9,350 research outputs found

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Spatial Modulation Microscopy for Real-Time Imaging of Plasmonic Nanoparticles and Cells

    Full text link
    Spatial modulation microscopy is a technique originally developed for quantitative spectroscopy of individual nano-objects. Here, a parallel implementation of the spatial modulation microscopy technique is demonstrated based on a line detector capable of demodulation at kHz frequencies. The capabilities of the imaging system are shown using an array of plasmonic nanoantennas and dendritic cells incubated with gold nanoparticles.Comment: 3 pages, 4 figure

    Performance analysis of spatial modulation aided NOMA with full-duplex relay

    Get PDF
    A spatial modulation aided non-orthogonal multiple access with full-duplex relay (SM-NOMA-FDR) scheme is proposed for the coordinated direct and relay transmission in this paper. Specifically, the signal of the near user is mapped to an M-ary modulated symbol and the signal of the far user is mapped to an SM symbol. The base station first transmits signals to the near user and relay via SM-NOMA, and then the relay decodes and retransmits the signal of the far user. An SM-assisted FDR is used in this scheme to improve the spectral efficiency while reducing energy consumption and making full use of the antenna resources at the relay, since SM only activates one antenna in each transmission. We derive the ergodic capacity and bit error rate of the proposed scheme over independent Rayleigh fading channels. Numerical results validate the accuracy of the theoretical analysis and show the superior performance of the proposed SM-NOMA-FDR scheme

    Realization and MIMO-link measurements of a transmit module for spatial modulation

    Get PDF
    This paper describes the realization of a circuit that transmits a data stream, through spatial modulation in the 2.45 GHz frequency band. The development of the transmitter includes RF circuit design with components such as a PLL synthesizer, Tx-DAC and IQ-modulator. A microcontroller, integrated into the circuit and programmed in C, is at the heart of the system. In this hardware system, developed specifically for spatial modulation, data is BPSK modulated and transmitted through an RF switch connected to two antennas. It can differ for every symbol which antenna is used, according to an extra series of information bits that are to be transmitted. Here the number of the selected antenna encodes the extra information bit per symbol, which not only results in a doubling of the data rate but also realizes diversity. Spatial modulation allows these features with only a single hardware transmit chain, resulting in low-cost and low-complexity hardware. At the receiving side, the extra information bits are decoded by assessing the channel used for each symbol. This practical system has been thoroughly tested by means of different measuring campaigns. The measurement results show that spatial modulation is correctly demodulated at the receiving side and forms an effective way to realize affordable MIMO systems

    Improved Spatial Modulation for High Spectral Efficiency

    Full text link
    Spatial Modulation (SM) is a technique that can enhance the capacity of MIMO schemes by exploiting the index of transmit antenna to convey information bits. In this paper, we describe this technique, and present a new MIMO transmission scheme that combines SM and spatial multiplexing. In the basic form of SM, only one out of MT available antennas is selected for transmission in any given symbol interval. We propose to use more than one antenna to transmit several symbols simultaneously. This would increase the spectral efficiency. At the receiver, an optimal detector is employed to jointly estimate the transmitted symbols as well as the index of the active transmit antennas. In this paper we evaluate the performance of this scheme in an uncorrelated Rayleigh fading channel. The simulations results show that the proposed scheme outperforms the optimal SM and V-BLAST (Vertical Bell Laboratories Layered space-time at high signal-to-noise ratio (SNR). For example, if we seek a spectral efficiency of 8 bits/s/Hz at bit error rate (BER) of 10^-5, the proposed scheme provides 5dB and 7dB improvements over SM and V-BLAST, respectively.Comment: 7 pages, 4 figures, 1 table, International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.2, March 201

    Receive Spatial Modulation for Massive MIMO Systems

    Get PDF
    In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architecture aimed to reduce the power consumption at the user terminal, while attaining a significant throughput. The energy consumption reduction is obtained through the use of analog devices (amplitude detector), which reduces the number of radio frequency chains and analog-to-digital-converters (ADCs). The base station transmits spatial and modulation symbols per channel use. We show that the optimal spatial symbol detector is a threshold detector that can be implemented by using one bit ADC. We derive closed form expressions for the detection threshold at different signal-to-noise-ratio (SNR) regions showing that a simple threshold can be obtained at high SNR and its performance approaches the exact threshold. We derive expressions for the average bit error probability in the presence and absence of the threshold estimation error showing that a small number of pilot symbols is needed. A performance comparison is done between the proposed system and fully digital MIMO showing that a suitable constellation selection can reduce the performance gap
    • …
    corecore