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The progress of wireless communication 
technologies promises seamless coverage 
with higher peak transmission rate than 
current broadband communication systems. 
These demands are challenged by highly 
regulated transmit power as well as already 
congested spectrum. In this dissertation, 
inter-user communication for cellular 
systems is studied as an approach forward. 
On one hand, inter-user communication can 
extend service coverage and achieve more 
uniform Quality of Service, by having users 
in proper positions to cooperate. On the 
other hand, inter-user communication 
enables better spectrum usage efficiency 
with advanced radio resource management 
schemes. The outcome of this study includes 
a relay selection algorithm for user 
cooperation, radio resource allocation 
schemes for sharing same spectrum, and 
related performance analysis. 
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1. Introduction

1.1 Motivation

With the progress of wireless communication technologies, mobile users

of next generation communication systems expect seamless coverage with

higher peak transmission rate than current broadband communication

systems. For example, the International Telecommunication Union (ITU)

has defined the requirements of International Mobile Telecommunications-

Advanced (IMT-Advanced) systems to meet these expectations. To sup-

port advanced services and applications, IMT-A systems feature peak ag-

gregate data rates up to 1 Gbps with a spectrum demand of approximately

100 MHz bandwidth [1, 2]. Such high demands on data rate do not appear

feasible in current 3G architectures because of concerns regarding both

the allocated spectrum and transmit power. The spectrum allocated will

be above the 2GHz band which is more vulnerable to Non-Line-Of-Sight

(NLOS) scenarios. For service coverage, the envisioned high data rates

in IMT-A systems requires a high transmit power level which is usually

highly regulated. In view of these restrictions, a scenario with many small

cells seems the way to go. This unfortunately creates a linear cost with

respect to the number of cells [3]. One cost-efficient alternative that has

received much attention is the deployment of relays to extend the cell

coverage of high capacity area. It is shown with enhanced cell edge per-

formance and cell coverage [4, 5]. The deployment of in-band fixed relays

has been studied as part of the infrastructure within the scope of 3rd Gen-

eration Partnership Project (3GPP).

Alternatively, mobile relays which consist of idle users can also be used

to exploit the diversity and multiplexing advantages to benefit the outage

behavior and the capacity without infrastructural support [6, 7]. In such
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systems, a user without demands on own data transmission can cooper-

ate with other source nodes and act as geometrically distributed mobile

relays to assist the transmission from the source nodes. Such wireless

cooperative networking, which takes advantage of spatial diversity and

multiplexing, has been shown to have the potential of meeting the needs

of increased system capacity and coverage [8]. One important issue to-

wards such user cooperation is to select proper users to cooperate with.

However, a general guidance of this selection scheme is lacking in the

literature.

On the other hand, as the demands for wireless transmissions rise,

the value of spectrum resources are more and more appreciated. The

assessment of the usage of spectrum shows that it is largely under-

utilized [9], especially in licensed bands. This motivates the extensive

research into cognitive radio systems to allow opportunistic use of the

spectrum [10, 11, 12]. In spite of the progress in cognitive radio systems,

opportunistic use of the spectrum on licensed bands is still challenging as

sensing white spaces in the spectrum is a difficult task [13]. Cellular oper-

ators are conservative about sharing their licensed bands with secondary

systems. Therefore, a system functioning similar to cognitive radio sys-

tems but is under the control of cellular operators seems a proper step for

motivating the willingness of cellular operators to share their spectrum.

Motivated by the importance of user cooperation and agile use of ra-

dio resources on further performance improvement, this thesis addresses

both issues in a unified framework. It is hoped that the research con-

ducted in this work will shed more light on user cooperation and agile use

of radio resources for future networks

1.2 Scope of the thesis

The objective of this thesis is to contribute to cellular networks enhanced

by the capability of inter-user communication. We consider a scenario

where mobile users can communicate with each other, in addition to the

normal operation of communicating with their serving Base Stations (BS).

Such functionality opens up various possibilities for user cooperation. De-

pending on the degree of synergy of mobile users, attention is paid to

opportunistic mobile relay selection for harvesting cooperative diversity,

and Device-to-Device (D2D) communication as an underlay to cellular net-

works [PIII] for agile resource sharing to facilitate local Peer-to-Peer (P2P)

10
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data traffic.

The goal of this thesis is to complement the lack of general relay se-

lection guidance for user cooperation, and to bridge the gap between the

attitude towards cognitive radio of cellular operators and state-of-the-art

technologies for agile use of spectrum resources. Further, the evaluation

of system performance is done by taking into account the spatially sep-

arated positions of users. In channel modeling, the distance-dependent

path loss, which depends on the distance between a transmitter and a re-

ceiver, is an essential part. With spatially separated users, different mean

channel characteristics, and thus different Quality of Service (QoS), are

experienced by different users. In this work, a consideration of stochastic

geometry for user positions is performed for realistic results.

1.3 Contributions and structure of the thesis

This work contributes to resource management for cellular networks with

inter-user communication. To utilize the capability of inter-user commu-

nication, we consider two use cases. In the first use case, we assume the

communication between users is for relaying purposes. A multiple relay

selection problem for cooperative relaying is considered. The second use

case assumes the communication between users is for direct communica-

tion. The optimization of resource management of D2D underlay commu-

nications, where the user cooperation requires the dictation of the cellu-

lar infrastructure, for improving local services and spectrum utilization is

dealt with.

In the analysis of relay selection for cooperative diversity in coopera-

tive networks, stochastic geometry is applied to describe the spatially dis-

tributed nature of user positions. In addition to harvesting micro diversity

for combatting the multipath fading effect of wireless channels, a macro

diversity component is also considered by including the shadow fading ef-

fect in the wireless channel model. With a combined effect of a log-normal

distributed shadow fading and a Rayleigh distributed multipath fading in

the wireless channel model, the shadow fading part dominates the outage

performance since the log-normal distribution exhibits heavier tails than

the Rayleigh distribution. A consideration on only multipath fading in

wireless channel models does not directly apply to realistic scenarios.

We provide a novel algorithm for selecting a fixed amount of optimal

relays for a source node for cooperative transmission, with predetermined
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power constraints on relays. The algorithm is efficient so that the search

of an optimal number, and thus an optimal set, of cooperative relays is

possible. The work can be applied to Self-Organizing Networks (SON) [14,

15] where automatic searching for helping relays for a source is required.

In the second use case of providing D2D connection for local traffic, we

analyze different resource sharing modes for sharing cellular resources

between D2D and cellular communication. Resource and power allocation

is optimized for different resource sharing modes. The analysis is based

on practical considerations, such as rate constraints on cellular and D2D

users, as well as the maximum power/energy constraint. We solve the

optimal resource/power allocations for the resource sharing modes that

allow coexistence of D2D and cellular communication in close form. This

facilitates the applications in realistic systems. The analysis can also be

applied to an inter-cell interference management problem when the inter-

ference coordination is managed in a pairwise manner.

This thesis is organized as follows. Chapter 2 presents the background

on wireless system modeling. The important characteristics of wireless

channels are first introduced, followed by an approach for wireless sys-

tem modeling with stochastic geometry. We also describe a reference

model based on the WINNER A1 office environment which will be used

for evaluating system performance later. Chapter 3 provides an overview

of cooperative communication. Cooperative schemes that attain full spa-

tial diversity are discussed. Our contribution on multiple relay selection

for cooperative relaying is also presented here. In Chapter 4, we present

our contribution on D2D communication underlaying cellular networks.

Discussions on the coexistence of cellular networks and ad hoc networks

are also provided for comparison. Finally, Chapter 5 summarizes the re-

sults and the contribution of the thesis. Directions for future works are

also outlined.

1.4 Summary of the publications

This thesis consists of an introductory part and seven original publica-

tions. The publications are listed as page 5, and appended at the end

of the manuscript starting from page 65. Publications [PI] and [PII] ad-

dress the issue of mobile relay selection for cooperative relaying. Publica-

tions [PIII]–[PVII] address the issue of D2D underlay communication.

In [PI], we study an opportunistic relay selection scheme with the con-

12



Introduction

sideration of stochastic geometry in a cooperative network. The oppor-

tunistic relay selection scheme selects either the direct path or one of the

relaying paths for transmission. The macro diversity is also taken into ac-

count by including in the channel model a log-normal distributed shadow

fading effect. The relay selection scheme is considered with different ex-

tent of CSI knowledge to simulate optimistic and practical environments.

An analysis on outage probability based on the dominating macro diver-

sity is given.

In [PII], multiple relay selection for cooperative relaying is considered

in a scenario with the consideration of stochastic geometry. The relay se-

lection is based on an End-to-End (e2e) performance metric. An algorithm

for selecting a subset of relays with fixed cardinality, from a set of all can-

didate relays, is proposed. The complexity of the algorithm is O(N logN)

in the number of candidate RNs, N .

In [PIII], the D2D communication is studied as an underly network to

an IMT-A cellular network. As the first publication of this paper series

on D2D underlay communication, this article is to verify the application

of D2D communication to cellular networks without generating much in-

terference. An analysis based on a single cell scenario is first taken to

demonstrate the potential gain from D2D communication when interfer-

ence coordination is based on full CSI. Then, a practical indoor scenario

is studied with parameterizations based on IMT-A systems.

In [PIV], a D2D power control scheme simply based on channel statis-

tics is studied. The D2D transmit power is reduced to restrict the inter-

ference generated to the cellular user sharing the same resources non-

orthogonally. A complete channel model including distance dependent

path loss, shadow fading and multipath fading is considered. With only

information on channel statistics, the D2D transmit power is determined

by allowing a 3 dB degradation of the Signal-to-Interference plus Noise

Ratio (SINR) of the cellular user at 0.05 outage probability.

In [PV], the optimal power allocation between D2D and cellular com-

munication, when sharing non-orthogonal resources, is analyzed. Full

knowledge on the Channel State Information (CSI) is assumed. The opti-

mization considers practical rate constraints of user imposed by for exam-

ple, practical Modulation and Coding Schemes (MCS). A finite set where

the optimal power allocation resides is derived. Resource sharing modes

of using dedicated resources for D2D and cellular communication are con-

sidered for comparison. With dedicated resources, a fixed resource allo-

13



Introduction

cation between both operations is used. The results are evaluated in a

single cell scenario.

In [PVI], the results in [PV] are applied to study the impact of CSI im-

perfection. Full CSI is only available for links that the acquisition of the

channel states are assisted by the BS, i.e. the links related to normal cel-

lular UL/DL phases. For other links, only slow-faded values are known. A

conservative planning scheme on user rate constraints is further proposed

to leverage the improved cell throughput and the impact on the cellular

user.

In [PVII], we extend the work in [PV] for more completed results and for

better understanding of the indication of our analysis in realistic scenar-

ios. We consider the same resource sharing modes as in [PV], but further

optimize the resource assignment for orthogonal resource sharing modes.

An asynchronous and distributed resource allocation method based on our

analysis is constructed to assign the power/resources to D2D and cellular

users. A realistic pico-cellular apartment building scenario is considered

as a practical interference-limited indoor environment. Promising results

on imposing rate constraints and power/energy constraints in the pico-

cellular scenario are obtained.
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2. Background on System Model

2.1 Introduction

The transmission of packet data dates back to the General Packet Radio

Service (GPRS) system in the 90’s which became the first standardized

cellular system, with a limited data rate of only 56− 114 kbit/second [16].

Since then, the momentum has lead us to cellular systems with significant

improvement in data transmission capability. The commitment to higher

data system throughput has been guaranteed for next generation cellular

systems by IMT-Advanced systems. With the introduction of the MIMO

technique [17, 18] and iterative codes such as Turbo codes [19] and Low-

Density Parity Check (LDPC) codes [20, 21], the link-level performance

has been pushed very close to the Shannon limit. These technological

components are merged to standardized 3G cellular systems and beyond,

for example, Wideband Code Division Multiple Access (WCDMA) [22] and

3GPP Long Term Evolution (LTE) [23] systems. As further improvement

on link-level performance is limited, the research energy is tilting towards

system-level perspectives.

For better spatial spectral efficiency, 3G and beyond cellular systems

have a frequency reuse factor of 1. With a smaller frequency reuse dis-

tance, the problem of inter-cell interference becomes an issue. Users lo-

cated around the cell border are more vulnerable to the co-channel in-

terference from the neighboring cells. As users in the cell center usually

experience a more satisfactory SINR, research activities have been put in

improving the throughput of cell edge users. This is also one of the main

aims in IMT-Advanced systems [24]. In LTE-Advanced systems, propos-

als such as the deployment of relays, dual transmit antennas at users,

and Coordinated Multi-Point (CoMP) transmission [25] are discussed. In
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Background on System Model

Figure 2.1. A cellular network with relaying concept. The thick lines indicate data trans-
mission. The dashed lines indicate the signaling which may be required.

this work, we focus on the improvement enabled by inter-user commu-

nication. As we do not limit ourselves to the LTE-Advanced architecture,

the discussions assume mobile relays, rather than fixed relay deployment,

in order for cooperative relaying to target future mobile networks. The

considered scenario is illustrated in Fig. 2.1 where inter-user communica-

tion between users is assumed. As illustrated in Fig. 2.1, the capability

of inter-user communication enables the possibility of peer-to-peer and

relaying communication, in addition to the normal cellular operation.

To facilitate the discussions, in the following we review the important

features of wireless channels and present a reference channel model that

will be used later for evaluation of system performance.

2.2 Basic properties of wireless channels

In communication networks, the underlying physical propagation chan-

nel places a fundamental limit, described by the Shannon’s law [26], on

performance. The propagation channel characteristics are dependent on

the environments. While the propagation channel is stationary and more

predicable for a wired channel, a wireless channel can be extremely ran-

dom. A wireless channel can vary from a simple Line-of-Sight (LOS) sce-

nario to a sophisticated one that is highly affected by terrain contour, ob-

stacles, and the movement of terminal devices. As a generic analysis of

wireless channels is not easy, modeling of the wireless channels is typi-
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cally done in a statistical fashion. To capture the possibilities and restric-

tions that a propagation channel imposes on a wireless system, a wireless

channel model should be able to reflect the essential properties of the en-

vironment honestly. Many wireless channel models have been developed

for different applications. In this section, we will describe the basic prop-

erties of a wireless channel. For comprehensive discussions, please refer

to, for example, [27]

The ultimate task for a channel model is to output estimates of the

experienced path loss of a signal during its radio propagation, so that

the statistics of the estimated path loss can simulate the real situation.

The term path loss indicates the reduction in power density of the sig-

nal in its propagation. Path loss is the results of many effects, such as

distance-dependent loss, reflection, diffraction, and scattering, and is very

environment-specific. The same transmission distance between a trans-

mitter and a receiver at two different locations does not indicate the same

path loss, as the surrounding environmental clusters are typically very

different. A precise channel model capable of predicting the path loss be-

tween two positions requires careful consideration of all kinds of effects

encountered during the radio propagation, e.g., ray tracing [28]. These

kinds of precise channel models are not plausible for applications in wide

area communication due to their complexity. Typically, path loss is con-

sidered to consist of several parts that take into account different effects

during radio propagation. They are distance-dependent path loss, shadow

fading, and multipath fading.

The mechanism of electromagnetic wave propagation reveals that, in

free space, the strength of a transmitted signal decays with a rate that

is inversely proportional to the square of the travel distance. The sim-

plest explanation is to consider an omni-directional antenna. The emitted

power transmits towards all directions. The perceived power density in

an unit area is then inversely proportional to the square of the travel

distance. In a realistic environment, the transmitted signal encounters

obstructions so that it is not attenuated in exactly the same way as in free

space. However, the fundamental physical rules teach us that the signal

strength is still decaying with increasing travel distance in a certain man-

ner. Empirically, it is verified that the path loss increases logarithmically

with distance [29].

The shadow fading term considers the environmental clusters where the

transmitter and the receiver reside, respectively. The shadowing term
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simulates various effects that are introduced due to the obstructions en-

countered in the radio propagation, such as reflection, diffraction, etc. In-

herently, shadow fading is a random loss around the average loss spec-

ified by the distance-dependent loss. Measurements have shown that a

log-normal distribution describes the effect of shadow fading well. Thus,

the path loss can be expressed by [30]

L(d) = L(d0) + 10n log
d

d0
+ ξσ, (2.1)

where n is the path loss exponent indicating the rate at which the path

loss increases with distance, ξσ is a zero-mean Gaussian distributed ran-

dom variable (in dB) with standard deviation σ, and L(d0) is the loss mea-

sured from a reference distance d0.

Multipath fading is used to describe the rapid fluctuations of the re-

ceived signal strength over a short movement. This is induced by the fact

that the received signal is the sum of interfering signals arriving at dif-

ferent times. The difference in the arrival time of the interfering signals

is because they arrive at the receiver via different transmission paths.

In systems with carrier frequency in the order of Giga Hz, a movement

of the receiver in the order of one meter is more than enough to bring

the channel from a constructive interference to a destructive interference

situation.

Distance-dependent path loss, shadow fading, and multipath fading are

multiplicative in modeling a wireless channel. As distance-dependent

path loss represents an average path loss, shadow and multipath fading

effects describe the unpredictability of the wireless channel. It is noted

that shadow fading usually fades in a much slower rate than multipath

fading because it models the change of environmental clusters.

2.3 Stochastic geometry in cellular systems

Traditionally, the geometry of cellular communication networks is mod-

eled as a regular tessellation of congruent regular polygons. Regular

hexagons are the most commonly adopted polygon for constructing a cel-

lular network geometry [31]. An implication of a regular hexagonal net-

work is that each cell of the network is of the same shape and size, in

contrary to observations from the real world. Due to the non-uniform dis-

tribution of populations, irregular terrestrial landmarks, etc., the spatial

structure of cellular networks is typically far from being regular. The ap-
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Figure 2.2. Stochastic geometry for modeling cellular networks.

plication of stochastic geometry to the modeling of cellular networks thus

emerges [32, 33].

Stochastic geometry indicates the study of random spatial patterns by

spatial point processes. In the application of communication networks,

independent spatial point stochastic processes are usually used to model

the realization of different types of objects (user equipment, BSs, etc.).

The realized cellular structure of the communication network is an irreg-

ular tessellation which models the structural fluctuations of the terrain,

and user distribution, etc. As some key characteristics of the networks

can be expressed in functionals of the embedded point processes, analyti-

cal formulae can often be obtained by applying the properties of the point

processes. Fig. 2.2 illustrates a network realization based on stochastic

geometry, with the big dark spots indicating the BSs and the small dark

spots indicating the User Equipment (UE). The BSs and UE are asso-

ciated by solid lines and the irregular spatial structure of the cellular

system is denoted by the dashed lines.

The fading effects considered in a wireless channel model takes into ac-

count the possible path loss fluctuation due to the obstructions caused by

for example, buildings, terrains etc. As the fading effects are modeled by

stochastic processes, this indicates that the irregularity of the environ-

ments between a transmission pair is modeled. In other words, fading

effects serve to model similar effects as addressed in stochastic geometry,

although they are usually carried out by different families of stochastic

processes. However, stochastic geometry imposes random spatial patterns

on both UE and network infrastructural elements (e.g., BSs). For com-

pensation, in state-of-the-art system models, an additional stochastic pro-
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cess for user generation is considered to accompany the stochastic wire-

less channel modeling. Thus, the system modeling method featured with

stochastic user generation, stochastic wireless channel modeling, and an

embedded regular hexagonal tessellation of network geometry serves to

address similar concerns attempted by stochastic geometry. With a slight

abuse of the terminology, we shall refer to stochastic geometry as stochas-

tic spatial user generation in this work, as this is the part that cannot be

compensated by a stochastic channel modeling.

The stochastic UE generation impacts the calculation of the distance-

dependent path loss in a wireless channel model. While this is crucial

to consider the inherent feature of spatially distributed users in cellular

networks, it often makes analytical approaches challenging in the inves-

tigation of system performance. To facilitate the analysis, one typically

ignores this component and considers the fading effect that is not directly

pertinent to the environmental fluctuations (i.e., multipath fading is con-

sidered only). Although the asymptotic analysis based on this simplifica-

tion provides insights into the system properties, it also admits deviations

from a more realistic settings.

2.4 Pico-cellular scenario

A comprehensive evaluation of communication systems requires channel

models that allow realistic modeling of the propagation conditions in dif-

ferent environments. For this, channel modeling for different environ-

ments has been one of the earliest research fields in wireless communica-

tions. On the other hand, leaving the capability of capturing the propaga-

tional insights aside, we do need reference models based on which differ-

ent techniques are able to be compared. A number of reference channel

modes have been developed for this purpose. Examples include the 3GPP

spatial channel model [34], COST [35], WINNER [36], and ITU [37]. In

this work, we consider a WINNER A1 indoor office scenario. The WIN-

NER A1 channel model provides a pico-cellular environment with strong

inter-cell interference. We present the environmental parameters here,

but address the simulation details later when this channel model is used.

The WINNER channel model is both a system- and link-level model.

Here, only those parameters related to system-level simulations are con-

sidered. Fig. 2.3 illustrates the WINNER A1 scenario. It consists of 40

rooms and 2 corridor. Four Access Points (AP) are placed evenly in the cor-
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Figure 2.3. Floor layout of the WINNER A1 scenario.

ridors, as illustrated with green spots in Fig. 2.3. The propagation charac-

teristics follow those of the WINNER A1 model. Distance-dependent path

loss is calculated from the parameters A,B,C as

PL = A log10(d) +B + C log10(fc/5) +X + FL, (2.2)

where fc is the carrier frequency, X is the wall loss, and FL is the floor

loss. The most important characteristics of the path loss model are given

in Table 2.1.
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Table 2.1. Parameters of the WINNER II A1 path loss model

Building dimensions 100 m x 25 m

Room dimensions 10 m x 10 m

Corridor width 5 m

Room height 3 m

BS height 2 m

UE height 1 m

Floors 6

Boundary conditions floor direction wrap-around

Antenna patterns omni directional

Carrier frequency 2.6 GHz

Line-of-sight (LOS) in same room/corridor

LOS path loss A = 18.7, B = 46.8, C = 20

Corridor-to-room path loss A = 36.8, B = 43.8, C = 20

Room-to-room path loss A = 20, B = 46.4, C = 20

LOS shadow fading std. 3 dB

Corridor-to-room shadow fading std. 4 dB

Room-to-room shadow fading std. 6(light walls) or 8(heavy walls) dB

Inner wall loss 5 dB per wall

Floor loss 17 + 4(Nfloors − 1) dB
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3. Cooperative Networks

Cooperative Communication [8] [6] [7] [38] indicates the capability for

users in a system to coordinate their resources to enhance the transmis-

sion quality. Cooperative communication is also referred to as cooperative

relaying, cooperative diversity and coded cooperation. Conceptually, coop-

erative communication exploits the spatial diversity inherent in a multi-

user system by enabling users with different channel conditions to cooper-

ate and relay each other’s message to destination nodes. This is beneficial

in wireless environments where different users are likely to experience

diverse channel conditions. For users who are in deep channel fades, co-

operative users can offer better transmission paths for message delivery.

System performance can be enhanced by improving both coverage and

throughput of users experiencing worse channel conditions [8], such as

those experienced by cell-edge users in cellular networks.

3.1 Introduction

At the link level, the spatial diversity has been traditionally harvested

through the use of multiple antenna elements at both ends of a trans-

mission path. In principle, this is investigated in the scope of Multiple-

Input Multiple-Output (MIMO) systems and their applications, see for

example, [39, 40]. In MIMO systems, signal streams are multiplexed at a

transmitter and are de-multiplexed at a receiver by various adaptive al-

gorithms in order to efficiently utilize the wireless channel. At the system

level, the spatial diversity in multi-user systems has been exploited from

the point of view of multi-user diversity. There, users are assumed to be

independent without cooperation, and compete for resources. The multi-

user diversity is realized by opportunistic scheduling where resources are

allocated to users with good channel conditions [41]. To further impose
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fairness on scheduling decisions, different kinds of fairness metrics are

taken into account. Unfortunately, multi-user diversity schemes do not

improve the channel conditions experienced by users. For users in worse

channel conditions, their throughput can be improved only by allocating

more resources. For users who are out of coverage, there is hardly any

means to serve them from the perspective of multi-user diversity.

User cooperation has been studied in the context of P2P and multi-hop

networks. Popular examples include Mobile Ad hoc NETworks (MANET) [42]

and Wireless Sensor Networks (WSN) [43]. Depending on the applica-

tions, the requirements on user cooperation are different. Both MANETs

and WSNs are self-configuring networks and the primary challenge for

them is to properly maintain the routing information for each device. In

WSNs, additionally, whose network operation is usually subject to lim-

ited power and radio resources, sensor cooperation for extending network

lifetime is usually an issue. In cellular systems, the cooperation (if one

consider cooperative relaying as an extension to the deployment of fixed

relays) is mostly for extending service coverage and throughput improve-

ment [44]. The cooperation itself has no impact on network life time, al-

though individual power consumption of user equipment is still a concern

for users who offer the assistance.

Cooperation between neighboring nodes was first explicitly considered

in [8], where two active nodes act as relay nodes for each other. The dis-

tributed beamforming method proposed coherently combines two received

signals, one from the source node and the other from the relay node, at a

receiver node. In general, a multi-hop scheme can be devised by sequen-

tially applying a dual-hop scheme, for example, the one proposed in [8],

on intermediate nodes between a source node and a destination node. Ex-

tensions to multi-hop diversity are discussed in, for example, [45] where

the concurrent reception of the transmitted signals from previous relays

is assumed to fully exploit the broadcasting nature of the wireless chan-

nel. Although the results suggest improved performance of the multi-hop

diversity scheme over a multi-hop scheme, the challenging issues such as

resource assignment in multi-hop chains, load on the feedback require-

ment etc., may cause high complexity for applying the approach.

In [6], a variety of low complexity cooperative protocols are considered

information theoretically under the framework of diversity-multiplexing

tradeoffs. Depending on the signal processing procedures performed on

received signals at a relay node, two well-studied relay protocols in the
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Figure 3.1. Cooperative relaying network.

literature are:

• Amplify-and-Forward (AF) [6][46]: Relays act as analog repeaters by

re-transmitting an amplified version of the received signal. The Addi-

tive White Gaussian Noise (AWGN) is at the same time amplified and

transmitted.

• Decode-and-Forward (DF) [6][47]: Relays attempt to decode the received

signal and then construct a copy of the original signal for transmission.

There are variants that are hybrid forms of AF and DF, known as hybrid

relaying [48][49][50]. To fully utilize the available relay nodes, the relay

nodes with hybrid relaying protocol can decide to engage in AF or DF

relaying protocols on their own. If the channel between the source and

one relay is good enough for the relay to decode the received signal, the

relay uses the DF protocol. On the other hand, if the relay fails to decode

the received signal, the relay uses the AF protocol to forward the received

signal.

3.2 Full spatial diversity with cooperative relaying

The concept of cooperative relaying is illustrated in Fig. 3.1 where N re-

lays assist the transmission between a source-destination pair. The trans-

mission of a message from the source node takes two phases. In the first

phase, the message is transmitted from the source node. Due to the broad-

casting nature of the wireless channel, each relay node receives one copy

of the message. In the second phase, the relays process the received signal
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according to the relaying protocol, and re-transmit the processed signal to

the destination node. In principle, the destination node receives N + 1 in-

dependent copies of the original message, one from the source node and N

from the relays. Spatial diversity gains from the cooperation are expected

due to the independence between different transmission paths. Such a

two-step cooperative scheme is termed half duplex as relay nodes cannot

transmit and receive at the same time. The half duplex cooperative re-

laying scenario is studied in [51]. In addition, N + 1 orthogonal channels

are used for transmission so that no mutual interference is considered to

simplify the receiver design. The scheme achieves a diversity gain of the

order N + 1. Despite the capability of harvesting spatial diversity, the

scheme proposed in [51] is fundamentally limited by the orthogonal parti-

tioning of system resources. This overhead to cooperation is particularly

devastating in large networks with many nodes.

3.2.1 Single relay selection

The same spatial diversity order can be achieved by simply selecting one

relay node [52, 53, 54, 55, 56, 57, 58]. In [52], a distributed relay selection

scheme utilizing instantaneous channel information was proposed. The

selection is based on a delay process with carrier-sense multiple access on

relay-destination links. The scheme is proven to be optimal in the sense

that it achieves the same diversity-multiplexing tradeoffs as in [6], that is

d(r) = (N + 1)(1− 2r), (3.1)

where r is the multiplexing gain and d(r) is the diversity order as function

of r, as defined in [59].

In [55], comparison on the performance of a best relay selection scheme

and the all relaying strategy in [51] is conducted, assuming orthogonal

resources for different nodes. Optimal power allocation among the source

and relay nodes is considered in both scenarios. The analysis on outage

probability shows that the best relay selection maintains the full diver-

sity. Additionally, using a single relay is more spectrally efficient as less

resources are allocated to the relay-destination links. When requiring a

fixed rate transmission with the same amount of resources, the single

relaying scheme can outperform the all relaying scheme in outage proba-

bility.

A DF selection cooperation scheme where a single relay node is selected

out of a decoding set is introduced in [58]. The decoding set is defined
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as the relay set consisted of all relays that can decode the message sent

by the source node. This is different from the selection relaying in [51]

where all relays in the decoding set forward the message from the source

node. The single DF relay selection scheme is applied to a network with

multiple sources. If one node is selected as relay by more than one source,

the available power of the relay is allocated evenly among the sources who

selected the node. Similar conclusions as [55] are drawn by comparing

the selection cooperation and the selection relaying schemes. In addition

to the full diversity order, the selection cooperation scheme outperforms

the selection relaying scheme on outage probability when attempting to

maintain a fixed transmission rate.

For spectral efficiency, cooperative relaying can be combined with hy-

brid Automatic Repeat reQuest (ARQ). This is termed incremental relay-

ing in [6] and further extended in, for example, [60, 61, 62, 63, 64]. For

a fixed rate transmission, the spectral inefficiency also comes from the

fact that the relays repeat the transmission from the source node all the

time, no matter if it is needed or not. In incremental relaying, the relays

take care of the retransmissions required when the direct transmission

(i.e., the source-destination link) fails. Incremental relaying can be com-

bined with relay selection for further spectral efficiency. Variants of in-

cremental relaying scheme that incorporate relay selection can be found

in [60, 61, 62, 63, 64]. In [63, 64], the authors merge the concept of hy-

brid relaying, in addition to incremental relaying and relay selection, so

that the selected relay can switch between the AF and DF relaying pro-

tocols. The results show a further gain due to the additional flexibility of

allowing hybrid relaying.

In [PI], a single relay selection scheme is considered under a framework

with stochastic geometry and macro diversity possibility. The considered

scheme is a fully opportunistic one so that selection between the best re-

laying path and the direct path is performed for better efficiency. We char-

acterize an e2e Signal-to-Noise Ratio (SNR), which is an indicator of the

system throughput if an adaptive transmission scheme allowing a vari-

able rate transmission is taken. This setting is different from a fixed rate

scheme where outage probability is used as the figure of merit. The avail-

ability of instantaneous CSI is assumed to vary from perfect knowledge to

partial awareness complying with practical cellular architectures, for ex-

ample, LTE systems. In cellular systems, BSs can learn the Uplink (UL)

channel information by the insertion of training symbols at users. This in-
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Figure 3.2. CDF of UL received power for different transmission strategies, under fully
opportunistic relay selection.

dicates that the instantaneous CSI of relay-destination links is available

to the BSs, which is denoted by partial CSI in [PI]. To acquire full CSI,

additional signalling for source-relay links is required. In principle, relay

selection with the partial CSI is diversity suboptimal, i.e., with diversity

order of 1, as shown by [65, 66, 67]. Nevertheless, significant SNR gains

over the direct path are already achieved by relay selection using partial

CSI. To leverage between the overhead of collecting full knowledge of CSI

on all the links and the benefits of perfect relay selection, additional in-

formation on the Angle of Arrival (AoA) of the relay-destination links is

assumed on top of the partial CSI.

For demonstration, a single cell scenario (radius 1) with a source node

uniformly and randomly distributed in a 120-degree sector, but is at least

0.4 away from the BS, is assumed. There exists N relay nodes uniformly

distributed at random in the sector area. The parameter N follows a Pois-

son distribution with mean value of 10. The channel is modeled by consid-

ering distance-dependent path loss, log-normal distributed shadow fading

(with standard deviation 7 dB) and Rayleigh distributed multipath fading.

The distance-dependent path loss is modeled by a single-slope path loss

model with a path loss exponent of 4. The transmit power is assumed to

be 1.

Fig 3.2 illustrates the Cumulative Distribution Function (CDF) curves

of the UL received signal power for different relay selection strategies.

The results show that the additional AoA information is especially con-

structive in a high SNR regime where the performance is close to that

attained by using full CSI. It is also observed that one starts to suffer
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from incomplete CSI when the received signal power is reduced. This is

where the higher diversity order comes to play for reducing the outage

probability so as to increase the throughput. However, one should no-

tice that in terms of average throughput inferred by checking the average

received power, the loss due to incomplete CSI is not devastating.

3.2.2 Multiple relay selection

A natural extension from single relay selection is to select multiple re-

lay nodes [65, 68, 69, 70]. In [65], simple multinode selection schemes

have been shown to yield some coding gain in addition to full diversity.

However, the optimal selection of relays requires in general an exhaus-

tive search. In [68], the problem of multiple relay selection is related

to knapsack problems for efficient search over the combinatorial space

for optimization. A multiple relay selection scheme based on the relay-

destination links is proposed in [69]. There, relays with the strongest

relay-destination links are selected. In [70], multiple relays are selected

by including relays in a random ordering manner until the combined SNR

at the destination node reaches a target value. Since there is no optimal

ordering for relays [65], the selected set of relays is in general suboptimal.

The difficulties for selecting multiple relays come from the fact that a

dual-hop cooperative relaying channel with multiple relays generates an

imbalanced channel conditions on the first and the second hop. This can

be observed more clearly by checking the e2e channel power gain. Without

loss of generality, lets assume that an active relay set M with cardinality

|M| = m is to be selected from a candidate relay set N with cardinality

|N | = N , where N ≥ m. For a half-duplexing DF relaying protocol, the

e2e channel power gain can be expressed by

ge2e = min
(
mini∈Mgri ,

∑
i∈Mgai

) ≡ min(gr,M, ga,M), (3.2)

where gri and gai are the channel power gains of the source-relay link

and the relay-destination link, respectively, associated with RNi, gr,M =

mini∈M gri , and ga,M =
∑

i∈M gai . In (3.2), we have assumed that all nodes

use the maximum transmit power since this maximizes ge2e.

For the first hop with a channel power gain denoted by gr,M, the trans-

mitted signal from a source node is received by relays. This hop, which

consists of the source-relay links, is a diversity order 1 transmission. In

the second hop, the destination node is capable of harvesting spatial di-

versity by combining the received signal from different relays and the
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source node. This indicates that the second hop i.e., the relay-destination

links, is inherently stronger than the first hop. From (3.2), the selection

of relay nodes should balance the channel power gains of the first and

the second hops in order to maximize the e2e gain ge2e. The performance

degradation in outage probability due to imbalanced cooperative channel

is investigated in [71]. The degradation in e2e channel power gain due to

imbalanced cooperative channel can be found in [PI].

3.3 Perspective of variable rate transmission in cooperative
relaying

The discussions on cooperative relaying so far mostly assume a fixed

transmission rate is to be maintained. The outage probability then char-

acterizes the system performance. In DF relaying protocol, a fixed rate

system enables the construction of a decoding set of relays [51, 58]. This

is termed reactive relaying in [72]. The construction of the decoding

set allows one to discuss the outage probability based on simply relay-

destination links. It simplifies the analysis as one needs not to deal with

the dual-hop cooperative channel. On the other hand, it would be inter-

esting to look at the same problem from the perspective of optimizing the

transmission rate. This is considered in the following as variable rate

transmission, and is termed proactive relaying in [72].

With the variable rate transmission in cooperative relaying, one at-

tempts to maximize the e2e transmission rate (and therefore, through-

put). One major difference from fixed rate transmission is that no decod-

ing set can be defined beforehand. The decoding set is known only after

an instantaneous rate is determined. From (3.2), the first hop, gr,M, is

constrained by the worst relay among the selected relay set M. A dummy

selection of including all the available relays is undesired as this in gen-

eral largely under-estimates the cooperative channel capacity. Therefore,

relay selection is essential in variable rate transmission from the sys-

tem throughput perspective. The optimization of the e2e performance

in a variable rate system is to generate a balanced first and second hop

through the process of relay selection. The decoding set is to be opti-

mized for maximum throughput. It is noted that while both proactive and

reactive relaying strategies are outage-optimal [72], it was proven that

proactive relaying scheme achieves a slightly better effective ergodic ca-

pacity [73].
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In [74], the proposed multiple relay selection method maximizes an e2e

capacity by allowing channel dependent resource allocation among the

two hops in a dual-hop scenario, i.e., the harmonic mean of individual

rates on two hops is optimized. The method includes the relays with

strongest source-relay links to the set M till the e2e capacity is maxi-

mized. In cases where the channel conditions on the relay-destination

links are unknown, a method of selecting a fixed amount of relays by in-

cluding the relays with the strongest source-relay links is proposed. Dis-

cussions on multiple relay selection in variable rate systems are also con-

sidered in [PII] from the perspective of ge2e in (3.2). There, we argue that

including as many relays as possible for optimal system throughput may

be undesired due to factors such as cooperation overhead. In addition, in

a large network with many source-destination pairs, unlimited number

of cooperative nodes make it more likely for one node to be selected as

a relay by many source nodes. Due to limited transmit power per node,

the potential gain that is estimated by each source-destination pair may

vanish if the relay is shared by many other source nodes. Thus, a multi-

ple relay selection scheme with cardinality constraints is to the flavor for

practical applications. An optimal relay selection scheme with cardinality

constraints is devised as given in Algorithm 1. The algorithm stops when

it finds the best relay set Mo, with cardinality m.

Algorithm 1 Optimal-m Relay Selection
1. Sort gri in descending order, i. e. gri ≥ grj if i < j.

2. Initialize candidate set,

the m RNs with best first links: Mm ← {1, 2, · · · ,m}, i ← m.

3. Calculate ge2e with Mm by (3.2), gme2e ← ge2e.

4. if Mm is not relaying hop constrained then

5. iterate by constructing new trial set, i ← i+ 1

6. add the not considered RN with best first link: Mm+1 ← Mm ∪ i

7. remove RN with worst access link:

M̃ ← Mm+1 − j, where j = argmink∈Mm+1 gak

8. end if

9. Calculate ge2e for trial set M̃ by (3.2), g̃e2e ← ge2e.

10. if trial set better than candidate set, g̃e2e > gme2e then

11. make trial set candidate set: Mm ← M̃, gme2e ← g̃e2e, go to line 4

12. end if

13. Output candidate set: Mo ← Mm
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Figure 3.3. CDF of e2e capacity by using optimal−m relay selection with a same mean
channel gain. Simulation results(dash-dotted lines), derived approxima-
tions(solid lines), and an upper bound [74] denoted by adaptive m(dotted line)
are shown for comparison. c©2011 IEEE

The complexity of Algorithm 1 in N is dominated by the sort in Step 1,

and is O(N logN) [75]. The complexity in m is linear. It should be noted

that, with variable rate transmission, single relay selection, i.e., the car-

dinality |M| = 1, is optimal if the cooperative relays are subject to a total

power constraint [72]. This is because e2e performance is maximized by

allocating all power to the relay with the strongest relay-destination link

in M. Any form of power allocation among relays in M would be through-

put suboptimal. Thus, multiple relay selection in variable rate system

should be considered in a scenario with individual power constraints on

relay nodes. In [PII] where relays are subject to predetermined transmit

power constraints, more selected relays mean more transmit power. The

optimal e2e channel power gain ge2e is expressed by

gOe2e = max
M∈Nm

min
(
gr,M, ga,M

)
, (3.3)

where Nm consists of (Nm) m−subsets, with each of the m−subset being

one realization of selecting m relays from the relay set N .

For a given cardinality constraint m, there are N −m+1 different m-

subsets from Algorithm 1. When going through these m-subsets, the CDF

of the first hop is described by the ith order statistic, for m ≤ i ≤N . For

the second hop, however, one selects m strongest links among the i RNs.

Based on the observations, a distribution approximation of gOe2e is devised.

For demonstration, we assume a single cell scenario in UL phase. A

source node is to communicate with a destination, i.e., the BS, with N = 7

idle users as candidate relays. We assume equal mean power among
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all the links. The maximum transmit power is adjusted to result in an

SNR value of 0 dB at the cell border. Fig. 3.3 illustrates the CDF curves

of e2e capacity for optimal−m relay selection. The results using Algo-

rithm 1(dash-dotted lines) and the derived approximations (solid lines)

from [PII] are given. For comparison, the method in [74] for selecting

an optimal set of active relays without the cardinality constraint is also

given as an upper bound (dotted line) and is denoted as adaptive selec-

tion. The e2e capacity is obtained by mapping ge2e through the Shannon

formula. From Fig. 3.3, there is hardly any benefit from using more than

one RN. As balanced access and relaying hops are preferred from the e2e

performance perspective, it is not sensible to increase m when the com-

bined receiving power from the selected relays is already higher than the

first hop. Enforcing equal power on all links leaves little room for further

optimization from the perspective of selecting multiple RNs. The match

between simulated and approximated curves is good. With adaptive selec-

tion of the cardinality of the active relay set and dynamic resource alloca-

tion among the first and second hop (dotted line), one is able to do slightly

better.

3.4 Impact of stochastic geometry and macro diversity on
cooperative relaying

In the context of cooperative relaying, stochastic geometry should be con-

sidered since the candidate nodes where the cooperative relays are se-

lected from are by definition spatially distributed at random. The stochas-

tic geometry assumption also gives rise to the possibility of macro diver-

sity, in addition to the micro diversity. If micro diversity is harvested from

combatting multipath fading as in traditional single-hop transmissions,

the channel is described by an average power gain and the multipath fad-

ing. However, spatial diversity discussed in the context of cooperative di-

versity should be generalized to include both micro and macro diversity, as

the spatially separated nodes indicate different shadowing fades experi-

enced. As shown in [76, 77, 78], macro diversity which by definition helps

to avoid deep shadowing fades, is an efficient tool for improving SNR. With

macro diversity, the small-scale average signal level is enhanced directly

and is applied to all instantaneous channel realizations.

Shadow fading is often described to follow a log-normal distribution,

while the simplest form of multipath fading is described to follow an
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exponential distribution (or to follow a Rayleigh distribution in fading

strength). It is essential to note that a log-normal distribution is a heav-

ier tailed distribution than an exponential distribution. When combined,

shadow fading effect dominates the outage behavior, and the combined ef-

fect of a log-normal and an exponential distributions can be further mod-

eled by the log-normal distribution with different parameters [79]. Anal-

ysis conducted by considering only multipath fading does not allow im-

mediate application to realistic environments. The gain from cooperation

may be overestimated if there are dominant relaying paths, for example,

a strong path accompanied by some weak relaying paths.

Different characterization of the underlying channel statistics may lead

to very different asymptotic behavior of the outage probability. To define

the terms diversity order and multiplexing gain [59], the underlying chan-

nel distribution should be of exponential order with average SNR. This is

the case for a Rayleigh faded channel model. However, a log-normal dis-

tribution is not of exponential order, and therefore, the diversity order

and multiplexing gain are not well-defined in a channel model with a log-

normal faded shadowing effect. In [PI], the asymptotic outage probability

with consideration of a complete channel model i.e., the one that includes

stochastic geometry, shadow fading and multipath effects, is considered

by modeling the complete channel with another log-normal distribution.

It is shown that the diversity order increases as the number of candidate

relays increases, although the conventional definition of diversity order is

no longer applicable.

The benefit of selecting multiple relays for assistance can be more ap-

preciated with stochastic geometry. As (3.2) suggests, the channel gain of

the second hop, ga,M, becomes stronger as the cardinality of M increases

since the total transmit power on the second hop increases. On the other

hand, the channel gain of the first hop, gr,M, may become weaker as the

cardinality of M increases since the weakest source-destination link de-

termines the channel quality of the hop. Consequently, the second hop

can bridge a larger distance than the first hop, and the relays selected are

more likely to be clustered around the source node when the cardinality

of M increases.

For demonstration, we consider a similar setting as in Fig. 3.3 and use

Algorithm 1 to find optimal relay set. In a cell with radius 1, we assume

that the source node is at the cell border and N = 7 idle users serving as

candidate RNs reside uniformly at random within a sector area with an
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Figure 3.4. CDF of e2e capacity by using the optimal relay set Mo, with path loss con-
sideration. Optimal−m relay selection with algorithmic search (solid lines),
ordered method [65] (dash-dotted lines), and adaptive selection [74] (dotted
line) are shown for comparison. c©2011 IEEE

angular spread of π/3. The source node is situated in the middle of the

angular spread. In addition to Rayleigh fading, the mean channel gain

is dictated by the distance-dependent path loss modeled by a single-slope

path loss model, for example, gri is expressed by gri = Pmaxl
−α
ri ξ, where lri

is the link distance, α = 4 is the path loss exponent, and ξ is a random

fading gain modeled by an exponential distribution (i.e., Rayleigh fading).

The maximum transmit power is adjusted to result in SNR= 0 dB in the

cell border.

Fig. 3.4 presents the CDF curves of the e2e capacity by using the

optimal−m relay selection. The e2e capacity is obtained by mapping

ge2e through the Shannon formula. For comparison, the method in [65]

(dashed-dotted lines, termed ordered method) and the adaptive selection

method in [74] are also given. With a cardinality constraint on the se-

lected relays, the proposed method (solid lines) performs better than the

method proposed in [65], which is a direct results of the optimality of our

method. The adaptive relay selection method shows the best results due

to the additional freedom of adapting the number of selected relays and

dynamic resource allocation among the first and the second hop.

Comparing Fig. 3.3 and Fig. 3.4, one notices the difference induced by

varying mean channel gains. To understand it, consider the ratio of the

source-relay gain to the relay-destination gain for the individual candi-

date RNs. A geometry-based path loss induces a correlation of this ratio

between nearby RNs, whereas with equal mean channel gains, they are

not correlated. With different mean channel gains, these ratios are ex-
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Figure 3.5. Gainful area of a second RN for one selected RN. c©2011 IEEE

pected to be less than 1, which favours the use of multiple relays.

The superiority of multiple relay selection over single relay selection,

with variable rate transmission, can also be intuitive explained. In

Fig. 3.5, the RN is assumed the best node for relaying messages from

the MS to the BS, if one single relay is to be selected. Considering only

distance-dependent path loss and assuming that the distance of the re-

laying link is smaller than the distance of the access link, i.e., lr < la. In

view of (3.2), it is clear that an additional RN located within the shaded

area are beneficial for ge2e. It is noted that additional random fading con-

sideration in channel gains does not change this fact qualitatively.

3.5 Perspectives of spectral efficiency and interference penalty
with multiple relays

It may be of concern that the use of multiple relay in a half-duplexing pro-

tocol requires orthogonal resources among the source and relay nodes as

in [51], which is spectrally inefficient. However, it is possible to reuse the

same resources among the selected relay nodes for relaying and still ben-

efit from the spatial diversity, if a multiple access scheme allowing per-

fect equalization of time dispersion is used. Examples include Orthogo-

nal Frequency Division Multiplexing Access (OFDMA) and Single-Carrier

Frequency Division Multiplexing Access (SC-FDMA). In these multiple

access schemes, the delay spread of the received copies of forwarded mes-

sages from different relay nodes can be assumed smaller than a guard

interval so that the received power can be combined at the destination

node. Since there is no need to orthogonalize the resources for the relay

nodes, there is no penalty of using multiple relays from the perspective of

radio resources.
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Another practical aspect of using multiple relays with individually pre-

determined power constraints comes from the interference penalty. As

extra transmit power from the multiple relays is introduced to other un-

intended receivers, the impact to the whole system may be undesired.

However, this can be addressed by spreading the extra transmit power

over the frequency dimension in systems where resource allocation in the

frequency domain is applied, and the power control is defined to main-

tain a target power spectral density, for example, the 3GPP LTE system.

Like other power-controlled systems, their interference penalty to oth-

ers will be under control as long as their received power spectral density

remains the same. In this sense, higher SNR simply indicates more re-

sources should be allocated. An attractive use case for this multiple relay

selection is to enhance the QoS to cell-edge users in a cellular system, in

the expense of radio resources. It is noted that the interpretation above

decouples the interference penalty and the relay selection, if one relay is

exclusively used by one source. The discussion for a multi-cell environ-

ment can be simplified to a single cell scenario. Further investigation is

needed for this interpretation in terms of, for example, resource allocation

over frequency selective channels.
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4. Device-to-Device Communication
underlaying Cellular Networks

The demand on enhanced data transmission for diverse mobile multimedia-

rich services has been addressed in next generation communication sys-

tems under, for example, the scope of IMT-Advanced systems. One aspect

that deserves more attention in considering IMT-Advanced systems is the

emerging needs for high data rate local services. In [PIII], a proposal

has been made to handle local P2P traffic by enabling direct D2D com-

munication as an underlay to the IMT-Advanced cellular systems. The

introduction of D2D communication achieves higher spectral efficiency as

D2D connections reuse the same resources as the underlying cellular net-

work. The mutual interference between D2D and normal cellular con-

nections can be coordinated since users engaged in D2D communication

are still under the control of their serving BSs (e.g., evolved NodeBs in

IMT-Advanced systems). D2D communication is a promising technology

component which allows a tight integration into an LTE-Advanced net-

work [80, 81, 82].

4.1 Introduction

Fig. 4.1 illustrates the concept of D2D communication as an underlay to a

cellular network. In Fig. 4.1, UE1 and UE2 communicate with each other

directly via D2D radio, and are controlled by the BS. The cellular services

are provided to other UE as usual with the D2D operation transparent

to them. In principle, D2D communication is different from cooperative

relaying in that the D2D connections are to handle possibly bidirectional

local P2P traffic in a spectrally more efficient manner than it would be

when using the BSs as relay i.e., normal cellular operation. Nevertheless,

it is possible to extend the D2D concept in that sense.

D2D communication can operate in different modes for resource shar-
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Figure 4.1. D2D Communication, indicated in the shaded area, works as an underlay to
a cellular network.

ing both in cellular DL/UL transmission. The cellular network can as-

sign dedicated resources to the D2D links so that the mutual interference

between the two types of systems is negligible. Alternatively, the D2D

connections can reuse the same resources used by the cellular links non-

orthogonally. Similar to the principles of cognitive ratio systems, it is

crucial that D2D communication does not generate harmful interference

to the primary system (i.e., the cellular system in this case). This is eas-

ier with D2D communication as it is controlled in cooperation with the

cellular network. D2D communication enables cellular operators to offer

cost-efficient access to the licensed spectrum [82] as those promised by

Wireless Local Area Networks (WLAN). WLANs have become increasing

popular in recent years as they provide economic and convenient access

to the Internet and local services in the license exempt bands. Similar

services enabled by D2D communication exhibit additional advantage of

providing a planned environment for more reliable transmissions.

Different standards addressing the needs for D2D operation in the same

bands as infrastructure-based operation can be found, such as Hiper-

LAN2 [83], TETRA [84], and Wi-Fi 1. In HiperLAN2, D2D communication

takes place in reserved resources. This restriction limits the interference

from D2D connections. However, it also leads to inefficient utilization of

resources as there is no flexibility for other services to access the reserved

resources. This is the same in TETRA designed by authorities where ded-

icated resources are reserved country-wide for D2D communication. For

the part of Wi-Fi technology that is based on IEEE 802.11 standards, UE

1see http://www.wi-fi.org/
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can sense and access the radio medium only if the channel is free. Accord-

ingly the access points do not have full control over the resources used

by the ad hoc D2D links. Wi-Fi technology supports a Wi-Fi direct mode

that allows direct D2D connection between peers. However, Wi-Fi direct

mode requires users to manually pair the peers, as is the case for Blue-

tooth technology. In the D2D underlay communication, the pairing can be

handled by BSs and thus provides new use cases and better user experi-

ences [PIII][82].

4.2 Coexistence of cellular and ad hoc networks

The idea of embedding ad hoc networks in cellular networks to enable

D2D operation can be found in, for example, [85, 86, 87]. The discussions

are based on the use of two air interfaces for cellular and ad hoc connec-

tions, respectively. In [87], a multihop cellular system is envisioned by

allowing ad hoc D2D connections. Every UE in the multihop cellular sys-

tem can participate in tasks of relaying traffic towards BSs. The coverage

area of each BS is therefore extended. This results in a reduced number

of required BSs. Since it is assumed that inter-cell traffic is handled by

transmissions between BSs, the network capacity can be increased only

when the communicating entities are in the same cell. In [85], an in-

tegrated Cellular and Ad hoc Relaying (iCAR) system is introduced for

balancing traffic loads between cells. For this purpose, special mobile re-

lays, denoted by Ad hoc Relay Stations (ARS), are strategically deployed

to divert traffic from an overloaded cell to a lightly loaded cell. In [86],

a Unified Cellular and Ad hoc Network (UCAN) architecture is proposed.

The ad hoc D2D connections are assumed to use IEEE 802.11-based P2P

connections. The UCAN is targeted for providing fair throughput to cel-

lular users with poor channel qualities. The data from a BS is sent to

users with poor channel qualities through proxy UE with good channel

qualities.

The embedded ad hoc network introduced in [85, 86, 87] is for relaying

purpose. In principle, ad hoc networks can be embedded for handling local

P2P traffic in cellular networks since this is how the ad hoc networks were

designed for in the very beginning. Nevertheless, some problems remain

for applying the ad hoc networks in a two-tier network. Firstly, the spec-

tral utilization of the licensed bands is not improved since two different

frequency bands are assumed for two different air interfaces. In addi-
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tion, the ad hoc D2D connection supported by WLAN protocols may be

inefficient as interference coordination is usually not possible. Although

opportunistic use of ad hoc D2D connections by WLANs provide perfor-

mance improvement, WLANs cannot be counted on as reliable means for

this purpose [86].

The spectral utilization efficiency can be improved by allowing ad hoc

networks to operate in the under-utilized licensed bands for cellular net-

works. In [88], the spectrum sharing between the cellular and the ad hoc

networks is considered. A stochastic geometry approach is taken so that

the transmitters such as BSs, UE, and ad hoc transmitters, are described

by independent two-dimensional Poisson Point Processes (PPP). The shar-

ing of a pool of radio resources between the cellular and the ad hoc net-

works is considered in two different manners. In a underlay scheme, both

types of networks can access all the available resources such that the re-

sources are shared non-orthogonally. In an overlay scheme, the resources

are adaptively split into two parts, one part for the cellular network and

the other part for the ad hoc network, based on the traffic loads. Inde-

pendent traffic is assumed between the two types of networks, so that the

mutual interference between them can simply be described by the den-

sity of the transmitters due to PPP assumptions. Transmitted signals

are assumed to be modulated with a frequency-hopping spread spectrum

technique for interference management purposes. The analysis provides

a basis for adapting the node density of the ad hoc network to the dynamic

traffic in the cellular network under an outage constraint. For this spec-

trum sharing scheme to work, some extent of communication between the

two networks is required for coordinating the tolerable node density of the

ad hoc network. It is also required for the cellular network to notify the

ad hoc network of the granted resources in the overlay scheme of resource

sharing.

The D2D operation discussed in [PV] and [PVII] assumes that the cellu-

lar and D2D connections are under the control of cellular networks. The

traffic originated from users can be either provided through the cellular

or the D2D connections. Thus, D2D and cellular traffic can be treated as

coming from the same pool as opposed to the case in [88]. The interfer-

ence situation can be planned for effective interference management. In

addition, the possibility of selecting different resource sharing schemes

in [PV] and [PVII] facilitates more efficient spectral usage. This allows

not only better spectral utilization of licensed bands, but also provides
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the possibility of more effective protection of the cellular network.

In [89], D2D operation aimed at short range communication for han-

dling local traffic is considered, with similar aims as in [PIII]. Architec-

tures for D2D operation are proposed in two directions for implementation

based on the requirement of an additional air interface. In the single air

interface approach, the same air interface for cellular and D2D operation

is assumed. However, reserved resources, though the amount could be

adaptive, are assumed for D2D operation, leading to inefficient use of re-

sources as in the HiperLAN2 and TETRA systems. In the multi-modality

approach, D2D operation assumes an independent air interface, for ex-

ample, Bluetooth. This makes D2D operation vulnerable as interference

coordination is not likely.

4.3 D2D communication with non-orthogonally shared resources

Proposals for D2D communication underlaying cellular networks that

share the radio resources non-orthogonally can be found in [81, 80] [82]

[90, 91, 92] [93] [94] [95] [96, 97, 98, 99, 100], and [PIII], [PV], and [PVII].

Similar to [88], a single air interface for D2D and cellular operation is

assumed here. Furthermore, in these proposals, D2D users are under the

control of the cellular network to facilitate the coordination of mutual in-

terference. Tight cooperation of D2D and cellular operation is envisioned,

depending on the extent of local awareness of the BSs to the interference

situation between cellular and D2D users sharing the same resources.

To incorporate D2D operation into a cellular network without harmful

impact on cellular operation, resources of cellular UL phases provide fea-

tures that admit less overload than cellular DL phases. In the cellular UL

phases, the transmit power of cellular users is power-controlled to main-

tain a target, for example, received SNR at the BSs. The impact of D2D

transmitters on the BS can thus be learnt without any extra mechanism

compared to state-of-the-art cellular architectures. In principle, no such

power control scheme is assumed in the cellular DL phases. In [95], the

cellular UL power control is assumed to reach a target SINR. Assuming

the awareness of the SINR target and the power control results i.e., the

maximum allowed transmit power, at D2D users, D2D transmitters can

decide the D2D transmit power to emit a tolerable interference to cellu-

lar UL transmissions. In [90] [93] and [PIII], the D2D transmit power in

cellular UL phases is determined in a similar way, though using the SNR
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Figure 4.2. Illustration of the links that can benefit from multi-user diversity.

as UL power control target. D2D operation in [95] is initiated by users

if they, for example, are not assigned resources due to congested traffic.

Thus, users need also an efficient ad hoc route discovery mechanism in

order to generate D2D connections with the intended users. More dis-

cussions on dynamic route discovery mechanisms for this type of two-tier

networks can be found in [95] [94]. In [81] [82] [90] [93], [PIII], [PV],

[PVII], the initiation of D2D operation is assisted by the BSs so that there

is no need for local route discovery at users.

Exploiting multi-user diversity gain by interference-aware resource al-

location provides another opportunity for improving the cellular transmis-

sion in the cellular DL phases and the D2D transmission in the cellular

UL phases [90] [91] [92]. The multi-user diversity gain can be harvested

by properly pairing the cellular and D2D users for sharing the resources.

D2D operation allows higher spatial spectrum utilization and it can be

assumed that for each D2D pair, there is a corresponding cellular link

that the D2D pair share the radio resources with. The multi-user diver-

sity arises from selecting a beneficial interference scenario through the

selection of a cellular link for sharing the resources with. Equivalently,

the selection can be conducted among different sub-bands, once the sub-

bands are mapped to different cellular links. For a specific D2D pair, its

interference path to the BS is fixed, indicating that there is no such diver-

sity for the cellular transmission in the cellular UL phases and the D2D

transmission in the cellular DL phases. Fig. 4.2 illustrates the links that

could be improved by proper resource allocation to exploit the multi-user

diversity. It is reported in [90] that the performance improvement can be

large in a local area scenario. In addition, the multi-diversity gain can

be available already with a small amount of cellular users for selection.

In [92], the resource allocation scheme over multiple cellular users and

44



Device-to-Device Communication underlaying Cellular Networks

Figure 4.3. D2D communication as an underlay network to a cellular network. UE1 is a
cellular user whereas UE2 and UE3 are in D2D communication. c©2011 IEEE

D2D users considers the local interference situations, making it possible

for inter-cell interference avoidance at the same time. Interference ran-

domization through resource hopping is considered in [98]. This provides

more homogeneous services among users in challenging interference en-

vironments, for example, when one cellular connection shares resources

with multiple D2D pairs at the same time.

The performance of D2D connections can be improved with slightly

more D2D-oriented considerations. For D2D operation in the cellular DL

phases, conservative D2D transmit power can be planned to limit the

degradation of cellular DL users, for example, [PIII]. However, this re-

sults in limited space for D2D operation in the cellular DL resources. For

enhancement, an interference-avoiding MIMO scheme is proposed in [93].

As the interference to the D2D receivers is generated by the BSs in the cel-

lular DL phases, it is possible to mitigate the interference by precoded DL

transmission if the BSs are equipped with multiple antennas. By know-

ing the interference channel between a BS and a D2D receiver, the BS can

align its transmission to the null space of the interference channel. Fur-

thermore, the BS is still free to apply any MIMO transmission scheme

for its DL transmission on the projected subspace. The results show sig-

nificant SINR gain for D2D operating in cellular DL phases in the cost

of minor cellular SINR degradation. In [100], D2D users reuse UL cel-

lular resources and are assumed with interference cancelation capabil-

ity. Together with full duplex assumption at BSs, the authors proposed a

scheme for retransmitting interference from BSs for assisting the inter-

ference cancelation at D2D users.

With full CSI, the resource sharing between the cellular and D2D con-
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nections can be optimized [PV, PVII]. Considering a case where one cel-

lular user (UE1) and two D2D users (UE2 and UE3) share the radio re-

sources, as illustrated in Fig. 4.3, where gi is the channel response be-

tween the BS and UEi and gij is the channel response between UEi and

UEj . The sum rate for sharing the resources non-orthogonally (Non-

Orthogonal Sharing, NOS) can be found by summing up rates from the

cellular link and the D2D link

RNOS(Pc, Pd) = log2 (1 + Γc(Pc, Pd)) + log2 (1 + Γd(Pc, Pd)) , (4.1)

where Γc(Pc, Pd)=g1Pc/(gdcPd + Ic) and Γd(Pc, Pd)=g23Pd/(gcdPc + Id). We

have denoted by gcd the channel response of the interference link from the

cellular connection to the D2D connection, and vice versa for gdc. We used

Ic and Id to indicate the interference-plus-noise power at the receiver of

the cellular link and the D2D link, respectively. To simplify the notation,

we assume that all receivers experience the same interference-plus-noise

power I0. However, it is straightforward to consider it again whenever it

is needed, for example, for performance evaluation.

With a greedy sum rate maximization strategy, the optimal power allo-

cation of (4.1) is a feasible solution of the optimization problem

(P ∗
c , P

∗
d ) = arg max

(Pc,Pd)∈Ω1

RNOS(Pc, Pd),

Ω1 = {(Pc, Pd) : 0 ≤ Pc, Pd ≤ Pmax},
(4.2)

where Ω1 defines the feasible set of (Pc, Pd). It is shown that the opti-

mal power allocation to (4.2) is searched over the following 3 possible sets

ΔΩ1 = {(Pc, Pd) : (0, Pmax), (Pmax, 0), (Pmax, Pmax)} [101][PV].

To prioritize the cellular connection, we can set a SINR constraint to

lower-bounded Γc. In practice, the higher transmission rate is also con-

strained by the limited amount of MCS. For this, one can impose an upper

limit on the SINR. The sum rate optimization subject to the mentioned

constraints is

(P ∗
c , P

∗
d ) = arg max

(Pc,Pd)∈Ω2

RNOS(Pc, Pd),

Ω2 = {(Pc, Pd) : 0 ≤ Pc, Pd ≤ Pmax,

γl ≤ Γc(Pc, Pd) ≤ γh,Γd(Pc, Pd) ≤ γh},

(4.3)

where Ω2 defines the feasible set of (Pc, Pd), γh is the SINR needed for

using the highest MCS, and γl is the guaranteed SINR to prioritize

the cellular connection. It is proven in [PV] that the optimal power

allocation to (4.3) can be again searched over a set with finite points
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Figure 4.4. Feasible power allocation region Ω2 when the optimal power allocation
(P ∗

c , P
∗
d ) falls within δΩ1. c©2011 IEEE

ΔΩ2 = {X,X1l, X1h, X2h, Y1l, Y1h, Y2h, C1, C2}, where we have denoted the

intersection of Pc =Pmax with Γc = γl, Γc = γh and Γd = γh by X1l, X1h and

X2h, respectively, and the intersection of Pd = Pmax with Γc = γl, Γc = γh

and Γd = γh by Y1l, Y1h and Y2h, respectively. Additionally, we denote

C1=(Pmax, 0), C2=(Pmax, Pmax), and the intersection between Γc =γh and

Γd=γh by X.

Some of the points in ΔΩ2 are mutually exclusive because they cannot

fulfill the maximum transmit power constraint simultaneously. We can

summarize the optimal power allocation as:

• If X is feasible, (P ∗
c , P

∗
d ) = {X}.

• Otherwise, the optimal power allocation (P ∗
c , P

∗
d ) is searched in the only

feasible set among:

δΩ1 = {X1h, C2,maxx(Y1l, Y2h)},

δΩ2 = {Y1h,maxx(Y1l, Y2h)},

δΩ3 = {X1h,miny(X1l, X2h)},

δΩ4 = {C1,miny(X1l, X2h)},

δΩ5 = {C1, C2,maxx(Y1l, Y2h)}.

Here the operator maxx selects the element with the largest x-coordinate

value, and likewise for the operator miny. As an illustration, the feasible

region Ω2 when the optimal power allocation (P ∗
c , P

∗
d ) falls within δΩ1 is

shown in Fig. 4.4.

In [PV] and [PVII], the optimization is also performed for both transmit
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power and radio resources for an orthogonal resource sharing mode. The

optimization of a reference mode where the BS is used as a relay for D2D

operation (conceptually the same as traditional cellular connection) is ad-

dressed. The optimization of resource sharing is shown to admit a closed

form solution, except for the reference case.

As shown in, for example, [PV][PVII], non-orthogonal resource sharing

between D2D and cellular communication does not always yield better

performance than orthogonal resource sharing where dedicated resources

are assigned separately for both types of communication. Therefore, it is

sensible to admit mode selection on resource sharing between D2D and

cellular communication for better spectrum utilization, in a single cell

scenario as illustrated in Fig. 4.3, if the BS is empowered for coordina-

tion. The circuit-switched type of power optimization for attaining target

SINRs of different users between the paired cellular and D2D connections

can be found in [96] [97].

The optimization of resource sharing between paired connections does

not impede the application of inter-cell interference control mechanisms

for efficiently managing inter-cell interference based on the power con-

trol or resource scheduling. In fact, the resource sharing schemes in [PV]

[PVII] [96] [97] which aim at improving intra-cell spatial reuse of spec-

trum enabled by D2D underlay communication shall work on top of the

inter-cell interference control schemes from the perspective of overall sys-

tem performance. The proposed mechanism in [81] [82] for integrating

D2D functionality in LTE-Advanced systems indicates that proper coordi-

nation from BSs, including mode selection, is feasible.

The analysis on resource sharing in [PVII] is also examined in a Man-

hattan grid with WINNER A1 office buildings. Propagation inside the

building is modeled according to the WINNER A1 model [36], and propa-

gation between the buildings is modeled as the Manhattan-grid path loss

model B1 of [36]. The floor layout and important parameters of the WIN-

NER A1 environment are described in Section 2.4. A fraction of system

bandwidth is considered, with three uniformly distributed active users

served by every BS that will share the resources. Among the three users,

the two with stronger mutual link gain are defined as a D2D pair and the

remaining one as a cellular user. Within the D2D pair, a D2D transmit-

ter and a D2D receiver are defined at random. The optimized resource

allocation scheme is applied in each cell without considering the inter-cell

interference. The SINR constraints are assumed to be γh = 18 dB and
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Figure 4.5. Cell throughput distributions with sum-rate maximization subject to the
SINR and maximum power constraints in the Manhattan grid scenario. The
results attained by the mode selection (Opt. sel.) and the three distinctive
modes (NOS: Non-Orthogonal Sharing, OS: Orthogonal Sharing, CM: Cellu-
lar Mode) are presented. c©2011 IEEE

γl = −6.5 dB, which map to the spectral efficiency of 6 and 0.3 bps/Hz,

respectively, using the Shannon formula.

The results are illustrated in Fig. 4.5 where the distributions of the cell

throughput by using three distinctive resource sharing modes (NOS: Non-

Orthogonal Sharing, OS: Orthogonal Sharing, CM: Cellular Mode) and

the mode selection among the three distinctive modes (Opt. Sel.: Opti-

mal mode Selection) are presented. The results show, with full intra-cell

coordination, significant gain from the D2D underlay system in this chal-

lenging environment.

When the resource sharing takes place in the frequency domain, there

is an additional possibility to use all the available energy for the assigned

bandwidth in order to enhance the power spectrum density in orthogonal

resource sharing mode [PVII]. Although this promises additional gain in

a single cell analysis where inter-cell interference does not exist, the re-

sults in the realistic Manhattan grid with office buildings indicate that

the interference penalty shows up when applying excessive energy on ex-

clusively assigned frequency bands.

4.4 D2D communication with limited CSI

With practical considerations, the CSI between a transmission pair is ac-

quired at the receiver by the insertion of training symbols at the trans-

mitter. In time-varying channels, reliable CSI requires frequent enough

insertion of training symbols. In addition, for Frequency Division Duplex
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Figure 4.6. Illustration of the system setting in [PIV]. c©2009 IEEE

Figure 4.7. D2D SINR distribution under a D2D power reduction scheme that limits the
cellular communication SINR degradation due to the D2D communication to
3dB at the 5 percentile of the SINR CDF when sharing the UL resources of
the cellular communication, with L = 0.3. c©2011 IEEE

(FDD) systems where the channel reciprocity property does not exist, the

acquisition of DL CSI at the BSs requires users to feed the measurement

of channel responses back. The feedback rate required for achieving reli-

able CSI at BSs depends on the channel fading rate, which is related to

user mobility. In principle, reliable CSI at BSs is not problematic in state-

of-the-art cellular systems such as 3GPP LTE [23]. However, for inter-

ference coordination in D2D underlay systems, additional loads on users

for inter-user channel measurement are required. Tracing instantaneous

CSI on inter-user links may indicate a high feedback rate (dependent on

user mobility) which may not be favored for practical implementation. To

reduce the amount of such channel reports, it is likely that users only

report an average version of CSI. As instantaneous interference coordi-

nation such as the analysis in [PVII] requires reliable CSI, using only

average CSI usually indicates performance degradation.

One interesting aspect of the D2D underlay system would be the achieved

performance with very limited CSI for coordination. In [PIV], a single cell

scenario with one cellular user and one D2D pair is studied, assuming

only channel statistics on all the related links for coordination. The cellu-

50



Device-to-Device Communication underlaying Cellular Networks

Figure 4.8. Illustration of the links with slow-faded channel responses for coordination.

lar user (UE1) is assumed to reside in the cell area with uniform probabil-

ity. One of the D2D users (UE2) is assumed to stay at a fixed distance D

from the BS, and the other D2D user (UE3) is assumed to reside at most

L distance from UE2 with uniform probability, as illustrated in Fig. 4.6.

The upper limit on the D2D transmission range can be justified by the

fact that D2D communication is generically for short range communica-

tion. To prioritize the cellular services, the D2D transmit power is reduced

to maintain a 3-dB SINR degradation of the cellular user at 0.05 outage

probability. The results show that a dynamic power control based on the

position of the D2D pair i.e., distance D, is more needed in the cellular UL

phases. This is because in the cellular UL phases, the interference gen-

erated from the D2D transmission is only related to the distance D, but

not the position of the cellular users. With such a power control scheme

which admits only a small amount of D2D transmit power compared to

the cellular transmit power, we observe that the realized D2D SINR is

comparable or higher than the cellular SINR in most of the cell area. For

illustration, Fig. 4.7 which shows the D2D SINR distribution after the

D2D power reduction when sharing the UL resources of the cellular user

with L = 0.3 is presented.

A more realistic assumption on CSI would consider the availability of

instantaneous CSI for links whose acquisition of the channel states are

assisted by the BS. For other links i.e., the links between users, only slow-

faded values are assumed, with the channel uncertainty comes from ad-

ditional untraceable Rayleigh fading. This is illustrated in Fig. 4.8 where

the solid lines indicate the links with full CSI at the BS and the curved-

dashed lines indicates the links with slow-faded channel responses. The

scenario is studied in [PVI]. Although the results show only mild per-
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formance degradation, the QoS of the cellular services are now difficult

to guarantee. With instantaneous CSI, the cellular services are provided

with certain outage probability. Once the channel uncertainty is present,

outage probability arises and in the cases studied in [PVI], the outage

probability can be up to 0.25 depending on the placement of the D2D pair.

To lower the outage probability to a tolerable level, a conservative scheme

by intentionally planning higher QoS for the cellular services can be con-

structed. In this way, the impact of the channel uncertainty is buffered by

the extra QoS support and the ultimate outage probability would be un-

der control. Although it costs additional performance loss, D2D underlay

communication can be still very beneficial on system throughput.
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5. Conclusions

Inter-user communication in cellular networks is a promising feature that

enables enhanced system performance. Such technology can be consid-

ered for providing services with higher QoS, for achieving better fairness

to users experiencing poor channel qualities, and for improving services

in local areas. Two exemplary use cases are considered to discuss the po-

tential of inter-user communication: for relaying purposes and for P2P

local communication.

In the first use case, users are considered to work cooperatively for

transmitting messages between a transmission pair. Such cooperative

communication provides cost-efficient solutions to the demanding require-

ments on the data transmission for future communication networks. It

enables the opportunistic utilization of close-by nodes without the need

for detailed planning as opposed to the case of the deployment of fixed re-

lays. The inherent flexibility makes it more adaptive to the surrounding

environments, thus offering higher potential for different applications.

In this work, cooperative communication is considered by taking into

account the spatially distributed nature of the cooperative nodes. As its

impact on the system performance can be either positive or negative, more

tradeoffs, which are not visible without the consideration on the spatial

distribution, are introduced in the system design. It has been demon-

strated that the large-scale characteristics of the surrounding environ-

ment can dominate the outage behavior of the transmission over small-

scale characteristics. The issue of the selection of cooperative nodes has

been addressed from the perspective of variable rate transmission aimed

for maximizing the e2e throughput. The relay selection algorithm devised

is generic for different applications. The algorithm assumes a constrained

cardinality of the set of cooperative nodes, which is likely to be imposed

by practical considerations. The analysis can be readily applied for, for ex-
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ample, OFDMA/SC-FDMA based systems and can be of special interests

for cell-edge users.

Within the same framework, attention has also been paid to D2D oper-

ation for handling local P2P data traffic within cellular networks, as the

second exemplary use case. As short range communication, D2D commu-

nication shows benefits such as higher spectral efficiency and lower trans-

mit power. It also provides a smooth bridge from state-of-the-art towards

cognitive radio systems. The D2D operation considered in the literature

mostly has assumed to use an independent air interface from the cellular

operation, or to use dedicated resources for better interference isolation

in the two-tier network. Such assumptions do not improve the spectral

utilization.

The discussions in this work take care of the issue of under-utilized li-

censed bands by allowing intelligent resource sharing between D2D and

cellular connections. The intelligence can be two folds. On one hand,

multi-user diversity gain can be obtained by properly pairing the cellular

and the D2D connections that share the same resources. On the other

hand, the paired cellular and D2D connections can select the most ben-

eficial resource sharing mode from a pool of available candidate modes.

The discussed D2D underlay communication may be integrated to work

together with inter-cell interference control mechanisms. While the inter-

cell interference control schemes attempt to constrain the inter-cell in-

terference penalty, D2D underlay communication intends to improve the

intra-cell spatial reuse of the spectrum. The demonstrated potential of

D2D communication to be considered as a component for LTE-Advanced

networks, for facilitating high transmission demands in local areas, is

promising.

Possible directions for future research include extending the work to-

wards self-organizing principles. Self-organizing features which enable

mobile network elements to react to network changes in an automated

manner have received wide attention because of their potential for en-

hancing network performance, as well as reducing complexity and oper-

ational costs [14, 15]. In LTE-advanced systems, automatic mechanisms

for self-optimization, self-configuration, and self-healing are considered

as use cases for SON applications. Inter-user communication addressed

in this work is assisted by BSs. With SON, it could take place in an au-

tomatic manner through negotiations within the neighborhoods of nodes.

In such situation, the convergence of the SON method, that is, the inter-
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action between local changes in reaction to surrounding environment and

global behavior of a network, is of special interest.
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