1,852 research outputs found

    A framework for automatic semantic video annotation

    Get PDF
    The rapidly increasing quantity of publicly available videos has driven research into developing automatic tools for indexing, rating, searching and retrieval. Textual semantic representations, such as tagging, labelling and annotation, are often important factors in the process of indexing any video, because of their user-friendly way of representing the semantics appropriate for search and retrieval. Ideally, this annotation should be inspired by the human cognitive way of perceiving and of describing videos. The difference between the low-level visual contents and the corresponding human perception is referred to as the ‘semantic gap’. Tackling this gap is even harder in the case of unconstrained videos, mainly due to the lack of any previous information about the analyzed video on the one hand, and the huge amount of generic knowledge required on the other. This paper introduces a framework for the Automatic Semantic Annotation of unconstrained videos. The proposed framework utilizes two non-domain-specific layers: low-level visual similarity matching, and an annotation analysis that employs commonsense knowledgebases. Commonsense ontology is created by incorporating multiple-structured semantic relationships. Experiments and black-box tests are carried out on standard video databases for action recognition and video information retrieval. White-box tests examine the performance of the individual intermediate layers of the framework, and the evaluation of the results and the statistical analysis show that integrating visual similarity matching with commonsense semantic relationships provides an effective approach to automated video annotation

    Point-wise mutual information-based video segmentation with high temporal consistency

    Full text link
    In this paper, we tackle the problem of temporally consistent boundary detection and hierarchical segmentation in videos. While finding the best high-level reasoning of region assignments in videos is the focus of much recent research, temporal consistency in boundary detection has so far only rarely been tackled. We argue that temporally consistent boundaries are a key component to temporally consistent region assignment. The proposed method is based on the point-wise mutual information (PMI) of spatio-temporal voxels. Temporal consistency is established by an evaluation of PMI-based point affinities in the spectral domain over space and time. Thus, the proposed method is independent of any optical flow computation or previously learned motion models. The proposed low-level video segmentation method outperforms the learning-based state of the art in terms of standard region metrics

    Simple and Complex Human Action Recognition in Constrained and Unconstrained Videos

    Get PDF
    Human action recognition plays a crucial role in visual learning applications such as video understanding and surveillance, video retrieval, human-computer interactions, and autonomous driving systems. A variety of methodologies have been proposed for human action recognition via developing of low-level features along with the bag-of-visual-word models. However, much less research has been performed on the compound of pre-processing, encoding and classification stages. This dissertation focuses on enhancing the action recognition performances via ensemble learning, hybrid classifier, hierarchical feature representation, and key action perception methodologies. Action variation is one of the crucial challenges in video analysis and action recognition. We address this problem by proposing the hybrid classifier (HC) to discriminate actions which contain similar forms of motion features such as walking, running, and jogging. Aside from that, we show and proof that the fusion of various appearance-based and motion features can boost the simple and complex action recognition performance. The next part of the dissertation introduces pooled-feature representation (PFR) which is derived from a double phase encoding framework (DPE). Considering that a given unconstrained video is composed of a sequence of simple frames, the first phase of DPE generates temporal sub-volumes from the video and represents them individually by employing the proposed improved rank pooling (IRP) method. The second phase constructs the pool of features by fusing the represented vectors from the first phase. The pool is compressed and then encoded to provide video-parts vector (VPV). The DPE framework allows distilling the video representation and hierarchically extracting new information. Compared with recent video encoding approaches, VPV can preserve the higher-level information through standard encoding of low-level features in two phases. Furthermore, the encoded vectors from both phases of DPE are fused along with a compression stage to develop PFR

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization
    • …
    corecore