13 research outputs found

    Spatial queueing analysis for mobility in pico cell networks

    Get PDF
    Network Capacity and Asymptotic PropertiesInternational audienceIn this work, we characterize the performance of pico cell networks in presence of moving users. We model various traffic types between base-stations and mobiles as different types of queues. We derive explicit expressions for expected waiting times, service times and drop/block probabilities for both fixed as well as random velocity of mobiles. We obtain (approximate) closed form expressions for optimal cell sizes when the velocity variations of the mobiles is small for both non-elastic as well as elastic traffic. We conclude from the study that, if the call is long enough, the optimal cell size depends mainly on the velocity profile of the mobiles, its mean and variance. It is independent of the traffic type or duration of the calls. Further, for any fixed power of transmission, there exists a maximum velocity beyond which successful communication is not possible. This maximum possible velocity increases with the power of transmission. Also, for any given power, the optimal cell size increases when either the mean or the variance of the mobile velocity increases

    Opportunistic gains of mobility in cellular data networks

    Get PDF
    International audienceIn this paper, we assess the performance gains of mobility on the downlink of cellular data networks. These gains are only due to the elastic nature of traffic and thus observed even under a blind, fair scheduling scheme: data are more likely transmitted when users are close to the base stations, in good radio conditions. This phenomenon is further amplified by opportunistic scheduling schemes that exploit multiuser diversity. The results are based on the analysis of flow-level traffic models and validated by system-level simulations

    Comnet: Annual Report 2012

    Get PDF

    Network dimensioning and base station on/off switching strategies for sustainable deployments in remote areas

    Get PDF
    This paper provides a methodology for the dimensioning of the access network in remote rural areas, considering the progressive introduction of cellular services in these regions. A 3G small cell (SC) network with one or several carriers deployed at the SC, fed with solar panels and connected to a backhaul with limited capacity is considered for the analysis. Because the backhaul may be inexistent or very expensive (e.g., satellite-based backhaul) the network design pursues the minimization of the required backhaul bandwidth. The required backhaul bandwidth and the required energy units (i.e., the size of the solar panels and the required number of batteries) are then obtained as an output of the dimensioning analysis. Both the backhaul minimization objective and the constraints associated with each of the carriers (low maximum radiated power and low number of users connected simultaneously) require a novel methodology compared to the classical dimensioning techniques. We also develop a procedure for switching on/off carriers in order to minimize the energy consumption without affecting the quality of service (QoS) perceived by the users. This technique allows reducing the required size of the energy units, which directly translates into a cost reduction. In the development of this on/off switching strategy, we first assume perfect knowledge of the traffic profile and later, we develop a robust Bayesian approach to account for possible error modeling in the traffic profile information.Peer ReviewedPostprint (published version

    SDN-based Flexible Resource Management and Service-Oriented Virtualization for 5G Mobile Networks and Beyond

    Get PDF
    This thesis examines how Software Defined Network (SDN) and Network Virtualization (NV) technologies can make 5G and beyond mobile networks more flexible, scalable and programmable to support the performance demands of the emerging heterogeneous applications. In this direction, concepts like mobile network slicing, multi-tenancy, and multi-connectivity have been investigated and their performance is analyzed. The SDN paradigm is used to enable flexible resource allocation to the end users, improve network resource utilization and avoid or rapidly solve the network congestion problems. The proposed network architectures are 3rd Generation Partnership Project (3GPP) standards compliant and integrate Open Network Foundation (ONF) SDN specifications to ensure seamless interoperability between different standards and backward/forward compatibility. Novel mechanisms and algorithms to efficiently manage the resources of evolving 5G Time-Division Duplex (TDD) networks in a flexible manner are introduced. These mechanisms enable formation of virtual cells on-demand which allows diverse resource utilization from multiple eNBs to the users. Within the scope of this thesis, SDN-based frameworks to enhance the QoE of end user applications considering Time Division-Long Term Evolution (TD-LTE) small cells have also been developed and network resource sharing scenarios with Frequency-Division Duplex (FDD)/TDD coexistence has been studied. In addition, this thesis also proposes and investigates a novel service-oriented network slicing concept for evolving 5G TDD networks which involve traffic prediction mechanisms and includes user mobility. An analytical model is also introduced that formulates the network slice resource allocation as a weighted optimization problem. The evaluations of the proposed solutions are performed using 3GPP standard compliant simulation settings. The proposed solutions have been compared with the state-of-the art schemes and the performance gains offered by the proposed solutions have been demonstrated. Performance is evaluated considering metrics such as throughput, delay, network resource utilization etc. The Mean Opinion Score (MOS) metric is used for evaluating the Quality of Experience (QoE) for end-user applications. With the help of SDN-based network management algorithms investigated in this work, it is shown how 5G+ networks can be managed efficiently, while at the same time provide enhanced flexibility and programmability to improve the performance of diverse applications and services delivered over the network to the end users

    Radio resource scheduling in homogeneous coordinated multi-point joint transmission of future mobile networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)The demand of mobile users with high data-rate services continues to increase. To satisfy the needs of such mobile users, operators must continue to enhance their existing networks. The radio interface is a well-known bottleneck because the radio spectrum is limited and therefore expensive. Efficient use of the radio spectrum is, therefore, very important. To utilise the spectrum efficiently, any of the channels can be used simultaneously in any of the cells as long as interference generated by the base stations using the same channels is below an acceptable level. In cellular networks based on Orthogonal Frequency Division Multiple Access (OFDMA), inter-cell interference reduces the performance of the link throughput to users close to the cell edge. To improve the performance of cell-edge users, a technique called Coordinated Multi-Point (CoMP) transmission is being researched for use in the next generation of cellular networks. For a network to benefit from CoMP, its utilisation of resources should be scheduled efficiently. The thesis focuses on the resource scheduling algorithm development for CoMP joint transmission scheme in OFDMA-based cellular networks. In addition to the algorithm, the thesis provides an analytical framework for the performance evaluation of the CoMP technique. From the system level simulation results, it has been shown that the proposed resource scheduling based on a joint maximum throughput provides higher spectral efficiency compared with a joint proportional fairness scheduling algorithm under different traffic loads in the network and under different criteria of making cell-edge decision. A hybrid model combining the analytical and simulation approaches has been developed to evaluate the average system throughput. It has been found that the results of the hybrid model are in line with the simulation based results. The benefit of the model is that the throughput of any possible call state in the system can be evaluated. Two empirical path loss models in an indoor-to-outdoor environment of a residential area have been developed based on the measurement data at carrier frequencies 900 MHz and 2 GHz. The models can be used as analytical expressions to estimate the level of interference by a femtocell to a macrocell user in link-level simulations

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design
    corecore