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Abstract

Precise knowledge about factors influencing the habitat suitability of a certain

species forms the basis for the implementation of effective programs to conserve

biological diversity. Such knowledge is frequently gathered from studies relating

abundance data to a set of influential variables in a regression setup. In particular,

generalised linear models are used to analyse binary presence/absence data or

counts of a certain species at locations within an observation area. However, one

of the key assumptions of generalised linear models, the independence of the

observations is often violated in practice since the points at which the observations

are collected are spatially aligned. While several approaches have been developed

to analyse and account for spatial correlation in regression models with normally

distributed responses, far less work has been done in the context of generalised

linear models. In this paper, we describe a general framework for semiparametric
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spatial generalised linear models that allows for the routine analysis of non-normal

spatially aligned regression data. The approach is utilised for the analysis of a data

set of synthetic bird species in beech forests, revealing that ignorance of spatial

dependence actually may lead to false conclusions in a number of situations.

Key words: bivariate penalised splines, generalised linear models, geostatistics, kriging,

spatial autocorrelation.

1 Introduction

The conservation of biological diversity nowadays is a widely accepted aim in most

states. In order to reduce the extinction rate of species due to dramatic habitat changes

caused by man, various international programs exist. A starting point was the

convention on biological diversity in Rio de Janeiro in 1992 (Wilson 1992), where

different concepts were developed and precise implementation measures adapted to

single states were recommended (Czech et al. 2005). Regarding forests and their

management, the identification of key parameters for the conservation of species

emerged as a central factor. Nevertheless, insufficient knowledge resulted in dim and

doubtful recommendations and, as a result, the discipline of conservation biology

evolved (Primack 2004). In order to identify critical environmental variables, multitude

studies were conducted to relate species data to preferably precise environmental

variables. Clarification of such relationships is a prerequisite for the adaption of land use

measures that determine the survival of certain key species or species communities and,

as a consequence, for the specification of appropriate conservation goals.

The statistical methods in ecological research are constantly evolving. Univariate

correspondence analyses were replaced more and more by multivariate procedures. Two

popular approaches for the analysis of habitat suitability are based on the generalised

linear model (GLM) framework, where the expectation of the response variable is
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related to a linear combination of the covariates via a suitably chosen response function,

see Fahrmeir & Tutz (2001) for an introduction. Measuring presence or absence of a

certain species at several observation points allows the environmental factors to be

related to the binary outcome (presence/absence) based on logit or probit models.

Log-linear Poisson GLMs are employed for modelling counts of subjects from a species

at an observation point instead of only presence/absence.

However, naively applying GLMs to ecological data ignores the fact that these are

usually prone to spatial autocorrelation while standard GLM theory requires

independent observations. Spatial autocorrelation is likely to be introduced in many

ecological studies even if the data are taken in a standardised way, since the sampling

points are usually close by and subject to similar environmental factors being only

partly explained by the available covariates (Underwood 1981, Hurlbert 1984). The

reasons for this situation are on the one side lack of comparable adequate habitats and

on the other side limited human and financial recourses. Within the repeated

measurement setting of longitudinal data, correlations induced by unobserved covariates

are known as the problem of unobserved heterogeneity, and independent,

individual-specific random effects are usually employed as a surrogate for the effect of

these covariates. In contrast, spatially aligned data require spatially correlated random

effects. Another source of spatial correlation is interaction of the subjects of a species,

e.g. disaggregation or clustering. Thus, fully independent data have, in most cases, been

judged as not attainable (Krebs 1999).

Ignoring spatial correlations in a GLM analysis may have severe impact on inferential

conclusions. In the case of positive correlation (which is the phenomenon most likely to

be observed in ecological applications), the standard errors of estimated regression

coefficients will be too narrow and, as a consequence, effects may be falsely judged to be

significant. Legendre (1993) gives an intuitive justification for this effect: For

independent observations, each of the measurements represents one degree of freedom,
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while in the case of positive correlation, knowledge of some of the observations already

tells us something about the remaining ones. Hence, the effective sample size in

spatially correlated data sets will be smaller than under independence.

In the case of normally distributed response variables, several approaches for dealing

with spatial correlations have been considered, see for example Legendre (1993) or Perry

et al. (2002) for overviews in the context of ecological applications. These approaches

range from tests for the presence of spatial correlations to more advanced methods that

allow the determination of the specific form of the correlation, such as variograms or

correlograms in classical geostatistical Kriging approaches. Far less work has been done

for non-normal responses since most of the above-mentioned procedures rely heavily on

the assumption of normality. In particular, it is not possible to remove spatial trends in

a preprocessing step for a non-normal regression model.

In this paper, we utilize a general framework for spatially correlated GLMs proposed by

Fahrmeir, Kneib & Lang (2004) and apply it to the analysis of habitat suitability. This

approach combines the following features:

• Spatial correlations based on spatial smoothing techniques using either spatial

process priors (similar as in Kriging) or bivariate spline smoothing are included.

• Spatial effects and effects of further covariates are estimated jointly based on a

penalised likelihood approach.

• The standard errors of estimated regression coefficients are corrected for the

spatial correlations and therefore allow valid statistical conclusions regarding

significance of influential factors to be drwan.

• Estimated spatial effects can be used to identify influential variables that explain

the spatial variation in the data.

We will utilise a semiparametric spatial Poisson model for the analysis of habitat

suitability using counts of synthetic bird species in beech forests. With respect to the
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target factors, recent research shows that leaving the single species view for

concentrating on functional groups, or using functional diversity instead of species

diversity as a key factor can be helpful (Tilman et al. 1997). In this approach, species

having similar habitat requirements are collected in ecological guilds (Jaksic &

Medel 1990, Simberloff 1991). Proceeding in this way, conclusions regarding habitat

quality get more robust and universally valid.

The rest of this paper is organised as follows: Section 2 describes semiparametric spatial

GLMs and introduces two different spatial smoothing techniques. In Section 3 we apply

spatial GLMs to the bird species data. Section 4 concludes the paper with a discussion

of the value of spatial smoothing, both in the context of our application and in more

general situations. Inferential details are briefly summarised in an appendix.

2 Methodology

2.1 Spatial smoothing in generalized linear models

Generalised linear models extend the well-known linear model to regression models with

more general response variables such as binary responses or count data. Since the

dependent variables in our application are counts of birds at a specific site, we will relate

them to covariates of interest u = (1, u1, . . . , up)
′ using the special case of a log-linear

Poisson model, i.e.,

E(y|u) = µ, log(µ) = η

with linear predictor

η = u′β = β0 + u1β1 + . . . + upβp (1)

and regression coefficients β = (β0, . . . , βp)
′. In general, GLMs express the expectation

of the response variable in terms of the linear predictor (1) using a suitable one-to-one

transformation g(µ) = η, in our example the log-transform. Although we will focus on
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the Poisson case, the described methodology can be readily applied to other types of

GLMs without any further difficulties.

In contrast to linear models where correlations can be modelled within the correlation

structure of the error term, modelling spatial correlations within GLMs is hindered by

the fact that no direct standard formulations for correlated count data or binary data

are available. Fahrmeir, Kneib & Lang (2004) therefore propose including spatial

correlations through a latent effect on the predictor level, i.e., the predictor (1) is

extended to

η = u′β + f(x1, x2) (2)

where f(x1, x2) is a function of the coordinates of the sites where the observations are

collected. Model (2) can be interpreted in two different ways: From a deterministic

viewpoint, f(x1, x2) is simply an interaction surface that can be modelled using

bivariate extensions of univariate nonparametric smoothing methods. In a stochastic

formulation f(x1, x2) represents the realisation of a spatially correlated stochastic

process, emphasizing the fact that we want to account for spatial correlations in the

data. We will now discuss both viewpoints and two corresponding modelling approaches

in more detail but will also point out the close connection between them.

2.2 Bivariate penalised splines

One particularly useful deterministic approach is based on bivariate penalised splines

(compare e.g. Lang & Brezger, 2004). The bivariate case is probably most easily

understood when considering the univariate setting first. The basic idea (Eilers &

Marx 1996) is to represent a nonparametric effect f(x) as the scaled sum of a set of

basis functions, i.e.,

f(x) =
∑

j αjBj(x). (3)

Figure 1 shows a schematic representation of nonparametric functions estimation based
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on such a basis function approach for Gaussian responses. More precisely, we consider a

set of B-spline basis functions as represented in Figure 1a. These basis functions are

then weighted according to the regression coefficients αj as shown in Figure 1b. Finally,

summing up the weighted basis functions yields the nonparametric function estimate in

Figure 1c. Since Equation (3) represents f(x) as a linear combination of basis functions,

the estimation of B-splines can, in principle, be performed as in usual GLMs, where

additional columns of the design matrix are constructed from evaluations of the basis

functions at the observed covariate values. However, in practice the critical question on

selecting the optimal number and position of the basis functions limits the applicability

of this direct approach. A large number of basis functions usually results in wiggly

estimates and therefore in overfitting. On the other hand, using a small number of basis

functions may be too restrictive and yield very inflexible estimates. As a remedy, Eilers

& Marx (1996) propose to use a moderate number of equidistant basis functions (usually

20-40) and to augment an additional penalty term to the likelihood to obtain estimates

that balance adequately between smoothness and fidelity to the data. A suitable penalty

term can be constructed based on k-th order differences of the regression coefficients

since this essentially corresponds to penalisation of the squared k-th order derivative of

f . For example, first order differences lead to the penalized log-likelihood criterion

lpen(α) = l(α)− 1

2τ 2

∑
j(αj − αj−1)

2. (4)

Maximizing this expression with respect to the regression coefficients α yields penalized

maximum likelihood estimates, which can be computed based on similar iterative

schemes as in usual GLMs by appropriate augmentation of penalty terms to the score

function and the Fisher information (compare e.g. Fahrmeir & Tutz, 2001, Ch. 5). The

crucial choice in (4) is the parameter τ 2 which controls the flexibility of the function

estimate. A small value of τ 2 gives large weight to the penalty term and therefore

enforces the construction of smooth estimates, while the likelihood is the dominating

term in (4) yielding very flexible estimates for a large value. Hence, the problem of
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optimally selecting the number and position of the knots has been transformed to the

problem of optimally selecting the parameter τ 2. We will describe an automatic

procedure that performs this selection later on.

For bivariate surface fitting we simply extend the univariate approach by defining

appropriate bivariate basis functions and adjust the penalty term accordingly. The

former can be achieved by considering all pairwise products of univariate basis functions

in x and y direction, yielding the so-called Tensor product basis. Figure 2 shows a single

and a set of such basis functions. Note however, that for increased visibility only a small

number of basis functions is included in the Figure and that a much larger amount of

overlapping would be observed with a full bivariate tensor product B-spline basis

(similar as in Figure 1a). Applying the Tensor product basis to our bivariate smoothing

problem yields the expression

f(x1, x2) =
∑

j

∑
k αjkBjk(x1, x2),

with Tensor product basis functions Bjk(x1, x2) = Bj(x1)Bk(x2). Therefore the model

(2) can be represented in matrix notation as

η = Uβ + Bα (5)

where Uβ corresponds to the usual parametric part of the predictor, while B and α

consist of the basis functions evaluated at the observed locations and the corresponding

amplitudes respectively. Since the basis functions are now spatially aligned along the x1-

and the x2-axis, the ordering principle used in univariate smoothing to construct a

difference penalty can no longer be applied. Instead, neighborhoods on a regular lattice

have to be considered. We simply used the four nearest neighbors on the grid but more

general approaches are also available. A suitable difference penalty is then constructed

based on squared deviations of αjk from the regression coefficients of the four nearest

neighbors. At the boundaries appropriate modifications have to be employed, compare

Lang & Brezger (2004).
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2.3 Geostatistical models

Let us now turn to a stochastic model for the spatial term which corresponds to the

more classical, geostatistical approach to the estimation of spatial surfaces. Here the

basic idea is to assume a zero-mean Gaussian stochastic process for f(x1, x2) and to

model spatial correlations explicitly via the correlation function of this process. To be

more specific, we assume E(f(x1, x2)) = 0, Var(f(x1, x2)) = τ 2 and

Corr(f(x1, x2), f(x′1, x
′
2)) = ρ(x1, x2, x

′
1, x

′
2),

where ρ is a parametric correlation function. A useful simplification arises when

ρ(x1, x2, x
′
1, x

′
2) = ρ(h), where h = ||(x1, x2)− (x′1, x

′
2)|| =

√
(x1 − x′1)2 + (x2 − x′2)2, i.e.,

if ρ is only a function of the Euclidean distance between (x1, x2) and (x′1, x
′
2). In this

special case the process is stationary and the correlation function is said to be isotropic

since correlations in the model no longer depend on the positions of the points in the

plane and the direction of the distance vector between the points. In the following we

will focus on one particular member of the Matérn class of correlation functions given by

ρ(h) = (1 + |h|/φ)e−|r|/φ.

The parameter φ specifies the effective range of correlations to be considered, i.e., at

which distance the correlation should effectively equal zero. In our implementation we

chose the effective range according to the rule

φ̂ = max
i,j
||(xi1, xi2)− (xj1, xj2)||/c.

with a suitable constant c. This rule of thumb proved to work well in our experience and

also ensures scale invariance of the estimated surface.

At least in principle, the geostatistical model can also be interpreted as the assumption

of a spatially correlated random effects distribution for f(x1, x2) and mixed model

methodology can be applied to its estimation. In particular, the geostatistical model
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also induces a penalized likelihood and predictions for f(x1, x2) can be derived from

maximizing this penalized likelihood. The variance parameter τ 2 of the stochastic

process plays a similar role as the parameter τ 2 in (4) and can also be interpreted

analogously.

2.4 General framework and inference

Although the deterministic and the stochastic formulation of the spatial smoothing

problem look quite different at first sight, they share a lot of similarities. On the one

hand, the geostatistical model can be interpreted as a mixed model with correlated

random effects, but on the other hand, also has an interpretation as a basis function

approach based on radial basis functions (refer to Kneib & Fahrmeir, 2006, for a

motivation and Nychka, 2000, for a thorough derivation). More specifically, the bivariate

correlation functions ρ correspond to basis functions and each of the basis functions is

located at one of the observation points. Hence, geostatistical models can also be written

in the form (5) while, vice versa, the smoothing approach based on penalised splines can

also be interpreted in a stochastic way. In the univariate case, penalisation of differences

between adjacent parameters is formally equivalent to assuming a Gaussian random

walk for the sequence of parameters. This is mainly used in a Bayesian formulation of

penalised splines but can in principle also be interpreted as a special type of random

effects distribution. In the bivariate case, the spatial difference penalty transforms to a

bivariate random walk on a regular lattice. Hence, both bivariate penalised splines and

Kriging approaches can be formulated within a unified framework and estimation can be

based on penalised Fisher scoring algorithms, see the appendix for a detailed description.

The remaining crucial point is the determination of the smoothness parameter τ 2.

Subjective choices have been used frequently in the literature, sometimes supplemented

by a grid search algorithm based on some model choice criterion. However, since

semiparametric spatial models can also be interpreted as mixed models with fixed effects
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β and random effects α, mixed model methodology can be applied to derive an estimate

of τ 2. This has the advantage of supplying an automated way for determining the

amount of smoothness using a likelihood based criterion, therefore eliminating the need

for subjective judgements. In addition, extensions to more complicated data structures

such as geoadditive models with several smooth components and an additional spatial

effect can easily be incorporated. Within the mixed model formulation, the smoothness

parameter is simply a variance component of the random effects distribution induced

either by the geostatistical or the penalised spline model and, hence, algorithms for the

estimation of variance parameters in generalized linear models with random effects can

be applied. In particular, marginal likelihood estimation, an extension of restricted

maximum likelihood estimation to the non-normal case can be employed. In practice,

some additional steps have to be taken to reformulate spatial models as proper mixed

models, but since they do not provide additional insights into the model formulation, we

will not pursue them here (see Fahrmeir, Kneib & Lang, 2004, for a detailed description).

3 Application: Bird Species in Beech Forests

3.1 Study Site and Field Methods

The “Northern Steigerwald” is a forest area of about 10.000 hectare, located in northern

Bavaria (N4950’; E01029’), dominated by hardwood. The dominating tree species are

beeches (Fagus sylvatica). For our study, 258 observation plots were randomly selected

using the forest inventory net in pre-stratified 100-350 year old beech stands

(Müller 2005b). Forest structural data were collected using GPS measured fixed-radius

(r = 17.82m) point counts. Stand and landscape data were obtained from inventory and

aerial photographs. An overview over the set of available variables is given in Table 1.

Diurnal breeding birds were sampled five times at each site from March to June 2002 by

using a quantitative grid mapping. Each square-shaped grid-plot was one hectare in size
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with a GPS measured point of the forest inventory in the centre. For a more detailed

method-description see Müller (2005b).

3.2 Synthetic species

We used ordination techniques to define seven guilds of birds with similar structural

requirements (Structural Guilds = SG) (Müller 2005a):

SG 1: Requirement of small caves, snags and habitat trees (Ficedula albicollis, F.

hypoleuca, F. parva).

SG 2: Requirement of old beech forests (Dendrocopos medius, D. minor).

SG 3: Requirement of mature deciduous trees (Sitta europaea, Dendrocopos major,

Parus caeruleus, Certhia familiaris).

SG 4: Requirement of regeneration (Phylloscopus trochilus, Aegithalos caudatus).

SG 5: Requirement of regeneration combined with planted conifers (Phylloscopus

collybita, Turdus merula, Sylvia atricapilla).

SG 6: Requirement of coniferous trees (Regulus ignicapillus, Parus ater, Prunella

modularis).

SG 7: Requirement of coniferous stands (Regulus regulus, Parus cristatus)

3.3 Variable Selection

Prior to the incorporation of spatial information into log-linear Poisson regression

models, covariates important for our final models have to be selected. Variable selection

in our application was performed within the same modelling framework, i.e., in

log-linear Poisson models. In contrast to the usual iterative re-weighted least squares

algorithm applied to fit GLMs, we utilized an iterative stepwise gradient descent

algorithm with implicit variable selection, known as ‘boosting’, to fit Poisson models and
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to select a small subset of the habitat factors to be studied in more detail in spatial

regression models.

For each site, 23 numeric habitat factors (see Table 1) were measured. For each of the

synthetic species, a log-linear Poisson model was fitted by an iterative boosting

algorithm with univariate linear models as base learners. For a large number of

iterations, this algorithm fits the same model as a Poisson model with iteratively

weighted least squares, however, important covariates enter the model first and

unimportant covariates remain with a zero regression coefficient for some time.

Variable selection takes place when an appropriate criterion of early stopping of the

iteration is implemented. We utilized the Akaike Information Criterion (AIC) which

suggested to stop the algorithm after 150 to 500 iterations. For all subsequent analyses,

we removed all covariates with zero regression coefficient after early stopping. The

methodology is explained in-depth by Bühlmann & Hothorn (2006).

3.4 Results

To demonstrate the usefulness of spatial smoothing techniques, we applied both spatial

smoothing approaches discussed in Section 2 to the seven guilds. More precisely, we

estimated semiparametric spatial models combining parametric effects of the covariates

determined by the variable selection strategy with either a bivariate penalized spline or

a GRF surface. For comparison, we also estimated purely parametric models which

neglect spatial correlations. Table 2 presents some summary statistics on the model fit

for these models including the effective number of parameters df, AIC and GCV (see the

appendix for a definition).

Obviously, an improvement of the model fit by the inclusion of a spatial effect is only

obtained for guilds 3 to 6, with larger improvements for guilds 4 and 5. This can be

interpreted in the following way: While no spatial correlations are present for guilds 1, 2

and 7 after accounting for appropriate covariates, spatial heterogeneity remains
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unexplained for guilds 3 to 6. However, this should not be mistaken as a proof that no

spatial correlations are present for guilds 1, 2 and 7. Consider a model that only consists

of a spatial effect and does not account for any further covariates at all. Figure 3 (first

row) shows the estimated spatial effect for guild 2 in such a model, i.e. the estimated

function f̂(x1, x2) resulting from either a bivariate penalised spline or a kriging term if

the model contains no further covariates. Obviously, a strong spatial effect is present

and therefore the observations are in fact spatially correlated. Since the covariates are

themselves spatially varying and spatially correlated, inclusion of covariates may in

some cases explain this correlation (as for example for guild 2) but in other cases spatial

correlation remains present. Hence, it is important to distinguish between observations

being marginally independent (without the inclusion of any covariates) and observations

that are conditionally independent (after accounting for covariate effects).

Comparing results obtained with either bivariate P-splines or the Kriging approach,

differences are generally quite small. This does not only hold for the model fit criteria

but also for the estimated parametric and spatial effects themselves (compare Figure 3).

With respect to our results, guilds of species with a high grade of specialisation (guilds

1, 2, 6, 7) are (at least approximately) conditionally independent given the covariates,

while more ubiquitous species (guilds 3-5) remain spatially correlated even after

accounting for covariate effects. Figure 3 (rows 2 and 3) shows the spatial effect

remaining for guilds 3 and 4 when covariates are included. Such figures can be quite

useful in detecting unrecognized influential factors that are causing the spatial structure

and, hence, lead to a better understanding of habitat suitability.

Our results indicate that the survey of songbirds in forests based on 1 hectare grids

allows for a meaningful analysis of the habitat structures for extreme

structure-specialists despite of the spatial adjacency. For example, even after taking the

spatial proximity into account, the critical habitat structures remain the same in SG1

(requirement of small caves, snags and habitat trees). This supports the assumption
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that the single nesting hole on the scale of a sample grid is much more important than

the surrounding conditions. Flycatchers, being compiled in this guild, also stand out in

other surveys in that they find and colonize even small forest patches with a high number

of nesting holes (Scherzinger 2004, Müller 2005a). Similar statements apply to Middle

and Lesser Spotted Woodpecker which belong to guild 2. Although their territories, in

contrast to the flycatchers, exceed the 1 hectare grid, the critical environmental factors

after accounting for spatial correlations remain the same. This means that these species

search, find and colonize old forest stands in the forest matrix (Scherzinger 2004). In

guilds 6 and 7, coniferous trees are the main required habitat structures. Our analyses

also indicate that the spatial relationship between the quadrants is less important than

the actual habitat factors in the plot for these specialists. These species even find single

coniferous trees in a beech forest and prefer these evergreen structures

(Purroy 1974, Mosimann, Naef-Daenzer & Blattner 1987, Müller 2005a).

This situation changes in guilds 3 and 5, where species having common middle-strong

relationships to the structures are compiled. Here, the interpretation of the covariate

effects changes when the model is augmented with a spatial term. In particular, certain

factors being previously significant turn out to be insignificant after accounting for

spatial correlation. This indicates that inclusion of a spatial effect is also important to

obtain valid standard deviations for the estimated effects and, correspondingly, valid test

statistics for determining their significance. Table 3 presents a summary of estimated

covariate effects for guild 3 both from a parametric GLM and a semiparametric spatial

model. A comparison of the standard deviations and corresponding p-values reveals,

that neglecting the spatial structure of the data mostly leads to over-optimistic results

with too narrow confidence intervals and too small p-values.

For the species in guild 3 (related to mature deciduous trees), several parameters are not

significant after including spatial effects in the model. These are growing stock per grid,

percentage of gaps per grid, percentage of roads per grid, number of small cavities per
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grid and percentage of pioneer trees. Only some of the factors such as age, dead wood

amount and the availability of old deciduous trees, known to be important from

previous analyses, remain significant. Thus, in this case the results are getting more

intuitive and, in this sense, more precise, since these are all parameters appearing

meaningful for the synthetic species “mature deciduous forest” while most of the

excluded factors are difficult to relate to guild 3 from the knowledge about their ecology.

For example, forest roads or succession are not considered as significantly important if

spatial correlations are considered. This indicates, that more common species react

more sensitively to the forest-landscape level than other species and, thus, are more

sensitive with respect to the spatial proximity of the samples taken. The importance of

the forest matrix for more common species was also emphasized by other surveys in

southern Germany (Utschick 2004). Especially regarding these species, the habitat

modeling based on plots with spatial proximity may be objectified and improved.

4 Discussion

As we have demonstrated, the application of spatial smoothing techniques can help us

to solve the problems arising from spatial alignment of samples even in regression

situations with non-normal responses. It allows evaluation of whether spatial

correlations remain unexplained after accounting for covariate effects, and through

visualisation of the remaining spatial effect, hints at unknown influential factors

introducing the spatial correlation. Standard errors and test statistics are corrected for

spatial correlation and allow for valid statistical conclusions.

A further advantage of semiparametric spatial models is that they provide a unified

framework for the joint determination of spatial effects and parametric covariate effects

that does not rely on stepwise procedures but on simultaneous estimation of all

parameters. So far in forest ornithology, expert judgements have been used to define
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minimum distances between plots in an attempt to achieve independent observations

(see for example Midgarden, Youngman & Fleischer, 1993, for an application to beetle

catches with yellow traps). In contrast, spatial semiparametric models are fully

automatic and require no subjective choices to be made. They can be applied for any

species group and each habitat without the need to recalculate distances at which the

observations are expected to be independent.

Of course, the questions discussed in the context of our application are also relevant for

other ecological applications with spatially aligned data. Fortunately, the presented

methodology is readily applicable in any type of GLM and also available in the software

we considered (see the next section). For example, the analysis of presence/absence data

via binary regression models could also benefit from the inclusion of spatial effects.

Furthermore, the semiparametric spatial model can easily be extended to more

complicated data structures including for example nonparametric effects of continuous

covariates or models with space-varying coefficients (compare Fahrmeir, Kneib & Lang,

2004, for details). It is also applicable in situations with more multivariate, categorical

responses. Kneib & Fahrmeir (2006) describe such extensions for both unordered and

ordered response variables.

Software

The spatial smoothing approaches described in this article are implemented in the

software package BayesX, available from http://www.stat.uni-muenchen.de/~bayesx.

Variable selection has been performed within R (R Development Core Team 2006) using

the package mboost (Hothorn & Bühlmann 2006).
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Appendix: Inference in spatially correlated GLMs

To set the scene for the spatial models considered later-on in the appendix, we recall some of the basic

methodology and concepts associated with fitting generalised linear models. Estimation of the regression

coefficients β is usually based on a maximum likelihood procedure. Under the assumption of conditional

independence, the likelihood is given by the product of individual likelihood contributions. In the case

of a Poisson model this leads to the log-likelihood formula

l(β) =
n∑

i=1

(yi log(µi)− µi)
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which has to be maximised with respect to β. Since the log-likelihood is nonlinear in the parameters,

maximisation proceeds by iterative schemes relying on quadratic approximations to the likelihood updated

in each step. More precisely, an updating step can be written as follows:

β̂(k+1) = (U ′W (k)U)−1U ′W (k)ỹ(k) (6)

where U is the design matrix formed of the covariates u1, . . . , up (as in usual linear models), W (k) =

diag(w(k)
1 , . . . , w

(k)
n ) is a diagonal matrix of working weights and ỹ(k) is a vector of working observations

(compare Fahrmeir & Tutz, 2001, for more details). The updating scheme (6) is called iteratively weighted

least squares (IWLS) since its form is similar to that of the least squares estimate in linear models but

the weights and the working observations are updated iteratively in each step. Upon convergence, β̂

equals the maximum likelihood estimate and expression (6) is also used to construct model fit statistics

in analogy to the linear model. For example, the matrix

H = U(U ′WU)U ′W

is called the hat matrix since it projects the working observations ỹ on the predicted values in the

corresponding working model. Diagonal elements of H can for example be used to detect highly influential

observations similar as in the linear model.

Goodness of fit measures in GLMs can be defined in terms of the deviance residuals

Di = D(yi, µi) = 2(li(yi)− li(µi)),

where li(·) is the log-likelihood of observation i evaluated for either the observation itself or the mean µi

predicted from the current model. For example, in our Poisson regression model the deviance residual is

given by

Di = 2[(yi log(yi)− yi)− (yi log(µi)− µi)].

The sum of all deviance residuals is called the deviance

D =
n∑

i=1

Di = 2

(
n∑

i=1

li(yi)−
n∑

i=1

li(µi)

)

and based on the deviance we can define the generalised cross validation criterion

GCV =
n

(n− df)2
D(y, µ̂)

that allows to compare the performance of different models. The degrees of freedom df associated with

a model simply equals the number of parameters in a parametric GLM, i.e., df = p + 1, but has to be

adapted appropriately in semiparametric spatial models. Another criterion frequently used for comparing
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the performance of regression models is Akaikes information criterion (AIC)

AIC = −2l(β) + 2 df .

For spatial GLMs, maximum likelihood inference has to be adjusted appropriately. Basically, semipara-

metric spatial models based on either bivariate penalised splines or Kriging terms determine a penalised

likelihood of the form

lpen(β, α)− 1
2τ2

α′Kα (7)

where β is the vector of usual parametric covariate effects and α contains the coefficients describing the

spatial term. The matrix K acts as a penalty matrix that enforces spatial smoothness and, therefore,

enduces spatial correlations. Hence, β may also be interpreted as a vector of fixed effects, while α

represents a spatially correlated vector of random effects with random effects distribution

p(α|τ2) ∝ exp
(
− 1

2τ2
α′Kα

)
,

i.e.. a multivariate Gaussian distribution.

A version of the IWLS updating scheme (6) for semiparametric spatial models corresponding to (7) is

given by 


β̂(k+1)

α̂(k+1)


 =




U ′W (k)U U ′W (k)B

B′W (k)U B′W (k)B + 1/τ2K




−1 


U ′W (k)ỹ(k)

B′W (k)ỹ(k)




where B is the design matrix representing the spatial effect. Consequently, the hat matrix is defined as

H =
(

U B

)



U ′WU U ′WB

B′WU B′WB + 1/τ2K




−1 


U ′W

B′W




and its trace

df = trace(H)

is used to measure the complexity of the model, i.e., the effective degrees of freedom. In parametric

GLMs this definition simply collapses to df = p + 1 while in spatial models variation of the smoothing

parameter allows for a continuous selection between models with a small effective number of parameters

(τ2 small) and a very large effective number of parameters (τ2 large). Based on this definition for df we

can also define adjusted measures for the model fit, i.e., appropriate versions of GCV and AIC.
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Table 1: Environmental variables: Abbreviation, description, range, source and inventory

area.

Description Range Source Inventory

Variables at stand scale

CRS Percentage of cover of regeneration and

shrubs

0-95% Estimation in field 1 ha grid

HRS Mean height of regeneration and shrubs 0-10m Estimation in field 1 ha grid

COT Percentage of coniferous trees 0-80% Aerial photo 1 ha grid

MAT Percentage of cover of mature trees 0-100% Aerial photo 1 ha grid

AGE Age of stand 27-300y Forest inventory stand level

DBH Mean diameter of the largest three trees 0-88cm Forest inventory 0.05 ha

GST Growing stock per grid 0-854m/ha Forest inventory 0.05 ha

OAK Percentage of oak trees 0-40% Estimation in field 1 ha grid

PIO Percentage of pioneer trees (Salix, Be-

tula, Populus)

0-75% Estimation in field 1 ha grid

ALA Percentage of alder and ash trees 0-60% Estimation in field 1 ha grid

GAP Percentage of gaps per grid 0-19% Aerial photo 1 ha grid

AGR Percentage of agricultural land per grid 0-21% Aerial photo 1 ha grid

ROA Percentage of roads per grid 0-13% Aerial photo 1 ha grid

SCA Number of small cavities per grid 0-33 Additional inventory 0.5 ha circle

LCA Number of large cavities per grid 0-15 Additional inventory 0.5 ha circle

LOG Amount of logs per grid 0-293m3/ha Additional inventory 0.1 ha circle

SNA Amount of snags and attached dead

wood at living trees per grid

0-292m/ha Additional inventory 0.1 ha circle

Variables at landscape scale

L AG Percentage of agricultural land at the

landscape level

0-41% Aerial photo 78.5 ha circle

L RO Length of roads at the landscape level 992-12647m Aerial photo 78.5 ha circle

L MA Percentage of mature deciduous trees at

the landscape level

19-97% Aerial photo 78.5 ha circle

L MT Percentage of medium aged deciduous

trees at the landscape level

0-69% Aerial photo 78.5 ha circle
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Table 2: Summary Statistics: For each of the guilds, the table contains results for a

parametric model (GLM) and two semiparametric spatial models (GRF and P-Spline).

The columns of the table display minus twice the log-likelihood (-2l), the effective degrees

of freedom (df), Akaikes information criterion (AIC) and the generalised cross validation

criterion (GCV).

-2l df AIC GCV

GLM 227.37 12.00 251.37 0.78

SG1 GRF 227.31 12.03 251.37 0.78

P-Spline 227.29 12.04 251.38 0.78

GLM 303.45 11.00 325.45 0.83

SG2 GRF 303.39 11.04 325.48 0.83

P-Spline 303.45 11.01 325.46 0.83

GLM -4282.34 19.00 -4244.34 1.50

SG3 GRF -4312.56 25.78 -4261.00 1.45

P-Spline -4312.82 25.59 -4261.63 1.45

GLM 187.09 9.00 205.09 0.63

SG4 GRF 136.47 21.77 180.01 0.47

P-Spline 134.28 21.98 178.24 0.46

GLM -76.18 23.00 -30.18 1.35

SG5 GRF -115.39 34.58 -46.23 1.29

P-Spline -118.24 35.52 -47.19 1.29

GLM 401.08 12.00 425.08 1.30

SG6 GRF 367.02 22.09 411.19 1.26

P-Spline 366.75 22.44 411.62 1.26

GLM 159.49 9.00 177.49 0.45

SG7 GRF 159.48 9.00 177.49 0.45

P-Spline 159.46 9.02 177.49 0.45
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Table 3: Fixed Effects for guild 3 in a purely parametric and a semiparametric spatial

model.

GLM GRF

β̂j sd(β̂j) p-value β̂j sd(β̂j) p-value

Intercept 1.0785 0.2369 <0.0001 1.1349 0.2644 0.0001

GST -0.0003 0.0002 0.0818 -0.0003 0.0002 0.0464

AGE 0.0036 0.0009 0.0002 0.0030 0.0009 0.0014

LOG 0.0018 0.0007 0.0153 0.0016 0.0007 0.0364

HRS 0.0025 0.0158 0.8731 -0.0083 0.0167 0.6180

OAK 0.0061 0.0031 0.0474 0.0063 0.0033 0.0531

COT 0.0037 0.0030 0.2201 0.0024 0.0032 0.4490

PIO 0.0021 0.0028 0.4494 0.0002 0.0030 0.9352

ALA 0.0058 0.0041 0.1518 0.0050 0.0041 0.2200

MAT 0.4717 0.1220 0.0003 0.5398 0.1298 0.0001

GAP 1.7706 0.5470 0.0016 0.9106 0.5953 0.1259

ROA -2.3384 1.1943 0.0498 -1.6003 1.2309 0.1938

LCA -0.0233 0.0163 0.1535 -0.0190 0.0170 0.2649

SCA 0.0118 0.0044 0.0079 0.0085 0.0045 0.0608

L RO <0.0001 <0.0001 0.3585 <0.0001 <0.0001 0.9755

L MA -0.0930 0.2328 0.6892 -0.0212 0.2641 0.9365

L MT 0.4472 0.2565 0.0808 0.4599 0.3134 0.1422

L AG -0.9756 0.6204 0.1156 -0.8194 0.6635 0.2172

L SU 0.8773 0.4272 0.0397 0.6984 0.5042 0.1661
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Figure 1: Univariate nonparametric smoothing with B-splines. In Figure (c) the dashed

line represents the true curve and the solid line the corresponding B-spline estimate.
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Figure 2: Bivariate nonparametric smoothing with B-splines: A single tensor product

B-spline basis function and a set of such basis functions.
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Figure 3: Spatial Effects: Estimated spatial effects in a purely spatial model for guild 2

(first row) and in semiparametric spatial models for guilds 3 and 4 (second and third row).

The diameter of the circles is proportional to the number of observed birds.
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