length scale of one another to

behave in a similar way, and what would be useful is if this degree of co-variability

among nearby target grid cells could be used to aid the learning process. This

is known as multi-task learning, and its principles fit naturally into the Gaussian

process framework (e.g., Bonilla et al. 2008; Ashton & Sollich 2012; Stegle et al.

2011; Rakitsch et al. 2013). Recall the standard equation for the predictive mean

corresponding to the (single-task) GPR problem:

f̄∗ = kT
x∗(Kx + σ2III)−1y,

where y is the n×1 vector of target observations, Kx = k(x,x) is the n×n covariance

matrix over the training inputs, and kx∗ = k(x,x∗) is the n× n∗ covariance between

the training and test inputs. In the multi-task learning approach, Kf is introduced as

a T ×T inter-task covariance matrix, which encodes the prior covariance between the

T tasks that are to be predicted, as well as a T ×T diagonal matrixDDD, which contains

the noise variance of each task (σ21, σ
2
2, . . . , σ

2
T ). The equation for the multi-task
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predictive mean can then be written as:

f̄ff∗ = (Kf ⊗ kx∗)
T(Kf ⊗Kx +DDD ⊗ III)−1Y, (6.1)

where ⊗ is the Kronecker (tensor) product, Y is the nT×1 vector of the concatenated

target observations for all T targets (tasks), and subsequently f̄ff∗ are the predictions

of size n∗T × 1. In terms of spatial sea ice forecasting, f̄ff∗ would contain the sea ice

concentration anomalies of the year being forecast, for all T number of grid cells.

One of the limitations of the multi-task method is that for large T , learning becomes

increasingly slow due to the need to invert a nT × nT matrix; which has run

time complexity O(n3T 3), although this burden can be mitigated somewhat by

diagonalising all covariance matrices and exploiting certain ‘tricks’ related to the

Kronecker product (Stegle et al. 2011; Rakitsch et al. 2013), so the run time complexity

reduces to O(n3 + T 3).

A benefit of the multi-task approach is that the definition of the inter-task covariance

matrix can be very flexible, so long as it is positive semi-definite. For example, we

may wish to incorporate spatially varying length scale information into Kf , as we

might expect sea ice concentration anomalies in some regions of the Arctic to be

correlated over larger or shorter distances than in other regions (e.g., shorter over

first-year ice regions and longer over multi-year ice regions, as was the case with radar

freeboards in chapter 4). One way to achieve this could be through implementing one

of the many non-stationary covariance functions outlined in Paciorek & Schervish

(2005), for example the squared exponential function:

Kf (zp, zq) = σ2f
∣∣ΣΣΣp

∣∣1/4∣∣ΣΣΣq

∣∣1/4∣∣∣∣ΣΣΣp + ΣΣΣq

2

∣∣∣∣−1/2 exp(−Qpq), (6.2)

where

Qpq = (zp − zq)
T

(
ΣΣΣp + ΣΣΣq

2

)−1
(zp − zq). (6.3)

Here zp is a vector of length 2 containing the zonal and meridional grid coordinates

of grid cell p, and ΣΣΣp is a 2× 2 diagonal matrix containing the zonal and meridional

correlation length scale parameters `x and `y (which can be optimised through

e.g., the empirical Bayes approach). Figure 6.2 shows an example non-stationary

squared exponential inter-task covariance matrix, illustrating how the length scale of

correlation varies depending on the location of each grid cell, for 4 different grid cell

locations within the Arctic. Figure 6.3 then implements this inter-task covariance

structure in a multi-task GPR forecast (based on the efficient approach outlined

in Rakitsch et al. 2013) of September sea ice concentration for the year 2011, at

1-month lead time (using an August sea ice concentration network as the predictor,

see chapter 3). Generally the forecast follows the observed ice edge contour, although

with largest over-predictions around the Severnaya Zemlya group of islands in the
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Figure 6.2: Example of a non-stationary squared exponential inter-task (sea ice concentra-
tion) covariance matrix for 4 different grid cell locations within the Arctic. Notice how the
length scale of correlation varies depending on the location of each grid cell.
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Figure 6.3: (Left) Forecast of 2011 September sea ice concentration at 1-month lead time
using multi-task GPR with a non-stationary squared exponential inter-task covariance matrix.
The white contour is the observed sea ice edge (15% concentration) from September 2011.
(Right) Forecast error in the location of the ice edge. Red signifies over-estimation relative
to the observations, and vice versa for blue.

western Laptev sea. Goessling et al. (2016) introduced a metric for quantifying

the error in spatial sea ice forecasts, called the Integrated Ice Edge Error (IIEE).

This metric corresponds to the total area for which the sea ice edge is either over-

or under-predicted (i.e., the total area of red and blue pixels in Figure 6.3 right),

and for this particular forecast corresponds to 0.75× 106 km2. Using this method

operationally however would require further forecasts of additional years and lead

times to evaluate its general performance beyond the example given here. As well as

this, a cost-benefit analysis would be required to establish whether any uplift achieved

by the multi-task approach over iterative predictions of each grid cell, outweighs

the computational expense of the method – an iterative GPR approach would have

run time complexity O(n3T ), whereas already mentioned in the multi-task case it is

O(n3 + T 3).

More recently, deep learning approaches such as convolutional neural networks have
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shown to be successful in terms of spatial summer sea ice forecasts, and could be

explored as a potential avenue for future work. A recent study by Andersson et al.

(2021) for example trained a convolutional neural network using both climate model

simulations and observational data in a binary classification forecast of the sea

ice edge, with relatively successful predictions up to 6 months lead time. In this

particular model however, predictions are not probabilistic, and so a way to improve

this methodology could be in the form of Bayesian neural networks which places

prior distributions over the various parameters in each network layer (see e.g., section

5.7 of Bishop 2006).

6.2 Chapter 4: Data fusion and optimal interpolation

of radar freeboards

Chapter 4 showed how the GPR framework can be used to generate daily pan-

Arctic radar freeboard and uncertainty estimates, through the optimal interpolation

of CryoSat-2 (CS2), Sentinel-3A (S3A), and Sentinel-3B (S3B) observational data

sets. Furthermore, by using the empirical Bayes approach, daily pan-Arctic fields

of the radar freeboard correlation length scales could also be derived. Analysis

of training and prediction errors showed that the interpolated freeboards (CS2S3)

were consistent with CS2, S3A and S3B, to within 1 mm, and that the average

prediction errors based on cross-validation across the 2018–2019 winter season were

generally ≤ 4 mm. Subsequent analysis of regional daily radar freeboard evolution

showed the uplift in temporal variability brought by moving from a monthly-averaged

to a daily product, and further analysis with daily ERA5 snowfall showed strong

positive correlation between freeboard anomalies and snowfall over first-year ice; chal-

lenging the conventional assumptions of full Ku-band radar penetration through snow.

One of the major sources of uncertainty in derived sea ice thickness estimates from

satellite altimeters is the depth of the snow layer that rests atop the sea ice. Many

current operational sea ice thickness products use a simple climatology snow model

based on spatially-interpolated Soviet drifting stations, collected over multi-year

ice between 1954–1991 (Warren et al., 1999). Recent studies have made concerted

efforts to produce more representative estimates of the snow depth distribution across

the Arctic, based on model studies (Petty et al. 2018; Liston et al. 2020; Stroeve

et al. 2020a), and through the differencing of observations from dual-frequency

radar altimeters (Lawrence et al., 2018), or similarly laser and radar altimeters

(Kwok et al., 2020). Recall that laser altimeters such as ICESat-2 measure total

freeboard, which is the height of the top of the snow surface above the adjacent

ocean, whereas radar freeboard measures the height of the radar scattering horizon
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Figure 6.4: Example of using the Gaussian process regression methodology to produce
pan-Arctic fields of (a) radar freeboard (CS2S3), (b) laser freeboard (ICESat-2), and (c) the
difference (proxy for snow depth), for one day (1st of December 2018).

above the adjacent ocean; the location of which may vary considerably depending on

the dielectric properties of the snow (Willatt et al., 2011). In any case, under cold

and dry conditions the radar scattering horizon corresponds to somewhere close to

the snow-ice interface, and so differencing laser and radar freeboards can give a rough

proxy for snow depth. In chapter 4, daily pan-Arctic fields of radar freeboard were

generated, however this approach could also be used to generate daily fields of total

(snow) freeboard from e.g., ICESat-2. Differencing these two fields could then provide

an initial proxy for daily pan-Arctic snow depth on sea ice. An example of this is

shown for one day in Figure 6.4 by using the same methodology outlined in chapter

4 to optimally combine 9 days of ICESat-2 data. While further consideration of the

snow properties are required for estimating the true snow depth (which has been

one of the focal points of the recent 2019–2020 MOSAiC expedition, e.g., Stroeve

et al. 2020b), this approach could be a considerable step forward in improving sea

ice thickness estimates from satellite altimeters.

A significant advancement to the methodology outlined in chapter 4 would come

in the form of computational speed-ups when generating each daily field. The

current implementation requires the exploitation of high-performance computers with

parallel processing capabilities, however it was found during testing that optimisation

problems (e.g., maximising the log marginal likelihood) often face bottleneck issues

during parallel processing, which results in longer run times. A simple way to alleviate

the computational burden of this method is to use fewer data points during the

model training – recall that GPR has run time complexity O(n3). A first attempt

of this was outlined in chapter 4 by generating the predictions iteratively and only

using training data within a distance of 300 km, however this could be taken further.

A recent study by Landy et al. (2021) used an approach whereby an arbitrary subset
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Figure 6.5: As in Figure 4.2, although also showing the prediction generated via an RVM.
(a) The posterior distribution of radar freeboard generated by GPR (black, solid) and RVM
(magenta). (b) The n = 1855 data points used to inform on predictions in the GPR model
(pale blue), while the magenta points are the 47 ‘relevant vectors’ identified via an RVM.

of N training points were chosen based on those which exhibit the largest prior

covariance between training and test inputs (e.g., the largest N correlations in Figure

4.2b). An alternative, and perhaps more principled approach to this could be through

the use of Relevance Vector Machines (RVMs) for regression (Tipping 2001). RVMs

are probabilistic linear models which follow the same principles as the Bayesian linear

regression model outlined in section 2.2.1, although result in sparse solutions such

that only a subset of the training data are used to inform on predictions. In this

type of model, function values f(ΨΨΨ) correspond to linear combinations of a given

kernel function (or equally a set of fixed basis functions as in section 2.2.1):

f(ΨΨΨ) =
n∑
i=1

βik(ΨΨΨ,ΨΨΨi) + β0. (6.4)

In the context of our GPR model in chapter 4, k(ΨΨΨ,ΨΨΨ) could either be the n × n
covariance matrix between the training inputs k(ΦΦΦ,ΦΦΦ), or the n∗ × n covariance
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between the training and test inputs k(ΦΦΦ∗,ΦΦΦ), and then βββ is a vector of length n

containing weights for each column of k(ΨΨΨ,ΨΨΨ). An RVM then typically assigns a

zero-mean prior distribution over the weight vector:

p(βββ|γγγ) =

n∏
i=1

N (0, γ−1i ), (6.5)

which, when combined with the likelihood over the outputs (Equation 2.14), results

in the posterior distribution over the weights, with mean µ̃µµ and covariance Σ̃ΣΣ given

by:

µ̃µµ =
(
KVVV −1KT + ΣΣΣ−1

)−1
KVVV −1y

Σ̃ΣΣ = (KVVV −1KT + ΣΣΣ−1)−1.
(6.6)

Here K = k(ΦΦΦ,ΦΦΦ) is the covariance matrix over the training inputs, VVV = σ2III, and

ΣΣΣ is a diagonal matrix with entries (γ−11 , γ−12 , . . . , γ−1n ). The difference between the

solution above and the one presented in the discussion on Bayesian linear regression

(i.e., Equation 2.22) is that in the RVM case, each parameter βi is assigned its

own corresponding prior variance term γi, which is treated as a hyperparameter.

Through maximising the log marginal likelihood function with respect to these

hyperparameters, it is generally found that the majority of the variance terms are

infinite (Tipping & Faul, 2003), which means that the corresponding entries of µ̃µµ will

be zero (i.e., the posterior is infinitely peaked around zero), thus leading to a sparse

model. Figure 6.5 revisits the example of generating a single prediction of radar

freeboard for one pixel, as was shown in Figure 4.2. In this example the number of

training points is n = 1855, which means that the matrix K ∈ R1855×1855 must be

inverted in order to generate the GPR predictive distribution. By taking an RVM

approach however, only 47 (out of 1855) of the columns of K are identified as the

‘relevant vectors’, and hence only 47 of the entries of µ̃µµ contain values greater than

zero. This means that, at most, a matrix of size 47× 47 must be inverted in order

to generate µ̃µµ and Σ̃ΣΣ, at which point the predictive mean and covariance are given

as k(ΦΦΦ∗,ΦΦΦ)µ̃µµ and k(ΦΦΦ∗,ΦΦΦ)Σ̃ΣΣk(ΦΦΦ,ΦΦΦ∗) respectively. It is worth noting that while the

predictive mean generated via RVM and GPR are relatively comparable (Figure

6.5a) at 0.30 and 0.31 m respectively, the predictive variance in the RVM approach

is under-estimated relative to GPR. This is due to the particularly counter-intuitive

property of the standard RVM method, whereby as the distance from the relevant

vectors to the test input location increases, the predictive variance decreases. This

problem has however been addressed in previous studies, e.g., Candela & Hansen

(2004); Rasmussen & Candela (2005).
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6.3 Chapter 5: Climate connectivity in general circula-

tion models

In chapter 5, the complex networks methodology was used to compare the spatio-

temporal patterns of variability in winter sea-level pressure and summer sea ice

concentration between observations and outputs from 31 of the latest generation

of coupled climate models participating in phase 6 of the World Climate Research

Programme Coupled Model Intercomparison Project (CMIP6). As well as this,

an analysis of the representation of the winter Arctic Oscillation (AO) to summer

sea ice teleconnection was also carried out for both observations and models using

two specific global network comparison networks; the Adjusted Rand Index and a

network distance metric. It was generally found that CMIP6 models reflect the spatio-

temporal pattern of the AO relatively well, although over-estimate the magnitude

of sea-level pressure variability over the north-western Pacific Ocean, and under-

estimate the magnitude over the north Atlantic sector. Furthermore, models and

observations generally showed disagreement in terms of which regions are responsible

for explaining the largest percentage of variance in pan-Arctic summer sea ice area,

with the observations showing largely the Canada basin region and the East Siberian

Sea, and the models on average showing considerable contributions from parts of the

Eurasian basin. It was hypothesised that this discrepancy was both due to the poor

representation of the sea ice thickness distribution and sea ice extent in the models.

Finally, the observational data showed that (likely due to ice thinning) positive

winter AO events between 2000–2020 now lead to anomalously low summer sea ice

concentration in both the eastern and western sectors of the Arctic Ocean, whereas

between 1979–1999, this typically only occurred in the eastern Arctic. CMIP6 models

however did not record this change on average, and generally under-estimated the

magnitude of covariance between the winter AO and summer sea ice in the Eurasian

seas, and showed moderately positive correlations in the western Arctic across the

entire observational record. This was also attributed to the models over-estimation

of sea ice thickness in these regions.

The statistical relationships established between network nodes in chapter 5, and

subsequently the regional responses of summer Arctic sea ice to different phases of the

winter AO, were based purely on linear covariance. Although these were computed as

lagged correlations (winter → summer), this still only permits us to make statements

about the association between these two fields. A way to develop the methodology

could be through adopting a causal inference approach in order to trace the effects

that the winter AO has on the various intermediate physical processes that eventually

lead to the regional summer sea ice responses seen in chapter 5, and subsequently

better isolate the point at which this teleconnection breaks down across CMIP6
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Figure 6.6: Examples of how spurious correlations can arise between two independent
variables X and Y. Black arrows signify causal links while grey arrows signify spurious
correlation. (a) Correlation between X and Y caused by large autocorrelation of X. (b)
Indirect correlation between X and Y via a mediator variable Z. (c) Z is a confounder
(common driver) of both X and Y. Plot adapted from Kretschmer et al. (2016).

models.

Causal inference presents a principled framework for making statements about physi-

cal drivers within the climate system, and is an approach which has gained much

recent attention in time series analysis (Runge et al. 2014, 2019a,b); already with

applications in polar climate studies (Kretschmer et al., 2016). The movement

towards establishing causality typically begins with understanding the ways in which

spurious correlations between two independent physical processes X and Y can arise,

through the use of causal diagrams (e.g., Pearl 1995). Figure 6.6 highlights three

examples of this, although perhaps most significant to this study is Figure 6.6b which

shows how spurious correlations can arise due to indirect links to an intermediate

process (or processes) Z. In the context of the AO to sea ice teleconnection, a number

of these intermediate processes were summarised in sections 1.1.3 and 5.5. The aim

of causal inference techniques is then to establish whether X and Y are conditionally

independent (i.e., not directly related; Dawid 1979), given Z; which can be written

as X ⊥⊥ Y | Z. In terms of probabilities, this implies that the joint distribution of

X and Y given Z, p(X,Y|Z), is completely defined by the product of their marginal

distributions (conditioned on Z), i.e., p(X,Y|Z) = p(X|Z)p(Y|Z). When considering

this framework in the context of Figures 6.6b and 6.6c, we notice that the statement

X ⊥⊥ Y | Z is true for both cases. For example in Figure 6.6b, the joint probability

of X and Y given Z is expressed as p(X,Y|Z) = p(X)p(Z|X)p(Y|Z)/p(Z), where the

terms p(X)p(Z|X)/p(Z) then simplify to p(X|Z) through Bayes’ Law, and hence we

arrive at conditional independence p(X,Y|Z) = p(X|Z)p(Y|Z).

In practice, establishing (linear) conditional independence is typically achieved via

partial correlation tests (Spirtes et al., 2000), which in the simplest case corresponds

to computing the linear Pearson correlation between two sets of residuals from ordi-

nary least squares regression; those generated from regressing X (outputs) against Z

(inputs), and those generated from regressing Y (outputs) against Z (inputs). Recent

studies by Runge et al. (2019a) have extended this approach to large multivariate

time series data sets and have shown success in isolating climate drivers related
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Figure 6.7: Identifying causal links through a causal discovery algorithm (TiGraMITE).
(a) Links generated by simple lagged correlations (no causal principles implemented). The
colour of each node corresponds to its autocorrelation at a time lag of 1. Otherwise the lag
associated with each connection is given by the number adjacent to each link. (b) Links
generated from causal inference.

to teleconnections such as the tropospheric Walker cell (Runge et al., 2014). As a

motivating example, a synthetic time series case is presented here which is analogous

to the AO to sea ice teleconnection, and is based on the causal inference algorithm

TiGraMITE1 (Runge et al., 2019a).

Consider the case where X, Y and Z are time series data such that:

Xt = 0.4Xt−1 + εXt

Zt = 0.8Zt−1 − 5Xt−3 + εZt

Yt = 0.7Yt−1 + 1.2Zt−4 + εYt ,

where t = {1, 2, . . . , n} and n = 504 – analogous to monthly sampled data for all

years between 1979 and 2020. In this case, the state of the variable X at time t is

a linear function of its state at time t − 1, plus random noise εXt . This is also the

case for Z and Y, although Z is also a function of X at a time lag of 3 (months)

and Y a function of Z at a time lag of 4 (months). Graphically, these data could be

represented by the causal diagrams in Figures 6.6a and 6.6b (each time series has an

element of autocorrelation), and in the context of the AO to sea ice teleconnection,

the time series X might correspond to the AO, Y to sea ice concentration at a

particular node of a complex network, and Z an intermediate process which connects

the two. Note also that in the definitions above Y is independent of X, although

this is assumed unknown a-priori.

By computing simple lagged correlations between each of the variables independently

(Figure 6.7a) we find significant correlations (p-values < 0.05) between all variables,

and in both directions. Furthermore, we can see how this approach leads to spurious

1Time Series Graph Based Measures of Information Transfer https://github.com/jakobrunge/
tigramite
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correlations due to both autocorrelation and the mediator process Z, and also incor-

rect estimation of the lag times from X → Y and Z → Y.

The causal inference algorithm TiGraMITE establishes linear conditional indepen-

dence between two variables via iterative partial correlation measures, and adjusts

for inflated and/or deflated correlations due to autocorrelation and/or dimensionality

respectively (with only 3 processes here, dimensionality may not be a significant

issue, although in the case of multi-layer climate networks there may be tens or

hundreds of processes to consider. See Runge et al. 2019a for further details). In

the example here, conditional dependence between e.g., X at a time lag t− τ and

Y at time t corresponds to Xt−τ 6⊥⊥ Y t | Pt \{Xt−τ}, which in plain terms would

mean Xt−τ drives Yt when controlling for (conditioning on) the common past of

all variables Pt = {Xt−1,Yt−1,Zt−1,Xt−2, . . . ,Yt−τ ,Zt−τ}, excluding Xt−τ . This is

achieved through finding which time lag produces significant partial correlations

ρ(Xt−τ ,Yt | Pt\{Xt−τ}) 6= 0, for all lags up to a maximum Xt−τmax (in this case

τmax = 12). If no significant correlations are found then the two variables are said to

be conditionally independent. Note that both X and Y appear in the conditioning

set Pt here in order to account for autocorrelation effects which may cause spurious

correlations between Xt−τ and Yt. Furthermore, in reality Pt would only contain a

subset of the whole set of variables and lags, which are called the ‘parents’ of the

process Yt (e.g., Spirtes & Glymour 1991), although for simplicity let us continue

with the definition of Pt as a generic conditioning set of past variables.

The result of implementing this algorithm to the synthetic data above is shown in

Figure 6.7b, where the p-values associated with each link are < 0.05. Noticeably, the

spurious correlation X → Y is removed, as well as the other spurious links Y→ Z

and Z→ X. Furthermore the inflated correlation between Z and Y in 6.7a (due to

autocorrelation) is corrected for in 6.7b, and the correct time lag has been identified

for both links.

To implement this procedure with real observational data would require further

consideration of the different types of variables to be analysed, as well as any required

pre-processing of the data, choice of temporal frequency (e.g., daily, weekly, monthly,

or even seasonal), and assumptions about the interactions between physical processes,

such as linearity et cetera (Kretschmer et al., 2016). Even so, the synthetic example

outlined here should provide as a motivating example of ways to move the complex

networks methodology forward.
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Appendix A

Chapter 2 supplementary

material

This appendix contains figures and which are supplementary to chapter 2, and also a

brief outline of the cross-validation method.
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Figure A.1: Synthetic example of 1-D polynomial OLS regression, as in Figure 2.3, except
that the number of observations is increased from n = 10 to n = 100. Comparing both
figures, both the bias and variance of the estimated function values are reduced by using
more observations, for a given model complexity.

A.1 K -fold cross-validation

Generating predictions with the Ordinary Least Squares (OLS) polynomial basis

function model in section 2.2.1 required a decision on the optimal order of the

polynomial basis functions (and hence number of model parameters), and similarly

for the value of the regularisation coefficient λ in the case of Ridge regression.
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E*3

E*4
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Figure A.2: K-fold cross-validation where K = 5. The total number of training points is
given by n, and the prediction error at each iteration step is given by E∗i, where i = {1, . . . ,K}.
Blue cells are the data used for training and the black cells are those held aside to evaluate
the predictions.

In many cases it will be necessary to compare a range of models with perhaps a

variety of complexity parameters and/or different types of basis functions, where

ultimately the one which produces the best predictions is desired. This is often

achieved by separating the data into disjoint training and validation sets whereby the

various different models are trained on a subset of the overall data and predictions

are validated against the withheld set. Subsequently, the model with the lowest

prediction error is then chosen. In this approach however, only a subset of the data

are used to train the model, and if the number of points used for validation is small,

then the variance of the predictions will be large (Rasmussen & Williams, 2006). A

way to circumvent this is through K-fold cross-validation (Stone, 1974). In this case

the available training data are split into K number of equal sized sets, where the

model is then trained on data from K − 1 of the total sets, and then predictions

are evaluated on the final set. This is repeated K number of times, where at each

iteration the predictions are evaluated on a different subset (see Figure A.2). At each

step the sum of the squared error between the predictions and the withheld set is

evaluated E∗i, after which an average of all prediction errors is taken to represent

the cross-validation score of that particular model. The most extreme case of this

approach is where K = n, which is then referred to as leave-one-out cross-validation,

however depending on the model this may be computationally prohibitive as the

model must then be run n number of times. The Bayesian approach to model

selection outlined in section 2.2.2 is an alternative framework for estimating the free

(hyper)parameters of a model which utilises all of the available training data and

can be evaluated without running multiple iterations of the model.
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(a) (b) (c)

Figure A.3: Clusters generated from de-trended winter sea ice concentration time series
data between 1979 and 2021, with significance levels (a) η = 0.01 (N = 80 clusters), (b)
η = 0.05 (N = 65 clusters), and (c) η = 0.10 (N = 61 clusters).

(a) (b) (c)

−5 0 5
Covariance (106)

0 1 2 3 4
Node strength (107)

Figure A.4: Complex networks generated from de-trended winter sea ice concentration
time series data between 1979 and 2021, based on clusters with significance levels (a) η = 0.01
(N = 80 clusters), (b) η = 0.05 (N = 65 clusters), and (c) η = 0.10 (N = 61 clusters). Only
links which are significant at the 10% level are shown here to aid visualisation.
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Appendix B

Chapter 4 supplementary

figures

This appendix contains figures that were supplementary to the article “A Bayesian

approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-

2 and Sentinel-3 satellite observations”, that forms chapter 4 of this thesis.

(a) (b) (c)

0.0 0.1 0.2 0.3 0.4
Radar freeboard (m)

Figure B.1: Examples of 25× 25 km gridded CS2S3 radar freeboard from Gaussian Process
Regression, corresponding to the 1st of December 2018. Here we vary the number of days of
observations used to train the model with (a) 9 days (as per our model in the main text),
(b) 5 days (+/- 2 days around the prediction day), and (c) 3 days (+/- 1 day around the
prediction day). With 3 days we see linear artefacts in some regions (Beaufort and Chukchi
Seas), which are suppressed (but not entirely eliminated) by increasing to 5 days.
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(a)
-2 mm

(b)
-5 mm

−0.10 −0.05 0.00 0.05 0.10

Difference (m)

Figure B.2: The difference in prediction uncertainty between the model trained with 9
days of data and (a) the model trained with 5 days of data. (b) the model trained with 3
days of data. The average difference is given for each case (-2 mm and -5 mm respectively).
Negative values indicate that the uncertainty of the 9-day model is lower than either the 5-
or 3-day model. Note that uncertainty at the polar hole increases with more days of training
data as no observations are ever recorded there.

−0.2 0.0 0.2
difference (m)

(a)

µ = -0.001 m

σ = 0.062 m

−0.2 0.0 0.2
difference (m)

(b)

µ = -0.000 m

σ = 0.054 m

−0.2 0.0 0.2
difference (m)

(c)

µ = 0.001 m

σ = 0.045 m

Figure B.3: Training error (observations – CS2S3) for one day (1st of December 2018), for
interpolations run at (a) 25×25 km, (b) 50×50 km, (c) 100×100 km spatial resolution. Hence
the along-track CS2 and S3 observations were first gridded to each respective resolution, and
pan-Arctic predictions were subsequently generated at that same resolution. Notably here,
increasing or decreasing the resolution does not result in a systematic increase or decrease in
the average training error.
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Figure B.4: Histogram of S3AS3B radar freeboard difference for tracks averaged on a
50× 50 km grid. The green line shows the mean difference (=0.053 cm). A total of 35 tracks
from the 14th and 15th October 2018 were gridded and compared. During this period S3A
and S3B were operating in tandem mode, with S3A trailing S3B by ∼ 30 seconds in the
same orbit. Sea ice drift during 30 seconds can be considered negligible, therefore we can
assume that S3A and S3B are observing the same sea ice, and that differences are therefore
the result of noise on individual freeboard measurements (see Wingham et al. (2006) for
discussion of speckle noise on CS2 measurements). The standard deviation on the difference
(∼ 6 cm) provides an estimate of the uncertainty on 50 km grid-averaged S3 and CS2 radar
freeboard measurements.
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(a) (b)

(c) (d)

0.0 0.1 0.2 0.3 0.4
Radar freeboard (m)

Figure B.5: 50×50 km gridded CS2S3 freeboard using 9 days of observations during training,
but showing the freeboard predictions corresponding to each cross-validation experiment
(section 4.4.2 main text). (a) Using CS2, S3A and S3B during training. (b) Using CS2 and
S3B during training. (c) Using CS2 and S3A during training. (d) Using only CS2 during
training. Notice how features such as the ‘monkey tail’ in the Beaufort Sea are less well
defined in (b), (c) and (d), than in (a). Furthermore, without any S3 data in (d) we see
linear interpolation artefacts.

(a)
-3 mm

(b)
-2 mm

(c)
-7 mm

−0.10 −0.05 0.00 0.05 0.10

Difference (m)

Figure B.6: The difference in prediction uncertainty between the model trained with CS2,
S3A, and S3B (CS2S3), and (a) the model trained with CS2 and S3B (CS2S3(-S3A)). (b)
the model trained with CS2 and S3A (CS2S3(-S3B)). (c) the model trained with CS2 only
(CS2S3(-S3)). The average difference is given for each case. Negative values indicate that
the uncertainty of the CS2S3 model is lower.
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Appendix C

Chapter 5 supplementary

figures

This appendix contains figures which are supplementary to chapter 5.
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Figure C.1: ARI and D metrics for comparing observation and CMIP6 model summer sea
ice concentration networks and the winter AO to summer sea ice teleconnection between
1979–1999, for every ensemble member for 31 different CMIP6 models (74 realisations).
ARI and D are computed relative to NASA Team (top), Bootstrap (middle), and OSI-SAF
(bottom) observational networks. Network distance values (D) are computed from observation
and model ‘link maps’ as shown in Figure 5.9. The symbols and colours of each point are
consistent with Figure 5.3.
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Figure C.2: ARI and D metrics for comparing observation and CMIP6 model summer sea
ice concentration networks and the winter AO to summer sea ice teleconnection between
2000–2020, for every ensemble member for 31 different CMIP6 models (74 realisations).
ARI and D are computed relative to NASA Team (top), Bootstrap (middle), and OSI-SAF
(bottom) observational networks. Network distance values (D) are computed from observation
and model ‘link maps’ as shown in Figure 5.9. The symbols and colours of each point are
consistent with Figure 5.3.
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Doblas-Reyes, F. J., Fučkar, N. S., Germe, A., Hawkins, E., Keeley, S., et al. (2016).

A review on arctic sea-ice predictability and prediction on seasonal to decadal

time-scales. Quarterly Journal of the Royal Meteorological Society , 142 (695),

546–561.

Hamilton, L. C., & Stroeve, J. (2016). 400 Predictions: the SEARCH sea ice outlook

2008–2015. Polar Geography , 39 (4), 274–287.

Hanna, E., Mernild, S. H., Cappelen, J., & Steffen, K. (2012). Recent warming in

Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation

of surface air temperature records. Environmental Research Letters, 7 (4), 45404.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models , vol. 43. CRC

press.

136



Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional

climate predictions. Bulletin of the American Meteorological Society , 90 (8), 1095–

1108.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12 (1), 55–67.

Holland, M. M., Bailey, D. A., & Vavrus, S. (2011). Inherent sea ice predictability in

the rapidly changing arctic environment of the community climate system model,

version 3. Climate dynamics, 36 (7-8), 1239–1253.

Holland, M. M., Serreze, M. C., & Stroeve, J. (2010). The sea ice mass budget of

the arctic and its future change as simulated by coupled climate models. Climate

Dynamics, 34 (2-3), 185–200.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification,

2 (1), 193–218.

Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the

north atlantic oscillation. Geophysical Monograph-American Geophysical Union,

134 , 1–36.

Ionita, M., Grosfeld, K., Scholz, P., Treffeisen, R., & Lohmann, G. (2019). September

arctic sea ice minimum prediction - a skillful new statistical approach. Earth

System Dynamics, 10 (1), 189–203.

IPCC (2021). In Climate Change 2021: The Physical Science Basis. Contribution of

Working Group I to the Sixth Assessment Report of the Intergovernmental Panel

on Climate Change. Cambridge University Press.

Jahn, A. (2018). Reduced probability of ice-free summers for 1.5 c compared to 2 c

warming. Nature Climate Change, 8 (5), 409.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM

computing surveys (CSUR), 31 (3), 264–323.

James, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and

systematics: panacea or pandora’s box? Annual review of Ecology and Systematics ,

21 (1), 129–166.

Jin-Qing, Z., Wei-Jing, L., & Hong-Li, R. (2013). Representation of the arctic

oscillation in the cmip5 models. Advances in Climate Change Research, 4 (4),

242–249.

Jun, S.-Y., Ho, C.-H., Jeong, J.-H., Choi, Y.-S., & Kim, B.-M. (2016). Recent

changes in winter arctic clouds and their relationships with sea ice and atmospheric

conditions. Tellus A: Dynamic Meteorology and Oceanography , 68 (1), 29130.

137



Kang, E. L., Cressie, N., & Shi, T. (2010). Using temporal variability to improve

spatial mapping with application to satellite data. Canadian Journal of Statistics ,

38 (2), 271–289.

Kapsch, M.-L., Graversen, R. G., & Tjernström, M. (2013). Springtime atmospheric

energy transport and the control of arctic summer sea-ice extent. Nature Climate

Change, 3 (8), 744–748.

Kay, J. E., & L’Ecuyer, T. (2013). Observational constraints on arctic ocean clouds

and radiative fluxes during the early 21st century. Journal of Geophysical Research:

Atmospheres, 118 (13), 7219–7236.

Kondor, R. I., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete

structures. Proceedings of the 19th international conference on machine learning ,

2002 , 315–322.

Kostopoulou, E. (2021). Applicability of ordinary kriging modeling techniques for

filling satellite data gaps in support of coastal management. Modeling Earth

Systems and Environment , 7 (2), 1145–1158.

Kretschmer, M., Coumou, D., Donges, J. F., & Runge, J. (2016). Using causal

effect networks to analyze different arctic drivers of midlatitude winter circulation.

Journal of Climate, 29 (11), 4069–4081.

Kurtz, N., Markus, T., Farrell, S., Worthen, D., & Boisvert, L. (2011). Observations

of recent arctic sea ice volume loss and its impact on ocean-atmosphere energy

exchange and ice production. Journal of Geophysical Research: Oceans, 116 (C4).

Kutzbach, J. E. (1967). Empirical eigenvectors of sea-level pressure, surface tem-

perature and precipitation complexes over north america. Journal of Applied

Meteorology , 6 (5), 791–802.

Kwok, R. (2000). Recent changes in arctic ocean sea ice motion associated with the

north atlantic oscillation. Geophysical Research Letters, 27 (6), 775–778.

Kwok, R. (2015). Sea ice convergence along the arctic coasts of greenland and the

canadian arctic archipelago: Variability and extremes (1992–2014). Geophysical

Research Letters, 42 (18), 7598–7605.

Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: losses

and coupled variability (1958–2018). Environmental Research Letters, 13 (10),

105005.

Kwok, R., Kacimi, S., Markus, T., Kurtz, N., Studinger, M., Sonntag, J., Manizade,

S., Boisvert, L., & Harbeck, J. (2019). Icesat-2 surface height and sea ice freeboard

138



assessed with atm lidar acquisitions from operation icebridge. Geophysical Research

Letters, 46 (20), 11228–11236.

Kwok, R., Kacimi, S., Webster, M., Kurtz, N., & Petty, A. (2020). Arctic snow depth

and sea ice thickness from icesat-2 and cryosat-2 freeboards: a first examination.

Journal of Geophysical Research: Oceans, 125 (3), e2019JC016008.

Kwok, R., Rignot, E., Holt, B., & Onstott, R. (1992). Identification of sea ice types

in spaceborne synthetic aperture radar data. Journal of Geophysical Research:

Oceans, 97 (C2), 2391–2402.

Kwok, R., Spreen, G., & Pang, S. (2013). Arctic sea ice circulation and drift speed:

Decadal trends and ocean currents. Journal of Geophysical Research: Oceans,

118 (5), 2408–2425.

Landy, J. C., Bouffard, J., Wilson, C., Rynders, S., Aksenov, Y., & Tsamados, M.

(2021). Mapping arctic sea ice thickness: A new method for improved ice freeboard

retrieval from satellite altimetry. Earth and Space Science Open Archive ESSOAr .

Lange, R., Dall’Osto, M., Skov, H., Nøjgaard, J., Nielsen, I., Beddows, D., Simó, R.,
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Zhou, C., Zemanová, L., Zamora-Lopez, G., Hilgetag, C. C., & Kurths, J. (2007).

Structure–function relationship in complex brain networks expressed by hierarchical

synchronization. New Journal of Physics, 9 (6), 178.

152


	Introduction
	Arctic sea ice
	Recent trends and variability
	Drivers of sea ice trends
	Drivers of sea ice variability


	Machine learning principles
	Introduction
	Supervised learning
	Regression analysis
	Bayesian model selection

	Unsupervised learning
	Principal component analysis
	Cluster analysis
	Complex networks

	Thesis aims

	Skilful sea ice forecasting
	Introduction
	Data
	Methods
	Complex networks
	Gaussian process regression

	Results
	Pan-Arctic September sea ice extent forecasts
	Regional September sea ice extent forecasts

	Discussion
	Conclusions

	Data fusion and optimal interpolation of radar freeboards
	Introduction
	Data
	Freeboard
	Auxiliary data

	Methods
	Validation
	Comparison with training inputs
	Cross-validation

	Assessment of temporal variability
	Conclusions

	Climate connectivity in general circulation models
	Introduction
	Data
	Observations
	Atmospheric Reanalysis
	CMIP6 model outputs

	Method
	Complex networks
	Metrics for comparing networks

	Results
	Sea-level pressure networks in CMIP6
	Sea ice concentration networks in CMIP6
	AO to sea ice teleconnection

	Discussion and Conclusions

	Summary and outlook
	Chapter 3: Skilful sea ice forecasting
	Chapter 4: Data fusion and optimal interpolation of radar freeboards
	Chapter 5: Climate connectivity in general circulation models

	Appendices
	Chapter 2 supplementary material
	K-fold cross-validation

	Chapter 4 supplementary figures
	Chapter 5 supplementary figures
	Bibliography

