1,258 research outputs found

    Asynchronous spiking neurons, the natural key to exploit temporal sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    Efficient Computation in Adaptive Artificial Spiking Neural Networks

    Get PDF
    Artificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of communication. This contrasts sharply with biological neurons that communicate sparingly and efficiently using binary spikes. While artificial Spiking Neural Networks (SNNs) can be constructed by replacing the units of an ANN with spiking neurons, the current performance is far from that of deep ANNs on hard benchmarks and these SNNs use much higher firing rates compared to their biological counterparts, limiting their efficiency. Here we show how spiking neurons that employ an efficient form of neural coding can be used to construct SNNs that match high-performance ANNs and exceed state-of-the-art in SNNs on important benchmarks, while requiring much lower average firing rates. For this, we use spike-time coding based on the firing rate limiting adaptation phenomenon observed in biological spiking neurons. This phenomenon can be captured in adapting spiking neuron models, for which we derive the effective transfer function. Neural units in ANNs trained with this transfer function can be substituted directly with adaptive spiking neurons, and the resulting Adaptive SNNs (AdSNNs) can carry out inference in deep neural networks using up to an order of magnitude fewer spikes compared to previous SNNs. Adaptive spike-time coding additionally allows for the dynamic control of neural coding precision: we show how a simple model of arousal in AdSNNs further halves the average required firing rate and this notion naturally extends to other forms of attention. AdSNNs thus hold promise as a novel and efficient model for neural computation that naturally fits to temporally continuous and asynchronous applications

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    Get PDF
    Biological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on recent insights in neuroscience, we present an Adapting Spiking Neural Network (ASNN) based on adaptive spiking neurons. These spiking neurons efficiently encode information in spike-trains using a form of Asynchronous Pulsed Sigma-Delta coding while homeostatically optimizing their firing rate. In the proposed paradigm of spiking neuron computation, neural adaptation is tightly coupled to synaptic plasticity, to ensure that downstream neurons can correctly decode upstream spiking neurons. We show that this type of network is inherently able to carry out asynchronous and event-driven neural computation, while performing identical to corresponding artificial neural networks (ANNs). In particular, we show that these adaptive spiking neurons can be drop in replacements for ReLU neurons in standard feedforward ANNs comprised of such units. We demonstrate that this can also be successfully applied to a ReLU based deep convolutional neural network for classifying the MNIST dataset. The ASNN thus outperforms current Spiking Neural Networks (SNNs) implementations, while responding (up to) an order of magnitude faster and using an order of magnitude fewer spikes. Additionally, in a streaming setting where frames are continuously classified, we show that the ASNN requires substantially fewer network updates as compared to the corresponding ANN

    Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model

    Full text link
    The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.Comment: 11 pages, 5 figures, v5 is the final version published on Scientific Reports journa

    Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    Get PDF
    Biological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on recent insights in neuroscience, we present an Adapting Spiking Neural Network (ASNN) based on adaptive spiking neurons. These spiking neurons efficiently encode information in spike-trains using a form of Asynchronous Pulsed Sigma-Delta coding while homeostatically optimizing their firing rate. In the proposed paradigm of spiking neuron computation, neural adaptation is tightly coupled to synaptic plasticity, to ensure that downstream neurons can correctly decode upstream spiking neurons. We show that this type of network is inherently able to carry out asynchronous and event-driven neural computation, while performing identical to corresponding artificial neural networks (ANNs). In particular, we show that these adaptive spiking neurons can be drop in replacements for ReLU neurons in standard feedforward ANNs comprised of such units. We demonstrate that this can also be successfully applied to a ReLU based deep convolutional neural network for classifying the MNIST dataset. The ASNN thus outperforms current Spiking Neural Networks (SNNs) implementations, while responding (up to) an order of magnitude faster and using an order of magnitude fewer spikes. Additionally, in a streaming setting where frames are continuously classified, we show that the ASNN requires substantially fewer network updates as compared to the corresponding ANN
    • …
    corecore