916 research outputs found

    On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs

    Full text link
    Multi-user spatial multiplexing combined with packet aggregation can significantly increase the performance of Wireless Local Area Networks (WLANs). In this letter, we present and evaluate a simple technique to perform packet aggregation in IEEE 802.11ac MU-MIMO (Multi-user Multiple Input Multiple Output) WLANs. Results show that in non-saturation conditions both the number of active stations (STAs) and the queue size have a significant impact on the system performance. If the number of stations is excessively high, the heterogeneity of destinations in the packets contained in the queue makes it difficult to take full advantage of packet aggregation. This effect can be alleviated by increasing the queue size, which increases the chances to schedule a large number of packets at each transmission, hence improving the system throughput at the cost of a higher delay

    Capacity and coverage enhancements of MIMO WLANs in realistic environments

    Get PDF

    Random beamforming OFDMA for future generation cellular communication systems

    Get PDF

    Throughput sensitivity to antenna pattern and orientation in 802.11n networks

    Get PDF
    • 

    corecore