94 research outputs found

    Learning Weak Reductions to Sparse Sets

    Get PDF
    We study the consequences of NP having non-uniform polynomial size circuits of various types. We continue the work of Agrawal and Arvind~\cite{AA:96} who study the consequences of \SAT being many-one reducible to functions computable by non-uniform circuits consisting of a single weighted threshold gate. (\SAT \leq_m^p \LT). They claim that as a consequence \PTIME = \NP follows, but unfortunately their proof was incorrect. We take up this question and use results from computational learning theory to show that if \SAT \leq_m^p \LT then \PH = \PTIME^\NP. We furthermore show that if \SAT disjunctive truth-table (or majority truth-table) reduces to a sparse set then \SAT \leq_m^p \LT and hence a collapse of \PH to \PTIME^\NP also follows. Lastly we show several interesting consequences of \SAT \leq_{dtt}^p \SPARSE

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Oracles Are Subtle But Not Malicious

    Full text link
    Theoretical computer scientists have been debating the role of oracles since the 1970's. This paper illustrates both that oracles can give us nontrivial insights about the barrier problems in circuit complexity, and that they need not prevent us from trying to solve those problems. First, we give an oracle relative to which PP has linear-sized circuits, by proving a new lower bound for perceptrons and low- degree threshold polynomials. This oracle settles a longstanding open question, and generalizes earlier results due to Beigel and to Buhrman, Fortnow, and Thierauf. More importantly, it implies the first nonrelativizing separation of "traditional" complexity classes, as opposed to interactive proof classes such as MIP and MA-EXP. For Vinodchandran showed, by a nonrelativizing argument, that PP does not have circuits of size n^k for any fixed k. We present an alternative proof of this fact, which shows that PP does not even have quantum circuits of size n^k with quantum advice. To our knowledge, this is the first nontrivial lower bound on quantum circuit size. Second, we study a beautiful algorithm of Bshouty et al. for learning Boolean circuits in ZPP^NP. We show that the NP queries in this algorithm cannot be parallelized by any relativizing technique, by giving an oracle relative to which ZPP^||NP and even BPP^||NP have linear-size circuits. On the other hand, we also show that the NP queries could be parallelized if P=NP. Thus, classes such as ZPP^||NP inhabit a "twilight zone," where we need to distinguish between relativizing and black-box techniques. Our results on this subject have implications for computational learning theory as well as for the circuit minimization problem.Comment: 20 pages, 1 figur

    A Relativization Perspective on Meta-Complexity

    Get PDF
    Meta-complexity studies the complexity of computational problems about complexity theory, such as the Minimum Circuit Size Problem (MCSP) and its variants. We show that a relativization barrier applies to many important open questions in meta-complexity. We give relativized worlds where: 1) MCSP can be solved in deterministic polynomial time, but the search version of MCSP cannot be solved in deterministic polynomial time, even approximately. In contrast, Carmosino, Impagliazzo, Kabanets, Kolokolova [CCC'16] gave a randomized approximate search-to-decision reduction for MCSP with a relativizing proof. 2) The complexities of MCSP[2^{n/2}] and MCSP[2^{n/4}] are different, in both worst-case and average-case settings. Thus the complexity of MCSP is not "robust" to the choice of the size function. 3) Levin’s time-bounded Kolmogorov complexity Kt(x) can be approximated to a factor (2+ε) in polynomial time, for any ε > 0. 4) Natural proofs do not exist, and neither do auxiliary-input one-way functions. In contrast, Santhanam [ITCS'20] gave a relativizing proof that the non-existence of natural proofs implies the existence of one-way functions under a conjecture about optimal hitting sets. 5) DistNP does not reduce to GapMINKT by a family of "robust" reductions. This presents a technical barrier for solving a question of Hirahara [FOCS'20]

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    On streaming approximation algorithms for constraint satisfaction problems

    Full text link
    In this thesis, we explore streaming algorithms for approximating constraint satisfaction problems (CSPs). The setup is roughly the following: A computer has limited memory space, sees a long "stream" of local constraints on a set of variables, and tries to estimate how many of the constraints may be simultaneously satisfied. The past ten years have seen a number of works in this area, and this thesis includes both expository material and novel contributions. Throughout, we emphasize connections to the broader theories of CSPs, approximability, and streaming models, and highlight interesting open problems. The first part of our thesis is expository: We present aspects of previous works that completely characterize the approximability of specific CSPs like Max-Cut and Max-Dicut with n\sqrt{n}-space streaming algorithm (on nn-variable instances), while characterizing the approximability of all CSPs in n\sqrt n space in the special case of "composable" (i.e., sketching) algorithms, and of a particular subclass of CSPs with linear-space streaming algorithms. In the second part of the thesis, we present two of our own joint works. We begin with a work with Madhu Sudan and Santhoshini Velusamy in which we prove linear-space streaming approximation-resistance for all ordering CSPs (OCSPs), which are "CSP-like" problems maximizing over sets of permutations. Next, we present joint work with Joanna Boyland, Michael Hwang, Tarun Prasad, and Santhoshini Velusamy in which we investigate the n\sqrt n-space streaming approximability of symmetric Boolean CSPs with negations. We give explicit n\sqrt n-space sketching approximability ratios for several families of CSPs, including Max-kkAND; develop simpler optimal sketching approximation algorithms for threshold predicates; and show that previous lower bounds fail to characterize the n\sqrt n-space streaming approximability of Max-33AND.Comment: Harvard College senior thesis; 119 pages plus references; abstract shortened for arXiv; formatted with Dissertate template (feel free to copy!); exposits papers arXiv:2105.01782 (APPROX 2021) and arXiv:2112.06319 (APPROX 2022
    • …
    corecore