723 research outputs found

    Transient crosslinking kinetics optimize gene cluster interactions

    Get PDF
    Our understanding of how chromosomes structurally organize and dynamically interact has been revolutionized through the lens of long-chain polymer physics. Major protein contributors to chromosome structure and dynamics are condensin and cohesin that stochastically generate loops within and between chains, and entrap proximal strands of sister chromatids. In this paper, we explore the ability of transient, protein-mediated, gene-gene crosslinks to induce clusters of genes, thereby dynamic architecture, within the highly repeated ribosomal DNA that comprises the nucleolus of budding yeast. We implement three approaches: live cell microscopy; computational modeling of the full genome during G1 in budding yeast, exploring four decades of timescales for transient crosslinks between 5k bp domains in the nucleolus on Chromosome XII; and, temporal network models with automated community detection algorithms applied to the full range of 4D modeling datasets. The data analysis tools detect and track gene clusters, their size, number, persistence time, and their plasticity. Of biological significance, our analysis reveals an optimal mean crosslink lifetime that promotes pairwise and cluster gene interactions through "flexible" clustering. In this state, large gene clusters self-assemble yet frequently interact, marked by gene exchanges between clusters, which in turn maximizes global gene interactions in the nucleolus. This regime stands between two limiting cases each with far less global gene interactions: with shorter crosslink lifetimes, "rigid" clustering emerges with clusters that interact infrequently; with longer crosslink lifetimes, there is a dissolution of clusters. These observations are compared with imaging experiments on a normal yeast strain and two condensin-modified mutant cell strains, applying the same image analysis pipeline to the experimental and simulated datasets

    Spatial coordination of tRNA genes

    Full text link
    Genetic information is stored in a manner that facilitates retrieval and promotes regulation of cellular processes. In eukaryotic genomes the largest collection of co-regulated genes is the transfer RNA (tRNA) gene family, transcribed by RNA polymerase III (Pol III). The budding yeast, Saccharomyces cerevisiae, has 274 tRNA genes widely dispersed throughout the 16 nuclear chromosomes, yet in three dimensions these genes cluster together at the nucleolus. This work investigates the mechanism and consequences of this spatial organization of tRNA genes. Clustering of tRNA genes had initially been observed by fluorescence microscopy, but limits on resolution prevented seeing associations for individual tRNA genes. Here, in vivo chemical crosslinking identified physical interactions between genomic loci that are closely associated in three dimensions. This confirmed nucleolar clustering of tRNA genes and further demonstrated that specific association of tRNA genes along the nucleolar ribosomal RNA (rRNA) gene repeats is dependent upon tRNA gene identity. Although tRNA gene clustering is not necessarily the primary driving force of genome organization, the results suggest they are local organizers. The mechanism of tRNA gene clustering was examined. Previous work showed the conserved condensin complex is required for clustering and is directly bound to tRNA gene transcription complexes in vivo. This work shows that binding of the Pol III transcription factor TFIIIC to the tRNA gene is necessary and sufficient for condensin to specifically recognize the tRNA gene. Clustering of tRNA genes contributes to “silencing” of nearby transcription by RNA polymerase II (Pol II), but the molecular mechanisms are unknown. Work in both bacterial and mammalian systems has shown that other tRNA-related RNAs bind Pol II and inhibit transcription. However, this work shows not specific RNAs but a broad spectrum of RNAs directly binds to purified yeast Pol II, preventing it from subsequently binding DNA template. Globally, this result necessitates immediate ribonucleoprotein assembly and transport of nascent transcripts to sequester inhibitory RNAs away from the polymerase. Overall, the findings from this dissertation further our understanding of how families of genes are spatially organized and reveal important consequences of nuclear organization on cellular processes.Ph.D.Biological ChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91532/1/dapai_1.pd

    Analysis methods for studying the 3D architecture of the genome

    Get PDF

    Epigenomics and the structure of the living genome

    Get PDF
    Eukaryotic genomes are packaged into an extensively folded state known as chromatin. Analysis of the structure of eukaryotic chromosomes has been revolutionized by development of a suite of genome-wide measurement technologies, collectively termed epigenomics. We review major advances in epigenomic analysis of eukaryotic genomes, covering aspects of genome folding at scales ranging from whole chromosome folding down to nucleotide-resolution assays that provide structural insights into protein-DNA interactions. We then briefly outline several challenges remaining and highlight new developments such as single-cell epigenomic assays that will help provide us with a high-resolution structural understanding of eukaryotic genomes

    Chromatin remodelers and their roles in chromatin organization

    Get PDF
    The DNA in the eukaryotic nucleus is organized into a complex DNA-protein structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of 147 bp of DNA wrapped around a histone protein octamer. The nucleosomes form a “beads on a string” structure, which can be folded into higherorder structures that allow an extensive degree of DNA compaction. This compaction is so effective that 2 meters of DNA can fit into the human cell nucleus with a diameter of only 10 m. Hence, nucleosomes condense and organize the genome, but at the same time they occlude many regulatory elements essential for transcription, replication, repair and recombination. To ensure dynamic access to packaged DNA, cells have evolved a set of proteins called chromatin remodeling complexes, which actively restructure chromatin. These enzymes use the energy from ATP hydrolysis to unwrap, slide, and eject nucleosomes. This thesis describes the roles of two families of ATP-dependent chromatin remodeling factors in chromatin regulation and organization in the model organism Schizosaccharomyces pombe (fission yeast). We show that the CHD remodeling factor, Hrp1, promotes incorporation of the H3 histone variant CENP-ACnp1 at centromeres and at a set of gene promoters. We suggest that Hrp1 participates in a remodeling process that evicts H3 from promoters, both in euchromatin and centromeric chromatin, which then facilitates CENP-A Cnp1 incorporation. Furthermore, we demonstrate that the Fun30 remodeling factor, Fft3, regulates the chromatin structure over insulator elements and tethers them to the inner nuclear membrane close to nuclear pores. This organizes the chromatin into different domains and ensures correct chromatin structure and gene expression at silent domains. Additionally, we have generated the first genome-wide map of nucleosome positions in S. pombe. This map revealed important differences from the related yeast Saccharomyces cerevisiae. The two yeasts showed differences in nucleosome spacing, the roles of DNA sequence features and in the regular nucleosome arrays. This argues against the existence of an evolutionarily conserved genomic code for nucleosome positioning. Instead, species-specific nucleosome positioning factors (e.g. chromatin remodeling complexes) appear to override the biophysical properties of the DNA sequence

    High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division

    Get PDF
    BACKGROUND: Genomes of eukaryotes exist as chromatin, and it is known that different chromatin states can influence gene regulation. Chromatin is not a static structure, but is known to be dynamic and vary between cells. In order to monitor the organisation of chromatin in live cells we have engineered fluorescent fusion proteins which recognize specific operator sequences to tag pairs of syntenic gene loci. The separation of these loci was then tracked in three dimensions over time using fluorescence microscopy. RESULTS: We established a work flow for measuring the distance between two fluorescently tagged, syntenic gene loci with a mean measurement error of 63 nm. In general, physical separation was observed to increase with increasing genomic separations. However, the extent to which chromatin is compressed varies for different genomic regions. No correlation was observed between compaction and the distribution of chromatin markers from genomic datasets or with contacts identified using capture based approaches. Variation in spatial separation was also observed within cells over time and between cells. Differences in the conformation of individual loci can persist for minutes in individual cells. Separation of reporter loci was found to be similar in related and unrelated daughter cell pairs. CONCLUSIONS: The directly observed physical separation of reporter loci in live cells is highly dynamic both over time and from cell to cell. However, consistent differences in separation are observed over some chromosomal regions that do not correlate with factors known to influence chromatin states. We conclude that as yet unidentified parameters influence chromatin configuration. We also find that while heterogeneity in chromatin states can be maintained for minutes between cells, it is not inherited through cell division. This may contribute to cell-to-cell transcriptional heterogeneity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-016-0111-y) contains supplementary material, which is available to authorized users

    Three-dimensional Folding of Eukaryotic Genomes

    Get PDF
    Chromatin packages eukaryotic genomes via a hierarchical series of folding steps, encrypting multiple layers of epigenetic information, which are capable of regulating nuclear transactions in response to complex signals in environment. Besides the 1-dimensinal chromatin landscape such as nucleosome positioning and histone modifications, little is known about the secondary chromatin structures and their functional consequences related to transcriptional regulation and DNA replication. The family of chromosomal conformation capture (3C) assays has revolutionized our understanding of large-scale chromosome folding with the ability to measure relative interaction probability between genomic loci in vivo. However, the suboptimal resolution of the typical 3C techniques leaves the levels of nucleosome interactions or 30 nm structures inaccessible, and also restricts their applicability to study gene level of chromatin folding in small genome organisms such as yeasts, worm, and plants. To uncover the “blind spot” of chromatin organization, I developed an innovative method called Micro-C and an improved protocol, Micro-C XL, which enable to map chromatin structures at all range of scale from single nucleosome to the entire genome. Several fine-scale aspects of chromatin folding in budding and fission yeasts have been identified by Micro-C, including histone tail-mediated tri-/tetra-nucleosome stackings, gene crumples/globules, and chromosomally-interacting domains (CIDs). CIDs are spatially demarcated by the boundaries, which are colocalized with the promoters of actively transcribed genes and histone marks for active transcription or turnover. The levels of chromatin compaction are regulated via transcription-dependent or transcription-independent manner – either the perturbations of transcription or the mutations of chromatin regulators strongly affect the global chromatin folding. Taken together, Micro-C further reveals chromatin folding behaviors below the sub-kilobase scale and opens an avenue to study chromatin organization in many biological systems

    Quantitative analysis of chromatin dynamics and nuclear geometry in living yeast cells

    Get PDF
    L'analyse de l'organisation à grande échelle des chromosomes, par des approches d'imagerie et de biologie moléculaire, constitue un enjeu important de la biologie. Il est maintenant établi que l'organisation structurelle du génome est un facteur déterminant dans tous les aspects des " transactions " génomiques: transcription, recombinaison, réplication et réparation de l'ADN. Bien que plusieurs modèles aient été proposés pour décrire l'arrangement spatial des chromosomes, les principes physiques qui sous-tendent l'organisation et la dynamique de la chromatine dans le noyau sont encore largement débattus. Le noyau est le compartiment de la cellule dans lequel l'ADN chromosomique est confiné. Cependant, la mesure quantitative de l'influence de la structure nucléaire sur l'organisation du génome est délicate, principalement du fait d'un manque d'outils pour déterminer précisément la taille et la forme du noyau. Cette thèse est organisée en deux parties: le premier axe de mon projet était d'étudier la dynamique et les propriétés physiques de la chromatine dans le noyau de la levure S. cerevisiae. Le deuxième axe visait à développer des techniques pour détecter et quantifier la forme et la taille du noyau avec une grande précision. Dans les cellules de levure en croissance exponentielle, j'ai étudié la dynamique et les propriétés physiques de la chromatine de deux régions génomiques distinctes: les régions codant les ARN ribosomiques regroupés au sein d'un domaine nucléaire, le nucléole, et la chromatine du nucléoplasme. Le mouvement de la chromatine nucléoplasmique peut être modélisé par une dynamique dite de " Rouse ". La dynamique de la chromatine nucléolaire est très différente et son déplacement caractérisé par une loi de puissance d'exposant ~ 0,7. En outre, nous avons comparé le changement de la dynamique de la chromatine nucléoplasmique dans une souche sauvage et une souche porteuse d'un allèle sensible à la température (ts) permettant une inactivation conditionnelle de la transcription par l'ARN polymérase II. Les mouvements chromatiniens sont beaucoup plus importants après inactivation transcriptionnelle que dans la souche témoin. Cependant, les mouvements de la chromatine restent caractérisés par une dynamique dite de " Rouse ". Nous proposons donc un modèle biophysique prenant en compte ces résultats : le modèle de polymère dit "branched-Rouse". Dans la deuxième partie, j'ai développé "NucQuant", une méthode d'analyse d'image permettant la localisation automatique de la position de l'enveloppe nucléaire du noyau de levures. Cet algorithme comprend une correction post-acquisition de l'erreur de mesure due à l'aberration sphérique le long de l'axe Z. "NucQuant" peut être utilisée pour déterminer la géométrie nucléaire dans de grandes populations cellulaires. En combinant " NucQuant " à la technologie microfluidique, nous avons pu estimer avec précision la forme et la taille des noyaux en trois dimensions (3D) au cours du cycle cellulaire. "NucQuant" a également été utilisé pour détecter la distribution des regroupements locaux de complexes de pore nucléaire (NPCs) dans des conditions différentes, et a révélé leur répartition non homogène le long de l'enveloppe nucléaire. En particulier, nous avons pu montrer une distribution particulière sur la région de l'enveloppe en contact avec le nucléole. En conclusion, nous avons étudié les propriétés biophysiques de la chromatine, et proposé un modèle dit "branched Rouse-polymer" pour rendre compte de ces propriétés. De plus, nous avons développé "NucQuant", un algorithme d'analyse d'image permettant de faciliter l'étude de la forme et la taille nucléaire. Ces deux travaux combinés vont permettre l'étude des liens entre la géométrie du noyau et la dynamique de la chromatine.Chromosome high-order architecture has been increasingly studied over the last decade thanks to technological breakthroughs in imaging and in molecular biology. It is now established that structural organization of the genome is a key determinant in all aspects of genomic transactions. Although several models have been proposed to describe the folding of chromosomes, the physical principles governing their organization are still largely debated. Nucleus is the cell’s compartment in which chromosomal DNA is confined. Geometrical constrains imposed by nuclear confinement are expected to affect high-order chromatin structure. However, the quantitative measurement of the influence of the nuclear structure on the genome organization is unknown, mostly because accurate nuclear shape and size determination is technically challenging. This thesis was organized along two axes: the first aim of my project was to study the dynamics and physical properties of chromatin in the S. cerevisiae yeast nucleus. The second objective I had was to develop techniques to detect and analyze the nuclear 3D geomtry with high accuracy. Ribosomal DNA (rDNA) is the repetitive sequences which clustered in the nucleolus in budding yeast cells. First, I studied the dynamics of non-rDNA and rDNA in exponentially growing yeast cells. The motion of the non-rDNA could be modeled as a two-regime Rouse model. The dynamics of rDNA was very different and could be fitted well with a power law of scaling exponent ~0.7. Furthermore, we compared the dynamics change of non-rDNA in WT strains and temperature sensitive (TS) strains before and after global transcription was actived. The fluctuations of non-rDNA genes after transcriptional inactivation were much higher than in the control strain. The motion of the chromatin was still consistent with the Rouse model. We propose that the chromatin in living cells is best modeled using an alternative Rouse model: the “branched Rouse polymer”. Second, we developed “NucQuant”, an automated fluorescent localization method which accurately interpolates the nuclear envelope (NE) position in a large cell population. This algorithm includes a post-acquisition correction of the measurement bias due to spherical aberration along Z-axis. “NucQuant” can be used to determine the nuclear geometry under different conditions. Combined with microfluidic technology, I could accurately estimate the shape and size of the nuclei in 3D along entire cell cycle. “NucQuant” was also utilized to detect the distribution of nuclear pore complexes (NPCs) clusters under different conditions, and revealed their non-homogeneous distribution. Upon reduction of the nucleolar volume, NPCs are concentrated in the NE flanking the nucleolus, suggesting a physical link between NPCs and the nucleolar content. In conclusion, we have further explored the biophysical properties of the chromatin, and proposed that chromatin in the nucleoplasm can be modeled as "branched Rouse polymers". Moreover, we have developed “NucQuant”, a set of computational tools to facilitate the study of the nuclear shape and size. Further analysis will be required to reveal the links between the nucleus geometry and the chromatin dynamics
    • …
    corecore