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SUMMARY 

Chromosome high-order architecture has been increasingly studied over the last decade 

thanks to technological breakthroughs in imaging and in molecular biology. It is now 

established that structural organization of the genome is a key determinant in all aspects of 

genomic transactions. Although several models have been proposed to describe the folding of 

chromosomes, the physical principles governing their organization are still largely debated. 

Nucleus is the cell’s compartment in which chromosomal DNA is confined. Geometrical 

constrains imposed by nuclear confinement are expected to affect high-order chromatin 

structure. However, the quantitative measurement of the influence of the nuclear structure on 

the genome organization is unknown, mostly because accurate nuclear shape and size 

determination is technically challenging. 

This thesis was organized along two axes: the first aim of my project was to study the 

dynamics and physical properties of chromatin in the S. cerevisiae yeast nucleus. The second 

objective I had was to develop techniques to detect and analyze the nuclear 3D geomtry with 

high accuracy. 

Ribosomal DNA (rDNA) is the repetitive sequences which clustered in the nucleolus in 

budding yeast cells. First, I studied the dynamics of non-rDNA and rDNA in exponentially 

growing yeast cells. The motion of the non-rDNA could be modeled as a two-regime Rouse 

model. The dynamics of rDNA was very different and could be fitted well with a power law 

of scaling exponent ~0.7. Furthermore, we compared the dynamics change of non-rDNA in 

WT strains and temperature sensitive (TS) strains before and after global transcription was 

actived. The fluctuations of non-rDNA genes after transcriptional inactivation were much 

higher than in the control strain. The motion of the chromatin was still consistent with the 

Rouse model. We propose that the chromatin in living cells is best modeled using an 

alternative Rouse model: the “branched Rouse polymer”. 

Second, we developed “NucQuant”, an automated fluorescent localization method which 

accurately interpolates the nuclear envelope (NE) position in a large cell population. This 

algorithm includes a post-acquisition correction of the measurement bias due to spherical 

aberration along Z-axis. “NucQuant” can be used to determine the nuclear geometry under 

different conditions. Combined with microfluidic technology, I could accurately estimate the 

shape and size of the nuclei in 3D along entire cell cycle. “NucQuant” was also utilized to 

detect the distribution of nuclear pore complexes (NPCs) clusters under different conditions, 

and revealed their non-homogeneous distribution. Upon reduction of the nucleolar volume, 
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NPCs are concentrated in the NE flanking the nucleolus, suggesting a physical link between 

NPCs and the nucleolar content. 

In conclusion, we have further explored the biophysical properties of the chromatin, and 

proposed that chromatin in the nucleoplasm can be modeled as "branched Rouse polymers". 

Moreover, we have developed “NucQuant”, a set of computational tools to facilitate the study 

of the nuclear shape and size. Further analysis will be required to reveal the links between the 

nucleus geometry and the chromatin dynamics. 
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RESUME 

L'analyse de l'organisation à grande échelle des chromosomes, par des approches d'imagerie 

et de biologie moléculaire, constitue un enjeu important de la biologie. Il est maintenant établi 

que l'organisation structurelle du génome est un facteur déterminant dans tous les aspects des 

« transactions » génomiques: transcription, recombinaison, réplication et réparation de l'ADN. 

Bien que plusieurs modèles aient été proposés pour décrire l’arrangement spatial des 

chromosomes, les principes physiques qui sous-tendent l'organisation et la dynamique de la 

chromatine dans le noyau sont encore largement débattus. Le noyau est le compartiment de la 

cellule dans lequel l'ADN chromosomique est confiné. Cependant, la mesure quantitative de 

l'influence de la structure nucléaire sur l'organisation du génome est délicate, principalement 

du fait d'un manque d'outils pour déterminer précisément la taille et la forme du noyau. 

Cette thèse est organisée en deux parties: le premier axe de mon projet était d'étudier la 

dynamique et les propriétés physiques de la chromatine dans le noyau de la levure S. 

cerevisiae. Le deuxième axe visait à développer des techniques pour détecter et quantifier la 

forme et la taille du noyau avec une grande précision. 

Dans les cellules de levure en croissance exponentielle, j'ai étudié la dynamique et les 

propriétés physiques de la chromatine de deux régions génomiques distinctes: les régions 

codant les ARN ribosomiques regroupés au sein d’un domaine nucléaire, le nucléole, et la 

chromatine du nucléoplasme. Le mouvement de la chromatine nucléoplasmique peut être 

modélisé par une dynamique dite de « Rouse ». La dynamique de la chromatine nucléolaire 

est très différente et son déplacement caractérisé par une loi de puissance d'exposant ~ 0,7. En 

outre, nous avons comparé le changement de la dynamique de la chromatine nucléoplasmique 

dans une souche sauvage et une souche porteuse d'un allèle sensible à la température (ts) 

permettant une inactivation conditionnelle de la transcription par l'ARN polymérase II. Les 

mouvements chromatiniens sont beaucoup plus importants après inactivation 

transcriptionnelle que dans la souche témoin. Cependant, les mouvements de la chromatine 

restent caractérisés par une dynamique dite de « Rouse ». Nous proposons donc un modèle 

biophysique prenant en compte ces résultats : le modèle de polymère dit "branched-Rouse".  

Dans la deuxième partie, j'ai développé "NucQuant", une méthode d'analyse d'image 

permettant la localisation automatique de la position de l'enveloppe nucléaire du noyau de 

levures. Cet algorithme comprend une correction post-acquisition de l'erreur de mesure due à 

l'aberration sphérique le long de l'axe Z. "NucQuant" peut être utilisée pour déterminer la 

géométrie nucléaire dans de grandes populations cellulaires. En combinant « NucQuant » à la 
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technologie microfluidique, nous avons pu estimer avec précision la forme et la taille des 

noyaux en trois dimensions (3D) au cours du cycle cellulaire. "NucQuant" a également été 

utilisé pour détecter la distribution des regroupements locaux de complexes de pore nucléaire 

(NPCs) dans des conditions différentes, et a révélé leur répartition non homogène le long de 

l’enveloppe nucléaire. En particulier, nous avons pu montrer une distribution particulière sur 

la région de l’enveloppe en contact avec le nucléole.  

En conclusion, nous avons étudié les propriétés biophysiques de la chromatine, et proposé un 

modèle dit "branched Rouse-polymer" pour rendre compte de ces propriétés. De plus, nous 

avons développé "NucQuant", un algorithme d'analyse d'image  permettant de faciliter l'étude 

de la forme et la taille nucléaire. Ces deux travaux combinés vont permettre l’étude des liens 

entre la géométrie du noyau et la dynamique de la chromatine. 

 

  



Table of Contents 

5 

 

Table of Contents 

SUMMARY ............................................................................................................................... 1 

RESUME ................................................................................................................................... 3 

TABLE OF CONTENTS ......................................................................................................... 5 

FIGURE LIST .......................................................................................................................... 8 

ABBREVIATIONS .................................................................................................................. 9 

INTRODUCTION .................................................................................................................. 11 

1. The chromosome organization in space ........................................................................... 12 

1.1 Chromatin structure ........................................................................................................ 12 

1.1.1 The DNA molecule .................................................................................................. 12 

1.1.2 Nucleosomes ............................................................................................................ 14 

1.1.3 10 nm chromatin fibers ............................................................................................ 14 

1.1.4 The controversial “30 nm” chromatin fiber ............................................................. 17 

1.2 The chromosome spatial organization ............................................................................ 19 

1.2.1 Condensed mitotic chromosomes ............................................................................ 19 

1.2.2 Euchromatin and heterochromatin ........................................................................... 21 

1.2.3 Chromosome territory .............................................................................................. 22 

1.2.4 Chromosome conformation ..................................................................................... 24 

1.2.5 Computational model of yeast chromosome ............................................................ 32 

1.2.6 Gene position and gene territory .............................................................................. 35 

1.2.7 Chromatin dynamics ................................................................................................ 40 

1.3 Summary ......................................................................................................................... 46 

2. Nuclear shape and size ....................................................................................................... 47 

2.1 The nuclear organization ................................................................................................ 47 

2.1.1 The spindle pole body .............................................................................................. 47 

2.1.2 Telomeres are distributed at the nuclear periphery .................................................. 49 

2.1.3 Nucleolus-the “ribosomes factory” .......................................................................... 50 



Table of Contents 

6 

 

2.1.4 Nuclear pore complexes ........................................................................................... 53 

2.2 Plasticity of nuclear envelope and nuclear size .............................................................. 55 

2.3 The techniques used to analyze the nuclear shape and size ........................................... 59 

2.3.1 EM and EM-based techniques ................................................................................. 59 

2.3.2 Tomography techniques ........................................................................................... 62 

2.3.3 Fluorescent microscopy ........................................................................................... 64 

2.4 Summary ......................................................................................................................... 67 

3. Overview ............................................................................................................................. 68 

RESULTS ................................................................................................................................ 69 

1. The dynamics of the chromatin in nucleoplasm and nucleolus ..................................... 70 

1.1 Objective and summary .................................................................................................. 70 

1.2 Review: “Principles of chromatin organization in yeast: relevance of polymer models to 

describe nuclear organization and dynamics" ...................................................................... 71 

1.3 Extended discussion-the dynamics of the rDNA ............................................................ 79 

2. The influence of transcription on chromatin dynamics .................................................. 81 

2.1 Objective and summary .................................................................................................. 81 

2.2 Draft of manuscript: "Analysis of chromatin fluctuations in yeast reveals the 

transcription-dependent properties of chromosomes" .......................................................... 81 

3. Determination of the nuclear geometry in living yeast cells........................................... 99 

3.1 Objective and summary .................................................................................................. 99 

3.2 Submitted manuscript: "High resolution microscopy reveals the nuclear shape of 

budding yeast during cell cycle and in various biological states" ...................................... 100 

3.3 Extended discussion ..................................................................................................... 144 

3.3.1 Heterogeneity of the nuclear shape in cell population ........................................... 144 

3.3.2 The organization of the nucleolus .......................................................................... 146 

CONCLUSION AND PERSPECTIVES ............................................................................ 148 

1. The dynamics of non-rDNA and rDNA chromatin ....................................................... 149 

2. Interplay between the chromosome organization and chromatin motion .................. 150 



Table of Contents 

7 

 

3. Determination of the nuclear shape and size ................................................................. 152 

REFERENCE ....................................................................................................................... 155 

APPENDIX ........................................................................................................................... 174 

1. Utilization of “NucQuant” ............................................................................................... 175 

1.1 Installation .................................................................................................................... 175 

1.2 How to use “NucQuant” ............................................................................................... 175 

1.2.1 Input the figures and crop the cells ........................................................................ 176 

1.2.2 Extract the NPC position, nuclear center, nucleolus segmentation and the nucleolar 

centroid ........................................................................................................................... 177 

1.2.3 Class the data ......................................................................................................... 178 

1.2.4 Quality control ....................................................................................................... 178 

1.2.5 Correc the aberration along Z axis ......................................................................... 178 

1.2.6 Align the nuclei ...................................................................................................... 179 

1.2.7 Calculate the NPC distribution .............................................................................. 179 

2. Published: "Decoding the principles underlying the frequency of association with 

nucleoli for RNA Polymerase III-transcribed genes in budding yeast" ......................... 180 

3. Published: ''High-throughput live-cell microscopy analysis of association between 

chromosome domains and the nucleolus in S.cerevisiae'' ………………………............195 

 

  



Figure list 

8 

 

Figure list 

Figure 1. DNA structure an gene expression 

Figure 2. The nucleolosme and chromosome structures 

Figure 3. The two main models of the “30 nm” chromatin fibers 

Figure 4. The organization of condensed mitotic chromosomes 

Figure 5. The chromosome territories and the chromosome territory-interchromatin compartment model 

Figure 6. The outline of the chromosome conformation capture (3C) and 3C-based techniques 

Figure 7. The “fractal globule” model of the human chromosomes 

Figure 8. Schematic representation of the yeast nucleus 

Figure 9. The chromosomes conformation in the S. cerevisiae 

Figure 10. The stratistical constrained random encounter model 

Figure 11. Conputational model of the dynamic interphase yeast nucleus 

Figure 12. Nucloc to study the gene position 

Figure 13. The gene territories of 15 loci along chromosome XII 

Figure 14. Positions of loci along the chromosome XII relative to the nuclear and nucleolar centers 

determined experimentally and predicted by computational modeling 

Figure 15. Tracking the gene motion in living cells 

Figure 16. The MSD of three different diffusion models 

Figure 17. The Rouse polymer model 

Figure 18. The chromatin dynamics and confinements vary along the length of the chromosome. 

Figure 19. The structure and organization of the spindle pole body (SPB) 

Figure 20. The nucleolar organization 

Figure 21. Overall structure of Nuclear Pore Complex (NPC) 

Figure 22. Nuclear shape is dynamic 

Figure 23. Nuclear morphology of yeast L1489 prepared by cryo-fixation and chemical fixation techniques, 

respectively 

Figure 24. 3D reconstruction of the S. cerevisiae nuclear envelope analyzed by TEM 

Figure 25. 3D reconstruction of the yeast cells by SBF-SEM technology 

Figure 26. Reconstruction of the yeast cells by X-ray tomography 

Figure 27. Reconstruct the nuclear envelope by fluorescent microscopy in 2D 

Figure 28. The dynamics of rDNA 

Figure 29. The heterogeneity of the nuclear shape 

Figure 30. The change of the nucleolus structure after the cells enter quiescence 

Figure 31. The “ideal” Rouse model and the chromosome models in living yeast cells. 

Figure 32. The detection of the nuclear shape based on structured-illumination microscopy

 

  



ABBREVIATIONS 

9 

 

ABBREVIATIONS 

DNA Deoxyribonucleic acid 

RNA ribonucleic acid 

mRNA messenger RNA 

A adenine 

T thymine 

C cytosine 

G guanine 

U uracil 

NMR nuclear magnetic resonance 

bp base pair 

Å Ångstrom 

TEM transmission electron microscopy 

NRL nucleosome repeat lengths 

CEMOVIS cryo-EM of vitreous sections 

SAXS small-angle X-ray scattering 

CTs chromosome territories 

FISH fluorescent in situ hybridization 

IC interchromatin compartment 

CT-IC chromosome territory-interchromatin compartment 

3C chromosome conformation capture 

4C 3C-on chip or circular 3C 

5C 3C carbon copy 

rDNA ribosomal DNA 

NE nuclear envelope 

SPB spindle pole body 

CEN centromeres 

TEL telomeres 

NPC nuclear pore complex 

tRNA transfer RNA 

FROS fluorescent repressor-operator system 

MSD mean square displacement 



ABBREVIATIONS 

10 

 

SNR signal to noise ratio 

DH-PSF Double-Helix Point Spread Function 

fBm fractional Brownian motion 

MTs microtubules 

MTOC microtubule-organizing center 

EM electron microscopy 

INM inner nuclear membrane 

SUN Sad1p and UNC-84 

KASH Klarsicht, ANC-1 and Syne homology 

LINC Linker of Nucleoskeleton and Cytoskeleton 

FCs fibrillar centers 

DFC dense fibrillar component 

GC granular component 

IGS intergenic spacers 

RENT regulator of nucleolar silencing and telophase exit 

RFB replication fork barrier 

Nups nucleoporins 

DIC differential interference contrast 

SBF-SEM serial block-face scanning electron microscopy 

ET electron tomography 

HVEM high-voltage electron microscope 

STEM scanning transmission electron microscopy 

PSF point spread function 

μm micrometer 

nm nanometer 

TS temperature sensitive 

PVP poly-vinylpyrrolidone 

SDF step distribution function 

  

 

  



Introduction 

11 

 

 

 

 

 

 

 

 

 

 

 

Chapter I 

Introduction

  



Introduction-The chromosome organization in space 

12 

 

1. The chromosome organization in space 

Chromosome spatial organization plays a key role in transcriptional regulation, DNA repair 

and replication. How do chromosomes organize in the eukaryotic nucleus is still an open 

question. In the following chapter of the introduction, I will present a general overview of the 

chromatin structure, chromosome spatial organization in the eukaryotic nucleus and the 

techniques used to study the chromosome structure and organization. 

1.1 Chromatin structure 

1.1.1 The DNA molecule 

Deoxyribonucleic acid (DNA) is the molecule which carries the genetic instructions used for 

the formation of all compounds within the cells, such as proteins and Ribonucleic acid (RNA). 

Most genomic DNA consists of two biopolymer strands, coiled around a common axis; these 

two strands are composed of nucleotides. The genetic information is stored in the nucleotides 

sequence. Each nucleotide is composed of a deoxyribose, a phosphate group and a kind of 

nitrogenous base, either adenine (A), thymine (T), cytosine (C) or guanine (G). The 

nucleotides are linked together by a specific hydrogen-bond, to form a double helix (Watson 

and Crick, 1953b) (Figure 1A). Genetic information is expressed in two steps: first the 

genomic information coded in DNA is transmitted to a messenger known as messenger RNA 

(mRNA). RNA is a polymer of ribonucleotides in which thiamine (T) is replaced by a 

different nucleotide, uracil (U). The information in mRNA is then translated by an RNA 

based ribozyme, the ribosome, into a sequence of amino acids that forms a protein (Figure 

1B). Results from X-ray diffraction, nuclear magnetic resonance (NMR) or other 

spectroscopic studies have shown that the DNA molecule adapts its structure according to the 

environment. This leads to polymorphism of the DNA structure. The three billion base pairs 

in the human genome exhibit a variety of structural polymorphisms which is important for the 

biological packaging as well as functions of DNA. B-DNA is the most commonly found 

structure in vivo by far. However, DNA repeat-sequences can also form several non-B DNA 

structures such as the G-quadruplex, the i-motif and Z-DNA (Choi and Majima, 2011; Doluca 

et al., 2013). Various DNA structures have been characterized as A, B, C, etc. (Bansal, 2003; 

Ghosh and Bansal, 2003). The currently accepted three major DNA configurations include the 

A-DNA, the B-DNA and the Z-DNA (Ghosh and Bansal, 2003) (Figure 1C). A-DNA and B-

DNA are all right-handed double helix. A-DNA was observed under conditions of low 
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hydration; it has 11 nucleotides per turn and the projected displacement along the overall 

helical axis can be as low as 2.4 Å. B-DNA is the closest to the original Watson-Crick model 

with a near-perfect 10 units per turn and the projected displacement is ~3.4 Å; it was observed 

under the conditions of relative high hydration (Ghosh and Bansal, 2003; Lu et al., 2000). 

Unlike the A- and B-DNA, Z-DNA is a left-handed duplex structure with 12 nucleotides per 

turn and helix pitch is ~3 Å (Bernal et al., 2015).  

 

Figure 1. DNA structure and gene expression 

A. The double helix structure of the DNA proposed by Watson and Crick in 1953. From 
(Watson and Crick, 1953b). 

B. Schema of  the gene expression process. 

C. Three possible helix structures: from left to right, the structures of A, B and Z DNA. From 
(Bansal, 2003). 
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X-ray diffraction, NMR or other spectroscopic techniques are used to characterize DNA 

conformation in vitro but, in vivo configuration of DNA molecule is still challenging. The 

human nucleus of 10 µm in diameter contains ~2 m of linear DNA (Watson and Crick, 1953). 

Nucleus in budding yeast is often described as a sphere of radius ~1 µm (Berger et al., 2008). 

Electron microscopic analysis indicates that the yeast nuclear DNA can be isolated as linear 

molecules ranging in size from 50 µm (1.2 × 108 daltons) to 355 µm (8.4 × 108 daltons) 

(Petes et al., 1973). To duplicate and segregate the genomic DNA, the long DNA sequence is 

organized in a condensed structure made of DNA and proteins to fit into the cell nucleus: the 

chromatin in eukaryotic cells. 

1.1.2 Nucleosomes 

The nucleosome is the fundamental unit of chromatin. It is formed by a pool of  8 

polypeptides (histones) around which 145 DNA base pairs (bp) are wrapped in 1.65 turns 

(Absolom and Van Regenmortel, 1977; Fischle et al., 2003; Thomas and Furber, 1976). The 

histone octamer is composed of eight proteins, two of each core histones H2A, H2B, H3 and 

H4 (Hansen, 2002). The histone octamer is assembled with one H3/H4 tetramer and two 

H2A/H2B dimers (Figure 2A). Each histone has both an N-terminal tail and a C-terminal 

histone-fold. X-ray crystallography of the structural details of the nucleosome core indicates 

that the histone N-terminal tails can extend from one nucleosome and contact with adjacent 

nucleosomes (Davey et al., 2002; Luger et al., 1997). Modifications of these tails affect the 

inter-nucleosomal interactions and allow recruitment of specific protein complexes therefore 

affecting the overall chromatin structure (Dorigo et al., 2003; Shogren-Knaak et al., 2006). 

The modification of the histone tails is regulating accessibility of chromatin to transcription 

and many other DNA processes, are defined as the "histone code" (Strahl and Allis, 2000). 

1.1.3 10 nm chromatin fibers 

The so-called 10 nm fiber corresponds to nucleosome core particles more or less regularly 

spaced on the genome that form a string of beads, with short stretches of bare DNA- the linker 

DNA- connecting adjacent nucleosomes (Figure 2B).  

Since the linker DNA should be phased with respect to the histones core, the precise 

orientation of a nucleosome relative to the previous one is largely determined by the linker 

DNA length and by the torsional constraint of the fiber (Barbi et al., 2012). The short size of 

the linker DNA is hardly compatible with its bending, so one can assume the linkers as 
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straight. This assumption helps researchers to describe the chromatin structure by the entry-

exit angle α, the rotational angle β and the linker length (Woodcock et al., 1993) (Figure 2C). 

A change in α and β modifies the fiber architecture and consequently induces a rotation of one 

strand end with respect to the other. However, in vivo, the linker DNA length is variable 

depending on organisms, tissues and genomic regions and is usually associated with the H1 

class of linker histone. The alternative nucleosomes spacing has significant influence on the 

chromatin fiber plasticity (Recouvreux et al., 2011). 

In addition, the linker DNA crossing state has also significant impact on the chromatin fiber 

structure. According to their position at the exit of a nucleosome, the linker DNA can adopt 

three main states. The negatively crossed state corresponds to the standard crystallographic 

structure; in the positively crossed state, the two linkers DNA cross instead in the opposite, 

positive way; and in the open state, the DNA is partially unwrapped from the nucleosome 

core histones and linkers DNA do not cross anymore (De Lucia et al., 1999; Sivolob et al., 

2003) (Figure 2D).  

All these variations can result in the formation of irregular fibers in vivo.  

The physical properties of the chromatin fibers may govern the structural changes necessary 

for the functioning and dynamics of chromatin. So it is important to understand the higher-

order organization of the chromatin. 
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Figure 2. The nucleosome and chromosome structures. 

A. Schematic representation of the assembly of the core histones wrapped by the DNA to 
form one nucleosome. Each histone octamer contains one H3/H4 tetramer and two H2A/H2B 
dimers. From Wikipedia, author Richard Wheeler (Zephyris). 

B. The nucleosome arrays form the “10 nm” chromatin fiber. The “10 nm” fibers compact to 
form the “30 nm” chromatin fibers which was for long time considered to represent a higher 
order chromatin organization in vivo. From (Maeshima et al., 2010). 

C. Schematic of the DNA winding pattern along two neighbouring nucleosomes. From 
(Recouvreux et al., 2011). 
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D. The states of the Linker DNA. From (Recouvreux et al., 2011). 

 

 1.1.4 The controversial “30 nm” chromatin fiber 

The nucleosome has long been assumed to compact into irregular fibers with ~30 nm 

diameter (Bednar et al., 1998; Robinson et al., 2006). Although “30 nm” fibers have been 

observed in vitro (Finch and Klug, 1976), their existence in vivo remains an open and highly 

debated question since most attempts to visualize these fibers in vivo have failed so far (Joti et 

al., 2012; Maeshima et al., 2010).  

Two main “30 nm” structures have been described: one-start helix with interdigitated 

nucleosomes, called ‘solenoid’ model, and ‘two-start helix’ model (Robinson and Rhodes, 

2006). Solenoid fibers in which consecutive nucleosomes are located close to one another in 

the fiber and compacting into a simple one-start helix have been observed by conventional 

transmission electron microscopy (TEM) (Thomas and Furber, 1976). The ‘two-start helix’ 

model has been extrapolated from the crystal structure of a four-nucleosomes core array 

lacking the linker histone. In this model, the nucleosomes are arranged in a zigzag manner: a 

nucleosome in the fiber is bound to the second neighbor but not to the closest (Schalch et al., 

2005) (Figure 3). Grigoryev’s team found that under certain conditions in vitro these two 

models can be simultaneously present in a 30 nm chromatin fiber (Grigoryev et al., 2009).  

In vivo, the length of the linkers DNA is not identical which will result in many various 

folding. Routh’s group found that the nucleosome repeat length (NRL) and the linker histone 

can influence the chromatin higher-order structure. Only the 197-bp NRL array with the 

linker histone H1 variant, H5, can form 30 nm fibers. The 167-bp NRL array displays a 

thinner fiber (~20 nm) (Routh et al., 2008). Rhodes's lab found two different fiber structures 

which were determined by the linker DNA length: when the linker DNA length is 10-40 bp 

the produced fibers have a diameter of 33 nm, and the fibers have a diameter of 44 nm when 

the linker DNA length is from 50 to 70 bp (Robinson et al., 2006).  

We should note that, all these studies were  all led in vitro or on purified fibers. Any small 

variations in experimental conditions will impact the regulation of the nucleosomes arrays. In 

vivo, the length of the linkers DNA is varied, the flexibility of each nucleosome also. If  the 

“30 nm” chromatin fiber exists in vivo is still controversial. More recently, cryo-EM of 

vitreous sections (CEMOVIS) or small-angle X-ray scattering (SAXS) techniques were used 
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to study the nucleosomes organization of HeLa cells: the results showed that no matter in 

interphase or in mitotic chromatins, there was no “30 nm” chromatin structure formation. In 

vivo, nucleosomes concentration is high. Therefore, nucleosome fibers are forced to 

interdigitate with others, which can interfere with the formation and maintenance of the static 

30-nm chromatin fiber and lead to the “polymer melt” behaviour (Joti et al., 2012; Maeshima 

et al., 2010).  

 

Figure 3. The two main models of the “30 nm” chromatin fibers. The one-start helix is an 

interdigitated solenoid. The first nucleosome (N1) in the fiber contacts with its fifth (N5) and 

sixth (N6) neighbors. In the two-start model, nucleosomes are arranged in a zigzag manner. 

The first nucleosome (N1) in the fiber binds to the second-neighbor nucleosome (N3). Blue 

and orange represent the alternate nucleosome pairs. From (Maeshima et al., 2010). 
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1.2 The chromosome spatial organization 

The linear array of nucleosomes that comprises the primary structure of chromatin is folded 

and condensed to different degrees in nuclei and chromosomes forming “higher order 

structures”. The chromosomes in mitosis are highly condensed and moved independently by 

the mitotic spindle apparatus. After cell division, the compacted chromatin is decondensed in 

interphase phases (Antonin and Neumann, 2016). In this part, I will introduce the spatial 

organization of the chromosomes in mitosis and interphase. 

1.2.1 Condensed mitotic chromosomes 

Mitosis is a part of the cell cycle in which chromosomes are separated into two identical sets. 

The mitotic chromosome structure in metazoan cells has been observed by light microscopy 

(Rieder and Palazzo, 1992). To avoid the truncation of chromosome arms during cell division 

and to facilitate proper separation and segregation of sister chromatids, the mitotic 

chromosomes are highly condensed with an iconic structure of X-shaped (Figure 4A). How 

mitotic chromosomes organize is still controversial. Solid evidence suggests that the 

topoisomerase II and condensin complexes contribute to this condensation (Hudson et al., 

2009; Lau and Csankovszki, 2014; Maeshima and Laemmli, 2003; Moser and Swedlow, 

2011). There are two main models to explain the mitotic chromosome organization: 

hierarchical folding model and radial loop model (Antonin and Neumann, 2016) (Figure 4B). 

Crick and co-workers proposed hierarchical folding model, which proposes that the mitosis 

chromosomes are formed by a hierarchical helical folding of ‘30 nm’ chromatin fibers (Bak et 

al., 1977). The radial loop model suggests that the mitotic chromosomes are folded with radial 

loop model, in which mitotic chromatin forms series of chromatin loops which are attached to 

a central chromosome scaffold axis (Maeshima and Eltsov, 2008). Immunofluorescence of the 

isolated human chromosome topoisomerase IIα and the condensin I component indicates that 

the chromosome scaffold components have axial  distributions at the center of each chromatid 

in the mitotic chromosome (Maeshima and Laemmli, 2003). Recent Hi-C data also proved the 

mitotic chromosome organized with radial loop model (See section 1.2.4). However, if 

the ’30 nm’ chromatin fibers exist in the living cells is still controversial. 
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Figure 4. The organization of condensed mitotic chromosomes. 

A. The structure of a mitotic chromosome: two sister chromatids are anchored each other 
through centromere. Adapted from (Antonin and Neumann, 2016). 

B. Two main models of the mitotic chromatin organization. Adapted from (Antonin and 
Neumann, 2016). 

C. In mitotic chromosomes, the nucleosome fibers exist in a highly disordered, interdigitated 
state like a ‘polymer melt’ that undergoes dynamic movement. Adapted from (Maeshima et 
al., 2010). 

 

To study the chromosome organization in living cells, the highest resolution microscopic 

technics is achieved using cryo-EM of vitreous sections (CEMOVIS), but with the cost of low 
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contrast. Cells are collected and frozen by high-pressure freezing, then they are sectioned and 

the ultrathin sections are observed directly under a cryo-EM with no chemical fixation or 

staining which guarantees the cellular structures in a close-to-native state (Maeshima et al., 

2010). Maeshima et al. observed the human mitotic chromosomes by using this technique and 

they did not find any higher-order structures including “30 nm” chromatin fibers formation; 

their results suggest that the nucleosomes fiber exists in a highly disordered 10 nm fiber, in an 

interdigitated state like a ‘polymer melt’ that undergoes dynamic movement (Maeshima et al., 

2010) (Figure 4C). Since the thickness of the cryo-EM section is only ~70 nm, this prevents 

the observation of a whole chromosome organization. Joti and colleagues utilized small-angle 

X-ray scattering (SAXS), which can detect periodic structures in noncrystalline materials in 

solutions, to observe the chromatin structures of HeLa cells in mitosis and interphase. They 

found that, no matter in interphase or mitosis, there was no ‘30 nm’ chromatin structure 

formation in cells (Joti et al., 2012). Nishino et al. also found that, in human mitotic HeLa 

chromatin, there was no regular structure >11 nm detected (Nishino et al., 2012).  

Actually, the “10 nm” fiber is high dynamic because the nucleosomes are dynamic (~50 

nm/30 ms). So, we think that the chromatin consists of dynamic and disordered “10 nm” 

fibers. The chromosome can be seen as one polymer chain and the dynamic folding can offer 

a driving force for chromosome condensation and segregation (Maeshima et al., 2014; Nozaki 

et al., 2013).  

In mitosis, the chromosomes are highly compacted to facilitate the segregation of their 

chromatids. After cell division, the compacted chromatin is decondensed to re-establish its 

interphase states (Antonin and Neumann, 2016). Interphase is the phase in which cells spend 

most of its life, the DNA replication, transcription and most of the genome transactions take 

place during interphase. In next sections, I will focus on the interphase chromosome 

organization in space. 

1.2.2 Euchromatin and heterochromatin  

Electron microscopy has shown that in metazoan nucleus, there are at least two structurally 

distinct chromatins in the nucleus in interphase, one is euchromatin and the other is 

heterchromatin (Albert et al., 2012; Tooze and Davies, 1967). Euchromatin is more dynamic 

and uncondensed. Euchromatin is often associated with transcriptionally active regions 

(Adkins et al., 2004). Unlike euchromatin, heterochromatin is condensed around functional 
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chromosome structures such as centromeres and telomeres, it is genes poor and can silence 

the expression of the genes embedded in it (Grewal and Moazed, 2003). Heterochromatin is 

largely transcriptionally inert. However, it plays key roles in chromosome inheritance, 

genome stability, dosage compensation (X-inactivation) in mammals (Lam et al., 2005). Solid 

evidence show that heterochromatin is required for the cohesion of the sister chromatids at 

centromeres and proper chromosome segregation (Bernard et al., 2001; Hall et al., 2003). 

Grewal’s team also found that the formation of the heterochromatin structures at telomeres 

can maintain their stability (Hall et al., 2003). As for localization close to the nuclear 

envelope, nucleoli are often surrounded by a shell of heterochromatin which is realted to the 

establishment and maintenance of silencing of non-rDNA-related genomec regions (McStay 

and Grummt, 2008).  

The chromatin state are not static (Grewal and Jia, 2007). There are many factors that can 

influence the chromatin structure, including chromatin associated proteins, histones, linker 

DNA and DNA methylation. Although many studies over the past few decades have 

established the basic properties of the heterochromatin and euchromatin, it is still not clear 

how chromatin participate the cellular processes.  

1.2.3 Chromosome territory   

Although the “10 nm” chromatin fibers are highly dynamic (see 1.2.1), the chromosomes are 

not randomly organized in the nucleus. The chromosomes “prefer” to occupy specific regions 

in the nucleus named “chromosome territories” (CTs). The concept of CTs was first suggested 

for animal cell nuclei by Carl Rabl in 1885 and the name was first introduced by Theodor 

Boveri in 1909 (Cremer and Cremer, 2010). The fluorescent in situ hybridization (FISH) 

techniques enabled the generation of chromosome specific painting probes used for the direct 

visualization of chromosomes in many species (Bolzer et al., 2005; Manuelidis, 1985; 

Schardin et al., 1985) (Figure 5A). Bolzer et al. utilized FISH to mape simultaneously all 

chromosomes in human interphase nuclei. The map showed that the small chromosomes were 

organized closer to the nuclear center and the larger chromosomes located closer to the 

nuclear periphery (Bolzer et al., 2005). Cremer’s group combining FISH techniques and 3D-

microscopy, could reconstruct the spatial arrangement of targeted DNA sequences in the 

nucleus. The new generation confocal microscopes allowed the distinct observation of at least 

five different targets at the same time (Cremer et al., 2008).  
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Figure 5. The chromosome territories and the chromosome territory-interchromatin 
compartment model. 

A. 24-Color 3D FISH technologies allowed the visualization of the 46 human chromosomes 
in the nucleus. From (Bolzer et al., 2005). 

B. Illustration of a partial interphase nucleus with differentially colored higher-ordered CTs 
(red and green) from neighboring CTs separated by the interchromatin compartment (IC) 
(white). Blue regions represent integrated IC channel network with nuclear speckles and 
bodies which expand between CTs. Gray regions represent perichromatin regions which 
locate at the periphery of the CTs. Narrow IC channels allow for the direct contact of loops 
from neighboring CTs (arrow, B). For the broad IC channel, the larger loop (arrow, C) 
expands along the perichromatin region. The arrow in D represents the direct contact between 
neighboring CTs. From (Albiez et al., 2006). 
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3D-FISH technique used to analyze the chromosome organization in different cell types, these 

studies indicated that the nuclear geometrical constrains influence CTs; CTs distribution also 

correlated with the genes density on the chromosome (Neusser et al., 2007). However, FISH 

cannot reveal the internal structure of the CTs and their interactions with neighboring CTs. 

Peter Lichter and colleagues defined the interchromatin compartment (IC) as the network-like 

space expanding mainly around CTs with little penetration into the CT interior (Zirbel et al., 

1993). The chromosome territory-interchromatin compartment (CT-IC) model assumes that 

IC expands between chromatin domains both in the interior and the periphery of CT (Albiez 

et al., 2006) (Figure 5B).  

These methods and models clearly show the arrangement of the CTs in the nucleus. However, 

we should note that FISH cannot be used for living cells, since cells must be fixed before 

hybridization with the probe (Rodriguez and Bjerling, 2013). In addition, limited by 

resolution, microscopy lacks the ability to highlight the sub-organization of the chromosomes 

inside the CTs. This limitation is addressed by the emergence of very different experimental 

approaches based on chromosome conformation capture (3C). 

1.2.4 Chromosome conformation 

1.2.4.1 The technical breakthrough of chromosome conformation capture: 3C-

technologies 

Over the last decade, the newly developed technique of chromosome conformation capture 

(3C) mapping the interactions between chromosomes, has significantly improved the 

observational resolution on the chromosomes organization (Dekker et al., 2002). For classical 

3C techniques, cells are first treated with formaldehyde to covalently link the chromatin 

segments that are in close spatial proximity. Then, crosslinked chromatin is digested by a 

restriction enzyme and the restriction fragments are ligated together to form unique hybrid 

DNA molecules. Finally, the DNA is purified by standard phenol/chloroform extraction and 

analyzed (Dekker et al., 2002) (Figure 6A). The 3C products represent the chromatin 

fragments that may be separated by large genomic distances or located on different 

chromosomes, but are close in 3D. Classical 3C techniques measure the contact frequency of 

the genomic loci in close proximity within the nucleus (Dekker et al., 2013; Montavon and 

Duboule, 2012). Most 3C analysis typically cover only ten to several hundreds Kb (Naumova 

et al., 2012). Several techniques have been developed based on 3C to increase the throughput. 
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3C-on-Chip or circular 3C (4C) techniques allows the detection of the genome-wide 

interactions of one selected locus after selective amplification of this region by inverse PCR 

performed on the 3C products (Simonis et al., 2006; van Steensel and Dekker, 2010). 3C 

carbon copy (5C) techniques can identify all interactions among multiple selected loci. The 

specific mixture of 5C oligonucleotides is used to anneal and ligate the 3C library; this step is 

used to generate the 5C library. Then the 5C library is amplified by PCR for analysis (Dostie 

et al., 2006). Hi-C techniques, collectively named 3C-technologies provide a view of 

chromatin interactions map through whole genome (Belton et al., 2012; Lieberman-Aiden et 

al., 2009).  

 

Figure 6. The outline of the chromosome conformation capture (3C) and 3C-based 
techniques.  

A. Overview of 3C and 3C-derived techniques strategy. Crosslinked chromatin is digested 
with a restriction enzyme and the restriction fragments are ligated together to form unique 
hybrid DNA molecules. Finally the ligated DNA is purified and analyzed. From (Montavon 
and Duboule, 2012).  

B. The analysis of the ligated DNA content produces the contact density map (left) and based 
on this, it is easy to correlate contact frequecy and the genomic distance (right). From (Wang 
et al., 2015). 
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3C and 3C-derived techniques allow to detect and quantify physical contacts between DNA 

segments (Figure 6B), yielding massive quantitative data about genome architecture at the 

level of large cell populations. 

1.2.4.2 Chromosome conformation according chromosome conformation capture 

methods 

These techniques can be applied to the spatial organization of entire genomes in organisms 

from bacteria to human (Lieberman-Aiden et al., 2009; Umbarger et al., 2011). In 2009, 

Lieberman-Aiden and colleagues used Hi-C to construct the contact maps of the human 

genome in interphase. The contact maps immediately showed some interesting features. 

Firstly, the contact probability between loci on one chromosome was always larger than the 

contact probability between loci on different chromosomes: this result confirms the existence 

of chromosome territories. Also, the small genes-rich chromosomes localized preferentially in 

the nuclear center by FISH studies, were found to interact preferentially with each other. 

Based on the contact frequencies, the authors suggested a ‘fractal globule’ model, a knot-free 

conformation that enables maximally dense packing while preserving the ability to easily fold 

and unfold any genomic region. This highly compact state would be formed by an 

unentangled polymer that would crumple into a series of small globules in a ‘beads-on-a-

string’ configuration (Lieberman-Aiden et al., 2009) (Figure 7). 

Further, study of the human cells chromosomes also show that long-range interactions are 

highly nonrandom and the same DNA fragments often interacting together (Botta et al., 2010). 

The longer range interactions drive the formation of compact globules along chromosomes 

(Sanyal et al., 2011). 5C and Hi-C maps also indicate that the mitotic chromosomes adopt a 

linearly-organized longitudinally compressed array of consecutive chromatin loops, these 

loops are irregular and would form a uniform density “melt” which is consistent with the EM 

and SAXS studies (Joti et al., 2012; Maeshima et al., 2010; Naumova et al., 2013). 
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Figure 7. The “fractal globule” model of the human chromosomes. Adapted from 
(Lieberman-Aiden et al., 2009). 

A. A fractal globule. The polymer chains are unknotted. Genomically close loci tend to 
remain close in 3D, leading to monochromatic blocks both on the surface and in cross-section 
(not shown). 

B. The genome architecture of the “fractal globule” model at three scales. At nuclear scale, 
chromosomes (blue, cyan, green) occupy distinct territories (chromosome territories). At 
chromosome scale, individual chromosomes weave back-and-forth between the open and 
closed chromatin compartments. At the megabase scale, the chromosome consists of a series 
of fractal globules. 

 

In general, the size of the genomic DNA, and the frequency of repeated DNA sequences, will 

impact the density of the contacts. Due to unambiguous assembly, repeated DNA sequences 

are excluded from the 3C analysis or should be studied independently (Cournac et al., 2016). 

For a similar amount of “reads”, the larger the genomic DNA, the lower resolution of the 

contact map (Lieberman-Aiden et al., 2009). Therefore, highest resolution using 3C-

technologies is achieved with small genomes and limited repeated DNA, such as the bacteria 

C. Caulobacter or the budding yeast S. Cerevisiae (Dekker et al., 2002; Umbarger et al., 

2011). Exploration of budding yeast genome dataset might help us to understand local, 
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specific interactions with higher resolution than data collected on the complex, repeated 

diploid genome of metazoan cells. 

1.2.4.3 Yeast genome to explore chromosome conformation 

The budding yeast Saccharomyces cerevisiae is an unicellular organism that can be grown in 

very well controlled chemical and physical conditions. S. cerevisiae is the first eukaryote with 

its entire genome sequenced (Goffeau et al., 1996). Within eucaryotic phylum, yeast belongs 

to the same supergroup than metazoan, the opisthokonts (Wainright et al., 1993). This 

classification is based on the existence of a common ancestor of fungi and animals. Note that 

the denomination "higher eukaryots", including two distantly related groups, multicellular 

plantae and metazoan, opposed to "lower eukaryots" as yeast, will not be used here. Each S. 

cerevisiae nucleus contains 16 relatively small chromosomes, comprising between 230 and 

1500 kb DNA, plus ~100-200 copies of ribosomal genes (rDNA) encompassing 1-2 Mb on 

the chromosome XII (Figure 8). The budding yeast has played a major role in understanding 

the eukaryotic chromosome organization in interphase (Taddei and Gasser, 2012). Despite its 

small size, budding yeast has become a unique model that recaptitulates some of the main 

features of metazoan chromosome, and ultimately help to understand the human biology 

(Ostergaard et al., 2000). 

In all eukaryots, chromosomes are separated from the cytoplasm by the nuclear envelope 

(NE). In budding yeast, NE remains closed during the entire life cycle, including mitosis. Past 

researches have uncovered few structural features characterizing the budding yeast nucleus in 

interphase: the spindle pole body (SPB), centromeres (CEN), telomeres (TEL), and the 

nucleolus. In interphase, the nucleolus is organized in a crescent-shaped structure adjacent to 

the nuclear envelope (NE) and contains quasi-exclusively genes coding ribosomal RNA 

(rDNA) present on the right arm of the chromosome XII. Diametrically opposed to the 

nucleolus, the SPB tethers the CEN during the entire cell cycle via microtubules to 

centromere-bound kinetochore complex (Bystricky et al., 2005a; Duan et al., 2010; Yang et 

al., 1989; Zimmer and Fabre, 2011). TEL are localized in clusters at the NE (Gotta et al., 

1996; Klein et al., 1992). These contraints result in chromosome arms extending from CEN 

toward the nucleolus and periphery, defining a Rabl-like conformation (Figure 8). 
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Figure 8. Schematic representation of the yeast nucleus. Chromosome arms are depicted in 
color lines and their centromeres (CEN) (yellow circle) are anchored to spindle pole body 
(SPB) (black circle) by microtubules (red lines). All of the telomeres (TEL) (green circle) are 
distributed near the nuclear envelope (NE) (double-black-line circle). The nucleolus (red 
crescent part) is organized around the rDNA (bold purple line). Nuclear pore complexes 
(NPCs) are embedded in the envelope to control the nucleo-cytoplasmic transport of 
molecules.  
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High resolution 5C contact map of budding yeast genome was obtained in 2010 by the Noble 

lab (Duan et al., 2010). A computational challenge raised by 3C-technology is to reconstruct 

spatial distances from observed contacts between genomic loci. To achieve this goal, it is 

required to plot the average measured contact frequencies as function of genomic distances 

(Figure 6B). Then the genomic distances were transformed into spatial distances by assuming 

a DNA compaction in chromatin of 130 bp/nm (based on 110-150 bp/nm range estimated 

previously) and implicitly assuming a straight fiber geometry (Bystricky et al., 2004; Duan et 

al., 2010). Duan et al. identified the intra- and inter-chromosomal interactions in yeast 

nucleus by combining 4C and largely parallel sequencing. The genome-wide contact 

frequencies were then used to reconstruct a 3D model of all 16 chromosomes in the nucleus 

(Figure 9A). This model reproduces the features of yeast chromosome organization (Rabl-

like). In addition, this model is compatible with preferential clustering of tranfer RNA (tRNA) 

coding genes in the nucleus (Duan et al., 2010). 

Julien Mozziconacci and co-workers also created one computationally effective algorithm to 

reconstruct the yeast genome organization in 3D based on the Hi-C data (the genome-wide 

contact map) (Lesne et al., 2014). Based on this algorithm, we could reconstruct the 3D 

structure of chromosomes in yeast which recapitulates known features of yeast genome 

organization such as strong CEN clustering, weaker TEL colocalization and the spatial 

segregation of long and short chromosomal arms (Figure 9B). In addition, the finding that 

contact frequency P(s) follows a power law decrease with genomic distance s characterized 

by an exponent close to -1 (P(s) ~ s-1.08) is in agreement with the crumple globule model 

(Wang et al., 2015). 

The advances of the C-technologies can help to reconstruct the chromosome organization 

based on the contact frequency between chromosome segments. However, because the contact 

frequency is an averaged frequency of a large cell population, a single structural model is not 

sufficient to reflect all the spatial features of the genome. It is increasingly clear that 

computational model of chromatin polymer is an indispendable complement for a better 

understanding of chromosome organization. 
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Figure 9. The chromosomes conformation in the S. cerevisiae. 

A. Based on 5C techniques to detect the intra- (left, Chromosome III) and inter-chromosomal 
(middle) interactions in the yeast one can calculate the three-dimensional conformation of the 
yeast genome (right). From (Duan et al., 2010). 

B. Hi-C insights on the structure of the S. cerevisiae chromosomes. Contacts map of the 16 
chromosomes as obtained by Hi-C, individual chromosomes are labeled with roman 
numbering. Direct 3D modeling is derived from the contacts map. From (Wang et al., 2015). 
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1.2.5 Computational model of yeast chromosome 

Since the chromosomes can be seen as long polymers, the study of chromosomes can 

capitalize on a large body of preexisting theoretical and computational works in statistical 

physics of polymers. Models based on these theories have the unique potential to offer 

predictive mechanistic insights into the architecture of chromosomes at a quantitative level. 

Several groups have recently developed independent computational models of budding yeast 

chromosome organization.  

 

Figure 10. The statistical constrained random encounter model. From (Tjong et al., 2012). 

 

Considering the physical tethering elements and volume exclusion effect of the genome, 

Tjong et al. introduced a constrained random encounter model (Figure 10) (Tjong et al., 2012). 

In this model, all chromosomes are modeled as random configurations and confined in the 

nucleus, all the centromeres (CEN) are attached to the spindle pole body (SPB) through 

microtubules, and all the telomeres (TEL) are located near the periphery. In addition, the 

nucleolus is inaccessible to chromosomes except for the region containing rDNA repeats. 

When the simulated chromatin excluded volume restraint is limited at 30 nm this model can 

recapitulate the contact frequency of the entire genome. Such modelisation favors the 

possibility of 30 nm chromatin fibers. This model simulates that the chromosome chains 

behave like random polymers with a persistence length between 47 and 72 nm which is 
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consistent with experiments. Note that because of the repeated nature of rDNA genes, this 

model does not explore the organization of the rDNA within the nucleolus. 

 

Figure 11. Computational model of the dynamic interphase yeast nucleus. From (Wong et 
al., 2012). 

A. Each chromosome is modeled as a self-avoiding polymer with jointed rigid segments. 

B. The rDNA segment on chromosome XII is modeled by thicker segments (pink) than the 
non-rDNA (other colors). 

C, D. A snapshot of the full model from different angle of views. 

E. The SPB and the 16 microtubules. 

 

To statistically predict the positioning of any locus in the nuclear space, Wong et al. presented 

a computational model of the dynamic chromosome organization in the interphase yeast 

nucleus. In this model, the 16 chromosomes of haploid yeast were modeled as self-avoiding 

chains consisting of jointed rigid segments with a persistence length of 60 nm and a 20 nm 
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diameter (Figure 11A). All of the chromosomes were enclosed by a 1 μm radius sphere 

representing the nuclear envelope (Figure 11C, D) and their motion was simulated with 

Brownian dynamics, while respecting topological constraints within and between chains. This 

model also added constraints for three specific DNA sequences: CEN, TEL and the rDNA. 

Each CEN was tethered by a single microtubule to the SPB (Figure 11E). All the 32 TEL 

were anchored to the nuclear envelope. Considering the intense transcriptional activity of the 

rDNA, which leads to a strong accumulation of RNA and proteins at this locus, the diameter 

of the rDNA segments was considered larger than the 20 nm diameter assumed elsewhere 

(Figure 11B). Chromosome XII which contains the rDNA segments was therefore modeled as 

a copolymer. 

This simple model accounted for most of the differences in average contact frequencies within 

and between individual chromosomes. It also performed well in predicting contact features at 

smaller genomic scales, down to roughly 50 kbp. 

To determine which forces drive the positioning and clustering of functionally related loci in 

yeast, Gehlen et al. developed a coarse grained computational model (Gehlen et al., 2012). In 

this model, the chromosomes were modeled as coarse grained polymer chains and numerous 

constraints were implemented by users. Assuming that chromatin may exists at different 

compacted states (euchromatin and heterochromatin), at different locations within the genome 

of an individual cell, this model employs two different models to represent compact (30 nm 

diameter) and open (10 nm diameter) chromatin fibers. Compact chromatin was modeled as 

30 nm fibers with a persistence length of 200 nm. Open chromatin was modeled as 10 nm 

fibers with a persistence length of 30 nm. Both types of chromatin fiber were used 

alternatively as part of the modeling of polymer chains in which 70% of the genome was 

compacted. This model allows to explore putative external constraints (nuclear envelope, 

tethering effects, and chromosome interactions).  

Contact maps generated by 3C-technologies provide without any doubt the highest resolution 

dataset to constrain possible simulation of genome organization in vivo. Computational 

models allow to explore forces and constraints driving the folding of the genome in interphase 

nucleus. However, contact maps are mostly based on population analysis of asynchronous cell 

culture. Moreover, the impossibility to visualize the chromatin in individual cell nuclei and 

the difficulties to convert contact frequency to physical distances should not be ignored. 

Microscope-based techniques, combined with labeling methods to detect loci position and 
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motion offer important new perspectives for imaging genome structure. In the next part, I will 

present microscope-based techniques to study the spatial organization of chromosomes. 

1.2.6 Gene position and gene territory 

Fluorescence microscopy can fast acquire data and target molecules of interest with specific 

labeling strategies; therefore it has become an essential tool for biological research in vivo 

(Han et al., 2013). Thanks to the fluorescent labeling of chromosome loci in living cells, 

advanced imaging techniques can also provide considerable amount of data describing the 

spatial organization of single gene loci on chromosomes (Marshall et al., 1997). Fluorescent 

labeling of DNA sequences in living cells is mostly performed using fluorescent repressor-

operator system (FROS) which combines the expression of a bacterial repressor fused to a 

fluorescent protein and the integration of an operator sequence as tandem arrays at a specific 

locus. A unique FROS tagged locus appears as a bright fluorescent spot in the nucleus 

(Loiodice et al., 2014; Meister et al., 2010) (Figure 12A).  

The spatial resolution in fluorescence microscopy, 200 nm in X-Y and about 500 nm in Z-axis, 

is a barrier for high-resolution simultaneous detection of a large number of single molecules 

(Nelson and Hess, 2014). However, when single fluorescent molecules are spatially separated 

by more than the resolution limit of fluorescent microscopy, localization of their mass centers 

is only limited by signal-to-noise ratio. Such high precision of localization can be achieved by 

fitting pixel intensities spatially with the characteristic Gaussian distribution of fluorescence 

around local maxima. Therefore detection of the centroid of individual fluorescent molecules 

allows tracking the target with a resolution not limited by the diffraction of light (Thompson 

et al., 2002).  
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Figure 12. Nucloc to study the gene position.  

A. The fluorescent repressor-operator system (FROS). Scale bar, 2 µm. 

B. The yeast locus and the nuclear pores labeled in green and the nucleolus labeled in red. 
Nucloc can automatically detect the locations of a locus (green sphere), nuclear pores (blue 
spheres), nucleolar centroid (red sphere) and an estimated nuclear envelope. It enables to 
define a cylindrical coordinates system with an oriented axis in which we describe the 
position of the locus by its distance from the nuclear center (R) and the angle from the axis 
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nuclear-nucleolar centroid (α). The angle φ is defined by the angle around this axis, and is 
independent of the distances between the locus and the nuclear or nucleolar centroids. Nucloc 
uses nuclear center as the first landmark and translates all nuclear centers to the origin, and 
then rotated them around the origin so that nucleolar centroids (secondary landmark) became 
aligned on the X-axis. Then in these coordinates, the locus positions were rotated around the 
central axis and into a single plane (φ=0; cylindrical projection) without loss of information. 
From this 2D distribution of points, we could estimate the probability densities that are color 
coded on a genemap. Scale bars, 1 μm. Adapted from (Berger et al., 2008). 

 

To analyze the spatial localization of a given locus in the yeast nucleus, Berger and colleagues 

created ‘Nucloc’ algorithm in which each cell nucleus of a population, determines the three 

dimensional position of a locus relative to the nuclear envelope, and the nuclear and nucleolar 

centers as landmarks (Berger et al., 2008). Automated detection allows high-throughput 

analysis of a large number of cells (>1000) automatically. The ‘Nucloc’ algorithm can create 

a high-resolution (30 nm) probability density map of subnuclear domains occupied by 

individual loci in a population of cells, thereby defining the domain in the nucleus in which a 

locus is confined: the ‘gene territory’ (Figure 12B) (Berger et al., 2008).  

The genemap of specific loci, as well as 3C-techniques, can recover yeast chromosome 

organization in space compatible with their known features. The chromosome XII in budding 

yeast carries the ribosomal DNA (rDNA) confined in the nucleolus. Our group’s previous 

work analyzed 15 loci (12 non-rDNA loci and 3 rDNA loci) along chromosome XII by 

‘Nucloc’. By comparing the maps, we could observe that loci around the CEN are attached to 

the SPB, at an opposite position of the nucleolus, the rDNA genes are clustered in the 

nucleolus, the TEL, are anchored to the NE. All these features are in agreement with the Rabl-

like configuration and the recent computational models (Figure 13) (Albert et al., 2013; Duan 

et al., 2010; Tjong et al., 2012; Wong et al., 2012). We also assessed whether chromosome 

XII folding could be predicted by nuclear models based on polymer physics (Wong et al., 

2012). The results showed that the measured median distance of loci on chromosome XII to 

the nuclear and nucleolar centers are compatible well with the model predictions (Figure 14 

A,B) (Wong et al., 2012). However, we also should note that the fit to the model prediction 

was poorer for genomic positions 450-1050 kb, from the nucleolus to the right TEL (Figure 

14 A, B).  
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Figure 13. The gene territories of 15 loci along chromosome XII.  

A. 15 FROS labeled loci along the chromosome XII.  

B. Spatial distributions of each locus. The dashed yellow circle, the red circle, and the small 
red dot depict the median NE, the median nucleolus and the median location of the nucleolar 
center, respectively. From (Albert et al., 2013). 

 

The gene territories can be remodeled during transcriptional activation. Based on this, we 

could study the gene motion during transcriptional activation. In glucose, the GAL1 gene is 

repressed and the gene positions indicate that the GAL1 gene concentrates in an intranuclear 

domain close to the nuclear center, whereas in galactose, GAL1 is actively transcribed and  

frequently re-localized to the nuclear periphery. This is consistent with the model where the 

on/off states of transcription correspond to two locations (Berger et al., 2008; Cabal et al., 

2006). Recently, imaging entire chromosome II revealed global shift to nuclear periphery in 
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different physiological conditions modifying the yeast transcriptome (Dultz et al., 2016). 

Peripheral recruitment of chromosome arms strongly argues for transcription-dependent 

anchoring point along a chromosome (Tjong et al., 2012). Therefore, tethering sites 

organizing chromosomes locally remain to be identified (Dultz et al., 2016). 

 

Figure 14. Positions of loci along the chromosome XII relative to the nuclear and 
nucleolar centers determined experimentally and predicted by computational modeling. 
From (Albert et al., 2013). 

A, B. The distance of the locus to the nuclear center (A) and to the nucleolar center (B) is 
plotted versus its genomic position. Yellow and red ellipsoids represent the nuclear envelope 
and the nucleolus, respectively. The median distance experimentally measured is shown with 
box plots. The median distance of chromosome XII loci to the nuclear center and to the 
centroid of the rDNA segments from a computational model of chromosome XII is shown 
with solid black lines. 
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Existing computational models are not sufficient to reveal all the features of the chromosome 

organization. Visualization by microscopy of the genomic loci positioning can be compared 

with prediction of computational model. However, our goal is not a description, but a physical 

understanding of the genomic folding process. We now need to understand the physical 

properties of the chromosome, which can be more directly using tracking of chromatin 

dynamics. 

1.2.7 Chromatin dynamics 

The chromatin can be seen as a complex polymer, consisting of a DNA chain and associated 

proteins. However, because of the complicated nuclear organization, study of chromatin 

dynamics is still a major biological challenge (Amitai and Holcman, 2013). The gene motion 

reflects the local biophysical properties of the chromatin. In this part, I will introduce the 

study of  chromatin motion in living cells. 

 

Figure 15. Tracking the gene motion in living cells. 

A. Based on the time-lapse fluorescent microscopy and advanced image analysis the position 
of the labeled loci can be detected (t1, t2, t3…). 

B. Mean square displacement (MSD) calculation and interpretation. From (Albert et al., 2012).  
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In a previous section (see section 1.2.6), we introduced the use of the FROS to track the 

position of single loci. By combining time-lapse fluorescent microscopy and advanced image 

analysis the motion of genes labeled by FROS can be quantified (Hajjoul et al., 2013) (Figure 

15A). The mean squared displacement (MSD) (Figure 15B) is the most common readout to 

analyze the motion of a fluorescent locus. The MSD is the average distance traveled by a 

locus after a given time lag. It provides a statistical response for trajectories driven by 

Brownian noise. .  

 

Figure 16. The MSD of three different diffusion models. 

 

The motion of one target can be recapitulated with three models: normal diffusion, sub-

diffusion and super-diffusion depending on the temporal power law dependence of the MSD 

response. Here, I will focus on two main models: normal diffusion model and sub-diffusion 

model, meaning that power-law of MSD is characterized by an exponent of 1 or lower than 1, 

respectively (Figure 16) (Gal et al., 2013).  

1.2.7.1 Normal diffusion and confined normal diffusion 

Ideally, isolated objects, influenced only by thermal fluctuations, can follow the normal 

diffusion principle. However, there is increasing evidence that the motion of chromatin in 

interphase nucleus is not approximated accurately using normal diffusion model because the 

chromosomes are confined in the nucleus by nucleus envelope (NE). When combining 

fluorescent microscopy and single-particle tracking techniques to analyze the motion of the 

chromatin in interphase with large time scale (~ 10 min), the researchers suggested that the 

chromatin segments can move freely within limited subregions of the nucleus (Marshall et al., 

1997).  
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Heun et al. used the same method to analyze the chromatin dynamics in yeast interphase 

nucleus at different cell cycle stages. In G1 phase, the chromatin can move fast in an energy-

dependent fashion. In S phase, its rapid movement is constrained through a mechanism 

dependent on active DNA replication. In addition, the telomeres and centromeres also confine 

the movement of the labeled loci in both G1 and S phases (Heun et al., 2001).  

1.2.7.2 Sub-diffusion motion 

With the improvement of the microscope and detection techniques, the limitation due to poor 

signal to noise ratio (SNR) is overcome, so accurate tracking of the position of fluorescent 

labeled loci is achieved. In 2006, Cabal and co-worker found a different behaviour than 

random movement at short time scale (< 90 s). The anomalous diffusion of the GAL1 fitted 

well with a sub-diffusion model with a power α ≈ 0.4-0.5. This kind of motion was observed 

in medium with glucose or galactose. In galactose, GAL genes are activated, no matter the 

locus in the center or at the periphery of the nucleus; they both follow the same motion model 

(Cabal et al., 2006). In 2009, Hajjoul et al. utilized a novel Lab-on-Chip technology to track 

the 3D motion of HM and MAT loci. The motion of HM locus confirmed the sub-diffusion 

model. Although the MAT locus moved with sub-diffusion in the nuclear center region, it 

moved with normal diffusion after 200 ms at the nuclear periphery (Hajjoul et al., 2009).  

Weber et al. analyzed the chromosome loci motion in live bacterial cells: the chromatin 

moved sub-diffusively with exponent ~0.4. The authors proposed that this model arises from 

relaxation of the Rouse model and the motion of the chromosomal loci are most consistent 

with fractional Langevin motion which rules out the random diffusion model (Weber et al., 

2010).  

1.2.7.3 Rouse polymer model 

Numerous properties can account for sub-diffusion motion. We propose one suitable model in 

order to allow a quantitative understanding of how chromosomes organize in space. 

The chromatin can be seen as a sequence of generic monomers. In the case of polymer loci, 

elastic interactions between neighboring monomers and long-range hydrodynamic 

interactions associated to solvent flux must be considered when the surrounding environment 

is diluted polymers solution (Teraoka and Cifra, 2002). Actually, in budding yeast, all of the 

16 chromosomes are space filling in the nucleus, but in addition, many substances are 
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dissolved in the nucleoplasm. So the nucleus can be seen as a highly concentration 

environment. Therefore the long-range hydrodynamic interactions associated to solvent flux 

can be neglected. As the ideal simple polymer model, Rouse model, assumes that the polymer 

chain is composed of beads connected by harmonic springs (Figure 17A). We could use 

Rouse model to study the chromosome organization. We will present novel experimental data 

fully compatible with this polymer model. 

 

Figure 17. The Rouse polymer model. 

A. The Rouse polymer model assumes that the polymer behaves as homogeneous series of 
beads connected by elastic springs. There is no volume exclusion in ideal Rouse polymer. 

B. The budding yeast chromatin dynamics can be well fitted by Rouse model with exponent 
~0.5. From (Hajjoul et al., 2013). 

 

Hajjoul et al. analyzed the motion of nine fluorescently labeled chromosome loci on 

chromosome III, IV, XII and XIV in budding yeast cell nuclei over an extended temporal 

range spanning more than four orders of magnitude (10-2-103 s). The results showed that the 

motion is characterized by sub-diffusive behavior and in agreement with the Rouse polymer 

model, the exponent of the power-law is ~0.5, which assumes that chromatin fiber behaves as 

homogeneous series of beads connected by elastic springs (Figure 17B). The Rouse regime is 

characteristic of polymers in crowded environments and is associated with compact 

exploration, implying that chromosome loci efficiently search for the nearby targets, which is 

consistent with the contact frequency results. The analysis of the amplitude of fluctuations by 

the Rouse model shows that the persistence length of chromatin in living yeast is ~5 nm 

which is very short compared to the dimensions of a single nucleosome. If taking volume 
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exclusion between monomers into account, the correct persistence length of chromatin is ~3 

nm which is comparable to the DNA diameter. All of these data indicate that the chromatin in 

yeast is highly flexible (Hajjoul et al., 2013). However, the very low persistence length 

measured, inconsistent with known features of chromatin, motivated an improved 

modelisation of chromatin in vivo (see the “Results” section). 

 

Figure 18. The chromatin dynamics and confinements vary along the length of the 
chromosome. From (Verdaasdonk et al., 2013). 

A. The motion of WT chromatin loci at different distances from the CEN. 

B. The confinement radius of WT chromatin loci at different distance from the CEN. 

 

CEN are clustered and attached to the SPB via microtubules, TEL are localized near the NE. 

Known attachment to the NE of TEL, and microtubules dependent anchoring of CEN modify 

their local properties. We know that the CEN and TEL are at the opposite poles of the 

chromosome arms. These physical tethering will also influence the chromatin dynamics and 

organization (Bystricky et al., 2005; Duan et al., 2010; Tjong et al., 2012). Kerry Bloom’s lab 

quantified the motion and confinement of the loci along the length of the chromosomes. They 

found that because of the tethering of the CEN, loci motion varies along the length of the 

chromosome (Figure 18). Detachment of loci from the tethering elements (CEN or TEL) 

increased the chromatin dynamics. They proposed a confined bead-spring chain tethered at 

both ends model: the chromosome can be seen as one confined Rouse chain tethered by CEN 

and TEL. Based on this model, reducing the nucleosomes density by depleting H3 would 

result in reduced persistence length (from 50 nm to 25 nm), which is consistent with the one 

experimentally observed (Kim et al., 2013; Verdaasdonk et al., 2013). 
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Albert and colleagues provided a detailed analysis of the dynamics of the budding yeast’s 

chromosome XII. They detected the motion of 15 loci along the entire Chr XII: 12 were non-

rDNA loci and 3 were rDNA sequences. They tracked the loci motion at different time 

intervals, 0.19s, 0.36s, 1s, 1.5s and 10s. The data indicated that the non-rDNA loci motions 

well fitted with the Rouse model with exponent of 0.5±0.07 even for the loci around the CEN 

and TEL. The movements of rDNA were slow compared with the non-rDNA loci and its 

motion did not fit with the Rouse model, maybe because it is constrained in the nucleolus. 

(Albert et al., 2013). 

A recent publication however challenged the relevance of the Rouse model by monitoring the 

motion in 3D of the GAL gene and control loci in the 0.5-5 s time domain (Backlund et al., 

2014). The authors employed the dual-color 3D Double-Helix Point Spread Function (DH-

PSF) microscopy to study the GAL locus dynamics. They indeed showed that the exponent of 

sub-diffusion was ~ 0.7, which is apparently not compatible with the Rouse regime. They 

suggested that this discrepancy was caused by the time scale they used, which was too short 

for the loci to sense their subnuclear confinement. The authors suggested that fractional 

Brownian motion (fBm) could account for this scaling exponent, though the underlying 

physics accounting for this behavior remains unclear. Another possibility is that the Rouse 

model remains valid and that the initial unexpected exponent is explained by the size of the 

labeled DNA detected by microscopy (see “Results” 1.2) (Wang et al., 2015). 

Furthermore, Judith Miné-Hattab and co-workers used ultra-fast microscopy and improved 

the analysis of chromatin dynamics in living S. cerevisiae. They found that the chromatin 

dynamics followed the sub-diffusion regime (the time scales range from 10 ms to few mins), 

and based on the MSD analysis of their results, we could easily found that the motion 

chromatin dynamics consitent with the Rouse model (Mine-Hattab et al., 2016). 

In summary, motion addresses the local biophysical properties of the chromatin, while 

position gives information about confinement and long-range nuclear organization (Huet et al., 

2014). Proper polymer model can help us to understand the chromosome organization. The 

Rouse polymer model has been proposed to be useful to explore biophysical properties of 

budding yeast chromosome (Albert et al., 2013; Hajjoul et al., 2013). However, the predictive 

value of this model in living cells remains to be fully explored. 
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1.3 Summary 

With development of techniques, it is possible to study chromosome organization with high-

resolution and high accuracy. 3C and 3C-derived techniques collectively called 3C-

technologies, can map the contacts between chromosome loci at different resolution scales 

allowing the exploration of the conformation of chromosomes (Duan et al., 2010; Lesne et al., 

2014). Computational models accurately recapitulating contact matrix data are also consistent 

with chromosome organization. However, most 3C-technologies are intrinsically averaging 

methods and cannot assess individual cell nuclei. Individual contact maps are now starting to 

be developed (Nagano et al., 2013). Further, the difficulties to convert contact frequencies to 

physical distances should not be ignored. FROS and fluorescent microscopy allow to detect 

and visualize the position of specific loci on the chromosome (Berger et al., 2008). FROS 

combines fast time-lapse imaging techniques allowes to track the motion of specific loci,  and 

appears a reliable method to explore the physical properties of the chromosome (Hajjoul et al., 

2013; Marshall et al., 1997; Saxton, 1994). Suitable polymer models can help to understand 

the physical properties of the chromosome. The past two decades research on the chromatin 

dynamics have revealed the Rouse model as the best simple model to recapitulate the physical 

properties of the chromosome (Table 1). So, in the first part of this my PhD project, I studied 

the chromatin dynamics with the Rouse model. We should also note that chromosomes are all 

space-filling in the nucleus and the nuclear organization and nuclear shape has significant 

impact on the chromosome organization; therefore I was also interested in the study of the 

nuclear shape and size. (see part 2). 

Table 1. The study of chromatin dynamics. 

Study MSD response Interpretation 

Marshall et al. 1997 1 Confined random motion 

Cabal et al. 2006 0.4-0.5 Sub-diffusion 

Hajjoul et al. 2009 0.52 Sub- diffusion 

Weber et al. 2010 0.4 Fractional Langevin motion 

Hajjoul et al. 2013 ~0.5 Rouse model 

Verdaasdonk et al. 2013  Double-tethered Rouse model 

Albert et al. 2013 0.5±0.07 Rouse model 

Backlund et al. 2014 0.7 Fractional Brownian motion 

Wang et al. 2015 0.7 and 0.5 Two regimes of Rouse model 
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2. Nuclear shape and size 

In budding yeast, the chromosomes are ‘space filling polymers’. The chromosome 

organization in space has significant links with the nuclear shape and organization. The 

nuclear shape and size vary along cell cycle and are different in different cell types; they are 

likely to have an important impact on nuclear and chromosome organization. Therefore, it is 

important to be able to determine the nuclear shape and size accurately to further explore the 

relations between the nuclear geometry and the chromosomes organization. In this section, I 

will focus on the study of the nuclear shape and size in budding yeast. 

 

2.1 The nuclear organization 

As described before (see section 1.2.4.3), there are few structural features characterizing the 

budding yeast nucleus in interphase: the spindle pole body (SPB), centromeres (CEN), 

telomeres (TEL), and the nucleolus. In addition, unlike mammalian cells nucleus, there is no 

nuclear lamina on the interior of the NE. Nuclear pore complexes (NPCs) are embedded in the 

nuclear envelope to form channels that regulate the transport of macromolecules (Grandi et al., 

1995). The alteration of the nuclear organization will impact the chromosome organization. 

2.1.1 The spindle pole body 

Microtubules (MTs) are tubular polymers composed of two proteins, α- and β-tubulin, which 

are very important in a great number of cellular processes. The number, length, distribution 

and polarity of MTs are largely controlled by microtubule-organizing centers (MTOCs). 

Electron microscopy (EM) visualized two structures as important MTOCs, the centrosome in 

human cells and the SPB in yeast. Studies have shown that in both centrosome and SPB, γ-

tubulin was considered to be the main microtubule “nucleator” (Luders and Stearns, 2007). 

In budding yeast, SPB as the MTOC anchors the nuclear and the cytoplasmic MTs (Winey 

and Byers, 1993) (Figure 19A). The SPB is a cylindrical organelle that contains three plaques: 

an outer plaque that faces the cytoplasm and is associated with cytoplasmic MTs, an inner 

plaque that faces the nucleoplasm and is associated with nuclear MTs and a central plaque 

that spans the nuclear envelope (Jaspersen and Winey, 2004). The cytoplasmic MTs are 

important for the nuclear positioning in the cell. The nuclear MTs are essential for SPB and 

chromosomes segregation (Knop et al., 1999).  
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Figure 19. The structure and organization of the spindle pole body (SPB).  

A. Electron micrography of a budding yeast nucleus. SPB is embedded in the nuclear 
envelope (white arrow) and NPCs are represented by asterisks. The white and black 
arrowheads represent the nuclear and cytoplasmic microtubules respectively. Scale bar, 0.2 
μm. From (Jaspersen and Ghosh, 2012). 

B. The organization of the SPB along the cell cycle. Adapted from (Winey and O'Toole, 
2001). 

 

The SPB is dynamic and plays a key role in the cell division. In G1 phase, there is a single 

SPB with nuclear and cytoplasmic MTs and the SPB positioned opposite to the nucleolus 

(Figure 19A). The attachement of the CEN to the SPB contributes to the Rabl-like 

configuration of chromosomes. At the end of G1 phase, the SPB starts to duplicate. After the 

bud formation, the nucleus enters S phase, SPBs separate and the old SPB is segregated to the 

bud and the new SPB stays in the mother’s nucleus; the microtubules between the two 

separated SPBs form a bipolar mitotic spindle (Yoder et al., 2003). During mitosis, the 

spindle elongates with the nucleus and enters the bud. At anaphase, the task of the spindle is 

to ensure that the chromatids correctly distribute into the mother’s and daughter’s nuclei after 

division (McIntosh and O'Toole, 1999; Osborne et al., 1994) (Figure 19B). SPB duplication 

must be controled because reduplication of SPB can result in the formation of a multipolar 

spindle and lead to chromosomes mis-segregation (Simmons Kovacs et al., 2008). 

Segregation of the replicated genome during cell division requires the chromosomes CEN to 

link with the SPB through MTs. This process is critical, because incorrect attachments lead to 
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mitotic errors that result in genomic instabilities (Bertalan et al., 2014; Cheeseman and Desai, 

2008).  

As the two complexes directly embedded into the NE throughout the cell cycle, SPB and 

NPCs, also have some links. Niepel et al. found that Mlp2p, a nuclear pore-associated protein, 

binds directly to the core components of the SPB and its deletion will directly impact the cell 

division (Niepel et al., 2005). SPB structure is not static and it is remodeled in two ways: by 

growth, in which new components are added, and by exchange, in which old components are 

replaced by new components. Greenland and co-workers found that the nucleoporine Nup60 

is required for SPB growth during cell cycle (Greenland et al., 2010). In addition, our results 

also show that the NPCs are concentrated around SPB (see “Results” part). 

2.1.2 Telomeres are distributed at the nuclear periphery 

The chromosomes in S. cerevisiae are tethered by CEN and TEL. TEL are portion of the 

DNA that localized at the chromosomes ends and maintain the genome stability (Louis, 1995; 

Zakian, 1996). The distribution of the TEL will also impact the chromosomes organization in 

the nuclear compartment. 

There is evidence that TEL cluster at the nuclear periphery; the 32 telomeres of the 16 yeast 

chromosomes are detected in fluorescent microscopy as 3 to 6 foci (Gotta et al., 1996). 

Proteins at the nuclear periphery and on the inner nuclear membrane (INM) contribute to this 

tethering. The anchoring of the TEL to the nuclear periphery requires at least two nuclear 

envelope proteins, Mps3 and Esc1 (Kupiec, 2014). Mps3 localized on the INM and is 

necessary for TEL association to the nuclear pheriphery during S phase (Bupp et al., 2007). 

Mps3 is a SUN-domains protein (Jaspersen et al., 2006). An emerging theme shows that 

SUN-domain proteins, which are integral membrane proteins of the inner nuclear membrane, 

bind to the KASH-domain proteins located at the outer nuclear membrane. Outer nuclear 

membrane KASH domain proteins and inner nuclear membrane SUN domain proteins 

interact to form the core of the LINC complex and connect nucleus to the cytoskeleton (Sosa 

et al., 2012). Esc1, localized on the INM, binds to Sir4 and Yku80 which are two components 

required for the TEL association with nuclear perphery (Gotta et al., 1996; Taddei et al., 

2004). Researchers also found that the deletion of the genes encoding yKu70p or its partner 

yKu80p altered the positioning of telomeric DNA in the yeast nucleus (Laroche et al., 1998).  
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INM proteins are organizing interactions between chromatin and NE. The change of the 

nuclear shape and size will influence the structure of the nuclear periphery which impacts the 

localization of the TEL.  

2.1.3 Nucleolus-the “ribosomes factory” 

The nucleoli are specific nuclear domains present in all eukaryotic cells. In budding yeast, the 

nucleolus, a membraneless nuclear subdomain where rDNA clusters, is confined in one 

domain occupying about one-third of the nuclear volume as a crescent-shaped structure 

(Melese and Xue, 1995; Thiry and Lafontaine, 2005) (Figure 20A). The nucleolus consists of 

three sub-structures defined on the basis of their ultrastructural morphology: the fibrillar 

centers (FCs), the dense fibrillar component (DFC) and the granular component (GC). The 

FCs are roundish structures composed by thin and loosely distributed fibrils, the DFC is 

constitued of tightly packed fibrils which surround and are associated to the FCs and extend 

as a network in the nucleolar volume, the GC is composed of granules with a diameter of 15-

20 nm and fill the rest of the nucleolar volume (Figure 20A). FCs and DFC altogether are so 

embedded in the GC. The position where the rDNA transcription occurs is still debated: some 

experiments indicate that rDNA transcription occurs in the FC and some researchers found 

that it likely occurs at the border between the FCs and DFC (Raska et al., 2004; Thiry et al., 

2000; Trumtel et al., 2000). In the DFC, the pre-rRNA accumulate and their maturation leads 

to the formation of 18S, 5.8S and 28S rRNA, components of the mature ribosomes (Raska et 

al., 2004). Late processing of pre-rRNA occurs in GC where preribosomal subunits assemble 

(Grob and McStay, 2014; Wang et al., 2013). 

The three nucleolar subdomains in human cells were also described in the yeast nucleus 

(Albert et al., 2012; Leger-Silvestre et al., 1999). However, another model of the budding 

yeast nucleolus containing only two compartments, a network of fibrillar strands (F) and 

granules (G), was proposed (Thiry and Lafontaine, 2005) (Figure 20B). As there is only one 

fibrillar component in which rRNA synthesis takes place, the F compartment has features of 

both FCs and DFC. According to this model, the F compartment specialized into FCs and 

DFC during the evolution. In bipartite nucleoli, the size of the rDNA transcription unit is 

larger or similar compared to the size of the intergenic spacers. In species containing tripartite 

nucleoli, the intergenic regions are always much larger than the transcription units 

(Hernandez-Verdun et al., 2010; Thiry and Lafontaine, 2005). 
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Figure 20. The nucleolar organization. 

A. Transmission electron micrography of the yeast nucleus. The nucleolus is tripartite. From 
(Albert et al., 2012). 

B. A wild-type yeast nucleolus with fibrillar strands and granules. From (Hernandez-Verdun 
et al., 2010). 

C. The organization of the rDNA in the nucleolus. From (Eckert-Boulet and Lisby, 2009). 

D. The mutant L1494 (rdnΔ, pRDN-wt) nuclear structure. From (Trumtel et al., 2000). 
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E. The nucleolar structure in proliferation and quiescent cells. The nucleololus was labeled 
with red color, the microtubules array was labeled with green color. From (Laporte et al., 
2013). 

F. The nucleolar structure of MATa cells (LPY2686) after treatment with α factor. Cells are 
stained with affinity purified antibodies against Sir3p (green) to identify the telomeres and 
against Nop1p (red) to identify the nucleolus. From (Stone et al., 2000). 

Growing cells require continuous rRNA synthesis to ensure that subsequent generations 

contain the ribosome supply necessary for protein synthesis. Historically, the nucleolus was 

considered as a “ribosome factory”: ribosomes biogenesis is a process that includes 

transcribing the rDNA, processing the pre-rRNA transcripts and assembling the pre-rRNA 

with ribosomal proteins (McStay and Grummt, 2008; Melese and Xue, 1995). The budding 

yeast has 100-200 rDNA units tandemly located on chromosome XII, each unit of rDNA 

contains two rRNA genes, 35S and 5S, and two intergenic spacers (IGS1 and IGS2) that 

promote repeats integrity (Eckert-Boulet and Lisby, 2009; Mekhail et al., 2008) (Figure 21C). 

Only half of the rDNA copies are actively transcribed in S. cerevisiae (Dammann et al., 1993). 

It has been proved that the nucleolar protein complex RENT (regulator of nucleolar silencing 

and telophase exit), composed of Cdc14, Net1, Sir2 and Nan1, is linked to the ability to 

induce rDNA silencing (Cockell and Gasser, 1999). In addition, Fob1 gene is located on the 

chromosome IV. Fob1p can associate with the replication fork barrier (RFB), thereby 

inhibiting the replication (Kobayashi, 2003; Kobayashi and Horiuchi, 1996).  

The efficiency of rDNA transcription plays an important role in the nucleolar morphology. 

The wild type yeast strains in interphase display a unique crescent shaped nucleolus close to 

the nuclear envelope and occupying one-third of the nucleus (Figure 20A). Trumtel and co-

workers deleted most of the rDNA repeats and replaced them by an equivalent number of 

plasmids bearing a single rDNA repeat: the efficiency of rDNA transcription in this strain is 

lower than in wild type. In this mutant, the nucleolar morphology is significantly changed and 

the nucleolus almost occupies half of the nucleus and spread along the NE (R. et al., 1997; 

Trumtel et al., 2000) (Figure 20D).  

Stress conditions also can influence the nucleolar structure. In quiescent cells, the structure 

and the position of the nucleolus are changed (Laporte et al., 2013) (Figure 20E). α factor, a 

mating pheromone, also triggers major changes in gene expression and cellular architecture 

that are necessary for the mating process. Stone and colleagues found that, when one uses α 

factor to block the MATa strains into G1 phase, the nucleolus lost its crescent shape and 
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became bigger (Stone et al., 2000) (Figure 20F). Note that for different cell types, cell cycle 

stages and culture conditions, the nucleolus also has different shape and size (Dundr et al., 

2000; Leung and Lamond, 2003).  

The nucleolus plays a key role in the genome organization. The nucleolus excludes other 

genetic loci from the region it occupies. Decrease of the nucleolar volume results in the 

decrease of the confinement of the nucleoplasm (Therizols et al., 2010). Therefore, genome 

structure and the nucleolar organization are intimately connected, and we are just starting to 

explore those relationships. 

2.1.4 Nuclear pore complexes 

In metazoan cells, the NE consists of a double membrane, nuclear pore complexes (NPCs) 

and the lamina. The nuclear lamina is a proteinaceous layer found at the interface between 

chromatin and the inner nuclear membrane (INM). Nuclear lamins from the group of the 

intermediate filaments of cytoskeleton were initially identified as the exclusively components 

of the lamina. However, experimental evidence indicates that the nuclear lamins are also 

found in the nucleoplasm. The nuclear lamina plays a key role in the NE assembly, including 

the membranes and NPCs. In addition, the lamins and lamin-associated proteins are also 

involved in DNA replication, transcription and apoptosis (Goldman et al., 2002; Lopez-Soler 

et al., 2001; Stuurman et al., 1998). 

There is no nuclear lamina in the budding yeast nuclei,  and the large multiprotein structures 

known as the NPCs penetrate the NE (D'Angelo and Hetzer, 2008). The NPCs are embedded 

in the NE along entire cell cycle, and in budding yeast, each nucleus contains 65~182 NPCs 

distributed over the whole NE. So NPCs are good landmarks to determine the yeast nuclear 

shape and size (Berger et al., 2008). NPCs are the central complex that controls the 

“communication” between the nucleoplasm and the cytoplasm. Small molecules, such as 

water, ions and sugars, can freely diffuse through the NPCs. However, proteins and RNAs are 

highly selective to transport (Corbett and Silver, 1997; Wente and Rout, 2010). The NPC is an 

eightfold-symmetrical structure comprising a NE-embedded scaffold that surrounds a central 

transport channel and two rings – the cytoplasmic and nuclear rings – to which eight filaments 

are attached. Whereas the cytoplasmic filaments have loose ends, the nuclear filaments are 

joined in a distal ring, forming a structure known as the “nuclear basket” (D'Angelo and 

Hetzer, 2008; Ryan and Wente, 2000) (Figure 21A).  
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Figure 21. Overall structure of  Nuclear Pore Complex (NPC). 

A. Overview of a NPC. The NPC embedded in the double membrane surrounding the nucleus 
of eukaryotic cells. Adapted from (Schwartz, 2016). 

B. The position of the nucleoporins in the NPC. Nucleoporins from yeast and metazoan are 
listed and color-matched according to their approximate positions within the NPC. From 
(Knockenhauer and Schwartz, 2016). 
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The substructures of NPC are comprised of ~30 subunits, termed as nucleoporins (Nups) 

(Figure 21B). Most Nups are symmetrically distributed on the nuclear and cytoplasmic faces. 

However, a small number of Nups appear to be biased to one side of the NPCs rather than 

present on both faces. Nup1p, Nup2p and Nup60p localize only to the distal nucleoplasmic 

face of the NPC and likely form the nuclear basket. Nup159p, Nup42p and Nup82p are found 

only on the cytoplasmic face (Dilworth et al., 2001; Rout et al., 2000). With the improvement 

of the technology, the study of Nups organization in the budding yeast is facilitated, and the 

measurement of radial distance of two Nups in the NPC is possible; typically, distance 

between Nup159p and Nup1p is ~45 nm (Alber et al., 2007). 

The yeast S. cerevisiae lacks lamins, but NPCs and INM proteins have been proposed to play 

a role in chromatin organization (Taddei and Gasser, 2006). Actually, the NPCs components, 

Nups, are connected to the chromosomes and regulate the expression of certain genes (Ishii et 

al., 2002; Takagi and Imamoto, 2014). Casolari’s research revealed that most Nups 

preferentially associate with a subset of highly transcribed genes. They also showed that 

transcriptional activation of GAL genes results in their association with the Nups (Casolari et 

al., 2004). The research of Cabal et al. also showed that after their activation, the GAL genes 

relocated to the nuclear periphery (Cabal et al., 2006). Recent researches also proved that the 

release of Ulp1, a peripheral NPC protein, increases the kinetics of GAL1 de-repression; the 

Ulp1 modulates the sumoylation state of Tup1 and Ssn6, two regulators of glucose-repressed 

genes (Bonnet et al., 2015; Jani et al., 2014; Texari et al., 2013). Some other genes, such as 

HXK1, INO1, TSA2, HSP104, SUC2 and MFA2, also were proved recruited to the nuclear 

periphery from the nucleoplasm upon their transcriptional activation (Brickner and Walter, 

2004; Burns and Wente, 2014; Taddei et al., 2006). 

Therefore, the NPC is not only the gate to control the transport of the molecules between 

nucleoplasm and cytoplasm, but also participates in regulation of genes expression.  

2.2 Plasticity of nuclear envelope and nuclear size 

In budding yeast, alterations of the nuclear shape and size have important impact on the 

nuclear and chromosome organizations. In fact, the nuclear shape and size in vivo are 

dynamic. 

Along the cell cycle, the nucleus adopts different morphologies and sizes. In G1/S phase, the 

nucleus is often described as a sphere; this structure is clearly established when yeast are 
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growing in rich medium containing glucose (Figure 22A). Yeh et al. examined the nucleus 

with high-resolution using differential interference contrast (DIC) microscopy. The results 

indicate that the nucleus is more or less spherical (Yeh et al., 1995).After sample-preserving 

fixation, such as high-pressure cryo-fixation followed by cryo-substitution, Transmission 

Electron Microscopy (TEM) analysis of ultra-thin (60-80 nm) sections of entire cells showed 

a smooth double membrane envelope with circular or ellipsoidal contours. When performed 

on ultra-thin serial sections of an entire nucleus, TEM became directly informative of the 

nuclear shape and size in 3D. This technique also showed that the yeast nucleus in interphase 

undergoes a two-fold increase in volume from G1 to S phase (Winey et al., 1997). Jorgensen 

et al. confirmed this initial measurement and they also found that the size of the nucleus 

increases with the cells growth: the nuclear volume is proportional with the cell volume, with 

the nuclear size ~7% of the cell size (Jorgensen et al., 2007). The “Nucloc” program created 

by Berger et al. to analyze the “genes territories” in the nucleus can fit the NE based on the 

detection of labeled NPC (see part 1.2.6 ); the results of this approach showed that the median 

budding yeast nucleus in interphase can be approximated as a sphere of ~1µm radius.The 

budding yeast undergoes “closed mitosis”, where the nuclear envelope remains intact 

throughout the cell cycle. Due to a closed mitosis and the bud-neck constriction, the nucleus 

adopts a characteristic hourglass shape in G2/M phase. Koning and Wright also observed 

heart-shaped nucleus in mitosis (Koning et al., 1993). The division process is asymmetric: the 

division results in the mother cell’s nucleus being one half larger than the daughter cell’s 

nucleus (Heun et al., 2001) (Figure 22A). After cell division, the nucleus resumed its usually 

spherical shape. 

The carbon source has significant impact on the nuclear growth and size (Jorgensen et al., 

2007). Electron microsocpy (EM) revealed that there is a significant decrease (~17%) in the 

nuclear size when cells were cultured from glucose to raffinose. Galactose just decreases the 

nuclear size a little compare with glucose. When the carbon source was replaced by ethanol, 

cell growth was strongly impaired and the nucleus appeared much smaller; so the researchers 

also use ethanol to arrest the nucleus into G1 (Jorgensen et al., 2007). After  carbon source 

exhaustion, the cells enter quiescence. It was shown that for short time starvation, the nucleus 

just became smaller; for long time starvation, the nucleus lost its sphericity (Laporte et al., 

2013). 
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Figure 22. Nuclear shape is dynamic.  

A. The nuclear shape and organization along the cell cycle. Adapted from (Albert et al., 2012). 

B. The nuclear morphology constrains the diffusion of the nucleoplasmic components. From 
(Gehlen et al., 2011). 

C. The nucleus of spo7∆ mutant prefers to extend along the nucleolus direction. From 
(Webster et al., 2010). 

D. In mitotic arrested cells, the nuclear envelope forms a large flare juxtaposed to the 
nucleolus. From (Vjestica and Oliferenko, 2012).  
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There is evidence that the NE geometry during the mitotic division in budding yeast 

constrains the diffusion of the nucleoplasmic components into the daughter nucleus. Ace2 is a 

transcription factor that activates the daughter-specific transcriptional program. In anaphase, 

before cytokinesis, the nucleus adopts an asymmetric dumbbell shape which leads to the 

asymmetrical segregation of the Ace2, and only a restricted exchange of Ace2 was observed 

for the nucleoplasmic proteins between the mother and the daughter nuclei (Boettcher et al., 

2012). Gehlen’s work also suggested that the dividing yeast nuclear morphology and the 

length of mitosis significantly restrict the diffusion of episomes into the daughter nuclei 

(Gehlen et al., 2011) (Figure 22B).  

The NE shape can influence the distribution of the proteins at the nuclear periphery, and in 

turn, some proteins at nuclear periphery also can modify the shape of the yeast nucleus. The 

Esc1p localized to the periphery of the nucleoplasm, can anchor chromatin and affect genes 

transcription. Overexpression of Esc1 leads to NE extension into the cytoplasm. This 

extension does not happen in the daughter nucleus because of the septin filaments at the bud 

neck that restrict transfer of proteins from the mother’s nucleus to the daughter’s one. The 

increase of the Mlp1 protein localized to the nuclear periphery, is toxic for the cells. However, 

the deletion of Esc1p or Mlp1p does not seem to influence nuclear shape (Hattier et al., 2007).  

There are more and more evidences indicating that in most mutants altering nuclear shape, the 

NE preferentially elongates at the nucleolar side. The arrest of cells in  G1 leads to a dumbbell 

shape nucleus in which the nucleolus lost its crescent shape and localizes at one lobe of the 

dumbbell (Stone et al., 2000). Polo kinase Cdc5 is known to be required for NE expansion at 

mitotic onset. The inactivation of the Cdc5 delays the mitotis, and the NE expansion 

preferentially takes place at the nucleolar side (Arnone et al., 2013; Walters et al., 2014). 

Deletion of the phospholipid biosynthesis inhibitor Spo7 also leads to a single nuclear 

envelope ‘flare’ that elongate the NE adjacent to the nucleolus (Figure 22C) (Webster et al., 

2010). The delay or arrest of the mitotic process also provokes  nuclear extension around the 

nucleolus which possibly can avoid the disruption of intranuclear organization (Vjestica and 

Oliferenko, 2012; Witkin et al., 2012) (Figure 22D). 

In summary, the nuclear shape and size have a high plasticity. To explore possible link 

between genome and nuclear shape and size, accurate determination of the 3D nuclear 

morphology is instrumental. 
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2.3 The techniques used to analyze the nuclear shape and size 

By far, there are many different techniques that have been developed to determine the nuclear 

geometry and size: the electron microscopy (EM) derived techniques, the tomography-based 

techniques and the fluorescent microscopy techniques. 

2.3.1 EM and EM-based techniques 

Electron microscopy (EM) is the most common used technique to observe the nuclear 

structure. Electron microscope uses a beam of accelerated electrons as a source of 

illumination providing a high resolution, such as conventional transmission electron 

microscopy (TEM) with ~1 nm resolution. Since long, using TEM, one can observe thin 

sections of nuclei from chemically fixed or cryofixed cells. For conventional fixation methods, 

the cells are fixed by chemicals which can alter the nuclear morphology (Figure 23A). Cryo-

fixation is a physical fixation technique that reduces fixation artifact and therefore preserve 

the nuclear ultrastructure (Figure 23B) (Trumtel et al., 2000). After cryo-fixation, following 

cryo-substitution and resin embedding to prepare the ultra-thin sections are also source of 

artifacts. Morover, the analysis of the ultrathin sections (50-100 nm) only allows the 

measurement of nuclear shape and size in 2D. To estimate the nuclear size in 3D from the 2D 

results, one has to do statistical analysis of many sections which is technical challenging. In 

addition, this method is generally biased due to the  random sectioning orientation. 

 

Figure 23. Nuclear morphology of yeast L1489 prepared by cryo-fixation and chemical 
fixation techniques, respectively. From (Trumtel et al., 2000). 

A. Cryo-fixation better preserves the nuclear structure, even the sub-structures of the nucleus 
(the nucleolar structure).  
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B. Chemical fixation alters the nuclear structure. While the sub-structures of the nucleolus, 
FC, DFC and GC, still can be observed, the nuclear envelope appears clearly “broken” and 
the general shape of the nuclear section is modified. Scale bars, 300 nm. 

 

One way to detect the nuclear shape and size in 3D based on the EM technique is to analyze 

serial sections of an entire nucleus (Winey et al., 1997; Yamaguchi et al., 2011). Ultra-thin 

serial sections (60 nm thick) of cryofixed cells are harvested and analysed in order. For each 

section, the NE position is registred in order to reconstruct the 3D NE (Figure 24) (Winey et 

al., 1997). Winey et al. used this method to detect the nuclear shape and size in different cell 

cycle phases of budding yeast cells. In G1 and S phase, the nucleus is spherical and the 

average size increases ~21%. In early mitosis, the nuclear size is almost twice bigger than in 

G1 phase. In mitosis, the nucleus adopts an hour-glass shape. Although the resolution of EM 

is very high, however, for each single nucleus, there is no guarantee that all the serial sections 

are intact; this technique is complex and time-consuming. For each cell cycle stage, Winey et 

al. just acquired ~10 nuclei, and it is difficult to acquire the nucleus in mitosis because of the  

random sectioning orientation. 

 

Figure 24. 3D reconstruction of the S. cerevisiae nuclear envelope analyzed by TEM. 
From (Winey et al., 1997). 

A. Micrography of an ultra-thin section (from a serie) of a yeast nucleus analyzed by TEM.. 
Scale bar, 0.5 μm. 

B. Detection of the positions of NPC and NE in each section, red circles represent the NPCs, 
green curve represents the NE.  

C. Combination of all the NE contours and NPCs positions from serial sections to reconstruct 
the 3D NE. 
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Figure 25. 3D reconstruction of the yeast cells by SBF-SEM technology. From (Miyazaki 
et al., 2014). 

A. Acquisition of  the images of the serial block-faces (XY plane, XZ plane and YZ plane). 
Scale bar, 5 μm. 

B. Reconstruction of the 3D morphology of the yeast cell based on these block-face images. 
The outer semitransparent surface is the cell surface. The red volume represents the nucleus. 
The blue volume represents the vacuoles. The mitochondria are colored green. Scale bar, 5 
μm. 

C. Reconstruction of the 3D morphology of several yeast cells simultaneously. Scale bar, 5 
μm. 
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Miyazaki et al. proposed one technique, serial block-face scanning electron microscopy 

(SBF-SEM), to study the fine structures and morphological changes at nanometer scales in 

yeast cells. The sample is typically fixed with aldehyde, staining with heavy metals and then 

embedding in a resin. The surface of the block of resin-embedded sample was imaged by 

detection of back-scattered electrons. Following acquisition, the ultramicrotome which was 

mounted inside the vacuum chamber of a SEM was used to cut thin sections (typically less 

than 30 nm) from the face of the block. After the section was cut, the sample block was raised 

back to the focal plane and imaged again (Figure 25A). These serial block-face images allow 

to reconstruct the 3D morphology of the cells (Figure 25B) (Miyazaki et al., 2014). This 

technique also allows to visualize the organelle structures in cells, such as mitochondria, 

vacuoles, the ER and the nucleus, which can help us to study the cell processes. 

SBF-SEM is a promising tool to detect several cells simultaneously. This is because SBF-

SEM allows the examination of large volumes, such as 21×21×50 μm3, so one can segment 

several cells from a single reconstructed volume (Figure 25C). However, the sample number 

is still not enough to get robust statistical data. Furthermore, the preparation of the samples is 

still based on the fixation and section techniques, which maybe altere geometry of the cells 

compared to living yeast cells.  

In conclusion, EM and EM-based techniques require fixation and sectioning steps of the 

samples which may influence the nuclear shape. The integrity of the serial sections which is 

essential for reconstruction of the 3D morphology of a nucleus is not guaranteed. Moreoevr, 

these approaches are extremely long, tedious and time-consuming which prevent to acquire 

enough data to perform robust statistical analysis. Finally, these techniques are not compatible 

with in vivo acquirement. 

2.3.2 Tomography techniques 

To eliminate the influence of the section on the nuclear morphology, X-ray tomography and 

high-voltage scanning transmission electron tomography are two promising techniques that 

can be used to reconstruct the 3D geometry of yeast cells. 

Tomography is a familiar tool for obtaining 3D information in diagnostic medical imaging. A. 

Larabell and A. Le Gros used the similar technique, X-ray tomography, to reconstruct the 3D 

information of the cells (Larabell and Le Gros, 2004). Before imaging, the cells are loaded 

into a 10-μm-diameter capillary from the beveled tip end of the capillary. The cells are rapidly 
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frozen with a blast of liquid-nitrogen-cooled Helium gas, placed in the X-ray microscope and 

maintained at cryogenic temperature throughout the data collection process. Then 

transmission X-ray microscope is used to collect 45 projection images at 4° intervals through 

180° of rotation. All these 45 images are then aligned to a common axis of rotation. The X-

ray microscope images are collected at X-ray energy of 514 eV which produces a quantifiable 

natural contrast of biological material to visualize the cellular structures. Then based on these 

images, one can reconstruct the whole cells with a resolution of ~60 nm. By using different 

volume analysis algorithms, one can extract the different information of the cells (Figure 

26A). Using several processing algorithms after reconstruction, one can also extract the 

structure of the internal organelles, such as the nucleus, the vacuole and so on (Figure 26B) 

(Larabell and Le Gros, 2004).  

 

Figure 26. Reconstruction of the yeast cells by X-ray tomography. From (Larabell and Le 
Gros, 2004). 

A. Reconstruction of one yeast cell by using different volume analysis algorithms. (Left) The 
cell surface. (Middle) Transparent surface and the internal organelles. (Right) Different colors 
render the different organelles, the white represents the lipid droplets, gray represents the 
vacuoles. 
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B. The yeast cell 3D structure is showed by using different processing algorithms after 
reconstruction. (Left) The transparent outer surface represents the plasma membrane. The 
opaque blue volume represents the nucleus (arrow). The white surface represents a big 
vacuole. (Middle) The surface from left is combined with volume rendering. (Right) 
According to the amount of X-ray absorption to render the cell, lipid droplets are white, the 
nucleus and the vacuole are red, other colors represent other cytoplasmic structures. 

 

This technique avoids sectioning step than the EM approaches, but the acquisition of each cell 

lasts 3 minutes. Moreover, the resolution of this method, ~60 nm, is not as good as the EM. 

Finally, technology and apparatus are complex and time-consuming. 

Budding yeast S. cerevisiae is a single-cell organism, typically egg-shaped and ~5 μm long 

and ~3 μm wide. Electron tomography (ET) using a high-voltage electron microscope 

(HVEM) can provide 3D information of cellular components in sections thicker than 1 μm 

(Murata et al., 2014). Murate et al. applied scanning transmission electron microscopy 

(STEM) with 1 MeV high-voltage to extend the useful specimen thickness for ET, and they 

found that high-voltage STEM tomography can be used to reconstruct the 3D structure of 

cellular structures in sections of 3-4 μm thickness. After harvesting serial sections of 3-4 µm, 

for each section, the serial images at 2° angular interval from -60° to +64° were collected. 

Based on these serial images, they could reconstruct the 3D morphology of the yeast cell. 

Similar with X-ray tomography, this method also can provide the organelle structures in the 

yeast cells (Murata et al., 2014).  

Tomography techniques can provide whole-cell information in 3D, including the nucleus. 

Moreover, there is no need to cut the samples therefore avoiding the influence of the 

sectionning step on the nuclear geometry. However, for all these techniques, including the 

EM techniques, the cells are not living; the samples need to be fixed by chemical or high-

pressure fast freezing which also have impact on the nuclear shape and size. In biology, it is 

essential to study the nuclear shape and size in vivo. 

2.3.3 Fluorescent microscopy 

Accurate determination of the NE position using fluorescent microscopy is technically 

challenging because of the resolution barrier in fluorescent microscopy: 200 nm in X-Y and 

about 500 nm in Z-axis (Nelson and Hess, 2014). In section 1.2.6, we have shown that the 

“localization microscopy” can measure the position of isolated objects with a resolution of a 

few tens of nanometers (Thomann et al., 2002). Moreover, fluorescent microscopy is 
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presently the only way to observe the structure of the nucleus in living cells. In budding yeast, 

the NPCs were found in large clusters over the entire NE which can be used to reconstruct the 

NE structure in 3D (Winey et al., 1997). Fluorescent labeled NPCs appear as typical punctate 

rings staining the NE perfectly adapted for acquisition by “localization microscopy”. In recent 

years, the researchers always used fluorescently labeled NPC to observe the NE geometry 

(Berger et al., 2008; Dultz et al., 2016).  

Berger et al. created an algorithm, ‘Nucloc’, to determine the 3D position of loci relative to 

the NE (Berger et al., 2008) (See 1.2.6). They used fluorescent repressor-operator system 

(FROS) to fluorescently tag single loci and express, in the same cells, the nuclear pores by 

fusing fluorescence proteins to the Nup49 nucleoporin. For each nucleus, based on the 

detected NPC positions, the NE was approximated with an ellipsoid. This technique can 

collect thousands of cells images automatically which guarantee the robustness of statistical 

results. The results showed that the yeast nucleus in interphase is approximately a sphere of 

median radius ~1 μm. However, the approximation of the yeast nucleus as a sphere is an over-

simplificated, the nuclear shape being dynamic along the cell cycle and in different conditions. 

Ellipsoid approximation is not suitable for the nucleus with non-spherical geometry and it is 

also not accurate for individual nucleus along its life. 

 

Figure 27. Reconstruction of the nuclear envelope by fluorescent microscopy in 2D. 
From (Dultz et al., 2016). 

A. Use of different fluorescent proteins to label the nucleoplasm (NLS of Rpl25 tagged with 
CFP), NPC (nucleoporin Ndc1 tagged with tdTomato) and the interested locus (LacI-GFP).  

B. The software can detect the locus (red circle), the cell nucleus (green box) and the NPC 
signal (blue box) automatically.  

C. Based on the positions of detected NPCs (yellow dots), the “spline method” can 
reconstruct the NE. 
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Using ‘Nucloc’ to analyze the yeast nucleus, the fitted NE along Z-axis was always longer 

than along X-Y which is caused by the point spread function (PSF) along Z-axis. The 

accuracy of localization microscopy along Z-axis is much lower than in X-Y plane (Kirshner 

et al., 2013). Therefore, determination of the NE using fluorescent microscopy is mostly 

performed in two dimensions (2D). Dultz and colleagues used the “spline method” to 

accurately reconstruct the NE position in 2D and to study the global reorganization of the 

chromosomes relative to the NE in budding yeast (Dultz et al., 2016). First, they used GFP to 

label a specific locus to track its position. The NLS of RPL25 was tagged with CFP to label 

the nucleoplasm(Figure 27A, B) and the nucleoporin Ndc1 was tagged with tdTomato for the 

detection of the NPC in the NE (Figure 27A, C). Thanks to use of  “localization microscopy” 

technique, the NPC positions in 2D were highly accurate. The method created by Dultz et al. 

can automatically fit the NE of numerous cells. Although the “spline method” is an accurate 

method to fit the NE based on NPC positions, this approach was just tested on interphase 

nucleus. It is still difficult to reconstruct the NE in mitosis. In addition, to study the nuclear 

organization, we need the 3D information. 
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2.4 Summary 

In budding yeast, the chromosomes are segregated away from the cytoplasm by the NE. The 

nuclear organization ensures the proper expression, duplication, repair of the genome and  

correct segregation of chromosomes (Taddei and Gasser, 2012). Changes in nuclear shape and 

size might change the nuclear organization and the chromosomes organization. The nuclear 

shape and size are highly dynamic. EM approaches provide high resolution to observe the 

nuclear structure in 2D. When performed on ultra-thin serial sections of an entire nucleus, EM 

becomes directly informative of the nuclear shape and size. However, the sectionning process 

may influence the NE geometry. Tomography techniques eliminate this influence, but 

because these methods also need fixation step, they are not compatible with in vivo imaging. 

Fluorescent microscopy is a technique often used in vivo in biology. Accurate determination 

of the NE geometry using fluorescent microscopy is technically challenging and is mostly 

performed in 2D. In addition, the current fluorescent microscopy techniques always focused 

on the interphase nucleus. However, the nucleus geometry in mitosis also plays a significant 

role in cellular processes. In summary, it was urgent to create an accurate technique, which 

can reconstruct the NE along cell cycle and in different conditions, to detect the 3D nuclear 

shape and size in vivo. 



Introduction-Overview 

68 

 

3. Overview 

After this introduction, I hope that I have convinced you that the study of chromatin motion of 

individual loci in genomic DNA is critical to understand the chromosome organization. Rouse 

model was suggested to explore physical properties of chromatin. However, estimated 

persistence length of chromatin appears inconsistent.  

In addition, nuclear shape and size could have significant links with the nuclear organization 

and chromosome organization. EM techniques and tomography techniques are not compatible 

with in vivo imaging and it is difficult to acquire numerous data. Accurate determination of 

the NE geometry using fluorescent microscopy is technically challenging and is mostly 

performed in 2D.  

So, my PhD project was organized along two axis: The first aim of my project was to study 

the chromatin dynamics in the S. cerevisiae nucleus. The second objetcive I had was to 

develop techniques to detect and analyze in 3D the yeast nuclear shape and size with a high 

accuracy. By using this approach, we could describe the nuclear shape and size, along  the cell 

cycle and in different physiological conditions. We also could detect the organization of the 

basic features of the nuclear, inlcuding the SPB, NPC and the nucleolus, under different 

conditions by using this method.  
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1. The dynamics of the chromatin in nucleoplasm and nucleolus 

1.1 Objective and summary 

Past two decades research on the chromatin dynamics have confirmed that the Rouse model is 

the best fitted polymer model to study the chromatin dynamics (see “Introduction” 1.2.7). Our 

group’s previous work also confirmed the Rouse dynamics of the yeast chromosomes in 

nucleoplasm. However, movements of rDNA in the nucleolus are different (Albert et al., 

2013). Recent research from Backlund et al. showed that the exponent of sub-diffusion of the 

chromosomes in the nucleoplasm was ~ 0.7, which is not compatible with the Rouse regime 

(Backlund et al., 2014). So, during my PhD project, I firstly focused on quantitative 

assessment of chromatin’s dynamics of the chromatin in both nucleoplasm and nucleolus. 

Thanks to the fluorescent repressor-operator system (FROS), which combines the expression 

of a bacterial repressor fused to a fluorescent protein and the integration of an operator 

sequence as tandem arrays at a specific locus, we can track the dynamics of the labeled loci. 

However, because of the limitation of the signal to noise ratio (SNR) and the photobleaching 

of the fluorescence, it is difficult to track the motions of the labeled loci accurately and for 

long-time. In this project, we selected fluorescently tagged loci with very high signal. With 

such labelling, we could track longer trajectories of the labeled loci (~1000 frames). Longer 

trajectories could guarantee the accuracy of the mean square displacement (MSD) which was 

used to analyze the chromatin dynamics. 

In this study, I will present our analysis of the motion of the non-rDNA loci on chromosome 

XII (Wang et al., 2015) (Figure 2) and rDNA (unpublished data presented in the extended 

discussion). The analysis of the nucleoplasmic chromatin trajectories revealed a two-regime 

Rouse model which is more accurate than previous studies (Albert et al., 2013; Hajjoul et al., 

2013). The investigation of the rDNA motility showed that its motion is actually slower than 

non-rDNA and can be fitted very well with a power law with the exponent ~0.7 ; this result is 

different with the two-regime model (for t < 5s, the exponent ~0.25 and after 5s, the exponent 

~0.7) Albert et al. reported before (Albert et al., 2013). 
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1.2 Review: “Principles of chromatin organization in yeast: relevance of polymer models 

to describe nuclear organization and dynamics" 

 

 

 

 

 

 

 

 

 

Principles of chromatin organization in yeast: relevance of polymer 
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Renjie Wang, Julien Mozziconacci, Aurélien Bancaud, Olivier Gadal 
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1.3 Extended discussion-the dynamics of the rDNA 

Most of the research on the chromatin dynamics is focused on the non-rDNA chromatin (see 

“Introduction” 1.2.7). The dynamics of the non-rDNA chromatin follows a behavior 

consistent with the Rouse regime. However, in our novel dataset, we observed two regimes of 

the Rouse dynamics of the non-rDNA chromatin. We propose that such behavior is caused by 

the very extended fluorescent tagging. 

Our group’s previous work also suggested that the motion of the rDNA has two regimes: 

increasing slowly for short time scales (t < 5s, scaling exponent ~0.25) and then more 

abruptly after 5s (scaling exponent ~0.7) (Albert et al., 2013). In my new tracking, we failed 

to reproduce two regimes, most likely because of the specific selection of very bright 

fluorescent tags in rDNA. Our results further confirmed that the motion of the rDNA is very 

different than non-rDNA chromatin and it can be fitted well with one regime: the MSD of 

rDNA followed by a behavior with scaling exponent of ~0.7 (Figure 28). 

 

Figure 28. The dynamics of rDNA.  

The black dataset represents the average MSD over 41 trajectories for a selected bright locus 
located at rDNA on chromosome XII. Standard errors are indicated as blue plus symbol. The 
motion of the rDNA followed by a power law with scaling exponent of ~0.7 (red line). 

 

rDNA on chromosome XII, which is organized in the nucleolus, plays a key role in the 

ribosomes formation (see “Introduction” 2.1.3). The nucleolus has a totally different 

confinement compared with the nucleoplasm. Compare with the nucleoplasm, nucleolus is a 

more crowded region, so the motion of rDNA is both slower and following different 

constrains than non-rDNA. In addition, the repetitive nature of the rDNA, its peculiar 

chromatin structure, and the very high transcription rate may also play a role in this different 



Results-The dynamics of the chromatin in nucleoplasm and nucleolus 

80 

 

mobility. It will be interesting to compare the dynamics of rDNA in the nucleolus with 25 

copies and 200 copies. Further study on the rDNA dynamics are still required to investigate 

rDNA organization. 
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2. The influence of transcription on chromatin dynamics 

2.1 Objective and summary 

We have shown that the chromatin dynamics of non-rDNA loci were consistent with the 

Rouse polymer model, which describes chromosome as an ideal chain of beads connected by 

elastic springs. The characteristic length of these springs is characterized by only one 

adjustable parameter compatible with the very high flexibility of the fiber. However, the 

estimated flexibility of such ideal chain did not match the typical length scales of a 10-nm 

fibers. Then, we cooperated with Aurélien Bancaud’s laboratory to study the biophysical 

properties of the chromatin in living yeast cells. 

In this draft, we first tested the Rouse polymer model of chromosome motion in vivo and 

compared with the ideal Rouse motion of purified chromosome fragements in vitro (Marius’s 

work). The results revealed that, opposed to ideal chain, chromatin polymer must be modeled 

uncoupling viscous drag and persistence length. In vivo, viscous friction is drastically 

increased, to a large extent due to transcription. To analyze the influence of transcription on 

the chromatin dynamics, we then constructed two temperature sensitive (TS) strains which 

would be transcriptionally inactivated after the temperature is high (with the help of Marta 

Kwapisz). We studied the chromatin moiton in a reference strain (WT) and a TS strain before 

and after transcription was inactived. The results revealed that upon transcription inactivation, 

chromatin motion increased, making chromatin properties closer to ideal chain. Altogether 

our study sheds new light on the structural properties of chromosomes based on direct 

measurements in vivo. We propose that the chromatin in living cells is best modeled with an 

alternative Rouse model: the “branched Rouse model”. 

 

2.2 Draft of manuscript: "Analysis of chromatin fluctuations in yeast reveals the 

transcription-dependent properties of chromosomes" 
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Analysis of chromatin fluctuations in yeast reveals the transcription-
dependent properties of chromosomes 

Marius Socol*, Renjie Wang*, Pascal Carrivain, Jean-Marc Victor, Kerstin Bystricky, Olivier 
Gadal and Aurélien Bancaud 

 

Introduction 

Characterizations using biochemical techniques or live cell microscopy have revealed the 

dynamic nature of eukaryotic chromosomes for molecular interactions and for spatial 

fluctuations. This behavior as well as the recurrent detection of irregular 10-nm fibers by 

cryo-TEM of thin nuclear sections has led to a new model of chromosome structure, which 

folds into a liquid-like state (Maeshima et al., 2010). However, the mechanical and structural 

parameters underlying these folding properties remain unclear.  

We and others have recently showed that is chromosome motion in yeast was 

characterized by an anomalous sub-diffusive behavior with an anomalous parameter persistent 

over four time decades (Albert et al., 2013; Cabal et al., 2006; Hajjoul et al., 2013; Marshall 

et al., 1997; Verdaasdonk et al., 2013; Wang et al., 2015; Weber et al., 2010). We further 

suggested that this response offered a unique window to the characterization of chromosome 

structural properties using Rouse polymer model. This model describes chromosomes as a 

chain of beads connected by elastic springs. The length of these springs, which is referred to 

as the Kuhn length (b in the following), is related to the flexibility of the fiber. Our previous 

estimates indicated an unexpectedly low value of the Kuhn length of less than 5 nm that did 

not match the typical length scales of a 10-nm fiber. 

We thus reasoned that the unrealistically low flexibility of chromatin required a 

clarification. Hence we validate the Rouse model to measure the flexibility of biomolecules, 

and show that the flexibility of chromatin is five-fold enhanced for chromatin over that of 

naked DNA in vitro. We then confirm our recent result (Hajjoul et al., 2013) that the 

dynamics of chromosomes is consistent with a very low value of the Kuhn length of ~1 nm in 

wild type cells, and therefore seek whether this unexpected response is related to transcription. 

In Pol II TS mutant rpb1-1, we show that transcription inactivation induces a global increase 

of chromatin dynamics, which is not associated with variation in nucleoplasmic viscosity. 

Because high-resolution nucleosome mapping did not show changes in nucleosome 

positioning 20 minutes after transcription shutdown (Weiner et al., 2010), we conclude that 
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the viscous drag is increased for active transcription, possibly due to the binding of RNA 

nucleo-protein complexes on the fiber. This result, which allows us to estimate the Kuhn 

length and hydrodynamic radius of chromosomes of ~5 nm, is discussed in light of 

simulations of chromatin, which show the key role of nucleosomes to determine a flexible 

fiber. 

 

Results 

We designed a minimal in vitro system in which macromolecule motion can be explored 

in defined environments. We purified chromosome fragments of several Mbp with short 

fluorescent tracks of ~50 kbp. Because the level of crowding in the nucleoplasm is expected 

to screen out hydrodynamic interactions (Hajjoul et al., 2013), we used a high proportion of 

poly-vinylpyrrolidone (PVP, 360 kDa) to obtain a crowded solution with purely viscoelastic 

constraints and no shear thinning (Lacroix et al., 2016). The mean square displacement (MSD) 

of DNA fluorescent loci (left panel of Fig. 1A) as well as the step distribution function (SDF, 

Fig. 1B) was consistent with the Rouse model (see methods section, Rouse 1953), in which 

the temporal evolution of the MSD is characterized by a power law regime associated to an 

exponent of 0.5. The validity of this model has been extensively documented for concentrated 

solutions of synthetic polymers (Ewen and Richter, 1997). By minimizing of the residual 

between the fit and the MSD or SDF data (right panel of Fig. 1A), we measured the Kuhn 

length of DNA of 105+/-5 nm, in agreement with the reference value of the literature. 

Furthermore we carried out the same experiment with a solution containing 2% of low 

molecular weight PVP (40kDa). These conditions are below the overlapping concentration, so 

that hydrodynamic interactions should dictate DNA fluctuations. Accordingly, the Zimm 

model (see methods section, Fig. 1C), which depends on the solvent viscosity and not on the 

polymer flexibility, yielded an improved fit in comparison to the Rouse model. Therefore the 

analysis of fluctuations allowed us to extract quantitative measurements of DNA mechanical 

parameters. 

Using the same genomic material, we subsequently reconstituted chromatin fibers with 

purified assembly and remodeling factors with a repeat of 165 bp (see methods), and probed 

the dynamics of fluorescent loci in a crowded polymer solution (Fig. 1D). Using the MSD and 

the SDF (Fig. 1D), we evaluated the Kuhn length of ~20 nm for nucleosome arrays, and hence 
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confirmed that chromatin flexibility is greater than that of DNA in vitro. Altogether our in 

vitro system allowed us to demonstrate that chromatin is more flexible than DNA in the bulk, 

but measured Kuhn length in vitro is still higher than our earlier reports on chromosomes in 

vivo. 

We then developed a systematic approach, which combined particle motion analysis and 

steady state localization by genemap analysis (Berger et al., 2008), to characterize a 

fluorescent locus on Gal genes (chromosome II) vs. a control locus on chromosome XII 

(position 680) (Fig. 2A, B). We first focused on the behavior of chromosomes in the presence 

of three different carbon sources, namely glucose, galactose, and raffinose. The metabolic 

pathways of glucose and galactose induce well-defined and distinct transcriptional state: Gal 

genes are active, inactive or poised for transcription in the presence of galactose, glucose, or 

raffinose, respectively. Locus on chromosome XII is a control away of Gal genes. We 

observed that the dynamics of the chromatin locus on chromosome XII were similar in 

glucose, galactose and raffinose (supplementary Fig. S1A) and their localization remained 

central (Fig. 2A). Motion analysis inferred from the MSD further confirmed the relevance of 

the Rouse dynamics with MSD~0.009 Δt0.54 (black dashed lines in the upper panel). For Gal 

genes, we detected the well-documented relocalization of the locus at the periphery in the 

presence galactose (bottom panel in Fig. 2B). While we measured the same dynamics as for 

chromosome XII with glucose or raffinose (supplementary Fig. S1B), motion appeared to be 

21% more dynamic in galactose (red dataset in Fig. 2B) whether the locus localization was 

peripheral or central (not shown). Consequently the activation of Gal genes induces a local 

onset in dynamics that may be attributed to active motion directed by transcribing 

polymerases (Ghosh and Gov, 2014). Focusing the reference behavior in glucose, which 

corresponds to 5 out of 6 experimental conditions, we recorded the SDF (Fig. 2C), and 

observed that this dataset together with the MSD were consistent with the Rouse model. The 

fit with the “ideal” Rouse model yielded a very small value of the Kuhn length of ~1-2 nm 

assuming that the viscosity of the nucleoplasm was 7 mPa.s (Fig. 2D, see more below). This 

study confirmed our recent report on the flexibility of chromatin in living yeast (Albert et al., 

2013; Hajjoul et al., 2013), yet it did not allow us decipher the molecular origin of this 

apparent flexibility. 

Next we wished to investigate the effect of transcription on chromosome dynamics using 

RNA polymerase II temperature-sensitive mutant rpb1-1, which shuts down mRNA synthesis 
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rapidly at 37°C (Peccarelli and Kebaara, 2014). Ten minutes after transcription arrest, we 

detected an enhancement of ~50% of chromosome dynamics for both chromosome II and XII 

(right panels of Fig. 3A-B), whereas temperature modulation in wild type cells only induced a 

marginal increase of the amplitude of fluctuations (left panels of Fig. 3A-B). Interestingly we 

did not detect significant change in localization for the two different loci in WT or TS strains 

at 25 and 37°C (lower panels Fig. 3A-B), and we noted that the chain behavior inferred from 

SDF analysis (Fig. 3C) remained consistent with the Rouse model. In order to rule out effects 

in viscosity associated to transcription arrest, we monitoring the spatial redistribution of Tet-

GFP molecules after photobleaching (supplementary Fig. S2). The similar relaxation kinetics 

in WT or TS cells at 25°C and 37°C indicated that 10 minutes of transcription shutdown 

indicated that the viscosity was roughly constant in every condition. Furthermore given that 

high-resolution nucleosome mapping did not show changes in nucleosome position 20 

minutes after transcription shutdown (Weiner et al., 2010), we attributed the augmentation in 

fluctuation amplitude to a change in chromatin hydrodynamic friction. Indeed the Rouse 

model is dictated by the balance between elastic forces with viscous drag (see equation 1). 

Hence active transcription appears to increase the effective size of the chromatin fiber, likely 

through the loading of protein complexes as well as RNA molecules, and hence to slow down 

the motion of chromosomes globally. According to this interpretation, chromosomes should 

not be described with the ideal Rouse model, but with the “branched-Rouse” model with an 

intrinsic flexibility of the chromatin backbone and a drag coefficient determined by the load 

of nucleo-protein complexes around it. We therefore fitted our data with two parameters, the 

Kuhn length and the hydrodynamic radius a (Fig. 3C). The region of the parameter space 

associated to consistent fits had a parabolic profile, and this region was shifted towards larger 

values of the Kuhn length upon transcription arrest (right panel of Fig. 3C). In this situation, 

the ideal Rouse model, in which friction and flexibility are proportional, predicts a Kuhn 

length of ~5-7 nm. Given our argument that the fiber properties are similar at 25°C or 37°C, 

we conclude that the hydrodynamic radius is ~10 nm with active transcription and only ~5 nm 

after transcription shutdown. 

We finally asked whether a high degree of flexibility was reasonable for the fiber. For 

this we run simulations of a fiber with the crystal structure of nucleosomes (i.e. DNA 

wrapped two times around DNA) or with open nucleosomes, meaning that the most labile 

interaction between DNA and histones at SHL=+/-6.5 is released. 
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Material and methods 

DNA and chromatin preparation for in vitro experiments 

Genomic DNA was extracted from U2OS cells, which had been treated to allow the 

stable incorporation of dUTP-Cy3 tracks of 50 kbp during replication (Lacroix et al., 2016). 

Chromatin was reconstituted using a reconstitution kit (Active Motif) with ~10 ng of this 

genetic material together with 1 µg of unlabeled -DNA. DNA or chromatin was 

subsequently diluted in a low ionic strength buffer (2X TBE, pH=8.3) with variable 

proportions of Poly-vinylpyrrolidone (Sigma-Aldrich) of 360 or 40 kDa. The dynamic 

viscosity was set to 6 or 2.3 mPas with 2% PVP 360 or 40 kDa, respectively. Note that our 

experiments were performed with a small proportion of Polystyrene Carboxylated Fluorescent 

beads of 100 nm in diameter (Invitrogen) in order to monitor the viscosity during the 

experiments based on the analysis of the diffusion coefficient of these objects. 

 

Yeast strains 

Genotypes of the strains used in this study are described in supplementary Table S1. To 

obtain haploid yeast strains carrying rpb1-1 (rpb1-G1437D) thermosensitive mutation, 

genomic loci, Nop1p and Nup49p labeled with GFP or mcherry following crosses were made. 

For CMK8-1A, YGC242 strain was crossed with D439-5b. For CMK9-4D, JEZ14-1a was 

crossed with CMK8-5B. Obtained diploids were sporulated and haploid spores were selected. 

 

Cell culture 

Yeast media were used as previously described (Rose et al., 1990). YPD is made of 1% 

yeast extract, 2% peptone and 2% dextrose. SC is made of 0.67% nitrogen base w/o amino 

acids (BD Difco, USA), 2% dextrose supplemented with amino acids mixture (AA mixture 

Bio101, USA), adenine and uracil. Cells were grown overnight at 30 °C (or other temperature 

we used) in YP media containing 2% carbon source, cells were diluted at 106 cells/mL in rich 

glucose, galactose or raffinose containing media. Cells were harvested when OD600 reached 

4×106 cells/mL and rinsed twice with the corresponding SC media. Cells were then spread on 

slides coated with corresponding SC patch containing 2% agar and 2% of corresponding 
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carbon source. Cover slides were sealed with "VaLaP" (1/3 vaseline, 1/3 lanoline, 1/3 

paraffin). Microscopy was performed during the first 10 to 20 min after the encapsulation of 

the cells in chamber. 

 

Confocal microscopy for gene map acquisition 

Confocal microscopy was performed with an Andor Revolution Nipkow-disk confocal 

system installed on a Olympus IX-81, featuring a CSU22 confocal spinning disk unit 

(Yokogawa) and an EMCCD camera (DU 888, Andor). The system was controlled using the 

mode "Revolution FAST" of Andor Revolution IQ1 software (Andor). Images were acquired 

using an Olympus 100× objective (Plan APO, 1.4 NA, oil immersion). Single laser lines used 

for excitation were diode pumped solid state lasers (DPSSL) exciting GFP fluorescence at 

488 nm (50 mW, Coherent) and mCherry fluorescence at 561 nm (50 mW, CoboltJive). A 

Semrock bi-bandpass emission filter (Em01-R488/568-15) allowed collection of green and 

red fluorescence. Pixel size was 65 nm. For 3D analysis, Z-stacks of 41 images with a 250 nm 

Z-step were used.  

 

Wide field microscopy for single particle tracking 

Images were acquired with a Zeiss Microscope endowed with an sCMOS camera (Zyla, 

Andor) and equipped with a 40× objective (Plan APO, 1.4 NA, oil immersion). The light 

source was a Lumencor system, and we used the same Semrock bi-bandpass filter. The pixel 

size was set to 160 nm. A heating system (PE94, Linkam) was used to monitor the 

temperature at 37°C whenever necessary. Acquisitions were performed with inter-frame 

intervals of 40 to 200 ms for a total frame number of 300. For each condition, we recorded the 

motion of chromosomes in ~30 cells.  

 

Image analysis and data proceeding 

The motion of chromosome loci was processed with the TrackMate Plugin (Schindelin et al., 

2012). Data obtained by movies processing were analyzed with a Matlab script to extract the 

mean square displacement (MSD) in 2D. We only considered long trajectories with more than 
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~100 consecutive tracked positions, and derived the MSD for time intervals lower than 50% 

of the total duration, and then averaged series of MSD during time steps smaller than 40 inter-

frame intervals. For the extraction of gene maps, confocal stacks were processed with the 

Matlab script Nucloc, available at http://www.nucloc.org/ (MathWorks) (Berger et al., 2008). 

 

Data processing 

The Rouse model describes a polymer as a series of beads of radius a separated by elastic 

springs of stiffness k. For a finite chain with N monomers, the mean square displacement 

reads: 
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The friction term for individual monomers  is 6����  with ηs the solution dynamic 

viscosity, and the relaxation time �� is equal to �/� with � =
����

��
 according to fluctuation 

dissipation arguments. b is the Kuhn length, and a is equal to b/2 in the standard model. Note 

that we set N to ~3000 in all our fits in order to focus on the Rouse regime, given its relevance 

over a broad temporal scale (Hajjoul et al., 2013). 

For the Zimm model, which takes into account long-range hydrodynamic interactions, the 

following equation was used: 
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  Eq. (3) 

with the Zimm time scale �� =
����

�

√�� ���
, Γ�/� = 2.67 9. Note that for a Gaussian chain with 

RF
2~Nb2, Eq. (3) only depends on the solvent dynamic viscosity. 

The step distribution function in two dimensions, i.e. in the focal plane of the objective 

(Saxton, Lateral diffusion of single particle), is calculated according to: 
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Fluorescence photobleaching/activation experiments 

Cells were grown in glucose medium, and then placed on a Zeiss LSM710 confocal 

microscope with temperature control using an agarose pad. The experiment was carried out 

either at 24°C or during the first 10 minutes after setting the temperature to 37°C. Imaging 

was carried out with 40X water immersion objective and using small regions of interest 

around individual cells in order to reach fast inter-frame intervals of ~20 ms. 10 images were 

recorded before photobleaching half of the nucleus, as described in (Beaudouin et al., 2006) 

and fluorescence recovery was measured in the bleached region. At least 14 cells were used in 

each of the four conditions: wild type and TS cells at 25°C or 37°C.  

Because the bleaching time was slighly different from cell to cell, temporal traces were 

registered by setting the time of the image before the bleach to 0, and all the datapoints were 

combined into a single dataset, which was eventually smoothed with a box filter. 
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FIGURE LEGENDS 

Figure 1: Dynamics of DNA and reconstituted chromatin in vitro. (A) The left panel 

shows the MSD over time for a locus on genomic DNA. The fluorescent loci consist of 

dUTP-Cy3 tracks randomly incorporated along purified chromosome fragments. Using a 

“crowded” solution with 2% polyvinylpyrrolidone (PVP, 360 KDa), we measured a set of 

MSD (black diamonds) and the average response (red squares), which was fitted with the 

Rouse model (black solid line) for a Kuhn length of 105 ± 5 nm, as shown by the residual of 

the fit in the right plot. Note that the solid green line corresponds to the MSD expected for the 

Zimm model for a viscosity of 6 mPa.s. (B) The three plots represent the probability 

distribution function for 3 time intervals (as indicated in inset), and the corresponding fits 

obtained with the Rouse model for a Kuhn length of 100 nm in agreement with the value 

obtained for MSD fitting. (C) The green dataset represents the average MSD for chromosome 

loci immersed in a 2% PVP (40 kDa) solution. The green and black solid lines show the 

Zimm and Rouse model, respectively, for a viscosity of 2.3 mPas and a Kuhn length of 100 

nm. (D) In the upper left panel, the MSD temporal evolution is reported for fluorescent loci 

on chromosome fragments equipped with nucleosomes (see methods). This data is consistent 

with the Rouse model for a Kuhn length of 22 nm, as shown by the residual plotted in the 

lower left panel. Note that the level of crowding is enhanced in this experiment with a PVP 

concentration (360 kDa) of 3.2% and a dynamic viscosity of 14.7 mPa.s. In the right panel, 

we plot the probability density function for 3 time intervals and the corresponding fit with the 

Rouse model for a Kuhn length of 20 nm. 

 

Figure 2: Chromatin dynamics in living yeast. (A) The chromatins we studied on 

chromosome XII and II are shown at the top (red arrows). The plot represents the temporal 

evolution of the MSD at 25°C for a locus on Chromosome XII using glucose or galactose as 

carbon source (cyan or red dataset, respectively). The dashed black lines represent the Rouse 

model dataset we published before. The two genemaps below are recorded in the same 

experimental conditions. Yellow circles and red ellipsoids depict the ‘median’ nuclear 

envelope and nucleolus, respectively. N represents the number of nuclei used to generate the 

probability density map. (B) The same study as in (A) is carried out for the GAL1 gene on 

chromosome II. (C) The step distribution function for three different time intervals is 

represented for the locus on chromosome XII. The total number of events is ~3000 for each 
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dataset. The corresponding solid correspond to the behavior expected with the Rouse model, 

showing the consistency of the model with the entire dataset. (D) The fit with the “ideal” 

Rouse model yielded a very small value of the Kuhn length of ~1-2 nm, as shown by the 

residual plotted. Note that the viscosity is set to 7 mPas based on the literature.  

 

Figure 3: Interplay between transcription and chromosome dynamics. (A) The upper 

panels represent the temporal evolution of the MSD for chromosome XII in wild type or 

temperature sensitive mutants (left and right plots) at two different temperatures of 25 and 

37°C (cyan and red datasets, respectively). The genemaps below correspond to the average 

locus distribution in each experimental condition. Yellow circle and red ellipsoids 

respectively depict the ‘median’ nuclear envelope and nucleolus. N represents the number of 

nuclei used to generate the probability density map. (B) The same experiment as in (A) is 

reported for the GAL1 gene on chromosome II. The dashed black lines represent the Rouse 

model dataset we published before. (C) The two graphs represent the step distribution 

function for the GAL1 gene in the temperature sensitive strain at 25°C and 37°C (left and right 

plots, respectively). The line plots correspond to the predictions of the Rouse model for a set 

of parameters (a,b) shown in the lower panels. The standard Rouse model with a=b/2 is 

shown by the white line.  

 

Figure S1: Chromatin dynamics in different carbon sources. (A) The plot represents the 

temporal evolution of the MSD at 25°C for a locus on Chromosome XII using glucose or 

raffinose as carbon source (cyan or red dataset, respectively). The dashed black lines represent 

the Rouse model dataset we published before. The two genemaps below are recorded in the 

same experimental conditions. Yellow circles and red ellipsoids depict the ‘median’ nuclear 

envelope and nucleolus, respectively. N represents the number of nuclei used to generate the 

probability density map. (B) The same study as in (A) is carried out for the GAL1 gene on 

chromosome II. 

 

Figure S2: Flurescence photobleaching/activation tests of GFP-tagged nucleus of wild 

type and TS strains. (A) The first image shows GFP steady-state distribution in the nucleus 
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before photobleaching. 10 images were recorded (here we showed one) before photobleaching 

half of the nucleus and fluorescence recovery was measured in the bleached region (white 

rectangle). Then we detected the recovery of the fluorescence (see t>0 s). (B) The 

fluorescence intensity gradually increased with the time after photobleaching, and after 1s, the 

intensity almost recovered stable.  For each conditions, there were more than 14 samples. (C) 

Similar with (B), the relative intensity recovery curves. 
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Table S1: Genotypes of strains used in this study. 
Name Genotype 

YGC242 MATalpha, his3Δ0, leu2Δ0, ura3Δ851, ade2-801, lys2-Δ202, LYS2::TETR-GFP, nup49-
Δ::HIS-MX, interGAL1-FUR4::(tetO*112)-NAT; carrying plasmid pASZ11-NUPNOP 
(GFP-NUP49, mCherry-NOP1, ADE2) 

JEZ14-1a MATa, his3-Δ1, leu2-Δ0, ura3-Δ0, ade2-801, lys2-801, LYS2::TETR-GFP, nup49-
Δ::HPH-MX6, interYLR188W-YLR189C::ura3::TetO-NAT 

D439-5b MATa, rpb1-1, leu2-Δ1, ura3-52, trp1-∆63, lys2-801, his3-∆200 

CMK8-5B MATalpha, rpb1-1, lys2, leu2, ura3, nup49-Δ::HISMX; carrying plasmid pASZ11-
NUPNOP (GFP-NUP49, mCherry-NOP1, ADE2) 

CMK8-1A MATa, rpb1-1, his3, leu2, ura3, lys2, LYS2::TETR-GFP, interGAL1-FUR4::(tetO*112)-
NAT); carrying plasmid pASZ11-NUPNOP(GFP-NUP49, mCherry-NOP1, ADE2) 

CMK9-4D MATa, rpb1-1, his3, leu2, ura3, lys2, LYS2::TETR-GFP, nup49-Δ::HPH-MX6, 
interYLR188W-YLR189C::ura3::TetO-NAT; carrying plasmid pASZ11-NUPNOP (GFP-
NUP49, mCherry-NOP1, ADE2) 
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3. Determination of the nuclear geometry in living yeast cells 

3.1 Objective and summary 

The nuclear shape and size have significant links with the chromosome organization (see 

“Introduction” 2). So the second axis of my PhD project was to create an accurate technique 

to determine the nuclear shape and size in 3D in living yeast cells. 

In the following part, I will present a new algorithm I created, “NucQuant”, based on the 

published method “Nucloc” which was used to track the ‘gene territory’ (see “Introduction” 

1.2.6). “NucQuant” is an automated fluorescent localization method including post-

acquisition correction of the measurement bias due to spherical aberration along Z-axis. It can 

accurately interpolate the NE position in a large cell population. Based on this method, we 

determined the nuclear shape and size of yeast cells growing in different carbon source. 

Combining microfluidic technology with “NucQuant” we also accurately estimated the 

geometry of the nuclei in 3D along entire cell cycle. Finally, we determined the nuclear shape 

and size in quiescent cells. The NPC distribution was also studied by using this technique (see 

manuscript 3).  

In the extended discussion section, I also present how this method can be used to determine 

the heterogeneity of the nuclear morphology and the nucleolar organization at the nuclear 

periphery. In addition, this technique also can be used to analyze the distribution of the NPC 

in different cell cycle stages. 
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3.2 Submitted manuscript: "High resolution microscopy reveals the nuclear shape of 

budding yeast during cell cycle and in various biological states" 

 

 

 

 

 

High resolution microscopy reveals the nuclear shape of budding yeast 

during cell cycle and in various biological states 

 

Renjie Wang, Alain Kamgoue, Christophe Normand, Isabelle Léger, and Olivier Gadal 
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Abstract 

How does the spatial organization of the genome depend on the nuclear shape is unknown, 

mostly because accurate nuclear size and shape measurement is technically challenging. In 

large cell populations of the yeast Saccharomyces cerevisiae, we assessed the geometry (size 

and shape) of nuclei in three dimensions (3D) with a resolution of 30 nm. We improved an 

automated fluorescent localization method by implementing a post-acquisition correction of 

the spherical microscopic aberration along the Z-axis, to detect the three dimensional (3D) 

positions of nuclear pore complexes (NPCs) in the nuclear envelope (NE). We used here this 

method called Nucquant, to accurately estimate the geometry of nuclei in 3D along the cell 

cycle. To increase robustness of the statistics, we aggregated thousands of detected NPC from 

a cell population in a single representation using nucleolus or spindle pole body (SPB) as 

references to align nuclei along the same axis. We could detect asymmetric changes of the 

nucleus associated with the modification of nucleolar size. Stereotypical modification of the 

nucleus toward nucleolus further confirmed the asymmetric properties of the nuclear envelope. 
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Introduction 

Structural organization of the genome is a key determinant in all genome transactions, 

including transcription and genome stability. In eukaryotic cells in interphase, genomic DNA 

is segregated away from the cytoplasm by the nuclear envelope (NE). Components of the 

inner nuclear membrane (INM) or nuclear pore complexes (NPCs) are crucial players in the 

spatial regulation of gene expression or genome stability (Towbin et al., 2009). Modification 

of the nuclear radius or altered sphericity affects the ability of loci to interact with NPCs and 

INM (Zhao et al., 2016). The confinement of S. cerevisiae genome in the cell’s nucleus 

persists throughout the cell cycle because they have a closed mitosis. Only few structural 

features are involved in the inner organization of the budding yeast nucleus in interphase: the 

spindle pole body (SPB), centromeres, telomeres and the nucleolus. The SPB, the budding 

yeast microtubule-organizing center, is embedded into the nuclear envelope. Except a short 

time window after centromere's replication, SPB anchors each centromere via a microtubule 

spindle during the entire cell cycle (Winey and O'Toole, 2001). Telomeres are associated to 

the NE (Taddei et al., 2010). In exponentially growing cells, nuclear volume is subdivided 

into two third containing the nucleoplasm and one third the nucleolus (Léger-Silvestre et al., 

1999). The SPB and the nucleolus being diametrically opposed in interphase (Yang et al., 

1989), the SPB, the nuclear center and the nucleolar centroid define a central axis around 

which chromosomes are organized. This axis enabled the design of chromatin models as 

space-filling polymer, which accurately recapitulate most of the known features of the 

genome organization (Tjong et al., 2012; Wong et al., 2012). Importantly, the Alber’s lab has 

shown that an accurate simulation of chromosome positioning largely depends on constrains 

imposed by the shape of the nucleoplasm (Tjong et al., 2012). Therefore, the nuclear volume 

and shape should be precisely defined to explore eukaryotic genome organization.  

Nucleus in budding yeast is often described as a sphere of radius ~1µm, ignoring described 

variations of size: the median nuclear volume can vary up to two fold between yeast strains 

(Berger et al., 2008); carbon source has major impact on the nuclear size (Jorgensen et al., 

2007); each yeast nucleus undergoes a two-fold increase in volume from G1 to S phase 

(Jorgensen et al., 2007; Winey et al., 1997). Additionally, budding yeast nucleus is not a 

perfect sphere and size determination cannot always rely on spherical approximation (Zhao et 

al., 2016). Vacuole is also known to modify nuclear shape (Severs et al., 1976). During closed 

mitosis, the nucleus adopts a number of non-spherical conformations: microtubule spindle 
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cycle modifies nuclear shape (Yeh et al., 1995) and bud constriction constrains nuclear 

morphology (Boettcher et al., 2012). The chromatids segregation process is asymmetric: the 

mother cell's nucleus is one half larger than the daughter cell's nucleus (Heun et al., 2001). In 

the nucleus, SPB and nucleolus are known to impact on nuclear shape. During mitosis, SPB 

can affect locally NE sphericity (Koning et al., 1993). In interphasic cells growing 

exponentially in medium containing glucose, the nucleolus is described as a crescent shape 

nuclear domain flanking the NE. During cell cycle delay (S or G2), NE expansion is 

constrained toward nucleolus (Witkin et al., 2012). All these observations highlight the highly 

dynamic NE and the variability of nuclear size and shape (Stone et al., 2000; Webster et al., 

2009). Accurate determination of the NE position using fluorescence microscopy is 

technically challenging and is mostly performed in two dimensions (2D) (Dultz et al., 2016). 

Recent technics have been proposed to explore the nuclear geometry in 3D (Zhao et al., 2016).  

Here, we developed “NucQuant”, an optimized automated image analysis algorithm, 

accurately interpolating the nuclear envelop position in a large number of cell's nuclei in three 

dimensions (3D). Super-resolution fluorescence localization microscopy is now a well-

established concept used to break resolution barrier in fluorescence microscopy: 200 nm in X-

Y and about 500 nm in Z-axis (Nelson and Hess, 2014). Localization microscopy measures 

the position of isolated objects, single molecules (e.g. PALM, FPALM, STORM) or point-

like structures, with an uncertainty of a few tens of nanometers. Isolated point-like structures 

can be fitted with the characteristic Gaussian distribution of fluorescence around local 

maxima approximating the point spread function of the optical setup (Thomann et al., 2002). 

GFP tagged NPC components appear as typical punctate ring staining the nuclear envelope 

(NE) (Wimmer et al., 1992). This bright staining originates from a high number of 

nucleoporins per NPC (up to 64) and the presence of 60 to 180 NPCs per nucleus (Rout et al., 

2000; Winey et al., 1997). The punctate staining is caused by the non-random distribution of 

NPC within the NE (Winey et al., 1997), resulting in local clusters of NPCs. Therefore, 

adjacent NPCs, convolved by optical set-up, appear as punctuated bright spots within the NE. 

Therefore, GFP tagged nucleoporins represent ideal point-like structures to follow the NE 

shape and size by localization microscopy (Berger et al., 2008). We localized fluorescently 

labeled NPC and corrected detection bias due to optical spherical aberration along the Z-axis 

to accurately compute an approximation of the NE in 3D. Such approach allowed us to 

precisely measure the size and shape of the yeast nucleus along the cell cycle or in cells 

growing on different carbon sources: we could recapitulate the considerable level of plasticity 
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of NE. Using the nucleolus or SPB as spatial landmark to align nuclei along the same axis and 

aggregate thousands of detected NPCs from a cell population in a single representation, we 

could evaluate the NPC density along the NE in different physiological conditions. We 

detected a low NPCs density in the NE at the nucleolar/nucleoplasmic interface and 

stereotypical modifications of the NE correlated with nucleolar size variations.  
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Results 

Localization microscopy using confocal fluorescent imaging of Nuclear Pore Complexes 

is a super-resolution microscopic technique  

“Localization microscopy” relies on detection of the centroid of point-like structures, and is 

classically not limited by diffraction, but by signal-to-noise ratio of individual detections. To 

label NPC, we fused GFP or mRFP dimers with abundant NPC components (Nup49, Nup57, 

Nup2 or Nup159). We developed an algorithm “NucQuant”, adapted from previously 

described automated image analysis pipeline using spinning-disk fluorescence microscopy 

and MATLAB codes (Berger et al., 2008). We could detect a median of 22 peripheral spots 

per cell's nucleus. Each detected spot should roughly correspond to a group of 3 to 9 closely 

spaced NPCs, hereafter called cNPCs (Winey et al., 1997). Importantly, 22 spots detection per 

nucleus provided sufficient connecting points to evaluate the NE position in 3D. 

Refractive index mismatch between optical setup and biological object is known to generate 

spherical aberration along Z-axis (Fig. 1A and B). We measured and corrected this detection 

bias in our measurements. For exponentially growing cells in glucose, electron microscopy 

and X-ray tomography established that the yeast nucleus in interphase is mostly spherical 

(Larabell and Le Gros, 2004; Murata et al., 2014; Wei et al., 2012; Winey et al., 1997). We 

analyzed about 1000 round cell's nuclei and could generate a statistically robust dataset of 

about 20,000 cNPC detections (Fig, 1C). The nuclear sphericity allowed measurement of 

detection bias in our localization dataset. In a sphere, distances between detected cNPCs and 

the nuclear center are the same in each dimension (X, Y and Z) (Fig. S1A and C). Simulating 

the elongation along Z axis (Fig S1A to B) modified the distribution of normalized distances 

between detected cNPCs and nuclear center along X, Y and Z axis (compare Fig. S1C and D). 

Similar over-estimation along Z-axis was clearly detected in our experimental measurement 

(Fig. 1C). In our experimental dataset, post-acquisition correction of localized cNPCs was 

performed as suggested previously (see Materials and Methods; Fig S1E) (Cabal et al., 2006). 

This correction was calculated using round nuclei for each cell population that we analyzed, 

and was applied subsequently to the entire population (including non-round nuclei ; Fig S1F). 

Note that spherical aberration was always detectable, but modified for different objectives or 

microscope setups (confocal laser scanning- versus laser spinning disk- microscopes) (Fig. 

S1G, H).  
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To evaluate the resolution of our detection method after spherical aberration correction, we 

made use of the known distribution of nucleoporins in NPC near the central channel (Nsp1 

complex subunits: Nup49 and Nup57), toward the nuclear basket (Nup2) and localized in the 

cytoplasmic filaments (Nup159) (Fig. 2A) (Alber et al., 2007; Dilworth et al., 2001; Grandi et 

al., 1995; Rout et al., 2000). To analyze the distribution of detected cNPCs, we computed 

their radial distances to the nuclear center. Labeling simultaneously two nucleoporins 

respectively with GFP or mRFP, we detected about 20,000 cNPCs in each color from cell's 

nuclei population. Radial distribution of detected cNPCs was plotted as cumulative frequency 

of either distances to the nuclear center or a fitted ellipsoid approximation of the NE using 

GFP or mRFP signals (Fig. 2B, C, D, E). As expected, median distances (to the nuclear center 

or to the fitted NE) between constituents of the Nsp1 subcomplex (Nup49-GFP and Nup57-

mRFP) were equivalent (+4 to +9 nm; Fig. 2B). Median distance separating nuclear basket 

(Nup2-mRFP; intranuclear structure) to cytoplasmic filaments (Nup159-GFP; most distant 

structure to nuclear center) was from +48 to +51 nm (Fig. 2C). Adding the distance measured 

from nuclear basket to central channel (+20 to +26 nm) to the distance from central channel to 

cytoplasmic filaments (+13 to +26nm) allowed to determine in vivo the cNPC length 

perpendicular to the NE (from +33 to 52 nm) (Fig. 2D, E). This distance, measured in vivo, is 

largely compatible with the 50 nm separating nuclear basket from the cytoplasmic filaments 

measured by transmitted electron microscopy (TEM) after immuno-detection of Protein-A 

tagged nucleoporins from purified NE (Alber et al., 2007). Furthermore, in vivo fluorescently 

tagged Nup159 and the nucleoporin Nup60 which colocalized with Nup2 on the inner side of 

NPC, were shown to be separated by 60 nm using structured illumination microscopy (Guet et 

al., 2015). 

We concluded that localization of cNPCs in the NE can be used to achieve robust super-

resolution detection with sufficient accuracy to distinguish longitudinal position of 

nucleoporins within NPC. Therefore, we used the accuracy of cNPC detections to explore the 

nuclear envelop in 3D. 

 

3D-NE model for complex shaped nuclei along the cell cycle 

An asynchronous cell population contains cells in all cell cycle phases. The most abundant 

cells are in G1-S with quasi-round nuclei that in previous works were analyzed thanks to a 
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spherical or ellipsoid fitting (Berger et al., 2008; Figure 2). To improve the NE fitting, the 

nuclear size and shape of quasi-round nuclei were explored using cNPCs position. The high 

number of detected cNPCs per nucleus allowed a precise interpolation of the NE geometry. 

We generated a 3D model of the NE using detected cNPCs. We also tested model prediction 

against simulated NPCs positions for a sphere or an ellipsoid (Fig. S2). NE shape in 2D was 

detected at very high resolution in electron microscopic micrographs of sections of cells fixed 

by high-pressure freezing followed by freeze substitution. This cell preparation resulted in 

optimal morphological preservation of NE (Fig. 3A). Direct connection of adjacent detected 

cNPCs in 2D resulted in a non-accurate estimation of the NE (Fig. 3A). Then, we computed a 

smooth estimation of NE by connecting adjacent detected cNPCs using spline interpolation 

(spline-NE model) (see Materials and Methods; Fig. 3A and 3B). Using this approach, nuclear 

surfaces and volumes were systematically underestimated (Figs. 3A-B; S2A). In such spline-

NE model, detected cNPCs must be the most distant points of the NE to the nuclear center. 

This geometric constraint could trigger bias in the NE approximation on yeast sections. To 

prevent such bias, we generated additional anchoring points of the NE using the three closest 

cNPCs (Fig. 3A, 3C, see material and methods). Using simulated NPC positions, this method, 

called 3D-NE model slightly overestimated nuclear size for small number of NPCs (<20), but 

was more accurate than spline-NE for high number of NPCs (Fig. S2B). From the 3D-NE 

model, we could extract the surface (Sn) and volume (Vn) of each nucleus accurately in 

interphasic cells with quasi-round nuclei (Fig. 3C right panel). 

Cells in G2/M displayed non-spherical nuclei with complex shapes ranging from elongated, 

constricted-, sausages-, hourglass- shaped structures (Yeh et al., 1995). In non-spherical 

nuclei, the spatial coordinates of cNPCs distributed as more than one cluster (Figure 3D, 

upper graphs). 3D-NE model using only one cluster was indeed not accurate and resulted in 

cNPC at constriction ring appearing inside the fitted nucleus (Fig 3D, low right panel). 

Splitting cNPCs into two clusters, the 3D-NE model performed on each cluster was more 

accurate (Figure 3D, right panel). If two clusters 3D-NE model approach generated 

overlapping volumes, then the algorithm subtracts surface and volume of the intersection. 

During late anaphase, a significant number of cNPCs were also detected in a long NE tube 

connecting the two nuclei (extended hourglass shape). Such configuration was explored by 

defining a third cluster of cNPCs (Fig. 3E). Therefore, considering 1, 2 or 3 cNPCs clusters, 

nuclei at each stage of cell cycle can be fitted using the 3D-NE model. 
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Quantification of the nuclear geometry during the cell cycle  

Using the improved 3D-NE model described above, we investigated the nuclear size and 

shape modifications along the cell cycle. To avoid any potential perturbations of the nucleus 

caused by hormonal synchronization, living yeast cells were first observed in a microfluidic 

setup for an entire cell cycle (about 90 min), with image acquisitions every 15 min (Fig. 4A). 

Using our algorithm, we could accurately estimate surface and volume of nuclei along the cell 

cycle, allowing calculation of sphericity (Fig. 4B). Sphericity is defined as the ratio of the 

surface of a theoretical sphere having the same volume as the analyzed nucleus, to the 

measured surface of the considered nucleus (Wadell, 1935); see material and methods). Here, 

we analyzed 20 cells using the microfluidic setup. During interphase, nuclei increased in 

volume from 3 to 4.2 µm3. Nuclear division resulted in a new daughter’s cell nucleus of 2 

µm3, and a mother’s cell nucleus of larger size (3.4 µm3) in agreement with previous reports 

(Fig 4B, Table S1) (Heun et al., 2001). Sphericity is high in interphase (0-45min), and is 

largely reduced in mitosis (60 to 90 min). After mitosis, mother and daughter nuclei are both 

close to a sphere (Fig 4B; right panel). Acquisition time interval of 15 min in the microfluidic 

setup was established to reduce bleaching of fluorophore but increased the probability to miss 

some transient nuclear shapes (Yeh et al., 1995). To overcome this limitation, we analysed 

nuclei in a large assychronous cell populations. Indeed, the fraction of cells in one cell cycle 

phase in a large population is proportional to its duration; we thus converted percentage of 

cells in time. We could classify six stages along the 90 min cell cycle and measured sphericity 

for each stage (Figure 4C). Cells in G1 (stage 1) and in S phase (stage 2) have quasi spherical 

nuclei (sphericity>0.99). In late S, rapid (3-8 min) extention of intranuclear microtubule 

spindle provokes a small compression of nuclei (stage 3). Prior to nuclei entering through the 

bud constriction, stage 4 was characterized by elongated nuclei (4 - 1 min) along spindle axis. 

From stage 1 to 4, fitting 3D NE-model with one cluster was appropriate. Once nuclei entered 

through bud constriction (stages 5 and 6), two or three clusters had to be used to fit the NE. In 

stage 5, sphericity is reduced by bud construction and spindle elongation (from 0.98 to 0.8). 

At the end of mitosis, hour-glass shaped nuclei were elongated with a tube connecting the two 

nuclei (sphericity <0.8). 

In conclusion, our approach allowed the quantification of cell cycle nuclear variations in S. 

cerevisiae assessed in single living cells and in large cell populations. 
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Geometry of interphasic nuclei in different metabolic conditions 

It was reported that the nuclear size is reduced when carbon source is changed from glucose 

to less favorable ones (galactose, raffinose or ethanol) (Jorgensen et al., 2007). We tested if 

we could measure such reduced nuclear size and any potential perturbations of the NE shape 

for these different diets. Each carbon source impacted the cell doubling time: 90 min in 2% 

glucose, 120 min in 2% galactose, 130 min in 2% raffinose and 220 min in 3% ethanol. 

Sphericity stayed high in all conditions, but was reduced while doubling time increased (Fig. 

5A). When changing from most to less favorable carbon sources, we could measure gradual 

reduction of about two-fold of the nuclear volume, and an associated five-fold reduction of 

the nucleolar volume (Table S2).  

Such drastic modification of the nucleoplasm/nucleolus ratio may affect internal nuclear 

organization. In glucose, the SPB and the nucleolus are roughly opposed in interphasic cells, 

defining a central axis (alignment of SPB, nuclear center and nucleolar centroid). We then 

explored the 3D geometry of the SPB relative to the nucleolus when the nucleolar volume 

was modified. We described the SPB and the nucleolus positions using probability density 

maps (Berger et al., 2008; Therizols et al., 2010). Briefly, we made use of labeled nucleolus 

with the mCherry tagged Nop1 protein (yeast orthologs of fibrillarin). An abundant SPB 

constituent Spc42 tagged with GFP was used to detect SPB, which could be distinguished 

from NPC signal in the same green channel thanks to its high fluorescence. SPB is duplicated 

during S phase and the two SPBs are pulled apart during G2/M. Only cells in G1 and early S 

phase with a single spot corresponding to SPB were considered for analysis. SPB was 

positioned relative to two reference points: the nuclear center and the centroid of the 

nucleolus. This approach enabled to define a cylindrical coordinates system with an oriented 

axis in which we described the position of the SPB by its distance from the nuclear center (R) 

and the angle from the central axis (α) (Fig. 5B). In galactose or raffinose, the SPB was 

indeed opposite to the nucleolus as it was in glucose, with a median angle α of 30°. When the 

less favorable carbon source ethanol was used, this angle significantly increased to 40° (Fig. 

5C). We next generated probability density map of SPB distribution. We used nuclear and 

nucleolar center as landmarks. To align the all nuclei analyzed in the same coordinates system, 

we translated all nuclear centers to the origin and rotated them around the origin so that 

nucleolar centroids (secondary landmark) became aligned on the X-axis. This allowed to 

rotate SPB positions around the central axis (Fig. 5B, φ =angle around central axis) and into a 
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single plane (φ=0; cylindrical projection), essentially without loss of information. Kernel 

density estimation was then used to define a SPB density map, similarly to the previously 

described probability density map of genomic loci (Berger et al., 2008; Therizols et al., 2010). 

On the SPB density map (Fig. 5D), the yellow dashed circle represents the median nucleus 

periphery and the median nucleolus is displayed as solid red (glucose) or orange (other carbon 

sources) curves. SPB remains opposed nucleolus, but nucleolus was reduced massively, up to 

5 fold (compare red to orange solid lines) (Fig. 5D). 

 We then decided to evaluate the distribution of detected cNPCs using the same central axis, 

to generate an NPC map using similar kernel density distribution. Plotting NPC maps, we 

could quantify the probability density of cNPCs in the NE of yeast growing in glucose, 

galactose, raffinose or ethanol (Fig. 5E). On this NPC density map, the white dashed circle 

represents the median nucleus periphery in glucose medium, while yellow dash circles 

correspond to median nucleus in other carbon sources. As previously described, nucleus size 

was drastically reduced when the growth rate was reduced (compare yellow to white dashed 

circle; see also Table S2(Jorgensen et al., 2007). cNPC density along NE appeared non-

uniform. To quantify differences in cNPCs density between the yeast growing in different 

carbon sources, we plotted variation of cNPC density along the central axis (Fig. 5F). In all 

carbon sources tested, detected cNPCs appeared slightly depleted in the NE at the 

nucleolus/nucleoplasm border. In glucose and ethanol, cNPC density slightly increased in the 

NE flanking the nucleolus. The cNPC non-uniformed density along the NE can reflect either a 

non-uniform distribution on each individual cell, or aggregation of heterogeneous nuclei in 

the population. In order to explore this possible heterogeneity, we then sorted nuclei, from a 

cells growing in glucose, according to their volume in three classes (small, medium and large), 

and plotted NPC map (Fig. 5G). In the NE flanking the nucleolus, the cNPC density was 

higher in small nuclei than in large nuclei. At the SPB (opposed to the nucleolus) similar 

variation of cNPC density was also detected. Similar heterogeneity was observed in 

population growing in galactose and raffinose media (data not shown). 

In conclusion, when changing carbon source, yeast nucleus in interphasic cells remains 

largely spherical. However, in less favorable carbon source, sphericity is reduced and SPB 

position deviates from the nuclear-nucleolar central axis. Further, we could always observe a 

depletion of detected cNPCs at the interface of nucleoplasm-nucleolus. cNPC density in NE 
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flanking nucleolus varies with nuclear size. Therefore, reduction of the nucleolar volume 

correlates with reorganization of SPB position and modification of cNPC density along NE.  

Exploration of the NE during quiescence 

We next explored the nuclear size and shape during quiescence establishment that has a 

drastic impact on the nucleolar size. Upon nutrients depletion, ribosome biogenesis is quickly 

repressed, resulting in the compaction of the nucleolus (Tsang et al., 2003). In quiescent cells, 

following an extended period of nutrients depletion, Sagot's laboratory showed that the SPB 

assembles a long monopolar array of stable microtubules, associated with a displacement of 

the nucleolus (Laporte et al., 2013). As shown in Fig 6A, this observation would lead in our 

quantitative approach in an increase of the α angle. We determined the SPB density map upon 

glucose depletion and quiescence establishment (from 2h depletion to 7 days; Fig. 6B). 

During establishment of quiescence, the nucleolar volume decreased and the SPB distribution 

deviated progressively from the central axis. The α angle (α) progressively increased during 

quiescence establishment, with median distribution from 30° in exponential growing cells to 

70° after 7 days of nutrients depletion (Fig. 6C). 

We next evaluated the distribution of cNPCs along the NE during quiescence establishment. 

Importantly, since the SPB and the nucleolus were not aligned, we performed NPC map using 

either nucleolus (Fig. 7A) or SPB (Fig. 7C) as secondary landmark. Before depletion, the 

NPC map defined accurately the median nucleus. After seven days, cNPC distribution was 

spread around the median nucleus reflecting the great heterogeneity of the NE size and/or 

shape amongst quiescent cells (Fig. 7A, C). However, some stereotypical patterns in cNPC 

distribution were clearly visible: depletion of detected cNPC at the nucleolus/nucleoplasm 

interface, and the cNPC concentration toward the nucleolus observed in optimal growth 

conditions were strengthened during starvation. Such distribution was illustrated by plotted 

variations of cNPC density along the central axis (Fig. 7B). Using SPB as secondary 

landmark (Fig. 7C), NPC maps revealed an increased number of cNPCs detected at close 

proximity of the SPB during quiescence establishment. Indeed, maximum radial distance ratio 

of cNPC along X and Y axis gradually increased during starvation establishment (Fig. 7D). 

We also visually detected a change of nuclear shape from spherical to elongated in more than 

60% of cell's nuclei (Fig. 7E). We hypothesized that the stable monopolar array of 

microtubules could displace the nucleolus and modify the NE shape (Laporte et al., 2013). To 

test which of those modification was caused by starvation, or by the long monopolar array of 
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stable microtubules, we evaluated nuclear shape and nucleolar position in dyn1∆ mutant, in 

which microtubule spindle is disrupted (Laporte et al., 2013). As expected, elongated nuclear 

shape were not observed in the mutant (Fig. 7F). Surprisingly, SPB deviation from the 

nuclear-nucleolar centroid axis increased during quiescence establishment was independent of 

spindle establishment (Fig. 7G).  In conclusion, we have detected a loss of axial symmetry 

(SPB- nuclear/nucleolar center alignment) in quiescent cells. Furthermore, stable 

microtubules were involved in NE deformation, but not in the loss of axial symmetry.  

Modification of the NE shape during G1 cell cycle arrest 

In all tested conditions (varying carbon sources, and quiescence), the nucleolar volume was 

reduced. We thus analyzed NE geometry in G1 arrested cells in which the nucleolar volume is 

increased (Stone et al., 2000). A well-established method to analyze cell cycle progression is 

to synchronize cells in bulk culture. Asynchronous cells (MAT a) were blocked in G1 using 

alpha factor treatment. Progressively, the fraction of cells in G1 was increasing. Arrest lasting 

for more than an entire cell cycle progression resulted in a cell population with almost all cells 

in G1 phase. Quick wash of the alpha factor allowed cells to progress synchronously through 

the cell cycle as illustrated in Fig. 8A. However, cell cycle arrest is known to influence NE 

morphology: upon alpha factor treatment, budding yeast nuclei adopt an unusual dumbbell 

shape, reflecting a spatial separation of chromosomal and nucleolar domains and an increase 

of the nucleolar volume (Stone et al., 2000). SPB density map analysis revealed that SPB 

maximum density remained opposed to the nucleolus during alpha factor treatment, but had a 

considerably broader distribution (Fig. 8B). Although the angle of the SPB to the central axis 

was not affected during the treatment (Fig. 8C), the distance from the SPB to the nucleolar 

centroid was significantly increased and variable from cell to cell (Fig. 8D). NPC map using 

nucleolar centroid as secondary landmark allowed us to visualize the stereotypical dumbbell 

shape previously reported, and the two-fold increased nucleolar volume (Stone et al., 2000) 

(Fig. 8E). In 80% of the cells, nucleolus was at the center of one lobe of the dumbbell. As in 

asynchronous cells, we detected cNPCs depletion at the NE interface between nucleoplasm 

and nucleolus. Using SPB as secondary landmark, NPC map revealed a fuzzy distribution 

toward the nucleolus (Fig. 8F). Visual inspection of the SPB position along NE showed a 

deviation from the central axis of the dumbbell shaped nuclei in more than 55% of the cells 

(43.2% + 12.2%).  It was reported that microtubules emanating from the SPB are not involved 

in such nuclear reorganization (Stone et al., 2000). We propose that heterogeneity in 
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measured distances between SPB to nucleolus, and in the position of the SPB in dumbbell 

shape nuclei resulted in a blurred NPCs density map (Fig 8F). We quantitated this 

heterogeneity measuring sphericity, which decrease to a mediane value of 0.85 upon 

treatment, and an increased standard deviation (Fig. 8G).  

In conclusion, upon alpha factor treatment, increased nucleolar volume did not modify the 

nuclear central axis, but did change specifically NE morphology flanking the nucleolus and 

correlated with an increased NE surface. 
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Discussion 

In this paper, we explored the S. cerevisiae nuclei geometry in living cells using high 

resolution microscopy detection of closely spaced nuclear pore complexes (cNPCs) embedded 

in the nuclear envelope. On one hand, nuclear geometry was extrapolated from the analysis of 

single living cells along the cell cycle and in cell populations. Heterogeneity of the 3D nuclear 

geometry could be quantified using the developed “NucQuant” algorithm. On the other hand, 

the aggregation of numerous aligned individual cNPCs detected in nuclei in large living cells 

populations allowed us to generate NPC density maps. Using either SPB or nucleolus as 

landmarks, the maps revealed an asymmetric distribution of the cNPCs. We also generated 

SPB density maps to explore, with robust statistics, the distribution of SPB positions relative 

to the nucleolus. Moreover, analysis of starving cells with or without stable microtubules 

bundle and G1 arrested cells displayed modifications of the nuclear shape with stereotypical 

deformations of the NE toward the nucleolus.  

 

The need for new approaches to evaluate nuclear geometry in living cells 

NE morphology is dynamic and due to limited resolution of fluorescent microscopy, is mostly 

described qualitatively. Most of the existing measurements are diffraction limited, i.e. 200 nm 

lateral (X-Y) and 500 nm axial (Z) resolution, and often biased by optical spherical 

aberrations. Other techniques with higher resolution have been reported. Initially, 

transmission electron microscopy (TEM) performed on ultra-thin sections of yeast nuclei, 

revealed heterogeneous appearance of NE probably mostly due to chemical fixation artefacts 

(I. Léger, unpublished results). When using sample-preserving fixation, such as high-pressure 

cryo-fixation followed by cryo-substitution, TEM of ultra-thin (60-80 nm) sections of NE 

showed a smooth double membrane envelope with circular or ellipsoidal contours. When 

performed on ultra-thin serial sections of an entire nucleus, TEM became directly informative 

of the nuclear shape and volume. However, data collection of serial sections analyzed by 

TEM is a time-consuming technical performance and was reported for sampling of less than 

100 nuclei (Winey et al., 1997). Innovative imaging techniques, relying on cryo-fixation but 

with less tedious exploration of 3D space, as high-voltage scanning transmission electron 

tomography of thick sections (Murata et al., 2014), focused ion beam combined with scanning 

electron microscopy (FIB-SEM) (Wei et al., 2012), and soft-X-ray tomography (Larabell and 
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Le Gros, 2004) are very promising. However, they are not compatible with in vivo imaging, 

and they have not yet been combined with high-throughput image analysis algorithms 

required to extract statistically robust dataset. Recently, 3D membrane reconstruction 

approach that used fluorescently tagged nuclear envelope or endoplasmic reticulum 

membrane marker proteins was published to precisely map the nuclear volume (Zhao et al., 

2016). Here, we show that super-resolution localization microscopy of cNPC allow both, 

accurate nuclear size and shape determination and proper correction of spherical aberration 

along the Z axis. Therefore, both methods are complementary to evaluate NE shape and NPC 

distribution. 

  

Discontinuous increase of the nuclear size along the cell cycle  

S. cerevisiae nuclei in interphasic cells appear quasi-round. Quantifying their sphericity in 3D 

with the NucQuant approach, we confirmed this observation. Moreover, exploring 

heterogeneity in interphasic cell's nucleus, we could also recapitulate previously observed 

modifications of the nuclear shape in interphase, triggered by microtubules spindle prior to 

mitosis (Yeh et al., 1995). However, proportions of these clamped and elongated nuclei in 

asynchronous population were low reflecting very transient states. Additionally, following a 

single cell's nucleus over time, thanks to a microfluidic setup, allowed us to measure the NE 

surface and the nuclear volume, showing a slight deviation from a sphere in G1 and S phases. 

Previous studies suggested continuous increase of the nuclear volume during the cell cycle 

(Jorgensen et al., 2007). On the contrary, we observed a discontinuous increase of the NE 

surface: at mitotic onset (60 min), we detected a fast and significant NE expansion while the 

nucleus size slightly increased from G1 to M. The measured timing of this rapid NE surface 

increase is fully compatible with the activation timing of polo kinase cdc5 described to be 

required for NE expansion at mitotic onset (Walters et al., 2014).  

 

Non-homogeneous distribution of closely spaced NPC (cNPC) near SPB and nucleolus 

We observed non-uniform distribution of detected cNPCs along the NE. The analysis of size-

sorted interphasic nuclei showed that the cNPCs density in NE near the SPB or flanking the 

nucleolus was different in small round early G1 nuclei versus large round late S nuclei. In 
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quiescence, depletion of cNPCs at the nucleolus/nucleoplasm interface and the cNPC 

concentration toward the SPB and toward the nucleolus observed in optimal growth 

conditions were strengthened. This may reflect different physical properties of the NE near 

the SPB and at the nucleolus. A relationship between SPB and NPCs has been previously 

described: when SPB is ready to be duplicated, in late G1, (i.e. small nuclei or quiescent cells), 

cNPCs are frequently detected near SPB (Winey and O'Toole, 2001). The authors proposed 

that that local NE bending by NPCs was required for insertion of the newly synthetized SPB. 

The variation of cNPCs concentration near the SPB that we measured could reflect this 

involvement of NPCs in the SPB duplication. However, such specific enrichment is not 

detectable in artificially arrested cells in G1.  

Specific interplay between the NE, the nucleolus and NPCs are also known. NE flanking the 

nucleolus is depleted of NPC associated proteins such as Mlp1, Mlp2, (Galy et al., 2004), 

Pml39 (Palancade et al., 2005) and of the inner nuclear membrane protein Esc1 (Taddei et al., 

2004) suggesting that the NPCs and the inner membrane flanking the nucleolus are 

specialized. The NE flanking the nucleolus is also known to correlate with a local 

modification of the NE rigidity (Witkin et al., 2012). Is the nucleolus physically connected to 

the NE?  Previous works established a connection between the NE and the nucleolus via INM 

non-NPC associated proteins, Nur1 and Heh1 distributed in the entire NE and involved in 

peripheral tethering of ribosomal DNA (Mekhail et al., 2008). We propose that NPCs are 

physically anchored to the NE. Indeed, we observed cNPCs concentration at the NE flanking 

the nucleolus or at the interface nucleolus/nucleoplasm was highly variable according to the 

cells physiology.Nucleolar volume is rapidly changing following inhibition or activation, of 

ribosome biogenesis (Trumtel et al., 2000). Upon quiescence caused by starvation, or 

changing carbon source, nucleolar volume decreased but nucleolus remained associated to the 

NE. Therefore, a significant fraction of the NE at the interface nucleolus/nucleoplasm lost its 

nucleolar connection. A physical connection of NPCs with the nucleolar component would 

explain their local concentration at the remaining NE flanking the nucleolus and their 

depletion at the nucleolus-nucleoplasm NE interface. Further, such observations suggest that 

physical association between NPCs flanking nucleolus and nucleolar components is kept upon 

ribosome biogenesis inhibition.  

 

Nuclear geometry alteration  
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One important parameter in modeling genome organization in Saccharomyces cerevisiae is 

the confinement of the genomic material in the nucleoplasm (Tjong et al., 2012; Wong et al., 

2012). SPB being roughly opposite to the nucleolus in interphase, and nucleolus forming a 

nuclear compartment excluding 90% of the genomic material, a central axis was used to 

define yeast nuclear geometry (angle α=0; SPB-nuclear center to nuclear center-nucleolar 

centroid) (Berger et al., 2008). Here, we observed that this central axis geometry was strongly 

correlated with nucleolar activity. When nucleolar activity was maximized (short cell cycle in 

rich glucose medium), deviation to ideal central axis organization was low (<30°). Upon G1 

arrest, which stops cell growth, but which keeps a large nucleolar volume, this angle was 

unchanged. When nucleolar volume was reduced in conditions where growth rate was 

impaired using unfavorable carbon source, the angle increased. Finally, in quiescent cells in 

which the nucleolar volume was further reduced, this angle increased to 70°. Moreover, this 

large modification of nuclear geometry in quiescence did not depend on stable long 

monopolar array of microtubules. Therefore, we propose that nucleolar size, and not directly 

growth rate, is involved in keeping internal geometry of the nucleus around the central axis.  

  

Conclusion 

In conclusion, we have developed NucQuant, a set of computational tools to quantify the 

nuclear geometry (size and shape) of S. cerevisiae. The statistical robustness and accurate 

measurements obtained with this approach recapitulated known stereotypical rearrangements 

of the yeast nucleus, and uncovered heterogeneity of cNPC concentration along NE. Model of 

the yeast chromosomes had already been computed based on geometry of round shaped nuclei 

(mostly in G1 cells). Models of chromosomes in nuclei of quiescent cells did not take into 

account the modifications of the nuclear morphology as quantified in our work (Guidi et al., 

2015). Quantification of stereotypical modifications of the nuclear morphology, observed 

when changing carbon source, upon quiescence or in G1 arrested cells, will now allow to 

refine chromosomes structure models by integrating changes of the nuclear confinement 

defined by nuclear shape and size and by modifications of the nucleolar compartment. 

Numerous observations point to a relationship between the nuclear size and shape and 

pathological process or aging (Webster et al., 2009). However, apparent heterogeneity 

from nucleus to nucleus limits our ability to study mechanistic insight. Probabilistic 

density maps, presented here for a model organism, might drive future effort for 
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metazoan cell nucleus analysis, as already proposed for endomembrane organization 

(Schauer et al., 2010).  
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Materials and Methods 

Plasmids and yeast strains 

Genotypes of the strains used in this study are described in supplementary Table S3. Plasmids 

used in this study are listed in Table S4. Yeast strains were constructed using homologous 

recombination. 

 

Fluorescence and electron microscopy of yeast cells 

Yeast media were used as previously described (Rose et al., 1990). Home-made PDMS 

chamber connected with microfluidic pump (Fluigent S.A.) allowed trapping cells under 

constant flow of growth medium for more than 2 hours. Confocal microscopy was performed 

as previously described (Albert et al., 2013). Electron microscopy was performed as 

previously described (Albert et al., 2011). 

 

NucQuant: Post-acquisition correction of z aberration 

Confocal images were processed and analyzed with a Matlab script NucQuant, the 

modification version of nucloc (http://www.nucloc.org/).  

We calculated the distances between the nuclear center and the cNPCs. For each nucleus these 

distances were normalized by nucleus mean radius (R). This distribution was best fitted by the 

second-degree polynomial curve: ax2 + bx + c. This equation could be used to correct the 

aberration along z axis: dcorrect/R = d/R-(ax2 + bx).  

 

NPC clustering by k-means 

To reconstruct the nuclear envelope, we measured the distribution of NPCs in the clusters. 

After extracting the NPC positions and correcting the z aberration (xi, yi, zi), we used the k-

means clustering method with Euclidian squared distance (Matlab) group the NPCs in 

different clusters (Ck). 

Spline-NE 



Results-Determination of the nuclear geometry in living yeast cells 

121 

 

Clustering allows us to distribute detected NPCs in each cluster (xk
i, y

k
i, z

k
i)i=1..N, where N is 

the size of cluster Ck. The first configuration of the nucleus envelope represented by the 

cluster Ck is given by the polyhedral patch of the set (xk
i, y

k
i, z

k
i)i=1..N. Since the size of Ck is 

very low for a smooth surface, we did three times refining using existing method (Shirman, L. 

A., PhD thesis, University of California, 1990). This spline interpolation give us the refining 

sets (xk
i, y

k
i, z

k
i)i=1..N3 and (xk

i, y
k
i, z

k
i)i=1..N4 to make the surface more smooth. 

3D-NE  

The first configuration of the nucleus envelope represented by the cluster Ck is given by the 

patch of the set (xk
i, y

k
i, z

k
i)i=1..N. In this patch, the surface of the nucleus envelope consists of 

many Delaunay triangulations which were formed by connecting the neighboring three NPCs. 

For one time refining, we generated one anchoring point of NE for each Delaunay 

triangulation. The new point at the direction from the cluster center to each Delaunay 

triangulation mass center, and the distance of the new point to the cluster center is the mean 

distance of these three NPCs to the cluster center (Fig. 3C). After three times refining, we can 

get enough points to generate the precise envelope. Software implementing these methods is 

available to download at GitHub (https://github.com/ogadal/nucquant). 
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Figure legends 

Figure 1. Detection and correction of the aberrations along Z axis. (A) Yeast nucleus in 

exponential phase with nuclear pores labeled in green and the nucleolus in red (maximum 

intensity projections of a 3D image stack in X-Y plane and X-Z plane). Yellow crosses show 

detected NPCs, green crosses show the nucleus center, blue crosses show nucleolus centroid. 

Green circles show the expected edge of the nucleus and white ellipse shows the detected 

edge. Strain yCNOD99-1a. Scale bar, 1 μm.  (B) Immersion layer refractive index=1.51, 

cover slip 170 μm and refractive index=1.51, Sample refractive index=1.38. Objective lens: 

NA=1.4×100, lambda=520 nm. Linear Z-level shift of PSF mass center and the real Z-axial 

position of the fluorophore. (C) The normalized distances distribution of the detected NPCs to 

the nuclear center along X-level, Y-level and Z-level before correction of the aberration along 

Z axis. d= distances of NPCs to the nuclear center, R= radius of each nucleus. Strain 

yCNOD99-1a, a=0.26, b=0.0029, c=0.81. (D) The normalized distances distribution along X-

level, Y-level and Z-level after correction of the aberration along Z axis. dcorrect =corrected 

distances of NPCs to the nuclear center. 

Figure 2. The resolution of NucQuant after correction of the aberration along Z axis. (A) 

Nuclear pore complex (NPC) architecture and nucleoporins localization in the NPC. (B-E) 

Cumulative frequency of distances to the nuclear center (left panels) and of distances to the 

fitted ellipsoid approximation of the NE (right panels) using GFP or mRFP-tagged 

nucleoporins. (B) GFP-Nup49 and mRFP-Nup57 (Strain yRW3-1a). (C) GFP-Nup159 and 

mRFP-Nup2 (Strain yRW7-1a). (D) GFP-Nup49 and mRFP-Nup2 (Strain yRW4-1a). (E) 

GFP-Nup159 and mRFP-Nup57 (Strain yRW8-1a). 

Figure 3. Extrapolation of nucleus envelope using detected NPCs. (A) 2D models building 

nuclear envelopes are represented onto electron microscopic micrographs of nuclear sections 

on which the positions of NPCs are visually detected (black arrows in the left panel ; strain 

BY4741). In the second image, the NE is built by connecting adjacent NPCs. In the third 

image, the NE is built by spline interpolation. In the right panel, the NE is fitted by generating 

anchoring spots in NE. Scale bars, 100 nm. (B-C) Based on the 3D confocal microscopic 

images, we could detect the NPC positions (blue spheres; strain yCNOD99-1a). Using the 

spline-NE model (B), we refined the connection to get a smooth nuclear envelope. Red circles 

represent the spots that were used to refine the connection. 3D-NE model (C) generates 

additional anchoring spots (blue empty circle) in the NE to get the accurate nucleus envelope. 
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(D) The fitted nuclear envelope based on 3D-NE model for the nuclei characterized by 1 or 2 

NPCs clusters respectively (Upper graphs: X, Y, Z coordinates of detected NPCs ; black cross 

= centroid of detected cluster(s); cluster 1 in red, cluster 2 in green; scale bar, 1 µm; strain 

yCNOD99-1a). (E) The fitted nuclear envelope based on 3D-NE model for the anaphase 

nuclei characterized using 3 NPCs- clusters (cluster 3 in blue; strain yCNOD203-1a) . 

Figure 4. The living yeast nuclear geometry during cell cycle. (A) Time course during a 

complete cell cycle of a single cell immobilized in a microfluidic device: NPCs in green and 

nucleolus in red (maximum intensity projections of a 3D image stack; Strain yCNOD99-1a) 

(B) The fitted nuclear envelope based on 3D-NE model for the nuclei in the different cell 

cycle phases. Surface of the NE and volume of nuclei allowed to calculate sphericity. (C) 3D-

NE model fitting of different nuclear shapes (stages 1 to 6) along the cell cycle. The cell cycle 

is represented as a circle: the percentage of cells from a large population, in each cell cycle 

phase was converted to duration (min). For each stage (panels 1 to 6), the DIC and the 

fluorescent (GFP-Nup49 and Bim1-tDimerRFP) pictures are displayed (stages 1 to 6; strain 

yCNOD203-1a). The fitting using the 3-D NE model is also shown for each stage and was 

used to calculate sphericity. Scale bar, 1µm. 

Figure 5. The nuclear geometry according to the carbon sources. (A) Cumulative 

distribution of sphericity of the interphase nuclei cultured in different carbon sources. Strain 

yCNOD99-1a (B) Cylindrical coordinates system with an oriented axis in which the position 

of the SPB is described by its distance from the nuclear center (R) and the angle from the 

central axis (α). Nucleolus is displayed in red. Angle Φ represent rotation around central axis. 

(C) Cumulative frequency of the angle α between SPB and the central axis. Strain yRW11-1a  

(D) SPB probability density maps based on analysis of nuclei comparing glucose to different 

carbon sources containing media. In glucose, dashed yellow circle: nuclear envelope 

determined according to the 3D-NE method; red curve: median nucleolus; red dot: median 

nucleolar centroid. Compare nucleolar size in glucose (red) to nucleolar size in other carbons 

sources (orange). N represents the number of nuclei used to generate the cumulative 

percentage maps. (E) NPCs probability density maps based on analysis of nuclei in 

exponential phase cells growing in different carbon sources (strain ycnod99-1a). Compare 

median nuclear size in glucose (white dashed circle) to other carbon sources (yellow dashed 

circles). N represents the number of cNPCs used to generate the cumulative percentage maps. 

(F) Plotted variation of NPC density along the central axis. (G) The heterogeneity of the 



Results-Determination of the nuclear geometry in living yeast cells 

125 

 

NPCs distribution in interphasic cells. Nuclei were sorted according to their size (1/3 small, 

1/3 medium, 1/3 large nuclei ; strain yCNOD99-1a). Scale bars, 1 μm. 

Figure 6. The reorganization of the nuclear central axis during quiescence. (A) The 

nuclear central axis (SPB/nuclear center/nucleolar centroid) is broken after the cells enter 

quiescence. Red ellipse: nucleolus; green circle: SPB; black cross: nucleus centroid; blue 

cross: nucleolus centroid; α: angle of SPB to the nuclear-nucleolar centroid axis. (B) SPB  

probability density maps based on analysis of nuclei after indicated time of starvation (see 

Materials and Methods). Representative fluorescent pictures (GFP-Nup49, Spc42-GFP and 

mCherry-Nop1) are displayed. Scale bars, 1 μm. (C) Cumulative frequency of the angle α 

upon incubation in glucose depleted medium (from 2 h to 7 days). Strain yRW11-1a. 

Figure 7. The NE structure and NPC distribution during quiescence. (A) NPC probability 

density maps using nucleolus as secondary landmark upon time progressive incubation in 

glucose depleted medium. Representative fluorescent pictures (GFP-Nup49 and mCherry-

Nop1) are displayed. (Strain yCNOD99-1a). (B) Plotted variation of NPC density along the 

central axis during progressive starvation. (C) NPC probability density maps using SPB as 

secondary landmark upon time progressive incubation in glucose depleted medium. Small red 

dot: SPB median position. Representative fluorescent pictures (GFP-Nup49 and SPC42-

mRFP) are displayed.  (Strain yRW9-1a). (D) Maximum radial distance ratio of cNPC along 

X and Y axis. (Strain yRW9-1a).  (E) After the cells enter quiescence, the percentage of 

different nuclear geometries at incubation times in carbon depleted medium (Strain 

yCNOD99-1a). (F) In the dyn1∆ mutant, percentage of the elongated nuclei versus sphere-

like nuclei after 48h hours to 7 days carbon depletion (Strain yRW19-1a).  (G) SPB 

probability density maps based on analysis of nuclei from dyn1∆ mutant cells after indicating 

time of starvation (Strain yRW20-1a). Scale bars, 1 μm. 

Figure 8. Modification of the nuclear envelope after treatment with alpha factor. (A) 

DNA content in asynchronous culture, after 2h alpha factor treatment and after alpha factor 

removal determined by flow cytometry (strain yCNOD99-1a). (B) SPB probability density 

maps before and after treatment with alpha factor using nucleolus as secondary landmark. 

Representative fluorescent pictures (GFP-Nup49, SPC42-GFP and mCherry-Nop1) are 

displayed (strain yRW11-1a). (C) Cumulative frequency of the angle SPB-central axis. (D) 

Cumulative frequency of the distances from SPB to the nucleolar centroid. (E) NPC 

probability density maps in asynchronous population (left map), after two hours alpha factor 
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blocking (right map) and 15 min after release in G1 (low map), using nucleolus as secondary 

landmark. Representative fluorescent pictures (GFP-Nup49 and mCherry-Nop1) are displayed 

(strain yCNOD99-1a). Drawings depict the different nuclear shapes and the position and size 

of the nucleolus after 2 hours treatment with alpha factor. (F) NPC probability density maps 

before and after treatment with alpha factor using SPB as secondary landmark. Representative 

fluorescent pictures (SPC42-GFP and Nup57-tDimerRFP) are displayed (strain yRW10-1a). 

Drawings depict the percentage of different nuclear geometries after 2 h treatment with alpha 

factor. (G) Cumulative distribution of sphericity. Scale bars, 1 μm. 

 

Figure S1. Optical spherical aberration along the Z axis. (A) Normalized distances 

distribution of random spots on a sphere surface. (B) Normalized distances distribution of 

random spots on an ellipsoid surface (Rz>Rx=Ry, R=(Rx+Ry+Rz)/3). (C) Simulated 

normalized distances distribution of the spots on a sphere surface along the three dimensions 

(sphere radius is 1 μm; the standard localization deviation of simulated spots is 0.03 μm). (D) 

Normalized distances distribution of spots on a sphere surface along the three dimensions 

with spherical aberration introducing linear distance overestimation along Z axis. (E) Using 

NPCs detection and approximation of the nucleus as a sphere, the over-estimation along Z 

axis was measured. (F) Computed corrected position along Z axis. (G) The silicon immersion 

objective (left panel; Olympus; NA~1.35) decreased the aberrations compared to oil-

immersion objective (right panel; Olympus; NA~1.4). (H) Spherical aberration along Z-axis 

using confocal laser scanning microscope. 

Figure S2. Evaluation of the spline-NE model and 3D-NE model. We simulated a sphere 

of radius=1 μm (volume=blue dashed line) and an ellipsoid (volume=green dashed line) of 

Rx=Ry=1 μm, Rz=1.5 μm. We calculated the volume of this sphere (blue line) or ellipsoid 

(green line) for different number of NPCs using either the spline-NE model (A) or the 3D-NE 

model (B), considering that the standard localization deviation of simulated NPCs is 0 μm. 
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Table S2. Summary nuclear and nucleolus size distribution in asynchronous cultures 

Carbon 
source 

NO. 
cells 

Doubling 
time (min) 

G1 
percentage 

(%) 

Median size of nucleus Vnucleolus 
(μm3) Surface (μm2) Volume (μm3) 

Glucose 1054 90 42.2 10.99±1.36 3.41±0.60 1.38±1.15 

Galactose 1061 120 45.4 9.77±1.16 2.83±0.50 0.82±0.82 

Raffinose 1451 130 49.8 8.82±1.23 2.44±0.51 0.84±0.61 

Ethanol 1116 220 71.1 6.84±1.15 1.66±0.41 0.29±0.21 

 

Table S3: Genotypes of strains used in this study 
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Table S4: Plasmids used in this study 
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3.3 Extended discussion 

In this part, I will further discuss our results about the nuclear geometry, and add some 

unpublished dataset. I will focus this discussion on a shape descriptor called "sphericity 

index", the intranuclear position of the nucleolus and the NPC distribution during cell cycle. 

3.3.1 Heterogeneity of the nuclear shape in cell population 

The cell nucleus is typically spheroidal or ellipsoid (Albert et al., 2012; Berger et al., 2008). 

However, the nuclear shape has high plasticity: in a same strain, the nuclei also will have 

different shape from cell to cell (see “Introduction” part). To study the heterogeneity of the 

nuclear shape in interphase of one cell population, we measured sphericity of each cell 

nucleus. Sphericity is one criterion to reflect how round an object is. The sphericity of a given 

object is the ratio between the surface area of a sphere which would have the same volume as 

that object to the surface area of the object (Wadell, 1935). For one perfect sphere, the 

sphericity index equals to 1 and is maximal. A sphericity index lower than 1 indicates 

deviation from a perfect sphere. For one ellipsoid, the sphericity is ~0.92 when a:b:c=1:1:2 

(Figure 29A). We tested the sphericity of yeast nucleus when carbon source is changed from 

the most (glucose) to the less favorable carbon source (ethanol). We confirmed that most of 

the nuclei in interphase were close to spherical (the median sphericity is over 0.99). However, 

about 20% of nucleus are rather ellipsoidal (sphericity below 0.95) (Figure 29B, the samples 

are presented in Figure 29D). We also found that when the carbon source was changed to the 

less favorable carbon source ethanol, the sphericity clearly decreased compare with the 

favorable carbon source (Figure 29B). So we supposed that, together with the growth rate and 

NPC distribution (see manuscript) which are influenced by the carbon source, the nuclear 

shape is also impacted by the carbon source. We have known that after the cells enter 

quiescence, ~ 70% nuclear lost their sphericity. So, we also explored the heterogeneity of the 

nuclear shape after the cells enter quiescence. The results clearly showed that after 7 days 

starvation, most of the nuclei lost their sphericity (Figure 29C).  
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Figure 29. The heterogeneity of the nuclear shape. 

A. The sphericity of sphere and ellipsoid. The sphericity of one perfect sphere is 1, and the 
ellipsoid (a:b:c=1:1:2) is ~0.92. 

B. The influence of the carbon source on the nuclear shape, the sphericity of the nuclei 
decreases while less favorable carbon (ethanol) source is used.  

C. The sphericity distribution of the nuclei after the cells enter quiescence. After 7 days 
starvation, the nuclei lost their sphericity. 

D. Exemples of two nuclei with different sphericity. The less spherical nucleus looks shorter 
along Z-axis. 
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3.3.2 The organization of the nucleolus 

The budding yeast has 100-200 ribosomal DNA (rDNA) units tandemly located on 

chromosome XII and is confined in the nucleolus. Only half of the rDNA copies are actively 

transcribed in S. cerevisiae (Dammann et al., 1993). During my PhD, we wanted to quantitate 

the intra-nuclear position of the nucleolus. In budding yeast, the nucleolus contacts 

extensively with the nuclear envelope (NE) (Figure 30A). The nuclear periphery was always 

seen as the silenced region (“genes poor region”), so the study of the nuclear periphery is 

important to help us to understand the relation between the chromosome organization and 

transcription activity. Using our methods, we could accurately explore in 3D the peripheral 

location of the nucleolus. 

 

Figure 30. The change of the nucleolus structure after the cells enter quiescence. 

A. Schematic of the nucleus, nucleolus and the nuclear periphery region. Here, the periphery 
region was defined as the region occupy 1/3 of the total nucleus at the periphery. 

B. After the cells enter quiescence, the nucleolus contacts the nuclear envelope more 
extensively. 

 

We have shown after the cells enter quiescence, the growth of cells was stopped and the 

nucleolar size decreased (see manuscript Figure 7A). We were wondering if this change in the 

nucleolar size impacts its localization respect to the nuclear periphery. To answer this 

question, we calculated the fraction of the nucleolus located at the nuclear periphery. We 

defined periphery as 1/3 of the nuclear volume uniformally distributed along the NE. The 

nucleolar periphery percentage is the proportion of the nucleolus at the nuclear periphery. It is 

clear that with such definition, the nucleolus was not restricted to the peripheral region: in 
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asynchrone cells, we measured a median of ~60% of the nucleolus located at the nuclear 

periphery. After cells entered quiescence, the percentage of the nucleolus at nuclear periphery 

is massively increased (Figure 30B). We conclude that when ribosome production is 

repressed, peripheral location of nucleolus is increasing.  
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My thesis is containing two parts about the chromatin dynamics and the nuclear geometry in 

living yeast cells. 

1. The dynamics of non-rDNA and rDNA chromatin 

In the first part of my thesis, I studied the motion of the non-rDNA chromatin and rDNA 

chromatin in exponentially growing yeast cells. To track the motions of loci we labeled them 

thanks to the FROS approach and chose clones with very bright signal. Bright signals (high 

signal to noise ratio) were obtained by increasing the number of bacterial operator binding 

sites tetO (and subsequently the length of the labeled sequence) and significantly improved 

the accuracy of detection of tagged loci. For an isolated Rouse polymer chain, the motion of a 

locus composed of N monomers, with a known stiffness characterized by the Kuhn length (Lk) 

is described by three consecutive regimes (see Results 1.2, the review of Wang et al., 2015). 

For very short time scale, the motion of non-rDNA loci is not restricted by elastic interactions 

with their neighboring polymer segments, leading to a regime of free diffusion. However, in 

our experimental conditions, due to the increased length of the labeled DNA sequence, the 

initial free diffusive dynamics was slower than a short labeled sequence. The transition to the 

Rouse motion hence is delayed, leading to an exponent ~0.7 (see Results 1.2). After this 

transition, the movement of a locus was consistent with the Rouse dynamics with an exponent 

~0.54 (compatible with our previous work, see Hajjoul et al., 2013 and Albert et al., 2013). 

For long time scales, because of the confinement of the nucleus, and the tethering of 

centromeres (CEN) and telomeres (TEL) to nuclear structures, the entire chromosome cannot 

diffuse freely: the chromatin dynamics can be modeled as two-regime Rouse model. This 

two-regime response was not detected in our previous work because of the shorter number of 

tetO sites in chosen FROS labeled sequences (Albert et al., 2013).  

For the rDNA chromatin dynamics analysis, we also chose the clone with a very bright signal. 

The dynamics of the rDNA was very different than non-rDNA chromatin and fitted well with 

one regime: the MSD of rDNA followed a behavior with scaling exponent of ~0.7. The 

nucleolus, a nuclear body organized around the rDNA on the chromosome XII, is a totally 

different confinement compared with the nucleoplasm: the nucleolus is a more crowded 

region, so the motion of rDNA is slower and follows different constrains than non-rDNA. In 

addition, the repetitive nature of the rDNA, its peculiar chromatin structure, and the very high 

transcription rate may also play a role in this different mobility. It will be interesting to 

compare the dynamics of rDNA in the nucleolus within strains containing 25 or 200 rDNA 
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copies. The MSD fitting of rDNA dynamics is similar with the Zimm polymer model. Further 

studies on the rDNA dynamics are still required to investigate rDNA organization. Mutants of 

RNA polymerase I and early ribosomal RNA processing could also be informative. 

2. Interplay between the chromosome organization and chromatin motion 

Chromosome organization in the nucleus is still debated. In this thesis, I contributed to define 

which polymer model can accurately predict the motion and organization of chromatin in the 

nucleus. Starting from an ideal Rouse chain, we tried to elucidate which chromatin properties 

are affecting the motion in vivo. 

 

Figure 31. The “ideal” Rouse model and the chromosome models in living yeast cells. 

A. The “ideal” Rouse chain, the chain can be seen as N beads (monomers) connected by 
harmonic springs, the monomers can cross each other. The MSD of an “ideal” Rouse chain 
can be fitted with an exponent of 0.5. 

B. The self avoiding Rouse chain in vivo.The chromosome segments cannot cross each other 
freely. 

C. The activation of transcription induce the binding of RNA nucleo-protein complexes 
(green lines) on the chromosome which will lead to an increased hydrodynamic diameter of 
the chromatin fibers, independently of the Kuhn length. Upon transcription inactivation, 
hydrodynamic radius is lower. 

D. The branched Rouse polymer model in vivo. The red curve represents the chromosome, 
green curves represent the RNA nucleo-protein complexes. 
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“Ideal” Rouse chain can be seen as N beads connected by harmonic springs (Figure 32A). 

There are no excluded volume interactions between the beads and the chain can cross itself, 

like "ghost chain". The length of the springs, or the length of the monomers (Kuhn length), is 

characterized by only parameter defining the flexibility of the chain: the shorter the length, the 

more flexible the chain. In the “Results” section 2.2, we have confirmed that in living yeast 

cells, the chromatin motion followed the Rouse dynamics. However, the motion of the 

chromatin was not perfectly fitted by an ideal Rouse model because the MSD of chromatin 

dynamics was fitted with an unexpected exponent ~0.54 (“ideal” Rouse model is 0.5). We 

propose that chromosome segments cannot cross each other freely. According to this model, a 

chromosome should be considered as a self-avoiding chain (Hajjoul et al., 2013) (Figure 32B).  

Based on chromatin dynamics in vivo, we confirmed the Kuhn length of ~1 nm in wild type 

(WT) cells which is much smaller than the one measured in in vitro system and appears 

unrealistic (see “Results” 2.2, Figure 1D). Then we wanted to see whether this unexpected 

response was related to the transcription activity. To study how transcription influences the 

chromatin dynamics, we then analyzed the mobility changes of loci (a locus on chromosome 

XII and the GAL1 gene on chromosome II) after transcriptional inactivation. To achieve this, 

we constructed two polymerase II temperature sensitive (TS) mutant strains in which the 

transcriptional inactivation occurs after temperature shift from 25°C to 37 °C. The motion 

analysis revealed that upon transcription inactivation, chromatin dynamics increased ~50%, 

making chromatin properties closer to ideal chain (see “Results” 2.2, Figure 3A, B). We 

propose that for the same Kuhn length, the hydrodynamic radius of chromosomes was smaller 

after transcription inactivation (see “Results” 2.2, Figure 3C). Activation of the transcription 

induces the binding of RNA nucleo-protein complexes on the chromosome which will lead to 

the increase of the viscous friction (this will lead to the decrease of the chromatin dynamics) 

and the hydrodynamic diameter of the chromosome (Figure 32C). We propose that the 

chromatin in living cells is best modeled using an alternative Rouse model: the “branched 

Rouse polymer”, the RNA nucleo-protein complexes binds on the Rouse chromosome (Figure 

32D). Therefore, we propose that chromatin polymer have to be modeled using two 

independent parameters: Kuhn length (flexibility) and hydrodynamic radius. The relation 

between the Kuhn length and the hydrodynamic diameter are still not clear; further studies are 

needed. 
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3. Determination of the nuclear shape and size 

Chromosomes are space-filling polymers in the nucleus. Therefore, the nuclear organization 

and geometry should have significant influence on the chromosome organization. However, 

the interplay between them is still debated because the research on the nuclear shape and size 

is technically challenging. 

This question leads to the second part of my PhD work, in which I developed one algorithm, 

“NucQuant” used to quantify the nuclear shape and size of living yeast with high accuracy. 

This approach benefits from“Localization microscopy” approach that can measure the 

position of isolated objects with a resolution of a few tens of nanometers (Thomann et al., 

2002). Because of the mismatch of the refractive index (see Results 3.2, Figure 1), the 

accuracy of “localization microscopy” along the Z-axis is much lower than in X-Y plane 

(Kirshner et al., 2013) and results in spherical aberrations along the Z-axis. The “NucQuant” 

algorithm includes a post-acquisition correction to revise this aberration. After correction of 

the Z aberration, “NucQuant” could interpolate the nuclear envelope (NE) based on the 3D-

NE method. In this approach, one assumes that between detected nuclear pore complexes 

(NPCs), NE adopts a spherical shape keeping distance NE-nuclear center constant. This 

hypothesis can lead to approximation errors. Spline-NE estimation is not based on this 

hypothesis, only assuming a smooth NE shape. However, our spline-NE approach 

systematically underestimated the nuclear size because the number of detected NPCs was too 

low (around 20-30). However, it is still a good method to detect the nuclear envelope without 

additional hypothesis if the number of detected NPCs is high enough (more than 100, see 

“Results” 3.2, Figure S2). Actually, if one can improve the resolution of the algorithm to 

increase the number of detected NPCs, spline-NE will be the most promising way to analyze 

the nuclear shape. To go further in the characterization of the yeast nuclear geometry, we have 

tested a novel kind of super-resolution microscopy, based on structured-illumination 

microscopy, which has the ability to increase the number of detected NPC (Figure 33).  
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Figure 32. The detection of the nuclear shape based on structured-illumination 
microscopy. With the improvement of the resolution, it is possible to see the clusters of the 
NPC (see the yellow rectangle). 

 

To validate this technique, we labeled different nucleoporins (Nups) in the NPC and were 

able to assign their locations in the thickness of the NE. The results showed that this method 

was highly accurate and has the potential to be used to calculate the median distances among 

Nups. 

Then, we used this method to analyze the nuclear shape and size of yeast growing in different 

conditions. By using this method, cell’s nuclei can be studied individually or in a bulk 

population. Combining the microfluidic technology with “NucQuant”, we determined the 

nuclear shape and size of the yeast nucleus along the cell cycle and we could confirm the 

continuous increase of the nuclear volume from G1 to M (Jorgensen et al., 2007). Our results 

also revealed a significant increased NE surface at mitotic onset. Polo kinase cdc5 is known to 

be required for NE expansion at mitotic onset (Walters et al., 2014). Even if we did not detect 

the NE increased surface toward the nucleolus prior to mitosis, time window of rapid NE 

expansion are fully compatible with the activation timing polo kinase cdc5 (Walters et al., 

2014). 

Yeast nuclear genome has an axial symmetry around the so-called central axis: SPB/nuclear 

center/nucleolar centroid. Our results showed that the symmetry of the nucleus around the 

central axis was broken upon reduction of the nucleolar volume. After alignment of all of the 

nuclei into the same coordinates and projection of all the detected NPCs into a same plane, we 

were able to calculate the NPCs probability density distribution map (we called it as 

“NPCmap”). By analyzing the NPCmap of yeast cells, we also found that, the NPCs were 
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heterogeneously distributed along the NE. NPCs are depleted of the NE at the interface 

nucleoplasm/nucleolus. Upon reduction of the nucleolar volume, NPCs are concentrated in 

the NE flanking the nucleolus, suggesting a physical link between NPC and the nucleolar 

content. Our study also revealed that from the G1 phase to the begining of the G2 phase 

(while the nucleolus volume is increasing gradually), the NPCs were moving away from the 

NE flanking the nucleolus. We observed that after cell division, i.e. at the early state of the G1 

phase, the NPCs are concentrated at the NE flanking the nucleolus. This might be a 

consequence of mitosis, with the hour-glass shaped nucleus and the nucleolus being the last 

nuclear domain to segregate. In late G1, S and G2 phase, the surface of the nucleus is 

increased from the NE flanking the nucleolus (Walters et al., 2014). Thus the NPCs at this site 

are gradually shifted away from the nucleolus. 

Finally, because we could determine the NE with high accuracy in 3D, we also could use this 

method to detect the nuclear periphery organization. The quantification of the nucleolar 

portion localized at the nuclear periphery revealed that when ribosome production is repressed, 

peripheral location of the nucleolus is increasing. In fact, some genes, such as GAL1, HXK1, 

INO1, TSA2, HSP104, SUC2 and MFA2, are recruited to nuclear periphery upon 

transcriptional activation (Brickner and Walter, 2004; Burns and Wente, 2014; Cabal et al., 

2006; Taddei et al., 2006). Labeling the NPC and a gene of interest with different 

fluorochromes, we could also accurately calculate the localization of the gene relative to the 

NE in 3D.We also could use this technique to analyze the localization of the rDNA in the 

nucleolus, combined the motion of rDNA chromatin to analyze the rDNA organization. 
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1. Utilization of “NucQuant” 

In this part, I will present how to use “NucQuant” to analyze the nuclear shape and size for 

possible users.  

1.1 Installation 

The version of the Matlab “NucQuant” can be used is 2012b and the later versions. 

Because to acquire the NPCmap we used R package, so we also need install the R (version is 

2.9.2). Then we need install some packages in R, we need open the R as administrator. We 

need install the packages of rscproxy (1.3-1), mvtnorm (0.9-8), ks (1.6.8), rpanel (1.0-5), 

nuclocR and the R.matlab (3.0.1) packages successively. Then we also need install the Scilab. 

Note 1: The version of the R packages should be compatible with the R just as shown above. 

Note 2: Environment variables. Make sure that the PATH environment variable includes the 

bin directory of R. The way to change the PATH environment variable is: Start Menu  

Control panel  System  Environment variables. Add the PATH environment variable of 

the bin directory of R to the end. Such as C:\Users\gadal\Documents\R\R-2.9.2\bin\.  

Note 3: Be careful in the code of nucquant_NPCmap.m (line 185), we also need make sure 

the path here is right. 

1.2 How to use “NucQuant” 

“NucQuant” containing many algorithms, when we open the nucquant_platform, this interface 

containing all of the algorithms inside (Figure 1). I will explain this by introducing how to use 

“NucQuant” to analyze the nuclear shape and size.  

Note 1: Before using “NucQuant”, set the folder of the nucquant files as path in Matlab. To 

avoid unexpected errors, copy the figures into the folder of nucquant files and the output data 

will also be saved in this folder. For each experiment, after analysis, remember move the all 

output dataset out or it will influence the analysis of next experiment figures. 



APPENDIX-Utilization of “NucQuant” 

176 

 

 

Figure 1. The interface of “NucQuant”. 

 

1.2.1 Input the figures and crop the cells 

The figures we acquired are from the spinning andor confocal microscopy (saved as .tiff type). 

For 3D analysis, Z-stacks of 41 images (two channels) with a 250 nm Z-step were used. For 

the analysis, we need to know some parameters which are very important in the “NucQuant”. 

The refactive index of the sample medium (YPD, SC we used 1.33), the numerical aperture 

(NA) of the objective lens (default setting is 1.4), the emission wavelength (default setting is 

0.5), the voxel dimension along x (65 nm), y (65 nm) and z (we used 250 nm) and the number 

of color channels (default setting is 2).  

Input the figures have two methods: manually (import_nuclei) and automatically 

(import_nuclei_robot). Manually method will remind you to change these parameters when 
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you choose one figure. Automatically method, these parameters are default setting inside the 

code of IHM.m (line 71-76), we also can change the parameters in the interface after we 

choose the automatically way. 

Note: For manually way, we can crop the cells we are interested by manually. For the 

automatically way, the software will crop the nuclei with close-spherical shape (interphase 

nuclei) automatically. 

1.2.2 Extract the NPC position, nuclear center, nucleolus segmentation and the nucleolar 

centroid 

After crop the cells, we also have two ways to extract the information of each nucleus, 

nucquant_direct for the users to see the extraction of single nucleus; nucquant_robot will 

detect the information of each nucleus automatically can save them into the output file. 

Note 1: When we choose to extract the information of each nucleus, the interface of 

‘nucquant_gui’ will appear. In this interface, the things we should note are the ‘Figures’ part 

(Figure 2, red rectangle). ‘Show, don’t save’ means the software will show us the extracted 

information for each nucleus in figures version. This is suitable for us to check single nucleus. 

Although for robot extraction we also can let it show and save the data, it is very slow! 

 

Figure 2. Extract the nucleus information. 
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Note 2: In the code, we will first to find the birghtest spot in the figure as the bNPC, then 

choose the other potential NPCs based on their thresholding. Then we choose the spot whose 

distance to the nucleus center is 0.5-2.0 μm as the true NPCs. For different experiment, we 

also can change this value in the code of nucleolus.m (line 314-315). 

1.2.3 Class the data 

This step is default, all of the data are classified as ‘renjie’, and you can change this in the 

code of nucquant_class.m (line 63).  

1.2.4 Quality control 

Quality control step is for the automatically crop, extraction data. The quality control 

principle is the ellipsoid approximated radius (default value is like the distance of NPC to the 

center, 0.5-2.0μm) and the number of NPC (default is 3). You can change these settings in the 

code of nucquant_QC.m (line 184-196). 

Note: After quality control step, the data will be saved in the output which named as 

‘QC_Okauto_.....’. For the manually crop users, because manually select is a quality control 

step, you can change the ‘nucquant_class’ output files name to pass this step. 

1.2.5 Correc the aberration along Z axis 

For the interphase spherical nuclei we just need choose ‘nucquant_correct_z’ to correct the z 

coordinates of the detected NPC, the nucleolus center and so on. In addtion, this choice also 

automatically caculate the nuclear volume, surface and the sphericity of the nucleus based on 

3D-NE method we created (See the results part). For this step, after correction, the output file 

containing four parameters (a, b, c and d) which can be used to correct the z coordinates for 

the non-spherical nuclei. They are needed for the choice ‘nucquant_correct_z_manually’ 

which is for the non-spherical nuclei. 

Note: For non-spherical nuclei, because it is not sure about the shape of the nucleus (one 

cluster, two clusters or three clusters), so ‘nucquant_correct_z_manually’ just correct Z 

aberration, it does not calculate the volume and surface of the nucleus automatically. To 

calculate this, we need use 3D-NE code (in which containing the code to calculate the nucleus 

shape and size for different shape) 
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1.2.6 Align the nuclei 

For the interphase nuclei or the nuclei with similar geometry, we could use nucleus center and 

nucleolus center (or spindle pole body) as the two landmarks to align all of the labeled NPCs 

and project them into one single plane. 

Note: This step will automatically input the output file named as ‘QC_Okcorrect_.....’ which 

come from the correction step. 

1.2.7 Calculate the NPC distribution 

Based on the align file we can calculate the probability density of the NPC, and the software 

will output one heatmap of the NPC. 
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2. Published: "Decoding the principles underlying the frequency of association with 

nucleoli for RNA Polymerase III-transcribed genes in budding yeast" 

During my PhD project, I also participated another research on the tRNA genes (see 

manuscript attached below). I used “Nucloc” to study the ‘gene territories’ of tRNA genes 

and revealed the association between tRNA genes and the nucleolus. 
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Decoding the principles underlying the frequency 
of association with nucleoli for RNA polymerase 
III–transcribed genes in budding yeast

ABSTRACT The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli 
seems to be an evolutionarily conserved property of the spatial organization of eukaryotic 
genomes. However, recent studies of global chromosome architecture in budding yeast have 
challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 
Pol III–transcribed genes. The frequency of association with nucleolus and nuclear periphery 
depends on linear genomic distance from the tethering elements—centromeres or telomeres. 
Releasing the hold of the tethering elements by inactivating centromere attachment to the 
spindle pole body or changing the position of ribosomal DNA arrays resulted in the associa-
tion of Pol III–transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III–tran-
scribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III–
dependent transcription was independent of the intranuclear position of the gene, but the 
nucleolar recruitment of Pol III–transcribed genes required active transcription. We conclude 
that the association of Pol III–transcribed genes with the nucleolus, when permitted by glob-
al chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points 
contributing locally to intranuclear chromosome organization.

INTRODUCTION
Eukaryotic chromatin is a complex three-dimensional (3D) entity. Its 
organization within the nucleus can influence genome stability and 
gene expression (Misteli, 2007). Global genome organization in 
budding yeast has been clearly determined. The nucleolus, which is 
organized into a crescent-shaped structure adjacent to the nuclear 
envelope (NE), contains almost exclusively the genes encoding ribo-
somal DNA (rDNA) from the right arm of chromosome XII (Yang 
et al., 1989; Léger-Silvestre et al., 1999). In cycling cells, diametrically 
opposite the nucleolus, the kinetochore complex at the centromeres 

(CENs) is tethered to the spindle pole body (SPB) via microtubules 
throughout the cell cycle (Yang et al., 1989; Bystricky et al., 2005; 
Duan et al., 2010; Zimmer and Fabre, 2011). Telomeres (TELs) are 
localized in clusters at the nuclear envelope (Klein et al., 1992; Gotta 
et al., 1996), such that the chromosome arms extend from the CEN 
toward the nucleolus and the nuclear periphery. Therefore, in cycling 
cells, chromosomes adopt a Rabl-like conformation (Jin et al., 2000). 
Computational models based on small numbers of biophysical con-
straints and reproducing most of these features have recently been 
developed (Tjong et al., 2012; Wong et al., 2012; Gursoy et al., 
2014; Gong et al., 2015). By studying budding yeast chromosome 
XII by live-cell imaging, we confirmed that the nuclear positions of 
loci were globally well predicted by such models (Albert et al., 2013). 
Models introducing constraints due to nuclear biochemical activity 
have been reported to provide a better fit to experimental contact 
frequency maps (Gehlen et al., 2012; Tokuda et al., 2012). Recent 
imaging studies in different physiological conditions affecting the 
yeast transcriptome revealed a global shift of many positions on 
chromosome II to the periphery of the nucleus (Dultz et al., 2016). 
This peripheral recruitment of chromosome arms is consistent with 
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Most tRNAs are encoded by large multigene families scattered 
throughout the yeast genome, with a mean of 4 genes encoding the 
same tRNA and up to 16 genes for Gly(GCC). Even within multigene 
families, the isogenes encoding different tRNAs display very high 
levels of sequence identity, making it difficult to design gene-
specific probes for estimating the abundance of a specific transcript. 
Furthermore, within a set of tRNA genes encoding the same antico-
don, individual copies are not equivalent, and the deletion of indi-
vidual genes may affect yeast fitness to very different extents 
(Bloom-Ackermann et al., 2014). We performed a comprehensive 
survey to identify base-pair polymorphisms in tRNA sequences in 
each of the 20 families. In total, 69 tRNA species are produced from 
the 273 tDNAs of the yeast nuclear genome (Figure 1B, circles). We 
identified 33 unique tRNA species (circles labeled with 1 in 
Figure 1B) produced from single genes. Six of these 33 unique 
tDNAs bore unique anticodons. However, if a unique anticodon-
encoding gene is lost, other tRNAs can decode the codon through 
wobble base pairing; as a result, only four of these six genes were 
considered essential (Bloom-Ackermann et al., 2014).

We mapped 30 representative loci from the 278 different Pol 
III–transcribed genes in yeast by in vivo microscopy (gene names in 
blue in Figure 1B). We previously determined the intranuclear posi-
tions of 5 of these loci on chromosome XII: SNR6, the 5S gene in 
rDNA, and three tDNAs (tP(UGG)L, tA(UGC)L, and tL(UAA)L; Albert 
et al., 2013). We explored the positions of Pol III–transcribed genes 
further by labeling SCR1 (the gene encoding the RNA component 
of the signal recognition particle [SRP]) and seven other tDNAs: 
three of the four essential tDNAs (TRT2, SUP61, and TRR4) and 
tG(CCC), represented by only two tDNAs—SUF3 and SUF5—which 
display low but significant levels of sequence polymorphism (see 
later discussion). We also labeled SUP4, the deletion of which causes 
a strong growth defect, despite its membership in the large tY(GUA) 
family, which contains eight isoforms (Bloom-Ackermann et al., 
2014). The SUP53 tDNA, for which expression can be assessed indi-
rectly from the suppressor activity of a nonsense mutation (unpub-
lished data), was also included in our study.

Intranuclear position of Pol III–transcribed genes
We determined the positions of individual Pol III–transcribed genes 
in the nuclear space in vivo by FROS labeling (TetO/TetR–green flu-
orescent protein [GFP]). The linear position of each gene on the 
chromosomes is shown in Figures 2A and 3A. We previously showed 
that, for Pol III–transcribed genes, a single nucleosome dynamics 
upstream for SNR6 and downstream for tDNAs controlled differ-
ences in transcription (Arimbasseri and Bhargava, 2008; Mahapatra 
et al., 2011; Kumar and Bhargava, 2013). The positions of FROS in-
sertions close (from 60 to 800 base pairs) to genes of interest were 
therefore selected with care to ensure that the FROS insertion point 
affected neither adjacent nucleosome occupancy nor RNA Pol III 
recruitment. Pol III occupancy in the vicinity of tDNAs was assessed 
by chromatin immunoprecipitation (ChIP) and quantitative PCR 
(qPCR). Nucleosome position was determined by mononucleosome 
MNase protection assays, followed by qPCR. Pol III occupancy and 
nucleosome positioning were similar in the untagged and tagged 
cells (Supplemental Figure S1).

Gene position was determined by the NucLoc method (Berger 
et al., 2008; Therizols et al., 2010). Images were acquired from living, 
exponentially growing cells in culture by the confocal fluorescence 
imaging of large numbers of nuclei (>1000). Images were analyzed 
with dedicated software (see Materials and Methods). Briefly, for each 
cell with a spherical nucleus (including the G1, S, and early G2/M 
phases), nuclear and nucleolar volumes were determined on the basis 

the presence of transcription-dependent anchoring points along the 
length of the chromosome (Tjong et al., 2012). However, the tether-
ing sites organizing chromosomes locally remain largely unidentified 
(Dultz et al., 2016).

Each of the three nuclear RNA polymerases transcribes a specific 
subset of genes. RNA polymerase (Pol) II transcribes all protein-cod-
ing genes and many noncoding (nc) RNA genes. Pol I synthesizes 
only one type of RNA—the precursor of large rRNAs. Pol III special-
izes in the synthesis of a few hundred ncRNAs, mostly involved in 
translation: the 5S rRNA, tRNAs, and abundant small nc-RNAs. There 
is a well-documented correlation between the frequent association 
of a gene with a nuclear substructure and its transcriptional activity 
(Takizawa et al., 2008). Pol I transcription is the model system for this 
preferential localization of genes. Indeed, assembly of the nucleolus, 
the largest nuclear body, is initiated by rDNA transcription by Pol I 
(Trumtel et al., 2000; Misteli, 2001; Hernandez-Verdun et al., 2002). 
Previous studies suggested that nucleolar association of Pol III-tran-
scribed genes has been conserved during evolution. Nucleolus-as-
sociated domains in metazoan genomes are significantly enriched in 
tRNA genes (tDNAs; Nemeth et al., 2010). In budding yeast, tDNAs 
scattered over the various chromosomes appear to be colocalized in 
a cluster close to or within the nucleolus on fluorescence in situ 
hybridization (FISH) microscopy (Thompson et al., 2003; Haeusler 
and Engelke, 2004). Recent studies of budding yeast also reported 
transcription-dependent recruitment of a tDNA to the nuclear pore 
complex (NPC) during mitosis (Chen and Gartenberg, 2014). Pol III–
transcribed genes may behave as local tethering sites for the 
organization of chromosome arms.

In this study, we investigated the intranuclear position of indi-
vidual Pol III–transcribed genes in three dimensions. We measured 
distances from genes of interest to both nuclear and nucleolar cen-
ters (Berger et al., 2008). FISH studies previously demonstrated a 
concentration of tRNA gene families (Leu(CAA); Lys(CUU), Gly(GCC), 
Gln(UUG), and Glu(UUC)) in or near the nucleolus (Thompson et al., 
2003). We used fluorescent operator-repressor system (FROS) inser-
tion to label individual Pol III–transcribed genes and determine their 
position within the nucleus in vivo (Berger et al., 2008). We found 
that some, but not all, Pol III–transcribed genes were frequently as-
sociated with the periphery of the nucleolus and/or away from the 
nuclear center. Proximity to the centromere or telomere prevented 
nucleolar recruitment, suggesting a hierarchical organization of 
locus positions. Centromere proximity constrained loci to be at the 
nuclear periphery close to SPB. Telomere proximity precluded cen-
tral localization in the nucleus, resulting in loci close to SPB for short-
arm chromosomes or away from SPB for long-arm chromosomes 
(Therizols et al., 2010). Centromere inactivation or the insertion of a 
centromere at an ectopic site at some distance from a tDNA re-
sulted in the nucleolar association of the Pol III–-transcribed gene; 
peripheral position was kept, but shifted away from SPB toward the 
nucleolus. The nucleolar association of tDNA was alleviated by nu-
trient starvation, which inhibits Pol III transcription, However, Pol III 
transcription was not limited to nucleolus-associated genes. We 
evaluated the contribution of the gene itself to the intranuclear po-
sitioning of its host locus and showed that Pol III–transcribed genes 
controlled the local organization of the chromosome arms via nucle-
olar and/or nuclear envelope tethering.

RESULTS
Identification of Pol III–transcribed genes generating 
unique, detectable transcripts
Pol III–transcribed genes can be classified into three groups, types 
I–III, on the basis of their internal promoter organization (Figure 1A). 
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The previously characterized intranuclear 
positions of the 5S rDNA and SNR6 gene 
loci (Albert et al., 2013) are shown in 
Figure 2B. As expected, 5S rDNA, which is 
interspersed with RNA polymerase I–tran-
scribed rRNA gene repeats (35S rDNA) in 
the budding yeast genome, was restricted 
to the nucleolus (Figure 2B; Berger et al., 
2008; Albert et al., 2013). The SNR6 locus, 
which is located 86 kb away from the rDNA, 
toward the centromere on the right arm of 
chromosome XII, appeared to be mostly lo-
calized at the nucleolar periphery. We also 
determined the intranuclear positions of two 
tDNA loci: SUP53 and SUP4. A transcription-
ally active SUP53 gene has been reported to 
be associated with the nucleolus (Thompson 
et al., 2003). Using our FROS strain, we 
found that SUP53, which is located 23 kb 
from the centromere on the left arm of chro-
mosome III, was excluded from nucleolar 
periphery, whereas SUP4, sited 107 kb from 
the centromere on the right arm of chromo-
some X, was detected in a large volume 
within the nuclear space, frequently interact-
ing with the nucleolus (Figure 2B). Similarly, 
SUF3 and SUF5, both located >250 kb from 
the centromere and telomere, were fre-
quently found to be associated with the nu-
cleolar periphery. We found that SUF3 was 
also frequently located in the periphery of 
the nucleus. The 5S rRNA gene, SUP4, 
SUP53, SUF3, and SUF5 all belong to multi-
gene families in which functionally equiva-
lent transcripts can be produced from mul-
tiple genes, and so it was not possible to 
determine the proportion of transcription-
ally active genes among the loci localized.

We next localized three essential tDNAs 
(TRT2, TRR4, and SUP61) with unique antico-
dons as transcriptionally active Pol III loci. 
We also determined the position of SCR1, 
an essential non-tRNA Pol III transcript 
(Figure 3, A and B). The genomic positions 
of the loci are shown in Figure 3A, and local-
ization maps are displayed in Figure 3B. 
TRT2 is located close to the left telomere 

(47 kb) on chromosome XI and was found to have a perinuclear dis-
tribution reminiscent of subtelomeric sequences, rarely coming into 
contact with the nucleolus (Therizols et al., 2010). The TRR4 locus is 
located 350 kb from the rDNA and 261 kb from the right telomere, 
on the right arm of chromosome XII. TRR4 nuclear position appears 
both at the nucleolar and nuclear periphery. SCR1 is located on the 
right arm of chromosome V, 290 kb from CEN and 135 kb from the 
telomere. Like SUF3 and TRR4, SCR1 was preferentially associated 
with the nucleolus and nuclear periphery. SUP61 is located 113 kb 
from the centromere and it appeared to be excluded from the nucle-
olar periphery, in close proximity to the nuclear envelope. Both SUP4 
and SUP61 are located ∼100 kb from centromere, but the maps of 
these genes were markedly different. HMR, a heterochromatin do-
main attached to the nuclear envelope, is located 66 kb from the 
SUP61 locus.

of the fluorescent Nup49-GFP (nuclear pore complex) and Nop1-
mCherry (nucleolar protein) signals, respectively. Locus position was 
determined relative to two references: the 3D positions of the centers 
of the nucleus and the nucleolus. Nucleus geometry was explored by 
measuring the angle (α) between the locus–nuclear center axis and 
the nuclear center–nucleolar center axis. By construction, nucleolar 
center is at α = 180°. SPB is peripheral and opposed to the nucleolus 
(α ≈ 0). Peripheral location of a locus away from SPB will result in a 
larger α (∼45–180°). The distance between the locus and the nuclear 
center was used, together with α, to generate a color-coded statisti-
cal map of locus positions in which the percentage indicated within a 
contour represents the probability of finding the locus within that con-
tour. On these maps, the average nuclear circumference is depicted 
as a yellow circle, and the median nucleolus (including 50% of all nu-
cleoli) is displayed as a red isocontour (see Figures 2B and 3B).

FIGURE 1: Schematic representation of Pol III–transcribed genes. (A) Pol III–transcribed genes 
can be classified on the basis of internal promoter organization into types I–III. Positions of 
boxes A, IE, B, and C (gray oval) relative to the transcription start site (arrow) and the 
transcribed region (rectangle). (B) It is challenging to find individual tRNA genes (tDNAs) to label 
from which a unique gene product can be unambiguously identified. The 273 tDNAs generate 
69 different tRNAs (circles) in budding yeast. Each family, defined on the basis of the amino acid 
targeted (rectangles) and the anticodon (bold), contains 1–16 genes (colored circles and 
numbers of identical genes). Double arrows link tRNAs within a family responsible for decoding 
the same anticodon but with different sequences. Unique genes for the decoding of a specific 
anticodon are shown in red and those with a known nucleolar distribution (Thompson et al., 
2003) in green. The FROS used for labeling was inserted near the genes highlighted in blue.
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FIGURE 2: Positions of Pol III–transcribed genes on the chromosomes and in the intranuclear 
space. (A) FROS insertions near RDN5, SNR6, SUP53, SUP4, SUF3, and SUF5 genes on the 
chromosome relative to CEN, rDNA, and left and right TELs. The distance of the FROS insertion 
(green triangle) relative to the two closest tethering elements (kilobases) is indicated. (B) Gene 
map of the FROS-labeled loci. Yellow circle and red ellipsoids correspond to nuclear envelope 
and nucleolus, respectively. N, number of nuclei used to generate the probability density map. 
The probability of finding the locus within the various regions of the nucleus is indicated by the 
percentage enclosed within the contour concerned.

A comparative analysis of all the intra-
nuclear maps of Pol III–transcribed genes 
in this study (Table 1) showed that the close 
proximity of tethering elements (<100 kb 
from CEN, TEL, or HMR) prevented the as-
sociation of Pol III–transcribed genes 
(SUP53, TRT2, and SUP61) with the nucleo-
lus. Conversely, the close proximity of 
SNR6 to rDNA on the right arm of chromo-
some XII was associated with an exclusively 
nucleolar location. For regions with no ob-
vious constraints on their motion due to 
the Rabl-like chromosomal architecture, 
Pol III–transcribed genes displayed fre-
quent, possibly cell cycle–regulated nucle-
olar interactions (SUP4 and SUF5) or 
nucleolar/nuclear periphery interactions 
(SRC1, TRR4, and SUF3).

Proximity to centromeres prevents the 
association of Pol III–transcribed genes 
with nucleoli
Our mapping results suggest that the prox-
imity of genes to tethering elements such as 
centromeres prevents them from associating 
with nucleoli. We investigated the interplay 
between Pol III–transcribed genes and cen-
tromeres, using a genetic system for the ec-
topic insertion of any gene at the SUP53 lo-
cus, which is close (23 kb) to the centromere 
(Supplemental Figure S2). Because the SPB 
occupies a position diametrically opposite to 
that of the nucleolus, we hypothesized that 
proximity to the centromere would result in 
the locus being tethered away from the nu-
cleolus. We changed the genomic locations 
of four Pol III–transcribed genes from the 
three Pol III classes: the 5S rRNA gene (type 
1), one tDNA (SUF3), and two essential type 
III genes (SNR6, SCR1; Figure 4A). All were 
strongly associated with the nucleolus when 
in their wild-type genomic positions (Figure 
4B, top). No growth defect was detected in 
any of the strains carrying an ectopic gene at 
the SUP53 locus with deletion of the gene at 
its endogenous wild-type locus (unpublished 
data). We mapped each ectopic insertion 
and compared it to the wild-type position of 
the gene (Figure 4B, compare top to bot-
tom). We observed no nucleolar recruitment 
for SUF3, SNR6, and SCR1 inserted at the 

SUP53 locus close to the centromere. In the budding yeast genome, 
the 5S rDNA is inserted between copies of the Pol I–transcribed 
rDNA repeat (35S rDNA). This organization is unusual, in that 5S 
rDNA arrays are clustered into arrays separately from the 35S rDNA 
in other organisms. In fission yeast, the insertion of a 35S rDNA se-
quence not including the 5S rDNA at the mating-type region in-
duced relocalization of the gene from the SPB to the nucleolar pe-
riphery (Jakociunas et al., 2013). The 5S rDNA (RDN5) gene is 
universally associated with nucleoli (Haeusler and Engelke, 2006). 
We therefore hypothesized that a single 5S rDNA at the SUP53 locus 
would drive strong nucleolar association. However, the insertion of 

SUP61, tT(UGU)G1, and tT(AGU)C were recently reported to be 
preferentially associated with the NPC during mitosis (Chen and 
Gartenberg, 2014). We explored the possible cell cycle–regulated po-
sitioning of another Pol III–transcribed gene, SCR1. In our aggregate 
population analysis, SCR1 was preferentially found in two positions: 
nucleolus and nuclear periphery (Figure 3B). We manually sorted nu-
clei by cell shape to analyze G1 (unbudded), S (small buds), and G2/M 
(choosing large buds with round nuclei, excluding anaphase) phases. 
Perinucleolar recruitment was observed mostly in G1 (Figure 3C, left). 
Marked recruitment to the nuclear periphery was observed in S phase 
and conserved in G2/M (Figure 3C, middle and right).
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FIGURE 3: Positions of four essential Pol III–transcribed genes on chromosomes and in the 
intranuclear space. (A) FROS insertions near TRT2, TRR4, SCR1, and SUP61 genes on the 
chromosome relative to CEN, rDNA, right and left TELs, and silent mating-type loci (HMR). The 
distance of the FROS insertion (green triangle) from the two closest tethering elements 
(kilobases) is indicated. (B) Gene map of the FROS-labeled loci. Yellow circle and red ellipsoids 
correspond to nuclear envelope and nucleolus, respectively. N, number of nuclei used to 
generate the probability density map. (C) Gene map of the FROS-labeled SCR1 gene during the 
cell cycle.

nucleolar association. We used a strong in-
ducible promoter (pGAL1-10) to disengage 
the kinetochore from the centromere (Hill 
and Bloom, 1987; Reid et al., 2008). On in-
duction, GAL genes were recruited to the 
nuclear periphery, as previously reported 
(Casolari et al., 2004). We inserted the 
pGAL1-10 promoter at the chromosome III 
centromere (CEN3), close to SUP53 (Figure 
5A). Expression under pGAL1-10 control 
caused a conditional knockdown of CEN3 
kinetochore attachment, strongly decreas-
ing cell viability upon induction (Figure 5B), 
due to chromosome segregation defects 
resulting from kinetochore disassembly. As 
control, we checked that the wild-type 
SUP53 locus position was unaffected by 
shifting the cells from repressed to induced 
conditions for up to 4 h (Figure 5C, left). 
We then induced CEN3–kinetochore disso-
ciation using similar growth conditions and 
monitored locus positions (Figure 5C, 
middle). The location of SUP53 was signifi-
cantly affected by CEN3–kinetochore 
dissociation, with this locus predominantly 
occupying a peripheral position. The nu-
cleolar recruitment of SUP53 did not in-
crease significantly even after 4 h of in-
duction. CEN3 kinetochore inactivation 
significantly modified the angle α between 
the locus–nuclear center axis and the cen-
tral axis (Figure 5C, right). This angle was 
unaffected in wild-type (WT) cells incu-
bated with galactose for 4 h (Figure 5D, 
left) but gradually increased after kineto-
chore disassembly (Figure 5D, right). 
SUP53 thus remained at the nuclear pe-
riphery, appearing to deviate from the axis 
between the nuclear and nucleolar centers. 
No such effect was observed if a centro-
mere other than CEN3 was disrupted 
(CEN9; Supplemental Figure S3). It was not 
possible to explore longer periods of CEN3 
release due to cell morphology abnormali-
ties. We overcame this problem by con-
structing a strain in which the endogenous 
CEN3 was deleted and an ectopic centro-

mere (CEN6) was inserted 14.2 kb from TEL-R and 212 kb from 
SUP53 (Figure 5E, left). This strain displayed no growth defect 
(Supplemental Figure S3C). After permanent centromere release, 
SUP53 gene was recruited to the nuclear and nucleolus periphery 
(Figure 5E, right). These results confirm that proximity to the cen-
tromere constrains the location of SUP53.

An ectopic location of rDNA alters the nucleolar association 
of Pol III–transcribed genes
SNR6 had a strictly perinucleolar location (Figure 2B). We suggest 
that this is largely due to the proximity of rDNA and SNR6 (only 86 
kb apart), anchoring the locus to the nucleolus. We tested this 
hypothesis by modifying a strain constructed by M. Nomura’s lab-
oratory, rDNA-CEN5, for gene position analysis. In this strain, 
all of the rDNA repeats of chromosome XII have been deleted 

RDN5 at SUP53 was not sufficient to drag the locus to the nucleolus 
(Figure 4B, rightmost images). The identity of the Pol III–transcribed 
gene inserted in place of SUP53 did not affect the intranuclear posi-
tion of the locus (Figure 4C).

Our data suggest that the Pol III–transcribed genes tested could 
not direct the association of a centromere-proximal region to the 
nucleolar periphery or significantly modify gene position relative to 
that of the wild-type SUP53 gene.

Pol III–transcribed SUP53 slides along the nuclear periphery 
toward the nucleolus when the chromosome III centromere 
is inactivated or displaced
The Pol III–transcribed, centromere-proximal SUP53 locus is not 
found near the nucleolus in wild-type cells. We disrupted CEN 
function to determine whether CEN proximity (23 kb) prevented 
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Reference
Gene 
name

Common 
name

Genomic location: +rDNA = 1–2 Mb of rDNA array

Nuclear location

Chromosome 
number

Distance

CEN rDNA Other

Albert et al. (2013) RDN5 5S rRNA 
gene

XII 309 kb right Inside 588 kb + rDNA 
from right telomere

Away from SPB; 
inside nucleolus

Albert et al. (2013) SNR6 U6 snRNA 
gene

XII 216 kb right 86 kb left 674 kb + rDNA 
from right telomere

Away from SPB; 
nucleolar periphery

Albert et al. (2013) tP(UGG)L None XII 58 kb left 359 kb left 93 kb from left 
telomere

Nucleoplasm

Albert et al. (2013) tA(UGC)L None XII 64 kb right 237 kb left 261 kb from right 
telomere

Away from SPB;  
nucleoplasm/ 
nucleolar periphery

Albert et al. (2013) tL(UAA)L None XII 812 kb + 
rDNA left

473 kb right 115 kb from right 
telomere

Away from SPB; 
nucleolar and 
nuclear periphery

This study tR(CCG)L TRR4 XII 668 kb + 
rDNA left

350 kb right 261 kb from right 
telomere

Away from SPB; 
nucleolar and 
nuclear periphery

This study SCR1 7SL RNA 
gene

V 290 kb right Not linked 135 kb from right 
telomere

Away from SPB; 
nucleolar and 
nuclear periphery

This study tL(CAA)C SUP53 III 23 kb Not linked 90 kb from left 
telomere

Close to SPB, 
nuclear periphery; 
away from  
nucleolus

This study tS(CGA)C SUP61 III 113 kb right Not linked 66 kb left of HMR 
locus

Close to SPB, 
nuclear periphery; 
away from  
nucleolus

This study tY(GUA)J2 SUP4 X 107 kb Not linked 203 kb from right 
telomere

Away from SPB; 
nucleoplasm/ 
nucleolar periphery

This study tG(CCC)D SUF3 IV 807 kb right Not linked 274 kb from right 
telomere

Away from SPB; 
nucleolar and 
nuclear periphery

This study tT(CGU)K TRT2 XI 393 kb Not linked 47 kb from left 
telomere

Nuclear periphery

This study tG(CCC)O SUF5 XV 267 kb Not linked 765 kb from right 
telomere

Nucleolar  
periphery

TABLE 1: Gene-mapping results for Pol III–transcribed genes in the budding yeast nucleus.

and reinserted in the vicinity of the centromere on chromosome V 
(see Materials and Methods and Figure 6A; Oakes et al., 2006). As 
previously observed, the nucleolus was located diametrically op-
posite the SPB in the WT strain (Figure 6B; bottom). After ectopic 
rDNA insertion, the SPB was close to the nucleolus (Figure 6B, 
top; Oakes et al., 2006). The rDNA-CEN5 strain had impaired 
growth, and the nuclear radius was increased, making distance 
variation difficult to interpret. We explored the changes in nucleus 
geometry using the gene map and the α angle variation, which 
remains informative even if nucleus size is modified. In the rDNA-
CEN5 strain, SUP53 was confined to the nucleolar periphery 
(Figure 6C, left). In the rDNA-CEN5 strain, SNR6 was not linked to 
rDNA and was located 215 kb from the centromere and 648 kb 

from the right telomere (Figure 6A). SNR6 was more widely dis-
persed in the nucleus in the mutant rDNA-CEN5 strain than in the 
WT strain (Figure 6C, right). Its geometric position in these two 
strains could be described by the α angle distribution. In the WT 
strain, the distribution of α angles was centered on 105°, reflecting 
a perinucleolar location (Figure 6D). The distribution of α angles 
was broader and centered on 75° in the rDNA-CEN5 strain, re-
flecting a displacement of the locus away from the nucleolus. 
Therefore, in the rDNA-CEN5 strain, SNR6 was not strictly peri-
nucleolar but nevertheless remained frequently associated with 
the nucleolus, confirming that Pol III–transcribed genes located 
away from anchoring elements often interact with the nucleolar 
periphery.
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As loading control, we designed a probe (o-
Gly) for assessing overall RNA levels for 18 of 
the 21 tDNAs of the glycine family. We tried 
to generate a probe targeting either the 
SUF3 or SUF5 tRNA based on two polymor-
phisms found in SUF3 and SUF5 (Figure 7C, 
top). Gene-specific transcript levels were de-
termined with total RNA from the WT, suf3∆, 
and suf5∆ strains. The SUF5 probe did not 
appear to be specific, whereas the SUF3 sig-
nal was ∼70% lower in the suf3 deletion mu-
tant than in wild type (no decrease in the 
suf5 deletion mutant) and was therefore 
considered to display good specificity 
(Figure 7C, left). The ectopic insertion of 
SUF3 away from the nucleolus had no major 
effect on transcript levels (Figure 7C, right). 
Thus Pol III–transcribed gene expression 
levels are not strictly dependent on nucleo-
lar association.

Nontethered Pol III–transcribed genes 
drive association with the nucleolar 
periphery
Our results confirm that a Rabl-like chromo-
somal architecture constrains the spatial po-
sition of genes located close to centromeres 
and rDNA-anchoring elements. Further-
more, when not tethered by nearby struc-
tural elements, individual Pol III–transcribed 
genes are frequently associated with the 
nucleolar periphery.

We then investigated whether the asso-
ciation of the Pol III–transcribed locus SUP4 
with the nucleolus was directly dependent 
on Pol III activity. To distinguish between 
passive recruitment to the nucleolus and 
transcription-based recruitment, we cul-
tured FROS-labeled cells for 2 h in dilute 
rich medium with no carbon source. This 
treatment efficiently shuts off Pol III tran-
scription in vivo (Roberts et al., 2003), as 
demonstrated by the release of Pol III from 
genes (Figure 8A; Kumar and Bhargava, 
2013). This starvation treatment halved the 
ratio of nucleolar-to-nuclear volumes in 

strains carrying labeled SNR6, SUP4, and SUP53 loci (Figure 8B), 
reflecting a decrease in nucleolar volume in the absence of a change 
in nuclear volume. A decrease in nucleolar size is also observed 
when the global reprogramming of transcription is induced by ra-
pamycin treatment, with only a minor effect on overall chromosome 
architecture (Albert et al., 2013).

We compared locations of the SUP4 gene in expressed and 
nonexpressed conditions and of loci tethered by a centromere 
(SUP53) or close to rDNA (SNR6) as controls. The distance of the 
SUP4 locus from the nucleolar center was modified in starved cells 
(Figure 8C). We quantified the observed effect by plotting the cu-
mulative frequency distribution of distances between the loci and 
the center of the nucleolus and comparing normal and starvation 
conditions (Figure 8D, solid and dashed lines, respectively). No 
significant difference was detected for the centromere-associated 
locus SUP53 (two-sample Kolmogorov–Smirnov test [ks-test2], 

Nucleolar association is not essential for the expression 
of Pol III–transcribed genes
We investigated the link between expression and the location of Pol 
III–transcribed genes in the nuclear space by comparing expression 
levels for SNR6, SCR1, and a tDNA, SUF3, in their wild-type (nucle-
olus-associated) and ectopic (close to the centromere, excluded 
from the nucleolar periphery) positions (Figure 7).

SNR6 and SCR1 are single-copy genes. We used Northern blot-
ting to determine the levels of their transcripts relative to those of an 
abundant Pol II transcript (snR46). SNR6 and SCR1 transcript levels 
were not affected by a change in the position of the locus within the 
genome (compare WT and ectopic, Figure 7, A and B). For SCR1, as 
a control, we evaluated transcript levels before and after FROS inser-
tion. No change in transcript level was detected (Figure 7B, lane 2 vs. 
lane 3). Finally, we assessed the dependence of SUF3 tDNA expres-
sion level on nucleolar association by primer extension (Figure 7C). 

FIGURE 4: Positions of ectopically inserted genes. (A) Description of ectopic strains. SNR6, 
SCR1, SUF3, and a copy of RDN5 were inserted separately at the SUP53 locus. Except for 
RDN5, for which there are ∼200 copies, the original copy of the inserted gene was deleted. 
(B) Gene maps for the original locus and the ectopic SUP53 location for the SNR6, SCR1, SUF3, 
and RDN5 genes. (C) Gene maps for SUP53 at its native position and for ectopic insertions of 
SNR6, SCR1, SUF3, and RDN5 at the SUP53 locus (top and bottom, respectively).
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FIGURE 5: Releasing CEN3 from the SPB results in SUP53 relocalization. (A) Important features 
of chromosome III in pGAL-CEN3. (B) Evaluation of the growth of serial dilutions of WT and 
pGAL-CEN3 strains on media supplemented with glucose (repressed) or galactose (induced). 
(C) Gene map of the FROS-labeled SUP53 locus in the WT (left) or pGAL-CEN3 (middle) 
in medium supplemented with glucose (repressed) and after 4 h of culture in medium 
supplemented with galactose (induced). Right, SUP53 locus movement in galactose: the locus 
(green dot) deviates from the nuclear–nucleolar center axis (red line), resulting in an increase of 
α angle values. Red, nucleolus. Blue, positions occupied by the SPB. (D) Cumulative distribution 
function of the gene–nuclear center axis and the nuclear–nucleolar center axis angle α in WT 
(left) and pGAL-CEN3 (right) strains during the time-course experiment in galactose-
supplemented medium. (E) Left, important features of chromosome III in the cen3∆-CEN6 strain. 
Right, gene map of the FROS-labeled SUP53 locus in the cen3∆-CEN6 strain.

p = 0.05), consistent with CEN attachment to SPB, which is known 
to be independent of transcriptional inhibition (Albert et al., 2013; 
Verdaasdonk et al., 2013). The SNR6 locus, located close to rDNA, 
appeared to be significantly (ks-test2, p = 6 × 10−13) closer to the 
center of the nucleolus (Figure 8D) after the change in nucleolar 
radius during starvation: mean nucleolar radius in the labeled 
strain was decreased from 0.7 to 0.5 μm by starvation (Figure 8D, 
light to dark gray). It has been shown that the decrease in nucleo-
lar volume induced by rapamycin treatment results in a small but 
significant shift of locus positions toward the center of the nucleo-
lus (Therizols et al., 2010). However, SUP4 did not follow this pat-
tern, as it was located predominantly at the nucleolar periphery in 
glucose-containing medium and displayed a significant shift away 
from the nucleolar region upon nutrient stress (ks-test2; p = 1 × 
10−6). This indicates that the association of SUP4 with the nucleolus 

is driven by its transcription. Indeed, tRNA 
genes have been shown to dissociate from 
the nucleolus when transcription is abol-
ished by promoter mutation (Thompson 
et al., 2003).

For confirmation that the lower frequency 
of SUP4 nucleolar association resulted di-
rectly from inhibition of the Pol III–mediated 
transcription of this gene rather than global 
reorganization due to glucose starvation, we 
deleted SUP4 and monitored the position of 
the sup4∆ locus in glucose-rich medium. 
SUP4 deletion resulted in a strong growth 
defect (unpublished data; Bloom-Acker-
mann et al., 2014). Normal growth was re-
stored by inserting an ectopic copy of the 
gene at SUP53 locus (Figure 8E). SUP4 gene 
deletion resulted in a greater distance be-
tween the deleted SUP4 locus and the nu-
cleolar center (Figure 8F; ks-test2; p = 1.4 × 
10−12). Thus, in the cell population, the fre-
quency of SUP4 tDNA locus association with 
the nucleolar periphery depends on the 
presence of the gene. We then investigated 
the effects of deleting SUF3, SUF5, SCR1, 
TRR4, and TRT2, all located away from the 
tethering elements studied earlier (Supple-
mental Figure S4). All the deletions tested, 
except SUF3, induced a small but significant 
(ks-test2; p = 10−3 – 10−9) shift of the locus 
away from the nucleolus. For SUF3 tDNA, 
the perinuclear anchoring upon deletion of 
the tRNA gene was weakened.

In conclusion, our localization study 
confirmed that Pol III–transcribed genes lo-
cated away from tethering elements were 
recruited to the nucleolus or its periphery. 
The association of the tDNA SUP4 locus 
with the nucleolar periphery was specifi-
cally reduced by the inhibition of Pol III 
transcription or deletion of the gene. Nu-
cleolar recruitment was observed for most 
of the genes tested. We also observed 
perinuclear anchoring of Pol III–transcribed 
genes away from tethering elements (i.e., 
SUF3). With the spectrum of genes studied 
here, we showed that Pol III–transcribed 

genes were able to tether the chromosome arm locally to either 
nuclear or nucleolar periphery.

DISCUSSION
The major finding of this study is that hierarchical constraints in 
chromosome organization control the position of Pol III–transcribed 
genes in the nucleus. The Rabl-like conformation of yeast chromo-
somes imposes a rigid scaffold that strongly modulates the fre-
quency of associations between Pol III–transcribed genes and the 
nuclear and/or nucleolar periphery. Pol III–transcribed genes close 
to tethering elements, such as centromeres, HMR, or telomeres, 
interact with the nucleolus at very low frequency in cell popula-
tions. Here we confirmed that a locus near CEN is close to the NE 
and constrained by SPB, and a locus near TEL is at the NE. We 
showed that Pol III–transcribed genes located >100 kb from these 
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FIGURE 6: Ectopic insertion of rDNA modifies nucleolar associations. (A) Important 
chromosomal features in the WT and rDNA-CEN5 strains. (B) In vivo labeling of the SPB 
(SPC42-CFP, blue signal) and nucleolus (NOP1-mCherry) in the nucleus of the WT (left) 
and rDNA-CEN5 strains. (C) Gene map of the SUP53 (left) and SNR6 (right) loci in WT (top) and 
rDNA-CEN5 (bottom) strains. (D) Box plot of α angle distribution for SNR6 locus in WT and 
rDNA-CEN5 strains. Median angle (for 20 individual nuclei) values. Red line, median α value. 
Edges of the box are 25th and 75th percentiles. Whiskers extend to 10th and 90th percentiles. 
Right, angle between SNR6 locus (green dot) and nuclear–nucleolar center axis (red line). The 
region occupied by the SPB (blue) is close to the nucleolus in the rDNA-CEN5 strain.

tethering elements were frequently found 
close to the nucleolus and/or NE. Chang-
ing the position of genes relative to tether-
ing elements (CEN and rDNA) allowed us 
to monitor the position of Pol III–transcribed 
genes free from constrains imposed by the 
Rabl-like configuration. Our results demon-
strated that recruitment of a tDNA locus at 
the nucleolar periphery is driven by the Pol 
III–transcribed gene itself. Finally, for a sub-
set of genes, we were also able to show 
that nucleolar association of the host locus 
depended on the presence of the Pol III–
transcribed gene and was driven by its 
transcriptional status. For one case (SUF3), 
nucleolar association was not affected 
upon Pol III–transcribed gene deletion, but 
peripheral location was weakened.

Hierarchy of constraints driving 
chromosome organization in vivo
tRNA gene clustering at the nucleolus is be-
lieved to affect global chromosome folding 
in vivo, potentially competing with centro-
meric recruitment to the SPB (Haeusler 
and Engelke, 2006). We showed here, us-
ing ectopic insertions of essential Pol III–
transcribed genes close to centromeres, 
that centromeric proximity prevented nu-
cleolar recruitment of Pol III–transcribed 
genes. The genes studied included SCR1 
and SNR6 genes, which can drive nucleolar 
recruitment. Permanent centromere re-
lease, manipulating CEN3 location within 
the chromosome, was sufficient for the nu-
cleolar recruitment of Pol III–transcribed 
genes. We conclude that the recruitment of 
Pol III–transcribed genes to the nucleolus or 
nuclear periphery contributes to higher-or-
der chromosome organization in vivo when 
permitted by the strongest constraints im-
posed by the Rabl-like conformation.

Pol III–transcribed genes preferentially 
localize at the nuclear and nucleolar 
periphery
tRNA-encoding genes are recruited to the 
nuclear periphery in G2/M (Chen and Gar-
tenberg, 2014), consistent with changes in 
the location of Pol III–transcribed genes 
during the cell cycle. We used yeast strains 
and automated data analysis methods de-
veloped primarily for the mapping, with 
high accuracy, of gene positions relative to 
the nucleolus. However, we were also able 
to demonstrate the frequent localization of 
tL(UAA)L (Albert et al., 2013), SUF3, TRR4, 
and SCR1 at the nuclear periphery. We 
found that SCR1 was recruited to the 
nucleolar periphery mostly in G1. In the 
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FIGURE 7: RNA accumulation from ectopically expressed Pol III–transcribed genes. 
(A) Quantification by northern blotting (top) of U6 transcript accumulation (bottom) relative to 
SNR46 small nucleolar RNA in the wild-type strain (SNR6) and the strain with an ectopic SNR6 
insertion (SNR6ect, snr6∆). (B) Northern blot quantification of SCR1 transcript accumulation 
relative to SNR46 small nucleolar RNA in WT (lane1) and strains with tetO-labeled SCR1 (lane 2) 
and ectopically inserted SCR1 without a copy of SCR1 at the native locus (SCR1ect, scr1∆; lane 
3). (C) Quantification by reverse transcription of SUF3 and SUF5 transcript accumulation relative 
to snR46 small nucleolar RNA (top, oligonucleotides used as primers for reverse transcription 
aligned with the SUF3 and SUF5 sequences: o-SUF3, specific to SUF3 RNA; o-SUF5, specific to 
SUF5 RNA; o-GLY was used to detect all glycine tRNAs produced from most of the tRNAGly 
genes). Asterisk indicates premature stop product (Figure 1).

S and G2/M phases, SCR1 was frequently located at the nuclear 
periphery. tDNA docking at the nuclear envelope, exclusively in 
G2/M, is associated with a peak of tRNA expression during mitosis 
and requires Los1, the major exportin of nascent tRNA (Chen and 
Gartenberg, 2014). SCR1 encodes the RNA component of the SRP 
particle; its location at the periphery of the nucleus during S phase 
may be explained by an expression pattern different from that of 
the tDNA.

The nucleolar and nuclear periphery regions are, therefore, pref-
erential locations for Pol III–transcribed genes, although the loca-
tions of these genes may vary during the cell cycle.

Mechanism by which Pol III–transcribed 
genes associates with the nucleolus
Condensin-dependent clustering of Pol 
III–transcribed genes and microtubule-
dependent nucleolar association of tDNAs 
from large families have been described 
(Thompson et al., 2003; Haeusler et al., 2008; 
Rodley et al., 2011; Chen and Gartenberg, 
2014; Rutledge et al., 2015). These findings 
suggest that tRNA genes are involved in 
maintaining the spatial organization of the 
genome. Furthermore, chromosome confor-
mation capture (3C) methods cluster tDNAs 
into two large groups: an rDNA-proximal 
cluster and a nonnucleolar, centromere-
proximal cluster (Duan et al., 2010; Rutledge 
et al., 2015). However, some reported find-
ings have recently been called into question. 
A different normalization procedure for 3C 
contact maps accounting for technical bias 
resulted in a lower estimated likelihood of 
Pol III–Pol III gene contacts (Cournac et al., 
2012). This would make a direct role for 
tDNA clustering in global chromosome orga-
nization less likely (Rutledge et al., 2015).

By exploring individual loci by fluores-
cence microscopy rather than tDNA clusters 
by 3C-based methods, we were able to re-
produce the frequent association with the 
nucleolar periphery of nontethered (>100 kb 
from TEL, CEN, and HMR) Pol III genes. The 
condensin complex is essential for the nu-
cleolar clustering of Pol III–transcribed 
genes (Haeusler et al., 2008). However, 
condensin is associated with all Pol III–
transcribed genes, even those tethered 
away from the nucleolus (D’Ambrosio et al., 
2008), suggesting a role for other anchoring 
elements in nucleolar association. Nucleolar 
recruitment was abolished when Pol III tran-
scription was inhibited. The transcripts of 
Pol III–transcribed genes have been re-
ported to pass through the nucleolus during 
their maturation (Bertrand et al., 1998). The 
nascent tRNAs themselves, therefore, may 
participate in recruiting their genes to the 
nucleolus. A recent study on human cells 
showed that Alu RNAs accumulating in the 
nucleolus could target other loci to the nu-
cleolus (Caudron-Herger et al., 2015). A 
similar mechanism in which RNA drives a 

DNA locus–nucleolar interaction may contribute to the association 
of Pol III–transcribed genes with the nucleolus in budding yeast.

Pol III–transcribed genes as a controller of local 
chromosome organization
Chromosome organization has been described quantitatively in 
yeast. Biophysical models of chromatin can be used to describe chro-
mosomes or chromosomal rearrangements in cycling cells: the chro-
mosomes adopt the Rabl-like configuration (Tjong et al., 2012; Wong 
et al., 2012). However, it has been suggested that other elements may 
tether chromosomes to the nuclear periphery (Dultz et al., 2016). Our 
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mapping were constructed as previously de-
scribed (Albert et al., 2013). The insertion 
point coordinates on the chromosome and 
oligonucleotides used to target integration 
are listed in Supplemental Table S1. yC-
NOD15-1c, BEN56-1a, yCNOD72-1a, and 
yJUK03-1a were constructed by transform-
ing the TMS1-1a strain. Strains PRA5-1a, 
PRA6-4a, PRA4-8a, PRA3-5a, PRA1-5a, and 
PRA2-7a were constructed by transforming 
the TMS5-8d strain.

Strains with ectopic gene insertions
We chose the SUP53 locus for ectopic inser-
tion because its proximity to centromere III 
may compete with nucleolar association, 
and a neighboring auxotrophic marker 
(LEU2) facilitates the desired genome modi-
fication without the need to insert an unre-
lated marker. Briefly, the strain construc-
tion strategy described in Supplemental 
Figure S2 involved construction of a receptor 
strain, yCNOD98-1a, in which SUP53 and 
the N-terminal part of the auxotrophic selec-
tion marker LEU2 were deleted (Supplemen-
tal Figure S2A) and a platform plasmid bear-
ing the genomic DNA of the locus, in which 
SUP53 could be replaced by any other Pol 
III–transcribed gene, was introduced (Sup-
plemental Figure S2B). The targeted gene 
was introduced via this platform construct. 
Finally, two successive modifications based 
on homologous recombination were used to 
drive the ectopic insertion of a Pol III–tran-
scribed gene at the SUP53 locus. LEU2-pos-
itive clones were selected, and the native 
locus was invalidated in the process. The 
yJUK10-1a strain was generated by PCR with 
the 1207/1208 primers and S288c genomic 
DNA to restore the wild-type LEU2 gene in 
the TMS1-1a strain. yCNOD98-1a was built 
by replacing the SUP53 and the N-terminal 
part of LEU2 in strain yJUK10-1a with a KAN-
MX cassette, using primers 983/982. The 
yCNOD98-1a strain was then transformed 
with SacI-HindIII–digested plasmids (pC-
NOD44, pEB5, or pBEL7) to generate ecto-
pic insertions of SNR6, SUF3, and SCR1 
(PRA14-1a), respectively. The extra copy at 
the wild-type locus was removed by insert-

ing the KAN-MX cassette with primer pairs 1254/1255 (SNR6), 
1286/1287 (SUF3), and 1298/1299 (SCR1) to generate strains BEL1-
6a, PRA13-1a, and PRA15-2a, respectively. SUF3 and SUF5 were de-
leted in strain yJUK10-1a with primers 1286/1287 and 1292/1293 to 
generate BEL5-1a and BEL6-7a, respectively. TetO insertions were 
performed, as described for strain yJUK03-1a, in strains BEL1-6a, 
PRA13-1a, and PRA15-2a to generate strains BEL4-2a, PRA8-1a, and 
PRA11-1a, respectively.

Deletion strains
SUF5 was deleted from PRA2-7a by transformation with an integra-
tive URA3 PCR fragment amplified with primers 1292/1293 from 

findings confirm that Pol III–transcribed genes anchor the chromo-
somes to the nucleolus and/or NE. We demonstrate here a direct role 
for the nucleolus in organizing chromatin in the nucleoplasm and con-
tributing to chromosome organization in vivo through the anchoring 
of Pol III–transcribed genes to its periphery.

MATERIALS AND METHODS
Yeast strains
The genotypes of the strains used are described in Supplemental 
Table S1. The oligonucleotides used for PCR are listed in Supple-
mental Table S2. We used p29802 (Berger et al., 2008) as a template 
for PCR amplification of the KAN-MX cassette. Strains for gene 

FIGURE 8: Nontethered Pol III–transcribed genes drive nucleolar periphery association. 
(A) Starvation results in the loss of Pol III from the genes. Pol III occupancy of genes was 
measured by ChIP of the 9xMyc-tagged RPC128 subunit after 2 and 4 h of starvation. Occupancy 
was measured by real-time PCR quantification of the loci by the ∆∆Ct method. (B) Nucleolar/
nuclear volume ratio upon nutrient depletion. Cells exponentially growing or starved of nutrients 
for 2 h were analyzed with NucLoc software. Boxplots of the median nucleolar-to-nuclear volume 
ratio (see Materials and Methods) were generated. (C) Gene map comparison of the position of 
the SUP4 locus in exponential growth (top) and nutrient deprivation (bottom) conditions. 
(D) Cumulative distribution function (CDF) of the locus–nucleolar center distance (micrometers) 
for FROS-tagged SUP53 (green), SUP4 (red), and SNR6 (black) locus. Exponential growth (solid 
line) and starvation conditions (dashed line). (E) FROS insertion (green triangle) near the sup4∆ 
locus on chromosome X. The gene at the SUP4 locus was deleted and inserted into the SUP53 
locus on chromosome III. (F) CDF of locus–nucleolar center distance (micrometers) for FROS-
tagged SUP4 locus with (WT, red) and without the SUP4 gene (sup4∆, blue). (G) Gene map 
comparison of the SUP4 locus (top half) with the deleted gene locus (bottom half).
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pCNOD40 with primers 980 and 981. SUP4, TRR4, TRT2, SNR6, 
SUF3, and SCR1 were amplified from S288c genomic DNA by PCR 
with primer pairs 1221/1222, 1312/1313, 1486/1487, 1223/1224, 
1304/1305, and 1347/1311, respectively. PCR fragments were in-
serted into pCNOD41 as XhoI/BamHI fragments in place of SUP53 
to generate pCNOD45 (SUP4), pCNOD58 (TRR4), pCNOD60 
(TRT2), pCNOD44 (SNR6), pBEL5 (SUF3), and pBEL7 (SCR1). A simi-
lar strategy was used to insert RDN5 into pBEL8, except that 
pNOY373 was used as the template for PCR with primers 1308/1309. 
The integrative plasmid pCNOD69 was constructed by amplifying 
the YCR101c locus from S288c genomic DNA with primers 
1494/1495 and inserting the resulting HindIII/BamHI–digested frag-
ment inserted into the vector pRS315.

Fluorescence microscopy of living yeast cells
Cell culture. Yeast media were used as previously described (Rose 
et al., 1990). YPD consists of 1% yeast extract, 2% peptone, and 2% 
dextrose. SC consists of 0.67% nitrogen base without amino acids 
(BD Difco) and 2% dextrose supplemented with amino acid mixture 
(AA mixture; Bio101), adenine, and uracil. Cells were grown over-
night at 30°C in YPD diluted to 106 cells/ml, harvested at a density 
of 4 × 106 cells/ml, and rinsed twice with the corresponding SC me-
dium. Cells were spread on slides coated with a patch of SC me-
dium supplemented with 2% agarose and 2% glucose. Cover slides 
were sealed with VaLaP (one-third Vaseline, one-third lanolin, one-
third paraffin). For starvation experiments, cell cultures reaching a 
density of 4 × 106 cells/ml were washed twice with 15% YP without 
glucose, resuspended at a density of 4 × 106 cells/ml in this medium, 
and incubated for 2 h at 30°C. Cells were mounted on slides as 
described but with 15% SC without glucose.

Microscope image acquisition. Gene position. Confocal micros-
copy was performed within 20 min of mounting, using an Andor 
Revolution Nipkow-disk confocal system installed on an Olympus 
IX-81, featuring a CSU22 confocal spinning-disk unit (Yokogawa) 
and an electron-multiplying charge-coupled device camera (DU 
888; Andor). The system was controlled with the Revolution FAST 
mode of Andor Revolution IQ1 software. Images were acquired with 
an Olympus 100× objective (Plan APO, 1.4 numerical aperture [NA], 
oil immersion). The single laser lines used for excitation were from 
diode-pumped solid-state lasers exciting GFP fluorescence at 488 
nm (50 mW; Coherent) and mCherry fluorescence at 561 nm 
(50 mW; CoboltJive). A Semrock bi-bandpass emission filter (Em01-
R488/568-15) was used to collect green and red fluorescence. Pixel 
size was 65 nm. For 3D analysis, Z-stacks of 41 images with a 250-nm 
Z-step were used. An exposure time of 200 ms was applied.

SPB imaging. Fluorescence imaging was performed with an Olym-
pus inverted microscope equipped with a complementary metal-
oxide semiconductor camera (Hamamatsu ORCA-Flash 4.0) and a 
SpectraX illumination system (Lumencore). Images were acquired 
with an Olympus UPlan SApo 100× objective lens (NA 1.4) and a 
dual-band cyan fluorescent protein (CFP)–yellow fluorescent protein 
Semrock filter set (excitation, 416/501-25; DM440/520-Di01-25×36; 
emission, 464/547-25) for CFP and a three-band Chroma filter set 
(69002 ET-DAPI/FITC/Texas Red) in combination with an eternal fil-
ter wheel equipped with Semrock filters with emission 465/537/623 
and 520-40 for mCherry and GFP, respectively.

Image analysis to determine locus position. Confocal images 
were processed and analyzed with a Matlab (MathWorks) script, 
NucLoc, available from www.nucloc.org (Berger et al., 2008). 
Cumulative distribution functions were generated with an existing 

pSK-URA3-M13 used as a template. This deletion generated the 
yCNOD165-1a strain. yCNOD178-1a and yCNOD142-1a, carrying 
labeled deletions of SUF3 and SCR1, respectively, were obtained by 
his3∆-tetO-NAT insertion into the ectopic strains PRA13-1a (SUF-
3ect) and PRA15-2a (SCR1ect). The labeling strategies were identi-
cal to those used when generating strains PRA1-5a (SUF3) and 
PRA3_5a (SCR1). We deleted TRT2, TRR4, and SUP4, by introducing 
the (sup53∆-leu2ΔNter)::KAN-MX cassette used for ectopic inser-
tion into strains with labeled loci by mating PRA5-1a (TRT2) and 
PRA4-8a (TRR4) with yCNOD98-1a, and yCNOD72-1a (SUP4) with 
yCNOD148-7b, and then allowing sporylation to occur. Selected 
spores were transformed with SacI/HindIII–digested pCNOD60 
(TRT2), pCNOD58 (TRR4), or pCNOD45 (SUP4) to insert ectopic 
copies. The WT gene copies were deleted by transformation with 
URA3 amplified from pSK-URA3-M13 by integrative PCR with the 
primer pairs 1480/1481 (TRT2), 1302/1470 (TRR4), and 1256/1257 
(SUP4). This generated strains yCNOD166-1a (TRT2), yCNOD163-
1a (TRR4), and yCNOD190-2a (SUP4), respectively, carrying labeled 
deletions.

Ectopic rDNA at CEN5
Strain rDNA-CEN5 (yCNOD191-1a) was constructed as follows. MA-
Talpha strain NOY2030 carrying rDNA at CEN5 (Oakes et al., 2006) 
was converted into MATa, and spontaneous URA3+ revertants were 
isolated. They were then mated with strain TMS5-8d, which is suit-
able for use for gene labeling. After meiosis, yCNOD130-4b spores 
carrying rDNA at CEN5 (checked by pulsed-field gel electrophore-
sis) and suitable markers were selected. These spores lacked the 
TetR-GFP gene, which was subsequently reintroduced in two steps. 
First, a large 3′ deletion (lys2∆::KAN) was introduced into the LYS2 
gene (primers 1497/1498, template p29802). In the second step, a 
BglII-linearized TetR-GFP (pE219) plasmid was inserted into the 
lys2∆::KAN allele. SNR6 or SUP53 was labeled in yCNOD191-1a, as 
described for yJUK03-1a and yCNOD15-1c. This labeling resulted 
in the strains yCNOD182-1a (SNR6) and yCNOD184-1a (SUP53). 
The centromere was labeled with SPC42-CFP in strain yCNOD130-
4b (rDNA-CEN5), generating strains yCNOD186-1a and TMS1-1a 
(control), giving rise to yCNOD192-1a. A CFP-KAN PCR fragment 
was amplified by integrative PCR from pDH3 (pFA6-CFP-KAN) with 
oligonucleotides 1492 and 1493.

Conditional centromere
Strain yCNOD171-1a (pGAL-CEN3) is a derivative of strain 
yJUK03-1a. We inserted pGAL at CEN3, using pCEN03-UG (Reid 
et al., 2008) according to the authors’ protocol. The control strain 
pGAL-CEN9 (yCNOD174-1a) was generated like yCNOD171-1a 
but with pCEN09-UG. We generated yCNOD173-1a (cen3∆-
CEN6) by inserting the NcoI-linearized centromeric plasmid pC-
NOD69 into yCNOD171-1a at the YCR101c locus. Integration 
events were selected on SC-galactose minus leucine plates, lead-
ing to the selection of strain yCNOD172-1a. The pGAL-CEN3 con-
ditional centromere was then fully deleted with a KAN-MX PCR 
fragment amplified with primers 1507/1508 and plasmid p29802. 
Transformants were selected on glucose-containing medium.

Plasmid construction
The plasmids used in this study are listed in Supplemental Table S3. 
For ectopic insertion, plasmids were constructed as follows. First, a 
PCR fragment containing SUP53 and the N-terminal part of LEU2 
was amplified with the 1220/1219 primers from S288c genomic 
DNA and inserted as a SacI/HindIII fragment into pUC19 to gener-
ate pCNOD40. pCNOD41, carrying SUP53 flanked by XhoI and 
BamHI sites, was then generated by site-directed mutagenesis of 
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function (Matlab). Boxplots of median ratios of distances to the cen-
ter of the nucleolus or nucleus were generated in two steps by first 
calculating median distances for each of 100 nuclei and then plot-
ting boxplots for the median values obtained.

RNA analysis
The sequences of the oligonucleotides used for RNA quantification 
are given in Supplemental Table S3. RNA was extracted and North-
ern blotting performed as previously described (Beltrame and 
Tollervey, 1992). Reverse transcription was performed with the Su-
perscript II kit (Invitrogen) in accordance with the manufacturer’s 
protocol. RNA species were resolved by electrophoresis on 8% 
polyacrylamide sequencing gels. Quantifications were performed 
by phosphorimaging (Typhoon; GE Healthcare) with MultiGauge 
software (Fujifilm).

Chromatin immunoprecipitation
The YPH500 RPC128-myc strain was grown to mid exponential 
growth phase (OD600 nm = 0.8) and cross-linked by incubation 
with 1% formaldehyde for 30 min. ChIP samples were prepared as 
previously described (Arimbasseri and Bhargava, 2008; Mahapa-
tra et al., 2011; Kumar and Bhargava, 2013) with an anti-Myc an-
tibody (05-724; Millipore). Real-time PCR was performed on the 
ChIP and control (input and no antibody) DNA to determine Pol 
III occupancy on SNR6 (primers 1 and 2), SUP4 (primers 3 and 4), 
and SUP53 (primers 5 and 6) genes. Pol III occupancy was normal-
ized relative to that on TelVIR (primers 7 and 8) used as a negative 
control and is expressed as fold enrichment relative to the nega-
tive control.

Mononucleosome MNase protection assay
Untagged control (TMS5-8a) and FROS insertion (for genes TRT2, 
TRR4, SUF3, SUF5, and SUP61) strains were grown to mid expo-
nential growth phase (OD = 0.8) at 30°C. Cells were cross-linked by 
incubation with 1% formaldehyde for 10 min, and the reaction was 
quenched by adding 125 mM glycine. Cells were washed, and 
spheroplasts were generated with Zymolyase. Spheroplasts were 
subjected to controlled MNase digestion, and the digested DNA 
was purified and subjected to electrophoresis in 1.25% agarose 
gels. Naked genomic DNA (deproteinized) was digested with 
MNase to obtain a fragment distribution ranging from 100 to 
300 base pairs for use as a control. The band corresponding to 
mononucleosomal DNA was excised from the gel, and the DNA 
was purified. Equal amounts of mononucleosomal DNA and di-
gested genomic DNA were used as a template for real-time PCR. 
Nucleosome occupancy was investigated with primers designed to 
amplify 110 ± 10–base pair fragments close to the tDNA gene. 
Nucleosome occupancy was normalized relative to a control sub-
telomeric region of TelVIR.
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3. Published: "High-throughput live-cell microscopy analysis of association between 

chromosome domains and the nucleolus in S. cerevisiae" 

During my PhD project, I also one published one book chapter about the high-throughput 

live-cell microscopy analysis of association between chromosome domains and the nucleolus 

in S. cerevisiae on the Methods in Molecular Biology. This part is the protocol about how to 

track the chromatin dynamics and the ‘gene territories’. 
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