1,370,691 research outputs found

    On proximity and hierarchy : exploring and modelling space using multilevel modelling and spatial econometrics

    Get PDF
    Spatial econometrics and also multilevel modelling techniques are increasingly part of the regional scientists‟ toolbox. Both approaches are used to model spatial autocorrelation in a wide variety of applications. However, it is not always clear on which basis researchers make a choice between spatial econometrics and spatial multilevel modelling. Therefore it is useful to compare both techniques. Spatial econometrics incorporates neighbouring areas into the model design; and thus interprets spatial proximity as defined in Tobler‟s first law of geography. On the other hand, multilevel modelling using geographical units takes a more hierarchical approach. In this case the first law of geography can be rephrased as „everything is related to everything else, but things in the same region are more related than things in different regions‟. The hierarchy (multilevel) and the proximity (spatial econometrics) approach are illustrated using Belgian mobility data and productivity data of European regions. One of the advantages of a multilevel model is that it can incorporate more than two levels (spatial scales). Another advantage is that a multilevel structure can easily reflect an administrative structure with different government levels. Spatial econometrics on the other hand works with a unique set of neighbours which has the advantage that there still is a relation between neighbouring municipalities separated by a regional boundary. The concept of distance can also more easily be incorporated in a spatial econometrics setting. Both spatial econometrics and spatial multilevel modelling proved to be valuable techniques in spatial research but more attention should go to the rationale why one of the two approaches is chosen. We conclude with some comments on models which make a combination of both techniques

    Improving Bag-of-Words model with spatial information

    Get PDF
    Bag-of-Words (BOW) models have recently become popular for the task of object recognition, owing to their good performance and simplicity. Much work has been proposed over the years to improve the BOW model, where the Spatial Pyramid Matching technique is the most notable. In this work, we propose three novel techniques to capture more re_ned spatial information between image features than that provided by the Spatial Pyramids. Our techniques demonstrate a performance gain over the Spatial Pyramid representation of the BOW model

    Spatial Smoothing Techniques for the Assessment of Habitat Suitability

    Get PDF
    Precise knowledge about factors influencing the habitat suitability of a certain species forms the basis for the implementation of effective programs to conserve biological diversity. Such knowledge is frequently gathered from studies relating abundance data to a set of influential variables in a regression setup. In particular, generalised linear models are used to analyse binary presence/absence data or counts of a certain species at locations within an observation area. However, one of the key assumptions of generalised linear models, the independence of the observations is often violated in practice since the points at which the observations are collected are spatially aligned. While several approaches have been developed to analyse and account for spatial correlation in regression models with normally distributed responses, far less work has been done in the context of generalised linear models. In this paper, we describe a general framework for semiparametric spatial generalised linear models that allows for the routine analysis of non-normal spatially aligned regression data. The approach is utilised for the analysis of a data set of synthetic bird species in beech forests, revealing that ignorance of spatial dependence actually may lead to false conclusions in a number of situations

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity
    corecore