30 research outputs found

    Cooperative sensing of spectrum opportunities

    Get PDF
    Reliability and availability of sensing information gathered from local spectrum sensing (LSS) by a single Cognitive Radio is strongly affected by the propagation conditions, period of sensing, and geographical position of the device. For this reason, cooperative spectrum sensing (CSS) was largely proposed in order to improve LSS performance by using cooperation between Secondary Users (SUs). The goal of this chapter is to provide a general analysis on CSS for cognitive radio networks (CRNs). Firstly, the theoretical system model for centralized CSS is introduced, together with a preliminary discussion on several fusion rules and operative modes. Moreover, three main aspects of CSS that substantially differentiate the theoretical model from realistic application scenarios are analyzed: (i) the presence of spatiotemporal correlation between decisions by different SUs; (ii) the possible mobility of SUs; and (iii) the nonideality of the control channel between the SUs and the Fusion Center (FC). For each aspect, a possible practical solution for network organization is presented, showing that, in particular for the first two aspects, cluster-based CSS, in which sensing SUs are properly chosen, could mitigate the impact of such realistic assumptions

    Role of Interference and Computational Complexity in Modern Wireless Networks: Analysis, Optimization, and Design

    Get PDF
    Owing to the popularity of smartphones, the recent widespread adoption of wireless broadband has resulted in a tremendous growth in the volume of mobile data traffic, and this growth is projected to continue unabated. In order to meet the needs of future systems, several novel technologies have been proposed, including cooperative communications, cloud radio access networks (RANs) and very densely deployed small-cell networks. For these novel networks, both interference and the limited availability of computational resources play a very important role. Therefore, the accurate modeling and analysis of interference and computation is essential to the understanding of these networks, and an enabler for more efficient design.;This dissertation focuses on four aspects of modern wireless networks: (1) Modeling and analysis of interference in single-hop wireless networks, (2) Characterizing the tradeoffs between the communication performance of wireless transmission and the computational load on the systems used to process such transmissions, (3) The optimization of wireless multiple-access networks when using cost functions that are based on the analytical findings in this dissertation, and (4) The analysis and optimization of multi-hop networks, which may optionally employ forms of cooperative communication.;The study of interference in single-hop wireless networks proceeds by assuming that the random locations of the interferers are drawn from a point process and possibly constrained to a finite area. Both the information-bearing and interfering signals propagate over channels that are subject to path loss, shadowing, and fading. A flexible model for fading, based on the Nakagami distribution, is used, though specific examples are provided for Rayleigh fading. The analysis is broken down into multiple steps, involving subsequent averaging of the performance metrics over the fading, the shadowing, and the location of the interferers with the aim to distinguish the effect of these mechanisms that operate over different time scales. The analysis is extended to accommodate diversity reception, which is important for the understanding of cooperative systems that combine transmissions that originate from different locations. Furthermore, the role of spatial correlation is considered, which provides insight into how the performance in one location is related to the performance in another location.;While it is now generally understood how to communicate close to the fundamental limits implied by information theory, operating close to the fundamental performance bounds is costly in terms of the computational complexity required to receive the signal. This dissertation provides a framework for understanding the tradeoffs between communication performance and the imposed complexity based on how close a system operates to the performance bounds, and it allows to accurately estimate the required data processing resources of a network under a given performance constraint. The framework is applied to Cloud-RAN, which is a new cellular architecture that moves the bulk of the signal processing away from the base stations (BSs) and towards a centralized computing cloud. The analysis developed in this part of the dissertation helps to illuminate the benefits of pooling computing assets when decoding multiple uplink signals in the cloud. Building upon these results, new approaches for wireless resource allocation are proposed, which unlike previous approaches, are aware of the computing limitations of the network.;By leveraging the accurate expressions that characterize performance in the presence of interference and fading, a methodology is described for optimizing wireless multiple-access networks. The focus is on frequency hopping (FH) systems, which are already widely used in military systems, and are becoming more common in commercial systems. The optimization determines the best combination of modulation parameters (such as the modulation index for continuous-phase frequency-shift keying), number of hopping channels, and code rate. In addition, it accounts for the adjacent-channel interference (ACI) and determines how much of the signal spectrum should lie within the operating band of each channel, and how much can be allowed to splatter into adjacent channels.;The last part of this dissertation contemplates networks that involve multi-hop communications. Building on the analytical framework developed in early parts of this dissertation, the performance of such networks is analyzed in the presence of interference and fading, and it is introduced a novel paradigm for a rapid performance assessment of routing protocols. Such networks may involve cooperative communications, and the particular cooperative protocol studied here allows the same packet to be transmitted simultaneously by multiple transmitters and diversity combined at the receiver. The dynamics of how the cooperative protocol evolves over time is described through an absorbing Markov chain, and the analysis is able to efficiently capture the interference that arises as packets are periodically injected into the network by a common source, the temporal correlation among these packets and their interdependence

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Radio Resource Management for Cellular Networks Enhanced by Inter-User Communication

    Get PDF
    The importance of radio resource management will be more and more emphasized in future wireless communication systems. For fair penetration of wireless services and for improved local services, inter-user communication has been receiving wide attention as it opens up various possibilities for user cooperation. The capability of inter-user communication imposes higher demands on radio resource management as additional considerations are needed. The demands for intelligent management of radio resources is also emphasized by the sparsity of radio resources. As the available spectral resources are assessed as under-utilized, much effort is devoted to developing advanced resource management methods for improving the spectral usage efficiency. The research of this thesis has contributed to the radio resource management for cellular networks enhanced by inter-user communication. Recognizing that inter-user communication can be used for message relaying or for direct communication purposes, two use cases are considered that leverage the synergy of users: cooperative relay selection and Device-to-Device (D2D) communication. We identify the importance of stochastic geometry consideration on cellular users for evaluating system performance in cooperative networking. We develop an algorithm for efficiently selecting cooperative users to maximize an End-to-End (e2e) performance metric. We analyze the optimal resource sharing problem between D2D communication and infrastructure-supported communication. We study the impact of imperfect Channel State Information (CSI) on the performance of systems with inter-user communication. Simulation results show that the performance of users with unfavorable propagation conditions can be improved with cooperative communication in a multi-cell cellular environment, at the expense of radio resources. Further, our results show that the selection of multiple cooperative users is beneficial in cases where the candidate cooperative users are spatially distributed. For resource sharing between the D2D and infrastructure-supported communication, our results show that the proposed resource sharing scheme enables higher intra-cell resource reuse without blocking the infrastructure-supported communication

    Cross-layer energy optimisation of routing protocols in wireless sensor networks

    Get PDF
    Recent technological developments in embedded systems have led to the emergence of a new class of networks, known asWireless Sensor Networks (WSNs), where individual nodes cooperate wirelessly with each other with the goal of sensing and interacting with the environment.Many routing protocols have been developed tomeet the unique and challenging characteristics of WSNs (notably very limited power resources to sustain an expected lifetime of perhaps years, and the restricted computation, storage and communication capabilities of nodes that are nonetheless required to support large networks and diverse applications). No standards for routing have been developed yet for WSNs, nor has any protocol gained a dominant position among the research community. Routing has a significant influence on the overall WSN lifetime, and providing an energy efficient routing protocol remains an open problem. This thesis addresses the issue of designing WSN routing methods that feature energy efficiency. A common time reference across nodes is required in mostWSN applications. It is needed, for example, to time-stamp sensor samples and for duty cycling of nodes. Alsomany routing protocols require that nodes communicate according to some predefined schedule. However, independent distribution of the time information, without considering the routing algorithm schedule or network topology may lead to a failure of the synchronisation protocol. This was confirmed empirically, and was shown to result in loss of connectivity. This can be avoided by integrating the synchronisation service into the network layer with a so-called cross-layer approach. This approach introduces interactions between the layers of a conventional layered network stack, so that the routing layer may share information with other layers. I explore whether energy efficiency can be enhanced through the use of cross-layer optimisations and present three novel cross-layer routing algorithms. The first protocol, designed for hierarchical, cluster based networks and called CLEAR (Cross Layer Efficient Architecture for Routing), uses the routing algorithm to distribute time information which can be used for efficient duty cycling of nodes. The second method - called RISS (Routing Integrated Synchronization Service) - integrates time synchronization into the network layer and is designed to work well in flat, non-hierarchical network topologies. The third method - called SCALE (Smart Clustering Adapted LEACH) - addresses the influence of the intra-cluster topology on the energy dissipation of nodes. I also investigate the impact of the hop distance on network lifetime and propose a method of determining the optimal location of the relay node (the node through which data is routed in a two-hop network). I also address the problem of predicting the transition region (the zone separating the region where all packets can be received and that where no data can be received) and I describe a way of preventing the forwarding of packets through relays belonging in this transition region. I implemented and tested the performance of these solutions in simulations and also deployed these routing techniques on sensor nodes using TinyOS. I compared the average power consumption of the nodes and the precision of time synchronization with the corresponding parameters of a number of existing algorithms. All proposed schemes extend the network lifetime and due to their lightweight architecture they are very efficient on WSN nodes with constrained resources. Hence it is recommended that a cross-layer approach should be a feature of any routing algorithm for WSNs

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore