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Abstract Biological neurons communicate with a sparing exchange of pulses – spikes. It is an
open question how real spiking neurons produce the kind of powerful neural computation that is
possible with deep artificial neural networks, using only so very few spikes to communicate. Building
on recent insights in neuroscience, we present an Adapting Spiking Neural Network (ASNN) based on
adaptive spiking neurons. These spiking neurons efficiently encode information in spike-trains using a
form of Asynchronous Pulsed Sigma-Delta coding while homeostatically optimizing their firing rate.
In the proposed paradigm of spiking neuron computation, neural adaptation is tightly coupled to
synaptic plasticity, to ensure that downstream neurons can correctly decode upstream spiking neurons.
We show that this type of network is inherently able to carry out asynchronous and event-driven
neural computation, while performing identical to corresponding artificial neural networks (ANNs).
In particular, we show that these adaptive spiking neurons can be drop in replacements for ReLU
neurons in standard feedforward ANNs comprised of such units. We demonstrate that this can also
be successfully applied to a ReLU based deep convolutional neural network for classifying the MNIST
dataset. The ASNN thus outperforms current Spiking Neural Networks (SNNs) implementations,
while responding (up to) an order of magnitude faster and using an order of magnitude fewer spikes.
Additionally, in a streaming setting where frames are continuously classified, we show that the ASNN
requires substantially fewer network updates as compared to the corresponding ANN.

1 Introduction
With rapid advances in deep neural networks, renewed consideration is given to the question how artificial
neural networks relate to the details of information processing in real biological spiking neurons. Apart
from its still vastly more flexible operation, the huge spiking neural network that comprises the brain
intrinsically operates in an asynchronous manner and is highly energy efficient. These properties derive
in large part from the brain’s sparse spiking activity: spikes are only emitted when a spiking neuron
is sufficiently stimulated, and otherwise the neuron remains silent. Intrinsic neural mechanisms also
homeostatically control a neuron’s firing rate to optimally encode information [1]. As a result, estimates
are that neurons in mammalian brains on average only emit somewhere between 0.2–5 spikes per second
[2].

From an AI perspective, low and event-activated neural networks are attractive for applications with
always-on requirements, for instance for use in cell-phones. Neuromorphic implementations of spiking
neural networks have been specifically developed to create energy efficient implementations of deep neural
networks [3, 4]. However, current spiking neural networks that almost match standard deep neural network
performance require the use of very high firing rates, negating much of the improved efficiency.

It is still an open question in neuroscience how exactly biological spiking neurons convey information
to each other using as few spikes as possible [5, 6, 7]. Neural units in a standard Artificial Neural Network
(ANN) propagate analog values to downstream neurons whereas biological spiking neurons emit spikes
that, through neurotransmitters released at the synaptic connection, exert influence on the state of the
target neuron. In the standard firing-rate formulation, spiking neurons are presumed to emit isomorphic
spikes according to an inhomogenous Poisson process with a rate proportional to the internally computed
analog value (i.e. Figure 1a): the spiking neuron’s non-linear average response approximates a ReLU
neurons in neural network terms over some limited dynamic range.

As was shown by Liu et al [8, 9, 10], with some work the ReLU neuron in standard neural networks
and convolutional neural networks can be replaced by Poisson spiking neurons; this approach obtained
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performance close to the corresponding ANN and is to our knowledge the currently best performing
spiking neural network. Still, this spiking neural network required very high firing rates (200-1000Hz) and
substantial temporal averaging (150-500ms) to obtain accurate-enough estimates of firing rate (and hence
classification). To obtain faster responses the weights obtained in the ANN model had to be reweighted
and/or normalised to account for the limited dynamic range of simple Poisson neurons. Similarly, Cao et
al [11] create deep spiking neural networks based on LIF neurons that use spike-counting for classification
over a 100, 200 or 400ms interval from the start of input presentation.

To explain how real neurons are able to efficiently encode a signal with few spikes, alternative spike-
based neural coding schemes are being considered. A recent line of work in computational neuroscience
suggests that spiking neurons may implement a form of online AD/DA conversion [12, 13, 14, 15, 16, 7];
the key idea is that when a neuron spikes, the refractory reset removes a part of the internally computed
analog voltage signal. The resultant spike, through the synapse, then delivers this quantum of signal
to the next neuron. Yoon [16] recently demonstrated a direct correspondence between Generalized
Leaky-Integrate-and-Fire (G-LIF) models (ie [17]) and the AD/DA encoding/decoding scheme called
Asynchronous-Pulse-Sigma-Delta Modulation (APSDM) developed for digital signal processing (compare
also Figure 1a and b). The APSDM scheme however presumes a fixed dynamic range for the encoded
analog values and still requires very high firing rates for good AD/DA signal approximations.

In this paper, we build on these recent insights to develop a novel kind of asynchronous adapting spiking
neural network that is highly efficient in terms of spikes used, based on adaptive spiking neurons that
can function as drop-in replacements for standard ReLU neurons in traditional (deep) neural networks.
Inspired by [18] and [14], we use a multiplicative model of neural adaptation to obtain a spiking ReLU
neuron that is capable of encoding and decoding a wide dynamic range of activation values with a limited
and tunable firing rate. We thus effectively extend the APSDM scheme with a (biologically plausible)
spiking neuron model that dynamically adapts its spiking mechanism to the (varying) dynamic range of
the computed internal activation value. From a biological perspective, the proposed adaptive neural coding
model predicts that various forms of somatic adaptation operate in a concerted manner with synaptic
phenomena like short term synaptic plasticity, possibly combined with effects like synaptic scaling.

We show that we can thus compose computationally efficient Adaptive Spiking Neural Networks
(ASNNs) through drop-in replacement of ReLU neurons in standard ReLU-based feedforward and convolu-
tional ANNs, and we demonstrate identical performance to these ANNs without additional modifications.
The ASNNs outperform previous SNNs like [9, 10] on a selection of standard benchmarks, including
MNIST; require an order of magnitude fewer spikes, albeit analog rather than binary spikes (and still more
efficient in terms of communicated bits); and are also up to an order of magnitude faster, in the sense that
they need much less temporal averaging over output spike-trains. Additionally, the presented network is
able to carry out ongoing asynchronous neural computation in continuous time: neurons are updated at
high temporal precision and information is exchanged only sparingly in an asynchronous manner. This
has to be compared to the traditional ANN which compute in a fully synchronous fashion: in a streaming
classification problem, we show that for ASNNs a much sparser network updating suffices as compared to
traditional ANNs.

The novel type of neural network described here strongly leans on neural coding principles suggested
from neuroscience to arrive at a formulation of neural computation that falls in between classical ANNs
and SNNs. The work described here offers a new and essentially hybrid paradigm of low firing rate spiking
neural networks.

2 Multiplicative adaptive spike-time coding
A spiking neural network is defined by the relationship between spikes and the quantity that is computed
in the neuron as the result of impinging spikes [19]. We define sigma-delta spike-time coding as the
neural equivalent of the APSDM framework (Figure 1b): weighted input spikes contribute linearly to the
membrane potential, and when this sum of inputs reaches the threshold from below, a spike is generated
and a refractory reset is subtracted from the membrane potential. When both refractory reset and the
impact of spikes on downstream neurons is proportional and temporally extended, effectively it is the
(smoothed) sum of refractory resets that is conveyed to the next neuron; this AD/DA encoding/decoding
process is illustrated in Figure 2a: the input spikes (red) collectively cause an input voltage S(t) (red line).
Due to thresholding, this input voltage causes a series of spikes to be emitted, and each spike-generation
subtracts a refractory response from the incoming potential (green), the sum of which, Ŝ(t) approximates
the input voltage S(t). At the receiving neuron, each spike triggers a post-synaptic potential proportional
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Figure 1: (a) Generalized Leaky Integrate-and-Fire model and (b) the Asynchronous-Pulse-Sigma-Delta-
Modulation (APSDM) [16] (right). Note the close similarities.

to the refractory response, weighted by the size of the synaptic weight, and smoothed due to the membrane
resistance of the postsynaptic neuron. With only a single input and an appropriately chosen threshold ϑ0,
this smoothed sum of postsynaptic potentials, I(t) proportionally approximates the shape of the signal
computed in the pre-synaptic neuron, S(t) (red dotted line). In this scheme, only positive parts of S(t)
are approximated, thus effectively computing a ReLU function on the presynaptic’s neuron input.

An Adaptive Spiking Neuron To create artificial spiking neural networks based on sigma-delta
spike-time coding, we address the limited dynamic range of standard LIF or corresponding Spike-Response-
Model (SRM) neurons. Here, we note that it is the fixed size refractory resets that limit the dynamic
range of the internal activation that a neuron can encode with the proposed spike-time coding mechanism
[14, 15]. Effectively, activation values that are either too small or too large relative to the threshold cannot
be accurately encoded. This is illustrated in figure 2(b,c).

Here we use the solution proposed in [14] based on a model of fast adaptation in spiking neurons:
by dynamically adjusting the threshold, the size of the refractory responses can be controlled and the
dynamic range can be increased, drastically even when a multiplicative form of threshold adjustment is
used. Such multiplicative adaptation effectively allows a neuron to assign a fixed “budget” of spikes to a
given dynamic range, also when that range changes drastically. Note that such a model of adaptation
explains various adaptive behaviour in real biological neurons [1, 18, 14].

We implement adaptive sigma-delta spike-time coding using multiplicative adaptation in an SRM [6].
A spiking neuron computes a smoothed internal activation value S(t) on the input current:

S(t) = (φ ∗ I)(t),
where φ(t) is the (exponential) smoothing filter with time constant τsmooth and I(t) is the input current
that the neuron receives. This current I(t) can be injected directly into the spiking neuron (for inputs), or
be the result of impinging (weighted) spikes causing post-synaptic currents (PSCs) (specified below). The
spiking mechanism approximates the ReLU activation of S(t) with Ŝ(t) using a sum of spike-triggered
kernels η(t− ti):

Ŝ(t) =
∑
ti

η(t− ti), (1)

where a spike is added in an online and incremental fashion when the difference between the input signal
and the signal approximation exceeds a positive dynamic threshold ϑ(t) from below:

u(t) = S(t)− Ŝ(t) > ϑ(t), (2)

where we take u(t) to denote the neuron’s membrane potential. Upon emitting a spike at ti, the spike-
triggered refractory response η(t− ti) is subtracted from S(t) and added to Ŝ(t). The part of S(t) larger
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Figure 2: (a) Illustration of signal encoding with the ASN. Î denotes the smoothed sum of (weighted) postsynaptic
currents in the post-synaptic target neuron, proportionally approximating the encoded presynaptic signal S(t).
(b,c) Limited dynamic range: approximations fail when the signal S(t) is too small relative to the neurons’ threshold
ϑ0 (no spikes), or, (c) too large: then, due to absolute refractoriness and corresponding maximum firing rate, the
“high” parts of the signal S(t) cannot be encoded.

than the minimal value of the threshold ϑ(t) is thus encoded as Ŝ(t) in a spike-train ti. It is decoded at
the postsynaptic target neuron where the resultant postsynaptic currents (PSCs) are added as weighed
versions of the refractory response η(t). The resultant postsynaptic current in target neuron j, Ij(t)
induced by presynaptic spikes ti from multiple presynaptic neurons i, is then computed as:

Ij(t) =
∑
i

∑
ti

wijη(t− ti),

where wij is the weight between presynaptic neuron i and postsynaptic neuron j. The refractory response
kernel η(t) is adaptive and controlled through the dynamic threshold ϑ(t):

η(t− ti) = ϑ(ti)ν(ISI)κ(t− ti),

where ϑ(ti) is the effective threshold at the time of spiking, κ(t− ti) is a spike-triggered kernel shaping
the refractory response due to the spike at ti and is computed as an exponential: κ(t) = exp(−(t)/τκ).
The factor ν(ISI) is a function of the interspike interval (ISI) between current spike ti and previous spike
ti−1 and corrects for the fact that the mean value of an η kernel between two spikes is not half the height
of ϑ(ti)κ(t− ti):

ν(ti − ti−1) =
(ti − ti−1)

2
∫ ti
ti−1

κ(t− ti−1)dt
. (3)

Thus computed, the average of the sum of η kernels approximates the mean of the signal S(t). We
approximate this function with a simple linear function ν(ISI) = a+ b · ISI from numerical simulations.

We model the dynamic threshold ϑ(t) as multiplicative adaptation after [14]:

ϑ(t) = ϑ0 +
∑
ti

mfϑ(ti)γ(t− ti), (4)

where ϑ0 is the baseline threshold set to some (small) fixed value. A multiplicative factor mf of fixed size
regulates the threshold dynamics, where the ratio between ϑ0 and mf determines the asymptotic firing
rate of the neuron for large activation values. The adaptation kernel γ(t) is computed as an exponential:
γ(t) = exp(−(t)/τγ).

The Adaptive Spiking Neuron (ASN) thus defined in terms of a Spike Response Model corresponds to a
variant of the well-known Generalized Leaky-Integrate-and-Fire (G-LIF) neuron [6, 17]. The neuron state
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Figure 3: (a) Firing rates (dashed lines, right axis, computed over a 1s time window), output signal Ŝ(t) with
standard deviation (solid lines, left axis) of an ASN ReLU neuron for two firing rate regimes (ϑ0 = 0.1, mf = ϑ0

(yellow), mf = 0.1ϑ0 (purple)). Colors are the same for firing rate and corresponding signal Ŝ. (b) Firing rate for
5 different values of mf = 0.01, 0.025, 0.05, 0.075, 0.1 and ϑ0 = 0.1. (c) Standard deviation (std) for 5 different
values of mf . Colors correspond between (b) and (c).

update can thus be efficiently computed by updating these exponential functions as simple (memory-less)
dynamical systems.

As noted, the signal approximation Ŝ(t) is computed as a sum of variable height kernels: it is this
signal that is communicated through a sequence of spikes to the next, postsynaptic, neuron. At the
postsynaptic neuron, the filter φ(t) smoothes the (weighted) η kernels, which suppresses high frequency
noise and reconstructs the signal as in the APSDM receiver [16]. In the network, for each arriving spike
the corresponding η kernel is multiplied by the weight of the connection and added to the current I(t)
in the post-synaptic neuron. Since the height of the η kernel is adaptive, in this treatment each spike
ti effectively has a height ϑ(ti). Conceptually, the synapse converts the binary spikes into the variable
and weighted contribution to the post-synaptic neuron, using the same adaptation-driving spike history
effects to compute the approximate effective impact: the DA part of the AD/DA conversion. Whether
binary spikes are communicated and the D/A value is computed, or whether just analog spikes are
communicated is effectively a tradeoff between computation and bandwidth. In our implementation, the
ASN communicates spikes with an analog “height” rather than binary valued spikes.

Adaptive Signal Encoding and Decoding The signal approximation Ŝ(t) in the Adaptive Spiking
Neuron computes a ReLU function: plotted in Figure 3a is both the firing rate (dashed) and the mean
and standard deviation of the signal approximation Ŝ(t) (solid) for increasing signal values S, for two
different ratios of ϑ0 and mf . While the firing rate saturates, the approximation Ŝ(t) remains linearly
growing with increasing S, albeit with increasing variance as the number of spikes used to encode the
signal remains the same.

Since the ratio of the baseline threshold ϑ0 and the multiplicative factor mf determines the saturating
firing rate, this ratio also determines the precision of the encoding. The inverse relationship between
saturating firing rate and coding precision is plotted in Figure 3b,c for 5 different values of mf/ϑ0. We
observe that the standard deviation linearly increases with signal magnitude, and inversely relates to the
saturating firing rate.

In Figure 4, we illustrate signal encoding with the ASN with more or less spikes. In the top row we
plot the encoding of a step-function S(t) (red) with a sum of adaptive kernels, Ŝ(t) (blue). The black
dashes denote the spikes: the variance of Ŝ(t) decreases when more spikes are used. In the middle row,
the membrane potential u(t) is plotted for both cases, and in the bottom row the dynamical threshold
ϑ(t). As can be seen, a lower firing rate is achieved by a higher average threshold and correspondingly
larger refractory reset η(t). Note that the post-synaptic neuron observes the signal Ŝ smoothed by the
filter φ(t) (which is a better approximation of the step-function at the expense of additional delay).

The time-constant of the refractory response η(t) is determined by τκ: the value of this constant
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Figure 4: Encoding of two fixed size step functions for S(t), illustrating the decreasing variance of the signal
approximation Ŝ(t) for increasing firing-rates. Parameters: mf = 1ϑ0 (left) and mf = 0.1ϑ0 (right) for ϑ0 = 0.1.

determines how much “future” signal each spike transmits. To encode step-functions as in figure 4, a
decay constant that better matches the temporal correlation in the approximated signal will yield a
better approximation. For a step-function, this effect is plotted in figure 5. Shown is the error (SSE)
approximating a 1 second segment of a step-function with a fixed firing rate (35Hz) for various values of
τκ. Increasing τκ strongly reduces the SSE (blue line, left axis). The lower SSE however comes at the
expense of responsiveness: when the step-function steps back to 0, it takes longer before the approximation
correctly matches the new, lower value. Plotted also (orange line, right axis) is the time it takes before
the signal approximation is below 0.05 after stepping down.
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Figure 5: Error and responsiveness when encoding a step-
function with different η(t) (or EPSP) time-constants τκ.
Left axis: sum-squared error. Right axis: responsiveness
when switching back.

Implementation In the examples and in our
network implementations, we use time constants
that are roughly of the order of the corresponding
values in biological spiking neurons, such as time
constants of PSCs, membrane time-constant and
refractory response kernels, to obtain plausible
firing rates for active neurons (1-100Hz). We
use a time constant of τκ = 50ms for the expo-
nential decay of the κ kernel. The γ kernel was
approximated as a single decaying exponential
γ(t) = e(−t/τγ), with time constant τγ = 15ms
and weight γ = 1. We use a time constant of
τsmooth = 2.5ms for the signal reconstructing ex-
ponential smoothing filter φ(t) in all ASN units
except for the output neurons. In the output
units activity was filtered with an exponential
filter with a longer time constant of τrout = 10ms,
to compare activations between outputs for clas-
sification purposes. The simulations are computed with time-steps of size 1ms.
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Figure 6: (a) deep convolutional neural network. (b) ANN vs ASNN classification. The ANN is computed for
every frame, for the ASNN the neuron are updated at a fine resolution (inset), but network activity is asynchronous
and sparse. Right part of the sequence: increasing the frame-rate increases ANN computations and not ASNN. (c)
Flanked noise classification. The ANN computes at a fixed frame-rate, also for noise input that activates feature
neurons only slightly. For the ASNN, the input neurons rarely cross threshold and the network firing rate is very
low for noise; spikes are only emitted when frames with features are presented.

3 Adaptive Spiking Neural Networks (ASNN) vs Artificial Neural Networks
We implement Adaptive Spiking Neural Networks where the units are comprised of the ASNs described
above. Inherently, the ASNNs compute over time-continuous input signals; most straightforward and
standard applications of deep neural networks are concerned with classification tasks, such as determining
the digit in an image (Figure 6a). To compare classification performance between a standard ANN and
an SNN, Diehl et al [9] presented the image for certain time-period to the network (typically 500ms), and
recorded from the output neurons to determine the classification. The image is thus taken as input to the
network for every time-step in the SNN, which may be as small as 1ms (1000Hz) (illustrated in the inset
in Figure 6b).

Since our ASNs communicate analog valued spikes rather than binary spikes, the question is how the
classification problem thus phrased compares to a standard ANN which also communicates with analog
values. For an image, an ANN can obviously compute the classification in one go, essentially using just
one "analog spike". We argue that the correct comparison between SNNs, ASNNs and ANNs is to treat
the classification problem as a time-continuous problem. While the stimulus is present the network has to
compute classifications. For both SNNs and ASNNs this is inherent to the operation of the network, while
an ANN would need to sample the input at a certain frame-rate. This is illustrated in Figure 6b: the
ANN computes the classification for each frame for the entire network, and the computational complexity
scales linearly with the frame-rate (illustrated in the right part of Figure 6b). In contrast, the SNN and
ASNN implement an asynchronous model of ongoing neural computation where the neurons are updated
each small timestep (1ms), and communication between neurons is both localised (to active neurons),
and a function of desired neural coding precision rather than frame-rate. Another benefit of the ASNN
implementation is illustrated in Figure 6c: when no features are present in the frame, the spiking neural
network does not generate spikes, or only very sparingly, whereas the ANN still computes the entire
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Figure 7: Asynchronously computing XOR: (a) illustration with inputs arriving asynchronously (dotted green
lines), and XOR computed synchronously with the top (fastest) input-rate. Due to the synchronous nature
of computing, additional error are made, like the shaded areas in the bottom figure. Processing the input
asynchronously at their respective sample rates, the right shaded area would be avoided. (b) Asynchronous
processing of XOR in a 2-5-1 ASNN network capable of computing XOR with about 15Hz average firing rate
and neurons using τκ = 25ms. Novel input is processed at the update rate of the neurons (1ms); the delay in
classification when patterns switch is now determined by τκ (shaded areas).

Table 1: Computational Cost. C: number of connections, P : pulse precision, Ha: ANN update frequency, O:
addressing overhead, Fs: SNN firing rate, Fp: ASNN average firing rate, L: network depth (layers), Us: update
frequency of SNN, Up: update frequency of ASNN, c: a constant.

ANN SNN ASNN

Network bandwidth C · [P +O] ·Ha C ·O · Fs C · [P +O] · Fp
Network delay 1/Ha (?)τκ + c · L ∝ τκ + c · L
Network multiplications C · P ·Ha - C · P · Fp
Neuron multiplications Ha · f(ReLU) Us · f(ReLU) Up[3 + f(threshold)]

network every frame. The downside of asynchronous neural computation is that there is an inherent
latency between input presentation and output: in each layer, the ASN applies an averaging filter to the
spike-triggered input currents it receives. Conforming to biological data, we set the filter’s timeconstant
as 2.5ms, and used a 10ms averaging filter in the output neurons.

Asynchronous neural computation offers benefits both for computing and for processing sensory motor
data: with neural updating and network updating decoupled, sensory inputs (and actuator outputs) can
be sampled at the high neural update frequency. This avoids the well known problem of synchronized
processing [20]; the ASNN however cannot respond much faster to changing inputs than the τκ time-
constant. This is illustrated in figure 7 for the simple problem of streaming XOR: the network, using about
a 15Hz average firing rate, computes XOR from the two inputs. The bottom panel shows performance,
and demonstrates that the network is still capable of responding faster to changes in input (≈25ms) than
a correspondingly synchronous sample rate.

Computational Complexity An examination of the computational cost and bandwidth requirements
demonstrates the mixed ANN and SNN properties of the ASNN. In Table 1, these cost are specified. The
ASNN shares the firing rate dependent network bandwidth cost with the SNN, but at an ANN-like cost
per spike, and network delay is determined by the spike-decay timeconstant τκ, (presumably) the same
as in the SNN (not demonstrated in the literature). Since spike-impact is computed as the product of
spike-height and connection weight, the ASNN shares the ANN’s cost in terms of multiplications per
spike/update, and the neuron update cost of the ASNN scales as an SNN.

This analysis ignores the fact that spikes in the ASNN (and SNN) are heavily localized to a subset of
neurons: many neuron are silent while a few are active. Sparse and localised communication potentially
offers a benefit to deep neural networks, as densely connected neural networks tend to be limited by the
bandwidth required to read and write the appropriate weights from memory [21]. Thus reasoned, for an
ASNN that incurs a 100ms delay to compete in terms of bandwidth used with an ANN, it can use at
most a firing rate of 10Hz on average per neuron, since an ANN sampled with 10Hz would achieve the
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same worst case delay. This ignores the benefit of the ASNN being able to process in principle a 1000Hz
frame-rate. The exact benefit of sparse activity depends on the degree of sparseness and the degree to
which parallel hardware can exploit sparseness.

4 Feedforward and Deep Convolutional ASNNs
We tested networks of multiplicative Adaptive Spiking Neurons (ASN) described above, both in fully
connected Feed-Forward Neural Networks (FFNNs) and in a Convolutional Neural Network (CNN) [22].
These architectures were first trained on standard datasets – IRIS, SONAR, and MNIST – with standard
ANNs comprised of rectified linear (ReLU) neurons. The corresponding spiking neural networks were
created by using the same weights and network connectivity as the trained architectures (similar to [9]),
and replacing the ReLU neurons with ASN units.

We selected well-known benchmark datasets of increasing complexity to demonstrate the robustness of
the presented approach. The IRIS dataset is a classical non-linearly separable “toy” dataset containing 3
classes – 3 types of plants – with 50 instances each, to be classified from 4 input attributes. Similarly,
the SONAR dataset [23] contains 208 entries of sonar signals divided in 60 energy measurements in a
particular frequency band, to be classified in metal cylinder or simple rocks classes. Lastly, we use the
MNIST dataset [22], which has been a standard testbed for novel image classification methods. It is
composed of 60000 entries of handwritten digits for the training set and 10000 entries for the validation
set.

To carry out classification, for each instance the input neurons receive input current I(t) corresponding
to the respective feature values, for a simulation duration of 500ms. During this period, input neurons
generate spikes that are instantaneously transmitted to the next layer. There, the corresponding weighted
PSCs are added to the membrane potential u(t) through the smoothing filter φ(t); note that the smoothing
filter effectively causes a delay in signal transmission of order τsmooth per layer. This process is repeated
for each successive layer in the network. Output values used for classification are computed as internal
current I(t) in the output neurons, smoothed with longer time constant τrout for stable performance. At
every 1ms timestep t of the simulation, classification performance is computed over all instances of the
respective dataset from the outputs I(t) at that timestep t.

Feed-Forward Neural Networks We trained fully connected FFNNs using dropout [24] to approxi-
mately match performance with state-of-the-art. We trained a four layer FFNN of size [4− 30− 30− 3]
on the classical IRIS dataset with a dropout rate of 0.5, learning rate of 0.1, for 800 epochs. We used
half of the dataset for training, and we obtained 97.33% on the validation set. For the SONAR dataset,
we trained a four layer FFNN of size [60− 50− 50− 2], using the training set division reported in [23]
for the angle-dependent experiment. We used a dropout rate of 0.5, learning rate of 0.2, and we trained
for 1000 epochs to obtain 88.46% accuracy on the validation set. For the MNIST dataset, we used the
trained network reported in [9] to directly compare with the method there. In [9], the authors trained a
[784− 1200− 1200− 10] network, with a dropout rate of 0.5, learning rate of 1 and momentum of 0.5.
With this network, we obtained 98.84% accuracy on the MNIST validation set (code and trained network
were available online1) using a modified version of the DeepLearnToolbox2 [25]. As in [9], for all datasets
the input values were scaled to the range [0,1]. We refer to the FFNNs that use ASN ReLU neurons as
Feed-Forward Adaptive Spiking Neural Networks (FF-ASNN).

Convolutional Neural Networks CNNs have become a standard tool for image classification tasks
[22], and they generally outperform classical FFNNs. In [9] a competitive ReLU CNN implementation for
MNIST was presented: we apply the ASN network to this architecture and compare our results to those
obtained in [9]. The pre-trained network consists of a [28× 28− 12c5− 2s− 64c5− 2s− 10o] CNN, where
28× 28 corresponds to the input image size, N c K are the N-convolutional kernels of size K, M s J are
the M-averaging pooling filters of size J , and o is the size of the output layer; note that this network is
available online1. Neurons in each of these layers use the ReLU activation function, and we can again map
the ANN directly to our ASNN by substituting each ReLU neuron with the Adaptive Spiking Neuron.
We refer to the CNNs equipped spiking neurons as Convolutional Adaptive Spiking Neural Networks
(C-ASNN).

1http://github.com/dannyneil/spiking_relu_conversion
2https://github.com/rasmusbergpalm/DeepLearnToolbox
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Figure 8: Classification performance on IRIS, SONAR, MNIST (MNIST-nn for FF-ASNN and MNIST-cnn for
C-ASNN) for various average firing rates. Dashed: performance of original ANN.

5 Results
For all three datasets and the corresponding four ReLU architectures, we computed the ANN performance
and compared that to the ASNN performance. Figure 8 shows classification performance obtained for
IRIS, SONAR and MNIST by the various ASNNs as a function of average firing rate in the network (and
hence neural coding precision) during classification, obtained by varying the ratio of mf and ϑ0. We find
that for all benchmarks we achieve performance with the ASNN identical to that of the corresponding
ANN once a certain minimum firing rate is used, corresponding to the minimal required neural coding
precision. The networks that classify the IRIS and SONAR benchmarks require fairly high firing rates
compared to the two MNIST architectures. Since the former architectures are comprised of far fewer
neurons as compared to the MNIST networks, this suggests that in such smaller networks the coding
precision needs to be quite high.

The different firing rate regimes were obtained by varying the multiplicative factor mf as a function
of ϑ0, between 0.1ϑ0 and 3ϑ0, with ϑ0 = 0.0128 for the IRIS dataset, in 30 different simulations. The
threshold ϑ0 = 0.0128 was selected such that the smallest positive input values in the training set were
still encoded. For SONAR, we carried out simulations with mf ranging between 0.1ϑ0 and 3ϑ0, using
ϑ0 = 1e−4. For the MNIST dataset we simulated both an FF-ASNN and C-ASNN architecture. For the
FF-ASNN we carried out 35 simulations with mf ranging between 0.1ϑ0 and 3.5ϑ0, using ϑ0 = 3.9e−3.
For the MNIST networks, compared to the IRIS and SONAR networks, we find that performance is
stable over a much greater range of firing rates. For each simulation we computed the time to which 101%
of the minimum classification error is reached (Matching Time, MT), e.g., for MNIST-cnn this is when
the performance exceeds 99.13%. Given parameters ϑ0 and mf , we considered the ASNN network as
having performance identical to the corresponding ANN if, in the time-window from MT to the end of the
simulation (500ms), the performance stays, on average, above the 101%-error threshold. The variance
is computed over the same time-window, while the firing-rate is computed in a time-window of 100ms
at the end of the simulation. At low firing-rates, the ANN performance is exceeded for some ranges by
chance; the high neural coding precision for higher firing rates results in more stable performance, as can
be seen in the low variance of the performance on the right part of Figure 8.

For all four ASNNs, we noted both the required minimum firing rate (as set through the ratio of mf

and ϑ0) to reach the 101%-error threshold, and the corresponding simulation time when this performance
is first reached. We refer to these values as the Matching Firing Rate (FR) and the Matching Time
(MT), and the results are shown in Table 2 in the column Lowest FR. For MNIST, we find that the
response time for the FF-ASNN is substantially faster as compared to the C-ASNN. This is likely caused
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Table 2: Performance(%), Matching Firing Rate (FR) (Hz) and Matching Time (MT) (ms). Performance is
compared to the corresponding standard ANN and the Poisson SNN (P-SNN) in [9].

DataSet ANN P-SNN ASNN Lowest FR Lowest MT

P(%)@FR P(%) FR MT FR MT

IRIS 97.33 - 97.33 36 107 41.4 46
SONAR 88.46 - 88.46 59.7 80 77.1 71
MNIST-nn 98.84 98.64@1000 98.84 14.6 15 17.3 12
MNIST-cnn 99.14 99.12@1000 99.14 8.6 87 10 8.9

by the fact that the C-ASNN is a deeper network. Additionally, we determined the lowest Matching Time
and corresponding Firing Rate (Table 2 in the column Lowest MT). We see that for the large MNIST
networks, Matching Time improves substantially at limited cost in terms of FR. In general, we find that
the Matching Time increases with lower firing rates (not shown).

Switching As in [9], we computed the Matching Time to determine that time that input needs to be
presented to the network before the output classification reaches ANN performance (101% of the minimum
classification error). A more general streaming setting however is one where one stimulus is presented,
followed by another stimulus. We illustrate this case in figure 9: first, white noise is presented to the
network for 100ms, followed by the presentation of a digit, which after 100ms is then switched to another
digit. Shown is the average activation in each layer of the MNIST-cnn (ϑ0 = 3.9e−3, mf = 3ϑ0) for
1000 random stimulus switches, as well as the average activation S(t) in the output neurons and the
classification performance. White noise has been reproduced by presenting a (different) Gaussian-noise
sampled image with µ = 0 and σ = 0.5ϑ0, at each ms frame. We see that noise only stimulates the first
layer, and fails to substantially activate subsequent layers. Once the first actual digit is presented, the
network rapidly and correctly recognizes this digit. After 200ms the permuted images are presented: the
classification performance for the new dataset reaches the 101%-error threshold after a switching time of
ST = 186ms. This switch from one digit to another is determined by – substantially longer – recovery
time due to τκ. Switching time can be improved by decreasing τκ, but at the expense of an increase in
firing rate.

6 Discussion
We constructed an adaptive spiking neural network using fast adapting spiking neurons. Spiking neuron
models like the ASN presented here capture many important adaptation phenomena in real neurons, and
by coupling the synaptic plasticity model, we ensure that downstream neurons appropriately account
for adaptation in presynaptic neurons. Thus, it is a prediction of this work that a tight coupling exists
between neural adaptation and synaptic plasticity. At the same time, we demonstrated that the resulting
neural network model can replace a standard ANN in a one-to-one manner, without loss of performance,
while using an asynchronous and sparse model of spike-based neural computation. As such, the presented
ASNN can be considered as a novel paradigm for neural coding with spiking neurons, with an almost
direct correspondence to biological spiking neurons.

In particular, we show that the proposed ASNNs can carry out neural computation with performance
identical to the corresponding ANN for a number of classical benchmark datasets of increasing network
size and complexity. Compared to an otherwise identical SNN that uses Poisson spiking neurons the
presented approach has better or identical performance while using a much lower firing rate in the network.
Additionally, due to the large dynamic range of the ASNs, no reweighting or normalization of the network
was necessary: the ASNs function as drop-in spiking neuron replacements for the ReLU neurons in
the standard ANNs. Effectively, the ASN computes using adaptive Asynchronous-Sigma-Delta Pulse
Modulation, which is necessary because – unlike electrical circuit signals – the signals inside a neural
network with ReLU neurons are not bounded to some fixed dynamic range.

Compared to classical ANNs, the computations of the ASNNs are asynchronous, event driven and
sparse. To truly exploit the efficiency of sparsely active asynchronous spiking neural networks, efficient
GPU or ASIC implementations need to be created. Current CNN implementations are heavily optimized
for carrying out convolutions on GPUs, an operation which closely fits the GPUs parallel architecture.
For sparsely active neural networks, where most neurons are not active at any given time-step, novel
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Figure 9: Switching example with C-ASNN: random, 1000 digits, permutation of the 1000 digits. Top: an example
of the switching images provided to the network. Middle, rows 1-6: the firing rate of the network’s 5 layers plus
the read-out layer. Middle, row 7: the average activity of the read-out layer, computed by filtering the internal
state of the neurons. Note that, during the noise presentation, although a firing activity in the read-out layer is
present, the internal state is null. The rise of the average activity signals that a classification is made. Bottom:
the classification performance through time showing the switch between the two test sets. We set a threshold on
the read-out activity at 0.3 and we only computed performance if any of the output neurons exhibited activity
above this threshold.

approaches need to be developed: since typically for any stimulus only a subset of neurons is active,
fast caching methods are likely to hold promise. As most network of spiking neurons, the reduction in
communication between the neurons is traded against more complex dynamics in the neuron; since there
are typically orders of magnitude fewer neurons than connections, this tradeoff can be worthwhile provided
that the neuron model requires limited memory and computation. The ASN model presented here can
be computed with only a few variables (principally the components of the γ and η kernels), which when
formulated as simple dynamical systems can be computed in a memory-less fashion, without tracking
previous spike-times.

Compared to non-adaptive networks, adapting neurons effectively use analog spikes: each spike is
associated with a refractory kernel of different height. In principle, the analog value of a spike can be
reconstructed at the postsynaptic neuron from just the time since the previous spike, but at considerable
computational expense. Compared to standard (analog) ANNs, the ASNNs compute in an asynchronous
and localized manner: input information can be presented to the network at the precision with which
neurons are updated, while the rate of information exchange in the network is determined by the neural
coding precision required for classification. The network can thus process for instance 1000Hz input frames
when neural updates are carried out with 1ms timesteps: in this manner, new input can be processed
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almost immediately – albeit with the delay incurred in the consecutive layers. The neural activity is also
localized, in that only a subset of neurons is really activated, emitting many spikes, and most neurons
are silent or only very sparsely active. Since bandwidth, as used for reading weights from memory, is
typically the limiting factor when computing an ANN, the sparse and localized neural computation offers
a potentially more efficient way of time-continuous neural computing.

The networks presented here are specific in that they comprise of fairly straightforward neural networks
without additions like pooling layers. Many current state-of-the-art deep neural networks however comprise
of a number of different layers which do not adapt to networks of ReLU neurons in a straightforward
manner: for operations like softmax or layer-wise normalisation, specific SNN variations need to be
developed.
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