7,525 research outputs found

    The nature of the animacy organization in human ventral temporal cortex

    Full text link
    The principles underlying the animacy organization of the ventral temporal cortex (VTC) remain hotly debated, with recent evidence pointing to an animacy continuum rather than a dichotomy. What drives this continuum? According to the visual categorization hypothesis, the continuum reflects the degree to which animals contain animal-diagnostic features. By contrast, the agency hypothesis posits that the continuum reflects the degree to which animals are perceived as (social) agents. Here, we tested both hypotheses with a stimulus set in which visual categorizability and agency were dissociated based on representations in convolutional neural networks and behavioral experiments. Using fMRI, we found that visual categorizability and agency explained independent components of the animacy continuum in VTC. Modeled together, they fully explained the animacy continuum. Finally, clusters explained by visual categorizability were localized posterior to clusters explained by agency. These results show that multiple organizing principles, including agency, underlie the animacy continuum in VTC.Comment: 16 pages, 5 figures, code+data at - https://doi.org/10.17605/OSF.IO/VXWG9 Update - added supplementary results and edited abstrac

    A core eating network and its modulations underlie diverse eating phenomena

    Get PDF
    We propose that a core eating network and its modulations account for much of what is currently known about the neural activity underlying a wide range of eating phenomena in humans (excluding homeostasis and related phenomena). The core eating network is closely adapted from a network that Kaye, Fudge, and Paulus (2009) proposed to explain the neurocircuitry of eating, including a ventral reward pathway and a dorsal control pathway. In a review across multiple literatures that focuses on experiments using functional Magnetic Resonance Imaging (fMRI), we first show that neural responses to food cues, such as food pictures, utilize the same core eating network as eating. Consistent with the theoretical perspective of grounded cognition, food cues activate eating simulations that produce reward predictions about a perceived food and potentially motivate its consumption. Reviewing additional literatures, we then illustrate how various factors modulate the core eating network, increasing and/or decreasing activity in subsets of its neural areas. These modulating factors include food significance (palatability, hunger), body mass index (BMI, overweight/obesity), eating disorders (anorexia nervosa, bulimia nervosa, binge eating), and various eating goals (losing weight, hedonic pleasure, healthy living). By viewing all these phenomena as modulating a core eating network, it becomes possible to understand how they are related to one another within this common theoretical framework. Finally, we discuss future directions for better establishing the core eating network, its modulations, and their implications for behavior

    Selectivity for mid‐level properties of faces and places in the fusiform face area and parahippocampal place area

    Get PDF
    Regions in the ventral visual pathway, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are selective for images from specific object categories. Yet images from different object categories differ in their image properties. To investigate how these image properties are represented in the FFA and PPA, we compared neural responses to locally-scrambled images (in which mid-level, spatial properties are preserved) and globally-scrambled images (in which mid-level, spatial properties are not preserved). There was a greater response in the FFA and PPA to images from the preferred category relative to their non-preferred category for the scrambled conditions. However, there was a greater selectivity for locally-scrambled compared to globally-scrambled images. Next, we compared the magnitude of fMR adaptation to intact and scrambled images. fMR-adaptation was evident to locally-scrambled images from the preferred category. However, there was no adaptation to globally-scrambled images from the preferred category. These results show that the selectivity to faces and places in the FFA and PPA is dependent on mid-level properties of the image that are preserved by local scrambling

    Category selectivity in human visual cortex:beyond visual object recognition

    Get PDF
    Item does not contain fulltextHuman ventral temporal cortex shows a categorical organization, with regions responding selectively to faces, bodies, tools, scenes, words, and other categories. Why is this? Traditional accounts explain category selectivity as arising within a hierarchical system dedicated to visual object recognition. For example, it has been proposed that category selectivity reflects the clustering of category-associated visual feature representations, or that it reflects category-specific computational algorithms needed to achieve view invariance. This visual object recognition framework has gained renewed interest with the success of deep neural network models trained to "recognize" objects: these hierarchical feed-forward networks show similarities to human visual cortex, including categorical separability. We argue that the object recognition framework is unlikely to fully account for category selectivity in visual cortex. Instead, we consider category selectivity in the context of other functions such as navigation, social cognition, tool use, and reading. Category-selective regions are activated during such tasks even in the absence of visual input and even in individuals with no prior visual experience. Further, they are engaged in close connections with broader domain-specific networks. Considering the diverse functions of these networks, category-selective regions likely encode their preferred stimuli in highly idiosyncratic formats; representations that are useful for navigation, social cognition, or reading are unlikely to be meaningfully similar to each other and to varying degrees may not be entirely visual. The demand for specific types of representations to support category-associated tasks may best account for category selectivity in visual cortex. This broader view invites new experimental and computational approaches.7 p

    Differences in selectivity to natural images in early visual areas (V1–V3)

    Get PDF
    High-level regions of the ventral visual pathway respond more to intact objects compared to scrambled objects. The aim of this study was to determine if this selectivity for objects emerges at an earlier stage of processing. Visual areas (V1–V3) were defined for each participant using retinotopic mapping. Participants then viewed intact and scrambled images from different object categories (bottle, chair, face, house, shoe) while neural responses were measured using fMRI. Our rationale for using scrambled images is that they contain the same low-level properties as the intact objects, but lack the higher-order combinations of features that are characteristic of natural images. Neural responses were higher for scrambled than intact images in all regions. However, the difference between intact and scrambled images was smaller in V3 compared to V1 and V2. Next, we measured the spatial patterns of response to intact and scrambled images from different object categories. We found higher within-category compared to between category correlations for both intact and scrambled images demonstrating distinct patterns of response. Spatial patterns of response were more distinct for intact compared to scrambled images in V3, but not in V1 or V2. These findings demonstrate the emergence of selectivity to natural images in V3
    corecore