10 research outputs found

    Steiner Point Removal with Distortion O(logk)O(\log k)

    Full text link
    In the Steiner point removal (SPR) problem, we are given a weighted graph G=(V,E)G=(V,E) and a set of terminals KVK\subset V of size kk. The objective is to find a minor MM of GG with only the terminals as its vertex set, such that the distance between the terminals will be preserved up to a small multiplicative distortion. Kamma, Krauthgamer and Nguyen [KKN15] used a ball-growing algorithm with exponential distributions to show that the distortion is at most O(log5k)O(\log^5 k). Cheung [Che17] improved the analysis of the same algorithm, bounding the distortion by O(log2k)O(\log^2 k). We improve the analysis of this ball-growing algorithm even further, bounding the distortion by O(logk)O(\log k)

    Near Isometric Terminal Embeddings for Doubling Metrics

    Get PDF
    Given a metric space (X,d), a set of terminals K subseteq X, and a parameter t >= 1, we consider metric structures (e.g., spanners, distance oracles, embedding into normed spaces) that preserve distances for all pairs in K x X up to a factor of t, and have small size (e.g. number of edges for spanners, dimension for embeddings). While such terminal (aka source-wise) metric structures are known to exist in several settings, no terminal spanner or embedding with distortion close to 1, i.e., t=1+epsilon for some small 0<epsilon<1, is currently known. Here we devise such terminal metric structures for doubling metrics, and show that essentially any metric structure with distortion 1+epsilon and size s(|X|) has its terminal counterpart, with distortion 1+O(epsilon) and size s(|K|)+1. In particular, for any doubling metric on n points, a set of k=o(n) terminals, and constant 0<epsilon<1, there exists - A spanner with stretch 1+epsilon for pairs in K x X, with n+o(n) edges. - A labeling scheme with stretch 1+epsilon for pairs in K x X, with label size ~~ log k. - An embedding into l_infty^d with distortion 1+epsilon for pairs in K x X, where d=O(log k). Moreover, surprisingly, the last two results apply if only K is a doubling metric, while X can be arbitrary

    New Pairwise Spanners

    Get PDF
    Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G is called an (all-pairs) purely additive spanner with stretch beta if for every (u,v) in V times V, mathsf{dist}_H(u,v) le mathsf{dist}_G(u,v) + beta. The problem of computing sparse spanners with small stretch beta is well-studied. Here we consider the following relaxation: we are given psubseteq V times V and we seek a sparse subgraph H where mathsf{dist}_H(u,v)le mathsf{dist}_G(u,v) + beta for each (u,v) in p. Such a subgraph is called a pairwise spanner with additive stretch beta and our goal is to construct such subgraphs that are sparser than all-pairs spanners with the same stretch. We show sparse pairwise spanners with additive stretch 4 and with additive stretch 6. We also consider the following special cases: p = S times V and p = S times T, where Ssubseteq V and Tsubseteq V, and show sparser pairwise spanners for these cases

    A Linear-Size Logarithmic Stretch Path-Reporting Distance Oracle for General Graphs

    Full text link
    In 2001 Thorup and Zwick devised a distance oracle, which given an nn-vertex undirected graph and a parameter kk, has size O(kn1+1/k)O(k n^{1+1/k}). Upon a query (u,v)(u,v) their oracle constructs a (2k1)(2k-1)-approximate path Π\Pi between uu and vv. The query time of the Thorup-Zwick's oracle is O(k)O(k), and it was subsequently improved to O(1)O(1) by Chechik. A major drawback of the oracle of Thorup and Zwick is that its space is Ω(nlogn)\Omega(n \cdot \log n). Mendel and Naor devised an oracle with space O(n1+1/k)O(n^{1+1/k}) and stretch O(k)O(k), but their oracle can only report distance estimates and not actual paths. In this paper we devise a path-reporting distance oracle with size O(n1+1/k)O(n^{1+1/k}), stretch O(k)O(k) and query time O(nϵ)O(n^\epsilon), for an arbitrarily small ϵ>0\epsilon > 0. In particular, our oracle can provide logarithmic stretch using linear size. Another variant of our oracle has size O(nloglogn)O(n \log\log n), polylogarithmic stretch, and query time O(loglogn)O(\log\log n). For unweighted graphs we devise a distance oracle with multiplicative stretch O(1)O(1), additive stretch O(β(k))O(\beta(k)), for a function β()\beta(\cdot), space O(n1+1/kβ)O(n^{1+1/k} \cdot \beta), and query time O(nϵ)O(n^\epsilon), for an arbitrarily small constant ϵ>0\epsilon >0. The tradeoff between multiplicative stretch and size in these oracles is far below girth conjecture threshold (which is stretch 2k12k-1 and size O(n1+1/k)O(n^{1+1/k})). Breaking the girth conjecture tradeoff is achieved by exhibiting a tradeoff of different nature between additive stretch β(k)\beta(k) and size O(n1+1/k)O(n^{1+1/k}). A similar type of tradeoff was exhibited by a construction of (1+ϵ,β)(1+\epsilon,\beta)-spanners due to Elkin and Peleg. However, so far (1+ϵ,β)(1+\epsilon,\beta)-spanners had no counterpart in the distance oracles' world. An important novel tool that we develop on the way to these results is a {distance-preserving path-reporting oracle}

    Path-Reporting Distance Oracles with Near-Logarithmic Stretch and Linear Size

    Full text link
    Given an nn-vertex undirected graph G=(V,E,w)G=(V,E,w), and a parameter k1k\geq1, a path-reporting distance oracle (or PRDO) is a data structure of size S(n,k)S(n,k), that given a query (u,v)V2(u,v)\in V^2, returns an f(k)f(k)-approximate shortest uvu-v path PP in GG within time q(k)+O(P)q(k)+O(|P|). Here S(n,k)S(n,k), f(k)f(k) and q(k)q(k) are arbitrary functions. A landmark PRDO due to Thorup and Zwick, with an improvement of Wulff-Nilsen, has S(n,k)=O(kn1+1k)S(n,k)=O(k\cdot n^{1+\frac{1}{k}}), f(k)=2k1f(k)=2k-1 and q(k)=O(logk)q(k)=O(\log k). The size of this oracle is Ω(nlogn)\Omega(n\log n) for all kk. Elkin and Pettie and Neiman and Shabat devised much sparser PRDOs, but their stretch was polynomially larger than the optimal 2k12k-1. On the other hand, for non-path-reporting distance oracles, Chechik devised a result with S(n,k)=O(n1+1k)S(n,k)=O(n^{1+\frac{1}{k}}), f(k)=2k1f(k)=2k-1 and q(k)=O(1)q(k)=O(1). In this paper we make a dramatic progress in bridging the gap between path-reporting and non-path-reporting distance oracles. We devise a PRDO with size S(n,k)=O(kloglognlognn1+1k)S(n,k)=O(\lceil\frac{k\log\log n}{\log n}\rceil\cdot n^{1+\frac{1}{k}}), stretch f(k)=O(k)f(k)=O(k) and query time q(k)=O(logkloglognlogn)q(k)=O(\log\lceil\frac{k\log\log n}{\log n}\rceil). We can also have size O(n1+1k)O(n^{1+\frac{1}{k}}), stretch O(kkloglognlogn)O(k\cdot\lceil\frac{k\log\log n}{\log n}\rceil) and query time q(k)=O(logkloglognlogn)q(k)=O(\log\lceil\frac{k\log\log n}{\log n}\rceil). Our results on PRDOs are based on novel constructions of approximate distance preservers, that we devise in this paper. Specifically, we show that for any ϵ>0\epsilon>0, any k=1,2,...k=1,2,..., and any graph GG and a collection P\mathcal{P} of pp vertex pairs, there exists a (1+ϵ)(1+\epsilon)-approximate preserver with O(γ(ϵ,k)p+nlogk+n1+1k)O(\gamma(\epsilon,k)\cdot p+n\log k+n^{1+\frac{1}{k}}) edges, where γ(ϵ,k)=(logkϵ)O(logk)\gamma(\epsilon,k)=(\frac{\log k}{\epsilon})^{O(\log k)}. These new preservers are significantly sparser than the previous state-of-the-art approximate preservers due to Kogan and Parter.Comment: 61 pages, 3 figure

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore