9 research outputs found

    Universal Compressed Text Indexing

    Get PDF
    The rise of repetitive datasets has lately generated a lot of interest in compressed self-indexes based on dictionary compression, a rich and heterogeneous family that exploits text repetitions in different ways. For each such compression scheme, several different indexing solutions have been proposed in the last two decades. To date, the fastest indexes for repetitive texts are based on the run-length compressed Burrows-Wheeler transform and on the Compact Directed Acyclic Word Graph. The most space-efficient indexes, on the other hand, are based on the Lempel-Ziv parsing and on grammar compression. Indexes for more universal schemes such as collage systems and macro schemes have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed that all dictionary compressors can be interpreted as approximation algorithms for the smallest string attractor, that is, a set of text positions capturing all distinct substrings. Starting from this observation, in this paper we develop the first universal compressed self-index, that is, the first indexing data structure based on string attractors, which can therefore be built on top of any dictionary-compressed text representation. Let γ\gamma be the size of a string attractor for a text of length nn. Our index takes O(γlog(n/γ))O(\gamma\log(n/\gamma)) words of space and supports locating the occocc occurrences of any pattern of length mm in O(mlogn+occlogϵn)O(m\log n + occ\log^{\epsilon}n) time, for any constant ϵ>0\epsilon>0. This is, in particular, the first index for general macro schemes and collage systems. Our result shows that the relation between indexing and compression is much deeper than what was previously thought: the simple property standing at the core of all dictionary compressors is sufficient to support fast indexed queries.Comment: Fixed with reviewer's comment

    Optimal Substring-Equality Queries with Applications to Sparse Text Indexing

    Full text link
    We consider the problem of encoding a string of length nn from an integer alphabet of size σ\sigma so that access and substring equality queries (that is, determining the equality of any two substrings) can be answered efficiently. Any uniquely-decodable encoding supporting access must take nlogσ+Θ(log(nlogσ))n\log\sigma + \Theta(\log (n\log\sigma)) bits. We describe a new data structure matching this lower bound when σnO(1)\sigma\leq n^{O(1)} while supporting both queries in optimal O(1)O(1) time. Furthermore, we show that the string can be overwritten in-place with this structure. The redundancy of Θ(logn)\Theta(\log n) bits and the constant query time break exponentially a lower bound that is known to hold in the read-only model. Using our new string representation, we obtain the first in-place subquadratic (indeed, even sublinear in some cases) algorithms for several string-processing problems in the restore model: the input string is rewritable and must be restored before the computation terminates. In particular, we describe the first in-place subquadratic Monte Carlo solutions to the sparse suffix sorting, sparse LCP array construction, and suffix selection problems. With the sole exception of suffix selection, our algorithms are also the first running in sublinear time for small enough sets of input suffixes. Combining these solutions, we obtain the first sublinear-time Monte Carlo algorithm for building the sparse suffix tree in compact space. We also show how to derandomize our algorithms using small space. This leads to the first Las Vegas in-place algorithm computing the full LCP array in O(nlogn)O(n\log n) time and to the first Las Vegas in-place algorithms solving the sparse suffix sorting and sparse LCP array construction problems in O(n1.5logσ)O(n^{1.5}\sqrt{\log \sigma}) time. Running times of these Las Vegas algorithms hold in the worst case with high probability.Comment: Refactored according to TALG's reviews. New w.h.p. bounds and Las Vegas algorithm

    Space Efficient Construction of Lyndon Arrays in Linear Time

    Get PDF

    Fully-Functional Suffix Trees and Optimal Text Searching in BWT-runs Bounded Space

    Get PDF
    Indexing highly repetitive texts - such as genomic databases, software repositories and versioned text collections - has become an important problem since the turn of the millennium. A relevant compressibility measure for repetitive texts is r, the number of runs in their Burrows-Wheeler Transforms (BWTs). One of the earliest indexes for repetitive collections, the Run-Length FM-index, used O(r) space and was able to efficiently count the number of occurrences of a pattern of length m in the text (in loglogarithmic time per pattern symbol, with current techniques). However, it was unable to locate the positions of those occurrences efficiently within a space bounded in terms of r. In this paper we close this long-standing problem, showing how to extend the Run-Length FM-index so that it can locate the occ occurrences efficiently within O(r) space (in loglogarithmic time each), and reaching optimal time, O(m + occ), within O(r log log w ({\sigma} + n/r)) space, for a text of length n over an alphabet of size {\sigma} on a RAM machine with words of w = {\Omega}(log n) bits. Within that space, our index can also count in optimal time, O(m). Multiplying the space by O(w/ log {\sigma}), we support count and locate in O(dm log({\sigma})/we) and O(dm log({\sigma})/we + occ) time, which is optimal in the packed setting and had not been obtained before in compressed space. We also describe a structure using O(r log(n/r)) space that replaces the text and extracts any text substring of length ` in almost-optimal time O(log(n/r) + ` log({\sigma})/w). Within that space, we similarly provide direct access to suffix array, inverse suffix array, and longest common prefix array cells, and extend these capabilities to full suffix tree functionality, typically in O(log(n/r)) time per operation.Comment: submitted version; optimal count and locate in smaller space: O(r log log_w(n/r + sigma)

    Optimal-Time Dictionary-Compressed Indexes

    Full text link
    We describe the first self-indexes able to count and locate pattern occurrences in optimal time within a space bounded by the size of the most popular dictionary compressors. To achieve this result we combine several recent findings, including \emph{string attractors} --- new combinatorial objects encompassing most known compressibility measures for highly repetitive texts ---, and grammars based on \emph{locally-consistent parsing}. More in detail, let γ\gamma be the size of the smallest attractor for a text TT of length nn. The measure γ\gamma is an (asymptotic) lower bound to the size of dictionary compressors based on Lempel--Ziv, context-free grammars, and many others. The smallest known text representations in terms of attractors use space O(γlog(n/γ))O(\gamma\log(n/\gamma)), and our lightest indexes work within the same asymptotic space. Let ϵ>0\epsilon>0 be a suitably small constant fixed at construction time, mm be the pattern length, and occocc be the number of its text occurrences. Our index counts pattern occurrences in O(m+log2+ϵn)O(m+\log^{2+\epsilon}n) time, and locates them in O(m+(occ+1)logϵn)O(m+(occ+1)\log^\epsilon n) time. These times already outperform those of most dictionary-compressed indexes, while obtaining the least asymptotic space for any index searching within O((m+occ)polylogn)O((m+occ)\,\textrm{polylog}\,n) time. Further, by increasing the space to O(γlog(n/γ)logϵn)O(\gamma\log(n/\gamma)\log^\epsilon n), we reduce the locating time to the optimal O(m+occ)O(m+occ), and within O(γlog(n/γ)logn)O(\gamma\log(n/\gamma)\log n) space we can also count in optimal O(m)O(m) time. No dictionary-compressed index had obtained this time before. All our indexes can be constructed in O(n)O(n) space and O(nlogn)O(n\log n) expected time. As a byproduct of independent interest..

    Locally Consistent Parsing for Text Indexing in Small Space

    Full text link
    We consider two closely related problems of text indexing in a sub-linear working space. The first problem is the Sparse Suffix Tree (SST) construction of a set of suffixes BB using only O(B)O(|B|) words of space. The second problem is the Longest Common Extension (LCE) problem, where for some parameter 1τn1\le\tau\le n, the goal is to construct a data structure that uses O(nτ)O(\frac {n}{\tau}) words of space and can compute the longest common prefix length of any pair of suffixes. We show how to use ideas based on the Locally Consistent Parsing technique, that was introduced by Sahinalp and Vishkin [STOC '94], in some non-trivial ways in order to improve the known results for the above problems. We introduce new Las-Vegas and deterministic algorithms for both problems. We introduce the first Las-Vegas SST construction algorithm that takes O(n)O(n) time. This is an improvement over the last result of Gawrychowski and Kociumaka [SODA '17] who obtained O(n)O(n) time for Monte-Carlo algorithm, and O(nlogB)O(n\sqrt{\log |B|}) time for Las-Vegas algorithm. In addition, we introduce a randomized Las-Vegas construction for an LCE data structure that can be constructed in linear time and answers queries in O(τ)O(\tau) time. For the deterministic algorithms, we introduce an SST construction algorithm that takes O(nlognB)O(n\log \frac{n}{|B|}) time (for B=Ω(logn)|B|=\Omega(\log n)). This is the first almost linear time, O(npolylogn)O(n\cdot poly\log{n}), deterministic SST construction algorithm, where all previous algorithms take at least Ω(min{nB,n2B})\Omega\left(\min\{n|B|,\frac{n^2}{|B|}\}\right) time. For the LCE problem, we introduce a data structure that answers LCE queries in O(τlogn)O(\tau\sqrt{\log^*n}) time, with O(nlogτ)O(n\log\tau) construction time (for τ=O(nlogn)\tau=O(\frac{n}{\log n})). This data structure improves both query time and construction time upon the results of Tanimura et al. [CPM '16].Comment: Extended abstract to appear is SODA 202
    corecore