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Abstract

This thesis contains four parts. Each part studies a topic within computational
complexity by applying techniques from other fields in theoretical computer
science.

In Chapter 1 we will use Kolmogorov complexity to study probabilis-
tic polynomial-time algorithms. Let R denote the set of Kolmogorov-random
strings, which are those strings x whose Kolmogorov complexity K(x) is at
least as large as their length |x|. There are two main results. First, we show
that any bounded-error probabilistic polynomial-time algorithm can be sim-
ulated by a deterministic polynomial-time algorithm that is allowed to make
non-adaptive queries to R. Second, we show that for a time-bounded ana-
logue of R (defined using time-bounded Kolmogorov complexity), it holds that
any polynomial-time algorithm that makes non-adaptive queries to R can be
simulated both in polynomial space and by circuits of polynomial size.

This indicates that we are near to an alternative characterization of prob-
abilistic polynomial-time as being exactly deterministic polynomial-time with
non-adaptive queries to R. Such characterizations ultimately aim at using
techniques from Kolmogorov complexity and computability to study the rela-
tionship between different complexity classes. As can be expected, the proofs
in this chapter make essential use of such techniques.

In Chapter 2 we make an effort at extending Mahaney’s theorem [74] to
more general reductions, or — seen another way — strengthening the Karp-
Lipton theorem [64] to a stronger collapse of the polynomial-time hierarchy.
Mahaney’s theorem states that if Sat is m-reducible to a sparse set, then P =
NP, and the Karp-Lipton theorem (more precisely, the strengthened version
of Cai [40]) says that if Sat is Turing-reducible to a sparse set, then PH ⊆
ZPPNP.

We prove that if a class of functions C has a polynomial-time learning al-
gorithm in Angluin’s bounded error learning model, then if Sat is m-reducible
to C, it follows that PH ⊆ PNP.

Then from the existence of such an algorithm for linear-threshold functions,
we conclude that if Sat is m-reducible to a linear-threshold function, then
PH ⊆ PNP. It will be seen that both disjunctive and majority truth-table
(non-adaptive) reductions to sparse sets are a special case of m-reductions to
linear-threshold functions, and hence our results hold also for these kinds of
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reductions.
We also prove a somewhat stronger result of independent interest. For such

a class of functions C, it holds that if Sat m-reduces to C, then we can answer
any number of Sat-queries of length n by asking only n (larger) queries to Sat.

There are two main results in Chapter 3. First, we prove a more refined
NP-hardness result for knapsack and related problems. We will construct a
reduction from the satisfiability of fan-in-2 circuits of size S with k input bits
to an instance of the subset-sum problem having bit-length O(S+ k). A corol-
lary of this is a simple proof that there is no approximation algorithm for the
knapsack problem which gives a better-than-inverse-polynomial approximation
ratio, unless the exponential-time hypothesis of Impagliazzo and Paturi [55]
fails to hold.

Secondly, we will use the technique we just developed, together with Ketan
Mulmuley’s parametric complexity technique, in order to prove an uncondi-
tional lower bound in Mulmuley’s parallel semi-algebraic PRAM model [77].
We will show that, in that model, there is no algorithm for solving the knap-

sack problem in time o(x1/4) using 2o(n
1/4) processors, even when the bit-length

of the weights is restricted to n. The significance of this result follows from the
fact that pretty much every known parallel algorithm can be implemented in
this model.

In Chapter 4, we turn to communication complexity and information com-
plexity [28]. We prove several theorems: (1) we show a “Reverse Newman’s
Theorem”, stating that a private-coin q-round protocol that reveals I bits of
information can be simulated by a public-coin q-round protocol that reveals
I+ Õ(q) bits of information; (2) we show that public-coin protocols that reveal
I bits of information can be simulated by protocols that communicate only
Õ(I) bits (but possibly use many more rounds); (3) we prove a constant-round
two-way variant of the Slepian–Wolf theorem, and use it to show that q-round
public-coin protocols that reveal I bits of information can be simulated by pro-
tocols that communicate only O(I) + Õ(q) bits on average, and make use of
O(q) rounds, also on average; and (4) as a consequence of (1) and (3) we show
a direct-sum theorem for bounded-round protocols, which states that, for any
function f which needs C bits of (average) communication to be computed by
randomized protocols in O(q)-average-rounds, computing k copies of the func-
tion using a q-round protocol requires Ω(kC)− Õ(q) bits of communication.
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Samenvatting

Dit proefschrift is opgebouwd uit vier delen. In elk deel wordt een onderwerp
binnen de computationele complexiteitstheorie bestudeerd door het toepassen
van technieken uit andere gebieden van de theoretische informatica.

In Hoofdstuk 1 zullen wij Kolmogorov-complexiteit gebruiken om proba-
bilistische polynomiale-tijd algoritmen te bestuderen. Neem R als de verza-
meling van Kolmogorov-willekeurige binaire sequenties, dat zijn die sequenties
x waarvan de Kolmogorov complexiteit K(x) minstens zo groot is als hun
lengte |x|. De twee belangrijkste resultaten in dit hoofdstuk zijn de volgende.
In de eerste plaats laten we zien dat elk probabilistisch polynomiale-tijd algo-
ritme met begrensde foutkans gesimuleerd kan worden door een deterministisch
polynomiale-tijd algoritme dat niet-adaptieve vragen aan R kan stellen. Ten
tweede laten we zien dat wanneer we een tijdsbegrensde variant van R gebrui-
ken (gedefinieerd met behulp van tijdsbegrensde Kolmogorov-complexiteit), elk
polynomiale-tijd algoritme dat niet-adaptieve vragen stelt aan R gesimuleerd
kan worden door zowel Turing machines met polynomiale ruimte als door cir-
cuits van polynomiale grootte.

Deze resultaten geven aan dat we in de buurt komen van een alternatieve
beschrijving van probabilistische polynomiale tijd, namelijk precies als deter-
ministische polynomiale-tijd berekeningen met niet-adaptieve vragen naar R.
Zulke beschrijvingen mikken uiteindelijk op het gebruik van technieken uit de
Kolmogorov-complexiteit en berenbaarheidstheorie om de onderlinge verhou-
dingen van verschillende complexiteitsklassen te bestuderen. Zoals te verwach-
ten maken de bewijzen in dit hoofdstuk sterk gebruik van zulke technieken.

In Hoofdstuk 2 doen we een aanzet om Mahaney’s stelling [74] uit te
breiden naar algemenere reducties, of — anders bekeken — de ineenstorting
van de polynomiale-tijd hierarchie in de Karp-Lipton stelling [64] te versterken.
Mahaney’s stelling zegt dat als Satm-reduceerbaar is naar een ijle verzameling,
dan volgt P = NP, en de Karp-Lipton stelling (of preciezer, de sterkere variant
van Cai [40]) vertelt ons dat gegeven dat Sat Turing-reduceerbaar is naar een
ijle verzameling, er dan geldt dat PH ⊆ ZPPNP.

We bewijzen dat wanneer een functie-klasse C een polynomiale-tijd leer-
algoritme heeft in Angluin’s bounded error learning model, dan krijgen we Sat
is m-reduceerbaar naar C impliceert dat PH ⊆ PNP.

Vanuit het bestaan van zo een algoritme voor linear-threshold functies, con-
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cluderen we dat als Sat m-reduceerbaar is naar een linear-threshold functie,
dan volgt PH ⊆ PNP. Het zal te zien dat dan zowel disjunctieve als majority
truth-table (niet-adaptieve) reducties naar ijle verzamelingen een specifieke in-
stantie van m-reducties naar linear-threshold functies zijn, en vandaar gelden
onze resultaten ook voor deze typen reducties.

Ook bewijzen we het volgende sterkere resultaat, wat van zelfstandig belang
is. Voor een klasse functies C geldt het dat wanneer Sat m-reduceerbaar is
naar C, dan kunnen we elk aantal Sat-vragen van lengte n beantwoorden door
slechts n (grotere) vragen aan Sat te stellen.

De twee voornaamste resultaten te vinden in Hoofdstuk 3 zijn de volgende.
Ten eerste bewijzen we een verfijnder NP-moeilijkheidsresultaat voor het knap-
sakprobleem en gerelateerde problemen. We construeren een reductie vanaf
vervulbaarheid van fan-in-2 circuits van grootte S met k invoer-bits naar een
instantie van het subset-sum probleem met bit-lengte O(S+k). Als corollarium
hiervan krijgen we een simpel bewijs dat er geen benaderings-algoritme voor
het knapzakprobleem is dat een beter-dan-reciproke-polynome benaderingsra-
tio geeft, tenzij de exponentiële-tijd hypothese van Impagliazzo en Paturi [55]
niet waar is.

Ten tweede zullen we de zojuist ontwikkelde methode gebruiken, samen met
Ketan Mulmuley’s parametrische complexiteitstechniek, om een onvoorwaarde-
lijke ondergrens te bewijzen in Mulmuley’s parallelle semi-algebräısche PRAM
model [77]. We zullen laten zien dat, in het betreffende model, er geen algo-
ritme bestaat wat het knapzakprobleem oplost in tijd o(x1/4), gebruik makend

van 2o(n
1/4) processoren, zelfs wanneer de bit-lengte van de gewichten begrensd

is tot n. De significantie van dit resultaat komt voort uit het feit dat vrijwel
elk bekend parallel algoritme gëımplementeerd kan worden in dit model.

In Hoofdstuk 4 richten we ons op communicatie-complexiteit en informatie-
complexiteit [28]. We bewijzen verscheidene stellingen: (1) we geven een “Re-
verse Newman’s Theorem” (omgekeerde Newman’s stelling), deze stelt dat een
private-coin q-ronde protocol welke I bits aan informatie openbaart, gesimu-
leerd kan worden door een public-coin q-ronde protocol welke I + Õ(q) bits
aan informatie openbaart; (2) we laten zien dat public-coin protocollen welke
I bits aan informatie tonen gesimuleerd kunnen worden door procollen die
slechts Õ(I) bits communiceren (in mogelijk meer rondes); (3) we bewijzen een
constante-ronde two-way variant van de Slepian–Wolf stelling, en gebruiken
deze om te laten zien dat q-ronde public-coin protocollen die I bits informatie
openbaren, gesimuleerd kunnen worden door protocollen die slechts gemiddeld
O(I) + Õ(q) bits communiceren, en gemiddeld O(q) rondes gebruiken; en (4)
gebruik makend van (1) en (3) laten we een direct-sum stelling zien voor pro-
tocollen met een begrensd aantal rondes, welke zegt dat, voor elke functie f
die gemiddeld C bits communicatie nodig heeft om berekend te worden door
gerandomiseerde protocollen in gemiddeld O(q) rondes, er Ω(kC) − Õ(q) bits
aan communicatie nodig zijn om k kopieën van deze functie te berekenen met
een protocol wat q rondes gebruikt.
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Introduction for a general audience

Computational complexity, also known as complexity theory, is the study of
how much of a given resource is necessary to solve a given mathematical prob-
lem. An example that everyone is likely to know is the following: suppose we
wish to multiply two integers x and y. We are given the digits of x and y in
decimal notation — suppose both x and y have n digits — and we wish to
obtain the digits of the number z = x × y. The typical primary-school multi-
plication method works as follows: we place the number x on top of y, aligning
the digits to the right, and then we proceed by multiplying the rightmost digit
y1 of y with x, and writing it down, then multiplying the second rightmost
digit y2 of y with x, and writing it below the previous number while shifting all
its digits one position to the left, and so on, for all n digits of y; this gives us n
numbers z(1), . . . , z(n), where each z(i) = yi× x is the i-th digit of y multiplied
by x, a number which could have up to n+ 1 digits. To end the multiplication,
we sum all of the z(i)’s, and this gives us the digits of z = x × y. When we
apply this method using paper divided into squares, like in a child’s arithmetic
book, we get something that looks like this:

xn . . . x1

× yn . . . y1

z
(1)
n+1 z

(1)
n . . . z

(1)
1

z
(2)
n+1 z

(2)
n . . . z

(2)
1

. .
.

. .
.

. .
.

. .
.

+ z
(n)
n+1 z

(n)
n . . . z

(n)
1

z2n z2n−1 . . . . . . . . . z1

Now let us look at the following resource: how many squares are we using
in order to multiply the two numbers? In our tally, let us ignore the squares
that we absolutely must use, namely the squares that hold the digits of x, the
digits of y, and those for the result x × y.1 How many additional squares do
we need to use?

1We do this because we are interested in comparing different methods for multiplication,
with respect to the use of squares... but any method for multiplication is forced to use at
least those squares required to write the input and the output. Hence counting these squares
would be superfluous.
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For instance, the primary-school method which we have just seen uses n+1
squares for each z(i), and there are n such z(i). So, in total, the number of
squares used by this method is n× (n+ 1) = n2 + n.

For the problem of multiplying two numbers, and for this particular re-
source, a complexity theorist is primarily interested in answering the following
question: What is the smallest number of squares that we need to use, in order
multiply two n-digit numbers x and y? The answer to this question depends
on n, and is given by a function f(n), which a complexity theorist would call
the space-complexity of multiplication. We have just shown that f(n) ≤ n2 +n.
But this is not the minimum! If we use a slightly more clever method, we can
show that f(n) ≤ 2n+ 4 (can the reader figure out how? the method requires
the use of an erasor, in order to re-use the squares). The best method we know
achieves f(n) ≤ c log n for some fixed constant c that does not depend on n,2

and it can be shown that this is the best possible3.

Other problems can be studied. For instance, how much space do we need
in order to find the shortest path between two cities on a map having n cities in
total? How much space do we need to compute the number of different paths
that can be taken between two cities? Other resources can be studied as well,
such as time, or communication needed to solve a given problem. Interaction
between resources is also interesting: If we are allowed to use more space than
the strict minimum, can we do with less time? If we are given many computers
to do calculations in parallel, can we solve the problem using less time? Given
a method to recognize a solution to a problem using little time, can we devise
a procedure that finds such a solution in a comparable amount of time?4 ...
and so on.

This thesis is a collection of answers to a few questions in computational
complexity. We use a varied palette of mathematical techniques in order to
answer these questions. The general theme is that of solving a problem in
computational complexity by applying tools from a different field in theoretical
computer science, or at least from a different context within computational
complexity.

Chapter 1. In this chapter, we use techniques from Kolmogorov Complexity
and Computability in order to study the time complexity of randomized
algorithms.

Randomized algorithms are algorithms that are allowed to toss a fair coin
during their execution, and have their behavior depend on the outcome
of these coin tosses. Such an algorithm is said to solve some problem if it

2See wikipedia [96] for the algorithm. The quantity logn is approximately the number of
digits needed to write the number n in decimal notation. The number n itself is the number
of digits needed to write x and y.

3This is proven by means of a pumping lemma, as in [70, Lemma 3].
4For instance, it is easy to quickly recognize if a filled sudoku puzzle on n2-by-n2 boards

of n-by-n blocks is correct, just by going through each line, each row and each block making
sure that there are no repeated numbers (this takes time roughly n4). But is it possible to
actually solve such a sudoku puzzle — find a solution to a partially filled sudoku — in time
nc for some constant c? Answering this question amounts to solving the famous P versus
NP problem.
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gives the correct answer with high (99%) probability. A normal (deter-
ministic, non-randomized) algorithm can be thought of as a randomized
algorithm that always gives the correct answer (with 100% probability),
so, in principle, it could be the case that randomized algorithms can solve
problems faster than deterministic algorithms, and whether this is the
case or not is a longstanding open question in computational complexity.

Kolmogorov Complexity measures how complex a string of symbols is by
how large a program to output said string needs to be. A string of symbols
x is called Kolmogorov-random if there is no program that outputs x and
has a length smaller than the length of x. Computability is the study of
what can and cannot be solved by computers, regardless of the amount
of resources used, and an example of an uncomputable problem is that
of knowing whether a given string is Kolmogorov-random. We give some
evidence showing that a problem can be solved by a randomized algorithm
in polynomial-time if and only if it can be solved by a deterministic
polynomial-time algorithm that has an unusual extra ability: the ability
to know which strings have high Kolmogorov complexity, among a list
of strings which it produces after seeing the input (for a precise and
technical description of what this means see the technical overview, and
the introductory section of this chapter).

Chapter 2. In this chapter we use computational learning theory to prove
some results on circuit-size complexity.

Circuit-size complexity measures how big a circuit must be in order to
solve a given problem.5 It is easy to show that most functions are hard to
compute by small circuits, and it is widely believed that certain natural
problems are hard to solve by small circuits. However, thus far there is no
known natural example of such a hard problem, and coming up with such
an example — and proving that it cannot be computed by small circuits
— is regarded as the holy grail of the field. Complexity theorists have
tried to circumvent this difficult problem by showing conditional results,
of the form “if problem X can be solved by small circuits, then such and
such unlikely consequence must follow”; such results can be thought of
as evidence (but not proof) that problem X cannot be solved by small
circuits. The result presented in this chapter is a conditional result of
this form.

The proof makes use of computational learning theory. This field stud-
ies when and how computer programs can be taught to classify data.
Typically, the learning algorithm is fed a number examples (x, y) with
y = f(x), where f belongs to a restricted class F of functions, and has
to learn which function f was used in generating them. If this can be
done efficiently (for instance, if the number of counter-examples needed is
small, and/or if the learning algorithm is a polynomial-time algorithm),

5By circuit we mean a boolean circuit, which is a mathematical model of the digital
logic circuits used in modern computer hardware. For a precise description see http://en.

wikipedia.org/wiki/Boolean_circuit. We are interested in the size of circuits because if
the circuit is too big, then building it will be impossible, or too expensive.

xix



then we say that F is “learnable”. In this chapter we show that if F is
“learnable,” then certain natural problems are unlikely to be solvable by
certain kinds of circuits that make use of functions from F (again, see
the technical overview for precision).

Chapter 3. Here we use a mix of techniques to show that a problem — called
the knapsack problem — cannot be solved by certain kinds of circuits,
i.e., that it has high complexity for a certain model of computation.

The model of computation in question is Ketan Mulmuley’s parallel PRAM
without bit operations. In this model there are several processors exe-
cuting instructions on a shared memory, which is somewhat similar to
a modern GPU (a Graphics Processing Unit, used in modern graphics
boards). In some ways, the model is much more powerful than a modern
GPU, because it is a multiple-instruction multiple-data (MIMD) model
where access to shared memory is instantaneous and conflict-free, and in
other ways it is less powerful, because the model is not allowed to operate
on the individual bits of the memory, and instead is only allowed to treat
numbers stored in memory as self-contained units to which the processors
apply given operations (such as addition and multiplication).

The knapsack problem is the problem of, when given a set of n (unbreak-
able) bars of gold of various sizes, having weights w1, . . . , wn, determine
the maximum amount of gold that we can carry in a bag which can hold
at most W units of weight.

We show that this problem cannot be solved with less than n1/4 time and

2n
1/4

processors, even when the given numbers have no more than n bits.
Because there is no known parallel algorithm that makes crucial use of
bit-access, we believe that our impossibility result also holds for general
parallel algorithms.

Chapter 4. In this chapter we use a mix of Information Theory and combi-
natorial properties of random graphs in order to transform private-coin
protocols into public coin protocols that reveal the same amount of infor-
mation, and prove new direct-sum results in communication complexity.

Communication complexity concerns itself with the following scenario:
two parties — customarily called Alice and Bob — are each given two
strings of length n as input — respectively x and y — and wish to com-
pute a joint function of this input, i.e., they wish to know f(x, y), for
some given f . The function f may depend on both inputs, and so Alice
and Bob are required to communicate with each other, which they do
according to a predefined set of rules called a protocol. We then define
the communication complexity of f (for length n) as the minimum num-
ber of bits of communication required for any protocol that allows the
two parties to compute f (on every input of length n). This scenario is
ubiquitous, we can think of Alice and Bob as two computers communi-
cating over a network, or as two pieces of hardware communicating over
a memory bus, etc.

xx



A natural question in this setting is the following direct-sum question:
suppose that the communication complexity of f is C, i.e., that I need to
communicate C bits in order to jointly compute f on all inputs of length
n, then what is the communication complexity of computing k copies of
f simultaneously? Is it necessarily at least kC, or can we do something
smarter?

In a related subject, called “information complexity,” we have the same
scenario, Alice and Bob wanting to compute a function of their joint
input, but now instead of measuring the amount of bits that they need to
exchange, we measure the amount of information that those bits reveal
about their input. It could happen, for instance, that Alice’s part in the
protocol requires her to send to Bob the outcome of many random coin
tosses, and in this case Bob will receive many bits, but they are completely
uncorrelated with Alice’s input and hence reveal no information about it;
this is an example of (part of) a protocol that has high communication
but reveals no information. The information complexity of a function
f is the minimum number of bits of information that the parties must
necessarily reveal to each other about their inputs, when executing any
protocol that computes f .

At the meeting of these two subjects, we arrive at the following protocol
compression question: can we take a protocol that reveals little infor-
mation about the player’s inputs and convert it (“compress it”) into a
protocol that uses little communication?

When Alice and Bob are allowed to make private coin tosses, it some-
times happens that they are able to use the outcome of these tosses to
somehow “obfuscate” their inputs and compute f without revealing a lot
of information. However, if they are forced to share the outcome of their
coin tosses, it is not clear how to avoid revealing more information. In
the literature on the subject, the following question had been asked [58]:
whether or not private coin tosses confer any advantage over public coin
tosses in this setting.

We will show essentially that these last two questions are intimately re-
lated: modulo certain insignificant factors, protocol compression is possi-
ble if and only if any private-coin protocol can be simulated by a public-
coin protocol that reveals no additional information. We then show that
such a public-coin simulation is possible, in the case of bounded-round
protocols, and as a consequence we prove a direct-sum property for the
communication complexity of bounded-round protocols.

xxi





Chapter 1

Power from the set of random strings

The Kolmogorov complexity K(x) of a string x is (roughly) the length of the
smallest program that generates x. If x has length n and cannot be generated
by a program of smaller length, we take this to mean that x has no discernible
pattern, and call x a Kolmogorov-random string (or just random, for short). In
this chapter we are interested in the set of Kolmogorov-random strings:

RK = {x ∈ {0, 1}∗ | K(x) ≥ |x|}.

It is easy to show that RK is undecidable by reductio ad absurdum; in fact, if
some program could decide whether strings are random, then the lexicographically-
least random string of a given length n would itself be given by a small program.
It is also possible to show that query access to RK is computationally useful;
whereas one intuitively expects that the distribution of random strings should
itself be “random”, and hence perhaps useless, Martin [75] has actually shown
that oracle access to RK allows us to decide any recursively enumerable set,
and Kummer [66] showed that, in fact, disjunctive truth-table access to RK is
enough.

A series of recent papers have extended these results, by showing that RK
can be used as an oracle to increase computational power also for resource-
bounded reductions. Allender et al. [5] have shown that PSPACE ⊆ PRK and
Allender et al. [4] proved that NEXP ⊆ NPRK . These positive results seem
to imply that RK actually has a deep and rich structure.

On the other hand, a series of negative results tells us that, for resource-
bounded reductions, the extra power granted by RK is more limited than in
the computability setting. Hence, for instance, in [4] it was proven that if
a decidable set A is polynomial-time disjunctive truth-table reducible to RK ,
then A must be decidable in polynomial-time without the help of any oracle,
and Allender et al. [8] have shown that if a decidable set A is truth-table
reducible to RK , then A must lie in PSPACE, and if a decidable set A is
Turing reducible to RK , then A must lie in EXPSPACE.1

1In all cases A must be reducible to RK for any choice of universal Turing machine in
the definition of RK ; see the preliminaries section in this chapter for the precise statements.
Contrast with the results of Kummer [66], which show that disjunctive truth-table reduc-
tions to RK with significantly larger time bounds would allow us to decide any recursively
enumerable set.

1
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In this chapter we extend this line of research in various ways for the case
of truth-table reductions: we show that BPP is truth-table reducible to RK
(§1.4), by first proving that the prefixes of the characteristic string of RK are
hard, in a non-uniform complexity sense (§1.2). We then prove that this holds
even for resource-bounded variants of Kolmogorov complexity (also in §1.4),
and give some evidence that these inclusions cannot be significantly improved
(in §1.5-1.7). The next section includes the full definitions, as well as a more
detailed introduction to the contents of this chapter.

The results in this chapter are based on the two papers:

• Harry Buhrman, Lance Fortnow, Michal Koucký, and Bruno Loff. De-
randomizing from random strings. In Proceedings of the 25th CCC, pages
58–63, 2010.

• Eric Allender, Harry Buhrman, Luke B. Friedman, and Bruno Loff. Re-
ductions to the set of random strings: the resource-bounded case. In
Proceedings of the 37th MFCS, pages 88–99, 2012.

1.1 Preliminaries and an extended introduction

In this section we present detailed definitions, which will then allow us to give
a more complete and thorough overview of the results in this chapter.

We assume the reader is familiar with basic complexity theory [21] and
Kolmogorov complexity [69]. We will use |x| to denote the length of a string
x. For an integer n and set A ⊆ {0, 1}∗, A=n = A ∩ {0, 1}n, A≤n = ∪k≤nA=k,
and A1:n denotes the first n bits in the characteristic sequence of A. A time
bound t will be taken to mean a strictly growing time-constructible function;
for two time bounds t and t′, the notation t ≥ t′ refers to almost-everywhere
point-wise inequality.

1.1.1 Kolmogorov complexity

Let M be a Turing machine. For any string x ∈ {0, 1}∗, the Kolmogorov
complexity of x relative to M is:

CM (x) = min{ |p| | p ∈ {0, 1}∗ and M(p) = x}.

For a time bound t we define the time-bounded Kolmogorov complexity
relative to M :

CtM (x) = min{ |p| | M(p) = x and M(p) uses at most t(|x|) steps}.

Note that unlike traditional computational complexity the time bound is a
function of the length of the output of U .

If we restrict these definitions to Turing machines whose domain is a prefix-
free set, called prefix-free Turing machines, then we obtain the prefix-free ver-
sion of these notions, denoted KM (x) and Kt

M (x).
We call a (prefix-free) Turing machine U universal, if there exists some

constant c such that, for any other (prefix-free) Turing machine M and time
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bounds t and t′, where t ∈ ω((t′)c), there exists a constant cM such that,
for all strings x, CtU (x) ≤ Ct

′

M (x) + cM (resp. Kt
U (x) ≤ Kt′

M (x) + cM ) and
CU (x) ≤ CM (x) + cM (resp. KU (x) ≤ KM (x) + cM ).

In this chapter we will often make definitions and statements about Kol-
mogorov complexity where we omit the machine M relative to which CM (x)
(or KM ) is defined. This is taken to mean that the definitions are sound and
the statements true, whenever M is universal (for regular Turing machines in
the case of C, and for prefix-free Turing machines in the case of K). These def-
initions are to be interpreted as being dependent on the choice of universal M ,
and statements should then be taken as true for an arbitrary universal (regular
or prefix-free) Turing machine. We will make the choice of universal Turing
machine explicit whenever this may lead to an ambiguity in the interpretation
of the definition or statement.

A string x is said to be C-random (or K-random) if C(x) ≥ |x| (resp.
K(x) ≥ |x|). The set of C-random strings is denoted by

RC = {x ∈ {0, 1}∗ | C(x) ≥ |x|},

and the set of K-random strings RK is defined in the same way, replacing
C with K. Analogous notation is also used for time-bounded Kolmogorov
complexity, replacing C with Ct and K with Kt.

1.1.2 Complexity classes and reductions

We will refer to computation with advice. We deviate slightly from the usual
definition of computation with advice in the way how we express and measure
the running time. For an advice function α : {0}∗ → {0, 1}∗, we say that
L ∈ P/α if there is a Turing machine M such that for every x ∈ {0, 1}∗,
M(x, α(0|x|)) runs in time polynomial in the length of x and M(x, α(0|x|))
accepts iff x ∈ L. We assume that M has random access to its input so the
length of α(0n) can grow faster than any polynomial in n. Similarly, we define
EXP/α where we allow the machine M to run in exponential time in the
length of x on the input (x, α(0|x|)). Furthermore, we are interested not only
in Boolean languages (decision problems) but also in functions, so we naturally
extend both definitions also to computation of functions with advice. Typically
we are interested in the amount of advice that we need for inputs of length n
so for f : N→ N, C/f is the union of all C/α for α satisfying |α(0n)| ≤ f(n).

Let L be a language and C be a language class. We say that L ∈ i.o.−C
if there exists a language L′ ∈ C such that for infinitely many n, L=n = L′=n.
For a Turing machine M , we say L ∈ i.o.-M/f if there is some advice func-
tion α with |α(0n)| ≤ f(n) such that for infinitely many n, L=n = {x ∈
{0, 1}n | M(x, α(0|x|)) accepts}. The definitions are similar for functions in-
stead of languages.

We will refer to probabilistic computation with advice. For f : N → N,
BPP//f is the class of sets decidable by a bounded-error probabilistic Tur-
ing machine with an advice function α such that |α(0n)| ≤ f(n), where the
machine is only required to have a bounded-error when given advice from α.
More precisely, for every input x, M(x, α(|x|)) must correctly decide x with
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probability bounded away from 1/2, but, for β 6= α(|x|), M(x, β) can have any
probability distribution.

We say that a set A polynomial-time Turing reduces to a set B, if there
is an oracle machine M that on input x runs in polynomial time and with
oracle B decides whether x ∈ A. If M asks its questions non-adaptively, i.e.,
each oracle question does not depend on the answers to the previous oracle
questions, we say that A polynomial-time truth-table reduces to B (A≤p

ttB).
Moreover, we say that A polynomial-time truth-table disjunctively reduces to
B, written A≤p

dttB, if the truth-table reduction M outputs as its answer the
disjunction of the oracle answers.

The notation PA (and PAtt) will be used to refer to the class of sets that are
polynomial-time Turing (resp. truth-table) reducible to A.

1.1.3 Complexity classes based on reductions to RK

We would like to understand what it means for a set to be efficiently reducible
to RK ; it is clear that for any universal machine U , very complex sets reduce
efficiently to RKU (starting with RKU itself), but it is not clear that any of
these sets reduce to RK for an arbitrary universal machine. This suggests the
following natural definition:

1.1.1. Definition. DTTR is the class of decidable sets A such that A ≤ptt
RKU holds for every universal Turing machine U .2

We will also work with a time-bounded analogue of DTTR:

1.1.2. Definition. TTRT is the class of languages L such that there exists a
time bound t0 (depending on L) such that for all universal prefix-free machines
U and for all time bounds t ≥ t0, L ≤ptt RKt

U
.

1.1.4 RK versus RC

Most inclusions that we prove are valid for both RC and RK , meaning that if a
set A is reducible to RK , then the same proof typically shows that it is reducible
to RC , and vice-versa. Analogues of DTTR and TTRT can be defined for the
regular (non prefix-free) Kolmogorov complexity. However, we do know how
to prove upper bounds for sets reducible to RC , meaning that, as far as it is
known, it could well be that every recursive set is polytime truth-table reducible
to RC . An outstanding open problem from [8] is to prove the same PSPACE
upper bound in this setting. So we will generally avoid discussing RC in this
context, to avoid excessive repetition.

However, there is one exception: our hardness results of §1.2 are slightly
better for RC than they are for RK , and hence our proof of Barzdin’s result (in
§1.3) only works for RC . This is why we work with both regular and prefix-free
Kolmogorov complexity.

2Recent results by Miller et al. [76] indicate that decidability of A is implied by the fact
that A ≤tt RKU for every universal machine U , and hence we could well omit the requirement
that A is decidable in the definition of DTTR. Because this is unpublished material, and we
are yet to see the proof ourselves, we opted to explicitly state that A is decidable.
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1.1.5 A detailed overview of our results

Now that all of the relevant definitions have been given, we can discuss our
results in more detail, and also how they fit with previous work. In this chapter
we continue to explore the question of which sets can be efficiently reduced to
RK . This question was explored in various earlier papers [5, 4]. It was shown,
for instance, that polynomial-time adaptive (Turing) access to RK enables one
to do PSPACE-computations, i.e., PSPACE ⊆ PRK . One of the ingredients
in the proof was to show how one may, on input 0n and in polynomial time
with adaptive access to RK , generate a polynomially long Kolmogorov random
string.

However, a polynomial-time algorithm with non-adaptive access to RK , on
input 0n, can only produce random strings of length at most O(log n). Allender,
Buhrman, and Koucký [4] begun a systematic study of weaker and non-adaptive
access to RC and RK . They showed for example that

P = REC ∩
⋂
U

{A | A≤p
dttRKU }.

This result and the fact that with non-adaptive access to RK in general only
logarithmically small random strings can be found, seem to suggest that adap-
tive access to RK is needed to obtain some useful gain.

The first result in this chapter proves that this intuition is misguided: We
show that the characteristic sequence formed by the strings of length c log n,
R=c logn
K , itself a string of length nc, is hard in a non-uniform complexity sense.

More precisely, we will show (in §1.2) that for every time bound t,

RK 6∈ i.o.-DTIME(t)/2n−logn.

This will allow us to use (in §1.4) the hardness versus randomness framework
of Impagliazzo and Wigderson [56] to construct a pseudo-random generator for
BPP that uses RK as an oracle, and conclude that BPP ⊆ DTTR. The proof
will also go through for time-bounded Kolmogorov complexity, for sufficiently
high time bounds, and BPP ⊆ TTRT will also follow.

This non-uniform hardness stands in stark contrast with the case of algo-
rithms that are not time-bounded, for in that case only n bits of advice are
necessary to decide RK .3

We will also prove a tighter result for RC in §1.2, namely that for every
time bound t, there is a constant c such that RC 6∈ i.o.-DTIME(t)/2n−c. As a
consequence we obtain (in §1.3) an alternative proof of a result due to Barzdin
[25], showing the existence of a r.e. set A such that for all time bounds t, there
exists c such that

Kt(n)(A1:n | n) ≥ n/c. (1.1)

holds almost everywhere. We simply take for A the complement of RC . We also
show that the dependence of c on t is necessary to get (1.1) almost everywhere,
but that there is a single c such that (1.1) holds infinitely often, for any t.

3The n bits tell us how many strings of length n are not random, and given this we can
decide RK simply by enumerating all non-random strings in a dovetail fashion. It can then
be shown that such an algorithm, on this particular advice, has no computable time bound.
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Next we try to establish whether BPP can be characterized as the class of
sets that non-adaptively reduce to RK (in polynomial time). Allender, Fried-
man, and Gasarch [8] have shown that DTTR ⊆ PSPACE, from which we
may conclude that DTTR is a legitimate complexity class lying somewhere
between BPP and PSPACE. We will present some evidence suggesting that
DTTR sits closer to BPP (and hence P ) than it does to PSPACE.

First of all, notice that we can view the truth-table reduction to RK as a
computation with advice of Kt(n)-complexity Ω(n). We will show (in §1.5) that

for sets in EXP and t(n) ∈ 2n
Ω(1)

, polynomial-time computation with polyno-
mial (or exponential) size advice of Kt(n) complexity n − O(log n) (resp. n −
O(log log n)) can be simulated by bounded-error probabilistic machine with al-
most linear-size advice. For paddable sets that are complete for NP,P#P,PSPACE,
or EXP we may even dispense linear-size advice. Hence, advice of very high
Kt(n) complexity is no better than a truly random string. However, n−O(log n)
is much higher than Ω(n), and hence this result merely suggests, but does not
prove, that DTTR lies close to BPP.

Secondly, we will show (in §1.6-1.7) that:

TTRT ⊆ P/poly ∩PSPACE/O(1).

The PSPACE/O(1) inclusion follows from an adaptation of the results of
[8] to the case of resource-bounded Kolmogorov complexity, and the P/poly
inclusion follows from a technique which cannot be applied to the resource-
unbounded Kolmogorov complexity (we will explain why in §1.6). Since there
is no known natural complexity class within P/poly ∩ PSPACE/O(1) other
than BPP/O(1), this result suggests that TTRT (and hence perhaps DTTR)
lies closer to BPP than to PSPACE.4

1.1.6 Basic propositions for later use

Let us begin by proving that there are many random strings.

1.1.3. Proposition. There exists some constant d, such that each of the sets
R=n
C , R=n

Ct , R
=n
K and R=n

Kt has at least 2n/d strings, for any choice of t and for
n sufficiently large.

Proof. We prove this for the unbounded-time variants. The respective time-
bounded cases follow, because if a string requires a (prefix-free) program of size
` to be printed, in particular it requires a (prefix-free) program of size ` to be
printed in bounded time t.

Let d′ be the size of a self-delimiting program which takes as input a number
s of length n−d′−1, enumerates the first s strings of length n that are output
by programs of length less than n, and outputs the first string of lenght n not
in that enumeration. The number s cannot equal the number N of non-random
strings of length n, otherwise the program would output a random string with
a total description length n−1. Hence N ≥ 2n−d

′−1, and we can set d = 2d
′+1.

4It is possible to define TTRT in such a way that the O(1) advice can be removed, but
this requires discussing a subtle technical point about the notion of efficient universal Turing
machine, which we will avoid doing in this thesis. See [6, §5] for the result.
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The proof for R=n
K is simpler and grants us d = 2. Suppose that more than

half of the strings of length n were non-random, for every n in some infinite set
S. Then for each of these lengths we would have 2n−1 strings of complexity at
most n− 1. We could then derive∑

n∈S

∑
z∈{0,1}n

2−K(z) ≥
∑
n∈S

2n−1 · 2−n+1 =∞,

which would contradict the Kraft inequality [69, Theorem 1.11.1]. �

1.1.4. Proposition. For any machine M and t′(|x|) > 2|x|t(|x|), the query
x ∈ RKt

M
? can be computed in time t′.

Proof. Simulate the machine M on every string of length less than |x| for t(|x|)
steps. Because there are fewer than 2|x| such strings, the bound follows. �

1.1.5. Proposition. Let L ≤ptt RKt
U

for some time-bound t. Then there exists

a constant k such that the language L can be computed in tL(n) = 2n
k

t(nk)
time.

Proof. Let M be a machine that computes L by running the polynomial-time
truth-table reduction from L to RKt

U
, and computing by brute-force the answer

to any queries from the reduction. Using Proposition 1.1.4, we have that for

large enough k, M runs in at most tL(n) = 2n
k

t(nk) time, so L is decidable
within this time-bound. �

It is the ability to compute RKt for short strings that makes the time-
bounded case different from the ordinary case. This will be seen in proofs
throughout the paper.

1.2 High circuit complexity of RC and RK

In this section we prove that the characteristic sequences of RC and RK have
high circuit complexity almost everywhere. We will first prove the following
lemma.

1.2.1. Lemma. For every total Turing machine M there is a constant cM such
that RC is not in i.o.-M/2n−cM .

By total Turing machine we mean a Turing machine that halts on every
input. There is a (non-total) Turing machine M such that RC is in M/n + 1
where the advice is the number of strings in R=n

C . With this advice, M can
find all the non-random strings of length n, but will not halt if the advice
underestimates the number of random strings.

Proof of Lemma 1.2.1. Suppose we have a total Turing machine M , and that,
for some advice α of length k, x ∈ R=n

C ⇐⇒ (x, α) ∈ L(M) for infinitely
many lengths n.
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For strings β of length at most k, let Rβ = {x ∈ Σn | (x, β) ∈ L(M)}. By
Proposition 1.1.3, for some integer d > 0, |Rα| ≥ 2n/d. So we know that if
|Rβ | < 2n/d then β 6= α. We call β good if |Rβ | ≥ 2n/d.

Fix a good β and choose x1, . . . , xm at random. The probability that all
the xi are not in Rβ is at most (1− 1/d)m < 2−m/d. So for m = d(k + 1), we
have 2−m/d = 2−k−1, and thus we can find a sequence x1, . . . , xm such that
every good β will have an xi ∈ Rβ for some i. This also means xi ∈ Rα for
some i, so one of the xi’s is random.

Now choose cM = ` + 2, where ` = |P | is the length of a self-delimiting
encoding of a program P which:

1. given as input an index i padded to length n− `− 1,

2. will find the lexicographically least sequence of n-bit strings x1, . . . , xm,
such that for any good advice β of length at most 2n−cM , there is some
xj for which M(xj , β) = 1; and, when given an i ≤ m,

3. outputs xi.

The values referenced in P are allowed to depend on ` by the use of Kleene’s
second recursion theorem.5 Now we must have k ≥ 2n−cM as otherwise the
sequence of xi’s found by the program would have m ≤ d(k + 1) ≤ 2n−`−1

elements, and then the random xi would have a description of length `+ (n−
`− 1) = n− 1. �

A similar theorem can be proven for RK . Here it should be noted that the
index i given to the program P should then itself be encoded in a prefix-free
fashion, and this will cause the prefix-free complexity of the xi in the sequence
to go up, and our bound becomes a little worse. We could obtain, for instance,
the following theorem:

1.2.2. Lemma. For every total Turing machine M it holds that RK is not in
i.o.-M/2n−logn−2 log logn.

In order to get our statement about time-bounded advice classes we instan-
tiate Lemma 1.2.1 with universal machines Ut that run for t steps, use the first
part of their advice, in prefix-free form, as a code for a machine to simulate
and have the second part of the advice for Ut as the advice for the simulated
machine. The following is a direct consequence of Lemmas 1.2.1 and 1.2.2.

1.2.3. Lemma. (a) For every time bound t and universal advice machine Ut
there is a constant ct such that RC is not in i.o.-Ut/2

n−ct .

(b) For every time bound t and prefix-free universal machine Ut, RK is not in
i.o.-Ut/2

n−logn−2 log logn.

We are now ready to prove the main theorem from this section.

5Kleene’s second recursion theorem states that for any computable function f(e, x), where
e and x are binary strings, there exists a program p such that p(x) = f(p, x). If f(e, x) can
be computed in time t(|e|, |x|) by a program of length `, then p will have length ` + O(1),
and will run in time O(|p|+ t(|p|, |x|) log t(|p|, |x|)).
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1.2.4. Theorem. (a) For every time bound t there is a constant dt such that
RC 6∈ i.o.-DTIME(t)/2n−dt .

(b) For every time bound t it holds that RK 6∈ i.o.-DTIME(t)/2n−2 logn.

Proof. To prove (a), suppose that the theorem is false, i.e., that is there is a time
bound t such that for every d there is a machine Md that runs in time t such that
RC ∈ i.o.-Md/2

n−d. Set t′ = t log2 t and let ct′ be the constant that comes out
of Lemma 1.2.3 when instantiated with time bound t′. Set d = ct′+1 and let the
code of machine Md from the (false) assumption have size e. So we have that
RC ∈ i.o.-Md/2

n−d. This in turn implies that RC ∈ i.o.-Ut′/(2
n−d+e+2 log e),

which implies that RC ∈ i.o.-Ut′/2
n−ct′ a contradiction with Lemma 1.2.3. The

last step is true because the universal machine running for at most t′ = t log2 t
steps, can simulate Md, which runs in time t. Part (b) is proven in the same
fashion. �

We can also obtain a variant of Theorem 1.2.4 for the time-bounded prefix-
free Kolmogorov complexity (we will not need the RCt variant, so we do not
include it here).

1.2.5. Lemma. There exists a constant c such that for any time bounds t and
t′, if t = ω(22n+c

t′(n) log t′(n)) then for every prefix-free Turing machine M
running in time t′ it holds that RKt is not in i.o.-M/2n−logn−2 log logn.

Proof. An inspection of the proof of Lemma 1.2.1 reveals that the running time
of the search procedure for x1, . . . , xm can be bounded by 22n+c

t′(n) for some
universal constant c independent of M . We now use the same argument of that
proof, replacing the use of Kleene’s second recursion theorem and Kolmogorov
complexity with their time-bounded variants. �

In the same way as before we obtain the following corollary.

1.2.6. Corollary. There exists a constant c such that for any time bounds t
and t′, if t ∈ ω(22n+c

t′(n) log3 t′(n)) then RKt is not in i.o.-DTIME(t′)/2n−2 logn.

For example, if we instantiate t = 222n

and t′ = 2n
logn

in the above corollary
we get that RKt is not in i.o.-EXP/2n−2 logn.

1.3 A new proof of a theorem by Barzdin

Barzdin [25] showed a construction of a computably enumerable set whose
characteristic string has high resource-bounded Kolgomorov complexity almost
everywhere. As an immediate corollary of Theorem 1.2.4 we get an alternative,
more natural candidate for such a set, namely RC (the complement of RC).

1.3.1. Corollary. For every time bound t there is a constant c such that

Ct(RC(1 : n) | n) ≥ n/c.
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Barzdin [25] also showed that this lower bound is optimal. That is, the
dependence of c on the time bound t is needed for the characteristic sequence of
every r.e. set. Hence the dependence on t is also necessary in our Theorem 1.2.4.
Indeed it can be shown that:

1.3.2. Theorem. (a) For every c, there is a time bound t for which RC is in
i.o.-DTIME(t)/2n−c.

(b) There exists some c such that, for every time bound t, RC 6∈ DTIME(t)/2n−c.

Theorem 1.3.2 gives us an interesting contrast.

1.3.3. Corollary. The following hold:

(a) For every c, RC ∈ i.o.-REC/2n−c.

(b) For some c, RC 6∈ REC/2n−c. The constant c depends only on the univer-
sal machine defining RC .

Proof of Theorem 1.3.2. (a) Let H denote the binary entropy function, and
choose 0 < α < 1/2, such that H(α) < 2−c. Let σ = lim infn→∞ |R=n

C |/2n,
and set σ̃ to the dyadic rational6 written with the first 1 + log(1/α) bits of σ.
Note σ̃ is independent of n and can be hardwired into our machine.

Then, on input 0n, we can (1) enumerate σ̃2n many non-random strings of
length n, and (2) assume that some given advice tells us, among the strings
which we did not enumerate, which are in RC . Since for sufficiently large n, we
can always find a fraction of σ̃ non-random strings of length n, this algorithm
halts almost everywhere. And because, for infinitely many n,

∣∣σ̃2n − |R=n
C |
∣∣ <

α2n, after (1) we are left with at most α2n non-random strings still to be

enumerated. Since log
∑
k≤α2n

(
2n

k

)
≤ H(α)2n ≤ 2n−c [cf. 61, p.283], then

2n−c many bits of advice will be able to point out exactly these strings.
(b) Fix d such that |R=n

C | > n/d for all n.
Let {Mi}i∈N computably enumerate all Turing machines. Choose c = ` +

log d + 2, where ` is the length of a self-delimiting encoding of the program
which:

1. given as input an index i padded to length n− `− 1,

2. will work with M = Mn, and, as in the proof of Lemma 1.2.1, assuming
M is total,

3. will find the lexicographically least sequence of n-bit strings x1, . . . , xm,
such that for any good advice β of length at most 2n−c, there is some xj
for which M(xj , β) = 1; and, when given an i ≤ m,

4. output xi.

Then notice that if Mn is total, regardless of which good advice β, of length
2n−c, it is given, there will always be some n-bit string xj which is not random
(it is described using n − 1 bits), and for which Mn(xj , β) = 1. So Mn does
not decide RC with 2n−c bits of advice. �

6A dyadic rational is a rational number of the form a
2b

.
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1.4 BPP ≤ptt RK

In this section we show that we can derandomize any bounded-error algorithm
if we have non-adaptive access to RK . It was shown in [56] that if a function
is sufficiently hard to approximate by large enough circuits, we could use this
function to build a useful pseudo-random generator. We start with the following
definition:

1.4.1. Definition. A boolean function f : {0, 1}n → {0, 1} is (ε, S)-hard (or,
alternatively, ε-hard for circuits of size S) if any circuit of size S can correctly
compute f on at most an 1

2 + ε fraction of its inputs.

Then it will follow from Theorem 1.2.4 that RK is hard to approximate.

1.4.2. Lemma. For any n, the truth table R=n
K is 1

n4 -hard for circuits of size

2
1
4n.

Proof. We show that any function f : {0, 1}n → {0, 1} that is not ( 1
n4 , 2

1
4n)-

hard is in i.o.-P/2n−2 logn.

Under this assumption, there exist infinitely often circuits Cn of size 2
1
4n

which compute f on all but a 1
n4 fraction of the inputs. Then, given as advice

Cn and the list of x’s for which Cn(x) 6= f(x), we may compute f exactly for

all inputs of size n. A description for Cn can be made to have length, say, 2
1
2n,

and the list has length n 2n

n4 = 2n−3 logn. This makes for a total of no more than
2n−2 logn bits of advice. �

1.4.3. Corollary. For some ε > 0, there is a (2εn, 2εn)-hard function f ≤ptt
RK .

Proof. This follows from various hardness amplification results. First, given
non-adaptive access to the characteristic function of R=cn

K (for some large

enough constant c), which is ( 1
n4 , 2

1
4n)-hard, [54] can produce a function f ′ :

{0, 1}c′n → {0, 1} (for some large enough c′ < c) which is Ω(1)-hard for cir-

cuits of size 2
1
4
n

nO(1) . Second, given non-adaptive access to f ′, [56] construct a
direct product generator which may be used to obtain a (2εn, 2εn)-hard function
f : {0, 1}n → {0, 1}. �

1.4.4. Corollary. BPP ≤ptt RK .

Proof. [84]’s pseudo-random generator can be used to derandomise BPP, when
given a (2εn, 2εn)-hard function f . The generator is a function Gf : {0, 1}s →
{0, 1}n which takes a seed of length s = O(log n), and queries f on inputs
x1, . . . , xn. Each xi has length O(log n) and is constructed by selecting specific
bits from the seed (using a combinatorial construction called a design). So
in order to compute Gf , it is only necessary to have the values of f for every
input of length up to O(log n), and these values are poly(log n)-time truth-table
reducible to RK . �
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By using Corollary 1.2.6 instead of Theorem 1.2.4, the hardness of approx-
imation results above will also hold for RKt , for suitably large t. The following
variant can then be proven:

1.4.5. Corollary. For any time bound t = Ω(222n

), BPP ≤ptt RKt .

It is interesting to compare this statement with the result of Buhrman and
Mayordomo [32] that EXP 6⊆ PRKt for t = 2n

2

. Because of this result, it will

be rather difficult to prove the above corollary for t = 2n
2

, for then it would
follow EXP 6= BPP, solving a longstanding open question.

We can conclude, for the classes we defined earlier:

1.4.6. Corollary. BPP ⊆ DTTR ∩TTRT.

1.5 High-complexity advice can only be used as
randomness

Our goal now would be to show that using RK as a source of randomness is the
only way to make use of it. Ideally we would like to show that any recursive
set that is truth-table reducible to RK must be in BPP. We fall short of such
a goal. However we can show the following claim.

1.5.1. Theorem. Let α : {0}∗ → {0, 1}∗ be a length-preserving function and
c > 0 be a constant, such that α(0n) 6∈ i.o.-EXP/n − c log n. Then for every

A ∈ EXP if A ∈ P/α(0n
d

) for some d > 0 then A ∈ BPP//O(n log n).

This theorem says that very Kolmogorov-random advice of polynomial size
can be replaced by almost linear-size advice and true randomness. It can be
proven using diagonalization that such advice functions exist, and these can be
used to derandomize BPP as we did above.

We fall short of proving a converse of Corollary 1.4.4 in two respects. First,
the advice is supposed to model the initial segment of the characteristic se-
quence of RK which the truth-table can access. However, by providing only
polynomial size advice we restrict the hypothetical truth-table reduction to
query strings of only logarithmic length. Second, the randomness that we re-
quire from the initial segment is much stronger than what one can prove and
what is in fact true for the initial segment of the characteristic sequence of RK .
We know how to deal with the first issue in one of two ways: we can make an
even stronger assumption on the advice string, as is done by Theorem 1.5.2,
or we can restrict ourselves to resource-bounded Kolmogorov complexity, for
which it will be shown (in §1.6) that querying RKt for strings of up to polyno-
mial length is enough. We do not know how to deal with the second issue.

Proof. Let M be a polynomial-time Turing machine and A ∈ EXP be a set

such that A(x) = M(x, α(0|x|
d

)). We claim that for all n large enough there
is a non-negligible fraction of advice strings r of size nd that could be used in

place of α(0n
d

). More precisely:

Pr
r∈{0,1}nd

[∀x, x ∈ A ⇐⇒ M(x, r) = 1] >
1

ncd
.
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To prove the claim consider the set G = {r ∈ {0, 1}nd | ∀x ∈ {0, 1}n, x ∈
A ⇐⇒ M(x, r) = 1}. Clearly, G ∈ EXP and α(0n

d

) ∈ G. If |G=nd | ≤ 2n
d

/ncd

then α(0n
d

) can be computed in exponential time from its index in the set G=nd

of length nd − cd log n. Since α(0n
d

) 6∈ i.o.-EXP/nd − cd log n this cannot
happen infinitely often.

Now we present an algorithm which on input x, and using only O(n log n)
bits of advice (in fact O(log n) entries from the truth table of A), will with high
probability produce a string in r ∈ G, and output A(x):

1. Given an input x of length n, and an advice string x1, A(x1), ..., xk, A(xk),

2. sample at most 2ncd strings of length nd until the first string r is found
such that M(xi, r) = A(xi) for all i ∈ {1, . . . , k}.

3. If such r is found then output M(x, r), otherwise output 0.

For all n large enough the probability that the second step does not find
r compatible with the advice is upper-bounded by the probability that we do

not sample any string from G which is at most (1− 1
ncd

)2ncd < e−2 < 1/6.
It suffices to show that we can find an advice sequence such that, for at

least 4/5-fraction of the r’s compatible with the advice, M(x, r) = A(x). For
given n, we will find the advice by pruning iteratively the set of bad random

strings B = {0, 1}nd \ G. Let i = 0, 1, . . . , log5/4 4ncd. Set B0 = B. If there
is a string x ∈ {0, 1}n such that for at least 1/5 of r ∈ Bi, M(x, r) 6= A(x),

then set xi+1 = x and Bi+1 = Bi ∩ {r ∈ {0, 1}n
d | M(xi+1, r) = A(xi+1)}. If

there is no such string x then stop and the xi’s obtained so far will form our
advice. Notice, if we stop for some i < log5/4 4ncd then for all x ∈ {0, 1}n,
Prr∈Bi [M(x, r) 6= A(x)] < 1/5. Hence, for any given input, the r found by the
algorithm to be compatible with the advice will give the correct answer with
probability at least 4/5. On the other hand, if we stop building the advice at

k = log5/4 4ncd then |Bk| ≤ 2n
d ·(4/5)log5/4 4ncd ≤ |G=nd |/4. Hence, any string r

found by the algorithm to be compatible with the advice x1, A(x1), ..., xk, A(xk)
will come from G with probability at least 4/5. �

The following theorem can be established by a similar argument. It again
relies on the fact that a polynomially large fraction of all advice strings of

length 2n
d

must work well as an advice. By a pruning procedure similar to the
proof of Theorem 1.5.1 we can avoid bad advice. In the BPP algorithm one
does not have to explicitly guess the whole advice but only the part relevant
to the pruning advice and to the current input.

1.5.2. Theorem. Let α : {0}∗ → {0, 1}∗ be a length preserving function and
c > 0 be a constant. If α(0n) 6∈ i.o.-EXP/n − c log log n then for every A ∈
EXP if A ∈ P/α(02n

d

) for some d > 0 then A ∈ BPP//O(n log n).

We show next that if the set A has some suitable properties we can dispense
with the linear advice all together and replace it with only random bits. Thus
for example if Sat ∈ P/α(0n) for some computationally hard advice α(0n)
then Sat ∈ BPP.
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1.5.3. Theorem. Let α : {0}∗ → {0, 1}∗ be a length preserving function and
c > 0 be a constant such that α(0n) 6∈ i.o.-EXP/n− c log n. Let A be paddable
and polynomial-time many-one-complete for a class C ∈ {NP,P#P,PSPACE,EXP}.
If A ∈ P/α(0n

d

) for some d > 0 then A ∈ BPP (and hence C ⊆ BPP).

To prove the theorem we will need the notion of instance checkers. We use
the definition of Trevisan and Vadhan [94].

1.5.4. Definition. An instance checker C for a boolean function f is a polynomial-
time probabilistic oracle machine whose output is in {0, 1, fail} such that

• for all inputs x, Pr[Cf (x) = f(x)] = 1, and

• for all inputs x, and all oracles f ′, Pr[Cf
′
(x) 6∈ {f(x), fail}] ≤ 1/4.

It is immediate that by linearly many repetitions and taking the majority
answer one can reduce the error of an instance checker to 2−n. Note also the
following theorem [attributed to 19, 72, 91]:

1.5.5. Theorem. Any problem that is complete for EXP, PSPACE or P#P

has an instance checker. Moreover, there are EXP-complete problems, PSPACE-
complete problems, and P#P-complete problems for which the instance checker
C only makes oracle queries of length exactly `(n) on inputs of length n for
some polynomial `(n).

However, it is not known whether NP has instance checkers.

Proof of Theorem 1.5.3. To prove the claim for P#P-, PSPACE- and EXP-
complete problems we use the instance checkers. We use the same notation as
in the proof of Theorem 1.5.1, i.e., M is a Turing machine such that A(x) =

M(x, α(0|x|
d

)) and the set of good advice is G. We know from the previous

proof that |G=nd | ≥ 2n
d

/ncd because α(0n) 6∈ i.o.-EXP/n− c log n.
Let C be the instance checker for A which on input of length n asks oracle

queries of length only `(n) and makes error on a wrong oracle at most 2−n.
The following algorithm is a bounded-error polynomial-time algorithm for A:

1. On input x of length n, repeat at most 2ncd times

(a) Pick a random string r of length (`(n))d.

(b) Run the instance checker C on input x and answer each of his oracle
queries y by M(y, r).

(c) If C outputs “fail” continue with another iteration otherwise output
the output of C.

2. Output 0.

Clearly, if we sample r ∈ G then the instance checker will provide a correct
answer and we stop. The algorithm can produce a wrong answer either if the
instance checker always fails (so we never sample r ∈ G during the iterations)
or if the instance checker gives a wrong answer. Probability of not sampling
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a good r is at most (1 − 1
ncd

)2ncd < e−2 < 1/6. The probability of getting
a wrong answer from the instance checker in any of the iterations is at most
2ncd/2n. Thus the algorithm provides the correct answer with probability at
least 2/3.

To prove the claim for NP-complete languages we show it for the canonical
example of SAT. The following algorithm solves SAT correctly with probability
at least 5/6:

1. On input φ of length n, repeat at most 2ncd times

(a) Pick a random string r of length nd.

(b) If M(φ, r) = 1 then use the self-reducibility of SAT to find a presum-
ably satisfying assignment a of φ while asking queries ψ of size n and
answering them according to M(ψ, r). If the assignment a indeed
satisfies φ then output 1 otherwise continue with another iteration.

2. Output 0.

Clearly, if φ is satisfiable we will answer 1 with probability at least 5/6. If
φ is not satisfiable we will always answer 0. �

1.6 TTRT ⊆ P/poly

In this section we will show that TTRT ⊆ P/poly , and explain why the proof
technique we use will not be helpful to settle the DTTR case.

At a first glance, it seems reasonable to guess that a polynomial-time reduc-
tion would have difficulty telling the difference between an oracle for RK and an
oracle for RKt , for large enough t. Indeed, most theorems about Kolmogorov
complexity can be proven for its resource-bounded variants, e.g. symmetry of
information [67], Muchnik’s theorem [80, 79], etc. At first one might think
that t would not need to be very large so that RKt looks sufficiently like RK
to fool a polynomial-time reduction into behaving the same way with both or-
acles. However, this intuition is wrong, and here is an example for adaptive
polynomial-time reductions, which follows from results in [34, 32]:

1.6.1. Observation. There is a polynomial-time algorithm which, given ora-
cle access to RK and input 1n, outputs a K-random string of length n. How-
ever, for any time-bound t such that

t(n+ 1)� 2nt(n),

there is no polynomial-time algorithm which, given oracle access to RKt and
input 1n, outputs a Kt-random string of length n.

For the algorithm, see [34]; roughly, we start with a small random string and
then use [34, Theorem 15] (described later) to get a successively larger random
string. But in the time-bounded case in [32] it is shown that on input 1n, no
polynomial-time machine M can query (or output) any Kt-random string of
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length n: in fact, M(1n) is the same for both oracles RKt and R′ = R≤n−1
Kt .

This is proven as follows: since R′ can be computed in time t(n) (by Proposition
1.1.4), then any query of length ≥ n made by MR′(1n) is described by a pointer
of length O(log n) in time t(n), and hence is not in RKt .

1.6.1 Small circuits for sets reducible to RKt

We now prove that TTRT is a subset of P/poly . Actually, we will prove that
this holds even for Turing reductions to RKU .

1.6.2. Theorem. Suppose A ∈ DTIME(t1) and M : A ≤pT RKt , for some
time-bounds t, t1 with7

t(n+ 1) ≥ 2nt(n) + 22nt1(2n).

Then A ∈ P/poly; in fact, if M runs in time nc, and R′ = R
≤d(c+1) logne
Kt , then

∀x ∈ {0, 1}n MR′(x) = A(x).

Proof. Let `(n) = d(c+1) log ne, R′(n) = R
≤`(n)
Kt , and suppose thatMR′(n)(x) 6=

A(x) for some x of length n. Then we may find the first such x in time
2`(n)t(`(n))+2n+1(t1(n)+O(nc)) (cf. Proposition 1.1.4), and each query made
byMR′(n)(x) can be output by a program of length c log n+O(1), running in the
same time bound. But since A(x) 6= MR′(n)(x), it must be that, with R′(n) as
oracle, M makes some query of size m ≥ `(n)+1 which is random for t-bounded
Kolmogorov complexity (because both small and nonrandom queries are an-
swered correctly when using R′ instead of RKt). Let q be the first such query.
We then have both that q is supposed to be random, and that q can be output
by a program of length < `(n) in time 2`(n)t(`(n)) + 2n+1(t1(n) + O(nc)) �
2`(n)t(`(n)) + 22`(n)

t1(2`(n)) ≤ t(`(n) + 1) ≤ t(m), which is a contradiction. �

1.6.3. Corollary. TTRT ⊆ P/poly.

Proof. Let L ∈ TTRT. By the definition of TTRT, L ≤ptt RKt0 for some
t0. Using Proposition 1.1.5, we then have that L is decidable in time tL(n) =

2n
k

t0(nk) for some constant k. Choose a time-bound t such that t(n + 1) ≥
2nt(n) + 22ntL(2n). By the definition of TTRT, since t > t0, we have that
L ≤ptt RKt

U0
, from which by Theorem 1.6.2 it follows that L ∈ P/poly . �

PSPACE ≤pT RK [5], but Theorem 1.6.2 implies that PSPACE 6≤pT RKt for
sufficiently-large t, unless PSPACE ⊆ P/poly . This highlights the difference
between the time-bounded and ordinary Kolmogorov complexity, and how this
comes to the surface when working with reductions to the corresponding sets
of random strings. We wish to emphasize at this point that the proof of the
inclusion PSPACE ≤pT RK relies on the ability of a PRK computation to
construct a large element of RK , whereas the P/poly upper bound in the time-
bounded case relies on the inability to use the oracle to find such a string, in
the time-bounded setting.

7For example, if A ∈ EXP, then t can be doubly-exponential. If A is elementary-time
computable, then t can be an exponential tower.
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1.6.2 A reduction distinguishing RK from RKt, and an
incorrect conjecture

Theorem 1.6.2 shows that a polynomial-time truth-table reduction to RKt for
sufficiently-large t will work just as well if only the logarithmically-short queries
are answered correctly, and all of the other queries are simply answered “no”.

The authors of [7] conjectured that a similar situation would hold if the or-
acle were RK instead of RKt . More precisely, they proposed a proof-theoretic
approach towards proving that DTTR is in P/poly : Let PA0 denote Peano
Arithmetic, and for k > 0 let PAk denote PAk−1 augmented with the axiom
“PAk−1 is consistent”. Allender et al. [7] have shown that, for any polynomial-
time truth-table reduction M reducing a decidable set A to RK , one can con-
struct a true statement of the form ∀n∀j∀kΨ(n, j, k) (which is provable in a
theory such as Zermelo-Frankel), with the property that if for each fixed (n,j,k)
there is some k′ such that PAk′ proves ψ(n,j, k), then DTTR ⊆ P/poly . Fur-
thermore, if these statements were provable in the given extensions of PA, it
would follow that, for each input length n, there is a finite subset R′ ⊆ RK
consisting of strings having length at most O(log n), such that MR′(x) = A(x)
for all strings x of length n.

Thus the authors of [7] implicitly conjectured that, for any polynomial-time
truth-table reduction of a decidable set to RK , and for any n, there would be
some setting of the short queries so that the reduction would still work on
inputs of length n, when all of the long queries are answered “no”. While we
have just seen that this is precisely the case for the time-bounded situation,
the next theorem shows that this does not hold for RK , even if “short” is
interpreted as meaning “of length < n”. (It follows that infinitely many of the
statements ψ(n,j, k) of [7] are independent of every PAk′ .)

1.6.4. Theorem. There is a truth-table reduction M : {0, 1}∗ ≤ptt RK , such
that, for all large enough n:

∀R′ ⊆ {0, 1}≤n−1∃x ∈ {0, 1}n MR′(x) 6= 1.

Proof. Theorem 15 of [34] presents a polynomial-time procedure which, given
a string z of even length n − 2, will output a list of constantly-many strings
z1, . . . , zc of length n, such that at least one of them will be K-random if z
is. We use this to define our reduction M as follows: on input x = 00 . . . 0z
of length n having even |z|, we query each of z, z1, . . . , zc, and every string
of length at most log n. If there are no strings of length at most log n in the
oracle, we reject. Else, if z is in the oracle but none of the zi are, we reject.
On all other cases we accept.

By [34, Theorem 15], and since RK has strings at every length, it is clear
that MR′ accepts every string if R′ = RK , and rejects every string if R′ = ∅.
However, for any non-empty set R′ ⊆ {0, 1}≤n−1, let ` ≤ n− 1 be the highest

even length for which R′
=` 6= ∅, and pick z ∈ R′=`. Then we will have z ∈ R′=`

but every zi 6∈ R=`+2, hence MR′(00 . . . 0z) rejects. �

In fact, if we let R′ = R≤n−1
Kt , for even n, then for the first x = 00z such

that MR′(x) = 0, we will have z ∈ R′ ⊆ RKt , but each zi can be given by a
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small pointer in time O(2n−1t(n − 1)) (again we use Proposition 1.1.4), and
hence zi 6∈ RKt for suitably fast-growing t. Thus MRKt (x) = 0 6= MRK (x),
and we conclude:

1.6.5. Observation. If t(n + 1) � 2nt(n), then the non-adaptive reduction
M above behaves differently on the oracles RK and RKt .

1.7 TTRT ⊆ PSPACE/O(1)

Our single goal for this section is proving the following:

1.7.1. Theorem. For any computable unbounded function f(n) = ω(1),

TTRT ⊆ PSPACE/f(n).

The proof of this theorem is patterned closely on related arguments in [8],
although a number of complications arise in the time-bounded case. Although
we aim to make the presentation here self-contained, [8] is a good primer and a
source of additional intuition for the proof. Also, one can refer to the conference
version of this chapter [6] for a presentation that is not self-contained but
emphasizes the differences between the proof in the time-bounded case and the
unbounded case. Before proving the theorem we present several supporting
propositions.

1.7.2. Proposition. For any time bound t and universal prefix-free machine
U , ∑

x∈{0,1}

2−K
t
U (x) ≤ 1.

Proof. From the Kraft Inequality [see 69, Theorem 1.11.1],
∑
x∈{0,1}∗ 2−KU (x) ≤

1 for any prefix-free machine U . For any time bound t and string x, Kt
U (x) ≥

KU (x), so adding a time bound can only decrease the sum on the left side of
this inequality. �

1.7.3. Proposition (Analogue to Coding Theorem). Let f be a func-
tion such that

1.
∑
x∈{0,1}∗ 2−f(x) ≤ 1, and

2. there is a machine M computing f(x) in time t(|x|).

Then if t′(|x|) > 22|x|t(|x|) there exists some prefix-free machine M ′ such that
Kt′

M ′(x) = f(x) + 2.

Proof. The proof is similar to the proof of Proposition 5 from [8]. Let

E = 〈x0, f(x0)〉, 〈x1, f(x1)〉, . . .

be an enumeration of the function f ordered lexicographically by the strings
xi.
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We identify the set of infinite sequences S = {0, 1}∞ with the half-open
real interval [0, 1); that is, each real number r between 0 and 1 will be asso-
ciated with the sequence(s) corresponding to the infinite binary expansion of
r. We will associate each element 〈xi, f(xi)〉 from the enumeration E with a
subinterval Ii ⊆ S as follows:

I0 = [0, 2−f(x0)), and for i ≥ 1, Ii = [
∑
k<i 2−f(xk),

∑
k≤i 2−f(xk)). That is,

Ii is the half-open interval of length 2−f(xi) that occurs immediately after the
interval corresponding to the element 〈xi−1, f(xi−1)〉 that appeared just prior
to 〈xi, f(xi)〉 in the enumeration E.

Since
∑
i≥0 2−f(xi) ≤ 1, each Ii ⊆ S.

Any finite string z also corresponds to a subinterval Γz ⊆ S consisting of
all infinite sequences that begin with z; Γz has length 2−|z|. Given any element
〈xi, f(xi)〉, there must exist a lexicographically first string zi of length f(xi)+2
such that Γzi ⊆ Ii. Observe that, since the intervals Ii are disjoint, no string
zi is a prefix of any other.

Let M ′ be the following machine. On input z, M ′ runs M to compute the
enumeration E until it finds an element 〈xi, f(xi)〉 that certifies that z = zi. If
it finds such an element then M ′ outputs xi.

Suppose that M ′ outputs xi on input z, and let 〈xi, f(xi)〉 be the element of
E corresponding to xi. Before outputting xi, M

′ must compute |〈xj , f(xj)〉| for
every string xj such that xj < xi (under the lexicographical ordering). There
are at most 2|xi|+1 strings xj such that xj < xi, so overall this will take less
than 22|xi|t(|xi|) time.

M ′ will be a prefix-free machine, and we have that Kt′

M ′(x) = f(x) + 2. �

1.7.4. Proposition (Analogue to Proposition 6 from [8]). Let U be a
universal prefix-free Turing machine and let M be any prefix-free Turing ma-
chine. Suppose that t, t′, and t′′ are time bounds and f, g are two time-constructible
increasing functions, such that f is upper bounded by a linear function, and
t′′(|x|) ≥ max{f(t(|x|)), g(t′(|x|))}.

Then there is a universal prefix-free machine U ′ such that

Kt′′

U ′(x) = min(Kt
U (x),Kt′

M (x)) + 1.

Proof. On input 0y, U ′ runs U on input y. If U would output string x on y
after s steps, then U ′ outputs string x after f(s) steps. Similarly, on input 1y,
U ′ runs M on input y. If M would output string x on y after s steps, then U ′

outputs string x after g(s) steps.
Note that because U is an efficient universal prefix-free machine, U ′ will be

an efficient universal prefix-free machine as well. �

1.7.5. Proposition (Analogue of Proposition 7 from [8]). Given any
universal prefix-free machine U , time bound t, and constant c ≥ 0, there is a
universal prefix-free machine U ′ such that Kt

U ′(x) = Kt
U (x) + c.

Proof. On input 0cx, M ′ runs M on input x, and does not halt on other inputs.
�
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Proof of Theorem 1.7.1. Fix f , and suppose for contradiction that L ∈ TTRT
but L 6∈ PSPACE/f(n). Let t0 be the time bound given in the definition
of TTRT, and assume without loss of generality that t0(n) is greater than
the time required to compute f(n), and let U0 be some arbitrary universal
prefix-free machine. By the definition of TTRT, L ≤ptt RKt0

U0

. Therefore, by

Proposition 1.1.5, L is decidable in time tL(n) = 2n
k

t0(nk) for some constant
k.

Let t∗(n) be an extremely fast-growing time-constructible function, so that

for any constant d, we have t∗(log(f(n))) > 2n
d

tL(n) for all large n. To get our
contradiction, we will show that there exists a universal prefix-free machine U
such that L 6≤ptt RKt∗3

U
. Note that because t∗ > t0, this is a contradiction to

the fact that L ∈ TTRT.
For any function f : {0, 1}∗ → N, define Rf = {x : f(x) ≥ |x|}. We

will construct a function F : {0, 1}∗ → N and use it to form a function H :
{0, 1}∗ → N such that:

1. F is a total function and F (x) is computable in time t∗2(|x|) by a machine
M ;

2. H(x) = min(Kt∗

U0
(x) + 5, F (x) + 3);

3.
∑
x∈{0,1}∗ 2−H(x) ≤ 1/8;

4. L 6≤ptt RH .

As we will see below, these properties are enough to prove the theorem. �

1.7.6. Claim (Analogue of Claim 1 from [8]). Given the above proper-

ties H = Kt∗3

U for some universal prefix-free machine U .

By Property 4 this ensures that L 6≤ptt RKt∗3
U

for some universal prefix-free

machine U , and hence L 6∈ TTRT, thus establishing Theorem 1.7.1.

Proof of Claim 1.7.6. By Property 3 we have that
∑
x∈{0,1}∗ 2−(F (x)+3) ≤ 1/8.

Hence it must hold that
∑
x∈{0,1}∗ 2−F (x) ≤ 1. Using this along with Property

1, we then have by Proposition 1.7.3 that Kt∗3

M ′ = F + 2 for some prefix-free
machine M ′. By Proposition 1.7.5 we have that Kt∗

U ′ = Kt∗

U0
+ 4 for some

efficient universal prefix machine U ′. Therefore, by Proposition 1.7.4, with
f(n) = n, g(n) = n3, we find that H(x) = min(Kt∗

U0
(x) + 5, F (x) + 3) =

min(Kt∗

U ′(x),Kt∗3

M ′ ) + 1 is Kt∗3

U for some efficient universal prefix machine U . �

All we now need to show is that, for our given language L, we can always
construct functions H and F with the four desired properties.

Let γ1, γ2, . . . be a list of all possible polynomial-time truth-table reductions
from L to RH . This is formed in the usual way: we take a list of all Turing
machines and put a clock of ni + i on the ith one and we will interpret the
output on a string x as an encoding of a Boolean circuit on atoms of the form
“z ∈ RH”. (i.e. these atoms form the input gates of the circuit, and their truth
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values determine the output of the circuit.) We will refer to the string z as a
query.

As in [8], to ensure that L 6≤ptt RH (Property 4), we need to satisfy an
infinite list of requirements of the form

Re : γe is not a polynomial-time truth-table reduction of L to RH .

As part of our construction we will set up and play a number of games, which
will enable us to satisfy each of these requirements Re in turn. Our moves in
the game will define the function F (and thus indirectly H). Originally we have
that F (z) = 2|z| + 3 for all strings z. Potentially during one of these games,
we will play a move forcing a string z to be in the complement of RH . To do
this we will set F (z) = |z| − 4. Therefore, a machine M can compute F (z) by
running our construction, looking for the first time during the construction that
F (z) is set to |z|−4, and outputting |z|−4. If a certain amount of time elapses
(to be determined later) during the construction without F (z) ever being set
to |z| − 4, then the machine M outputs the default value 2|z|+ 3.

1.7.1 Description of the games

Let us first describe abstractly the games that will be played during the con-
struction; afterwards we will explain how we use these games to satisfy each
requirement Re (note that these games are defined differently than those in
[8]).

For a given requirement Re, a game Ge,x will be played as followed for some
string x:

First we calculate the circuit γe,x, which is the output of the reduction γe
on input x. Let F ∗ be the function F as it is at this point of the construction
when the game Ge,x is about to be played. For any atom “zi ∈ RH” that
is an input of this circuit such that |zi| ≤ log(f(|x|)) − 1, we calculate ri =
min(Kt∗

U0
(zi) + 5, F ∗(zi) + 3). If ri < |zi| we substitute FALSE in for the

atom, and simplify the circuit accordingly, otherwise we substitute TRUE in
for the query, and simplify the circuit accordingly. (We will refer to this as the
“pregame preprocessing phase”.)

The remaining queries zi are then ordered by increasing length. There
are two players, the F player (whose moves will be played by us during the
construction), and the K player (whose moves will be determined by Kt∗

U0
). As

in [8], in each game the F player will either be playing on the YES side (trying
to make the final value of the circuit equal TRUE), or the NO side (trying to
make the final value of the circuit equal FALSE).

Let S1 be the set of queries from γe,x of smallest length, let S2 be the set
of queries that have the second smallest length, etc. So we can think of the
queries being partitioned into an ordered set S = (S1, S2, . . . , Sr) for some r.

The scoring for the game is similar to that in [8]; originally each player has
a score of 0 and a player loses if his score exceeds some threshold ε. When
playing a game Ge,x, we set ε = 2−e−3.

Originally we have that the truth value of all the atoms in the game are
TRUE. In round one of the game, the K player makes some (potentially empty)
subset Z1 of the queries from S1 nonrandom; i.e. for each z ∈ Z1 he sets the
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atom “z ∈ RH” to the value FALSE. For any Z1 ⊆ S1 that he chooses to
make nonrandom,

∑
z∈Z1

(2−(|z|−6) − 2−(2|z|+3)) is added to his score. As in
[8], a player can only legally make a move if doing so will not cause his score
to exceed ε.

After the K player makes his move in round 1, the F player responds, by
making some subset Y1 of the queries from S1 − Z1 nonrandom. After the F
player moves,

∑
z∈Y1

2−(|z|−4) − 2−(2|z|+3) is added to his score.

This is the end of round one. Then we continue on to round two, played in
the same way. The K player goes first and makes some subset of the queries
from S2 nonrandom (which makes his score go up accordingly), and then the
F player responds by making some subset of the remaining queries from S2

nonrandom. Note that if a query from Si is not made nonrandom by either the
K player or the F player in round i, it cannot be made nonrandom by either
player for the remainder of the game.

After r rounds are finished the game is done and we see who wins, by
evaluating the circuit γe,x using the answers to the queries that have been
established by the play of the game. If the circuit evaluates to TRUE (FALSE)
and the F player is playing as the YES (resp. NO) player, then the F player
wins, otherwise the K player wins.

Note that the game is asymmetric between the F player and the K player;
the F player has an advantage due to the fact that he plays second in each round
and can make an identical move for fewer points than the K player. Because the
game is asymmetric, it is possible that F can have a winning strategy playing
on both the YES and NO sides. Thus we define a set val(Ge,x′) ⊆ {0, 1} as
follows: 0 ∈ val(Ge,x′) if the F player has a winning strategy playing on the
NO side in Ge,x′ , and 1 ∈ val(Ge,x′) if the F player has a winning strategy
playing on the YES side in Ge,x′ .

1.7.2 Description of the construction

Now we describe the construction. In contrast to the situation in [8], we do
not need to worry about playing different games simultaneously or dealing with
requirements in an unpredictable order; we will first satisfy R1, then R2, etc.
To satisfy Re we will set up a game Ge,x for an appropriate string x of our
choice, and then play out the game in its entirety as the F player. We will
choose x so that we can win the game Ge,x, and will arrange that by winning
the game we ensure that Re is satisfied. It is possible that the K player will
“cheat” on game Ge,x, if our interpretation of the function Kt∗

U0
, which will

determine the moves of the K player, does not translate into legal moves in
the game. In this case we quit the game Ge,x and we play Ge,x′ for some new
x′. However, we will show that the K player cannot cheat infinitely often on
games for a particular e, so eventually Re will be satisfied.

Originally we define the function F so that F (z) = 2|z|+ 3 for all strings z.
Suppose s time steps have elapsed during the construction up to this point, and
we are getting ready to construct a new game in order to satisfy requirement
Re. (Either because we just finished satisfying requirement Re−1, or because
K cheated on some game Ge,x, so we have to start a new game Ge,x′). Starting
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with the string 0t
∗4(s) (i.e. the string of t∗4(s) zeros), we search strings in

lexicographical order until we find an x′ such that (1 − L(x′)) ∈ val(Ge,x′).
(Here, L denotes the characteristic function of the set L.)

Once we find such a string x′ (which we will prove we always can), then
we play out the game Ge,x′ with the F player (us) playing on the YES side
if L(x′) = 0 and the NO side if L(x′) = 1. To determine the K player’s
move in the ith round, we let Zi ⊆ Si be those queries z ∈ Si for which
Kt∗

U0
(z) ≤ |z|−6. Our moves are determined by our winning strategy; whenever

we play a move that makes a query z nonrandom, we update the function F
so that F (z) = |z| − 4. Note that whenever either of the player plays a move
involving a query z in one of the games (which we have called “making z
nonrandom”), he does make the query z nonrandom in the sense that RH(z)
is fixed to the value 0 for good.

To finish showing that Property 4 will be satisfied, it suffices to prove the
following three claims.

1.7.7. Claim. If during the construction we win a game Ge,x, then Re will be
satisfied and will stay satisfied for the remainder of the construction.

Proof. Suppose that we win a game Ge,x. Let H∗ = min(Kt∗

U0
+5, F ∗+3), where

F ∗ is the function F immediately after the game Ge,x is completed. Our having
won the game implies that when evaluating the circuit γe,x, while substituting
the truth value of “z ∈ RH∗” for any query of the form “z ∈ RH”, we have that
γe,x 6= L(x), which means that the reduction γe does not output the correct
value on input x and thus Re is satisfied. For any game Ge′,x′ that is played
later in the construction, by design x′ is always chosen large enough so that any
query that is not fixed during the pre-game preprocessing has not appeared in
any game that was played previously, so Ge′,x′ will not conflict with Ge,x and
Re will remain satisfied for the remainder of the construction. �

1.7.8. Claim. For any given requirement Re, the K player will only cheat on
games Re,x for a finite number of strings x.

Proof. If theK player cheats on a gameRe,x, it means that he makes moves that
causes his score to exceed ε = 2−e−3. By the definition of how K’s moves are

determined, this implies that
∑
z∈Ze,x 2−(Kt∗

U0
(z)−6) ≥ ε, so

∑
z∈Ze,x 2−K

t∗
U0

(z) ≥
ε/64, where Ze,x is defined to be the set of all the queries that appear in the
game Ge,x that are not fixed during the preprocessing stage. However, for any
two games Ge,x and Ge,x′ the sets Ze,x and Ze,x′ are disjoint, so if K cheated
on an infinite number of games associated with the requirement Re, then this

would imply that
∑
z∈{0,1}∗ 2−K

t∗
U0

(z) ≥ ε/64 + ε/64 + · · · . But this divergence
would violate Lemma 1.7.2. �

1.7.9. Claim. During the construction, for any requirement Re, we can always
find a witness x with the needed properties to construct Ge,x.
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Proof. Suppose for some requirement Re, our lexicographical search goes on
forever without finding an x such that (1 − L(x′)) ∈ val(Ge,x′). Then we will
find that L ∈ PSPACE/f(n), which is a contradiction.

Here is the PSPACE algorithm to decide L. Hardcode all the answers
for the initial sequence of strings up to the point where we got stuck in the
construction. Let F ∗ be the function F up to that point in the construction.
On a general input x, construct γe,x. The advice function f(n) will give the
truth-table of min(Kt∗

U0
(z) + 5, F ∗(z) + 3) for all queries z such that |z| ≤

log(f(|x|))− 1. For any query z of γe,x such that |z| ≤ log(f(|x|))− 1, fix the
answer to the query according to the advice.

If the F player had a winning strategy for both the YES and NO player
on game Ge,x, then we would not have gotten stuck on Re. Also the F player
must have a winning strategy for either the YES or the NO player, since he
always has an advantage over the K player when playing the game. Therefore,
because we got stuck, it must be that the F player has a winning strategy for
the YES player if and only if L(x) = 1. Once the small queries have been fixed,
finding the side (YES or NO) for which the F player has a winning strategy
on Ge,x, and hence whether L(x) = 1 or L(x) = 0, can be done in PSPACE.

To prove this, we will show that the predicate “The F player has a winning
strategy as the YES player on Ge,x” can be computed in alternating polynomial
time, which by [43] is equal to PSPACE. To compute this predicate, we must
determine if for every move of the K player in round 1, there exists a move
for the F player in round 1, such that for every move of the K player in
round 2, there exists a move for the F player in round 2... such that when
the game is finished the circuit γe,x evaluates to TRUE. We can represent any
state of the game (i.e. which of the polynomial number of queries have been
fixed to be nonrandom so far, the score of the players, the current round, and
whose turn it is) by a number of bits bounded by a polynomial in |x|. Also,
given a move by one of the players, it is easy to determine in polynomial time
whether the move is legal and to compute the new score of the player after
the move. (It suffices to add up a polynomial number of rationals of the form
a/2b where b = nO(1)). Also, because there are only a polynomial number of
queries in the circuit γe,x, the total number of moves in the game is bounded
by a polynomial. Finally, evaluating the circuit at the end of the game can be
done in polynomial time. Thus the predicate in question can be computed in
alternating polynomial time, which completes the proof. �

The following claim shows that Property 1 is satisfied.

1.7.10. Claim. F (z) is computable in time t∗2(|z|).

Proof. The function F is determined by the moves we play in games during
the construction. In order to prove the claim, we must show that if during the
construction we as the F player make a move that involves setting a string z
to be nonrandom, then fewer than t∗2(|z|) time steps have elapsed during the
construction up to that point. The machine M that computes F will on input z
run the construction for t∗2(|z|) steps. If, at some point before this during the
construction, we as the F player make z nonrandom, then M outputs |z| − 4.
Otherwise M outputs 2|z|+ 3.
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Suppose during the construction that we as the F player make a move that
sets a query z to be nonrandom during a game Ge,x. Note that |z| ≥ log(f(|x|)),
otherwise z would have been fixed during the preprocessing stage of the game.

There are at most 2|x|+1 strings x′ that we could have considered during
our lexicographic search to find a game for which we had a winning strategy
before finally finding x. Let s be the number of time steps that have elapsed
during the construction before this search began.

Let us first bound the amount of time it takes to reject each of these strings
x′. To compute the circuit γe,x′ takes at most |x′|k time for some constant k.
For each query y such that |y| ≤ log(f(|x′|)) − 1 we compute min(Kt∗

U0
(y) +

5, F ∗(y) + 3). To calculate F ∗(y) it suffices to rerun the construction up to
this point and check whether a move had been previously made on the string
y. To do this takes s time steps, and by construction we have that t∗(|z|) ≥
t∗(log f(|x|)) > |x| ≥ |x′| ≥ t∗4(s), so s < |z|. By Proposition 1.1.4, to compute
Kt∗

U0
(y) takes at most 2|y|t∗(|y|) ≤ 2|z|t∗(|z|) time steps. Therefore, since there

can be at most |x′|k such queries, altogether computing min(Kt∗

U0
(y)+5, F ∗(y)+

3) for all these y will take fewer than |x′|k2|z|t∗(|z|) time steps.
Then we must compute L(x′), and check whether (1− L(x′)) ∈ val(Ge,x′).

Computing L(x′) takes tL(|x′|) time. By Claim 1.7.9, once the small queries
have been fixed appropriately, computing val(Ge,x′) can be done in PSPACE,

so it takes at most 2|x
′|d time for some constant d.

Compiling all this information, and using the fact that for each of these x′

we have that |x′| ≤ |x|, we get that the total number of time steps needed to

reject all of these x′ is less than 2|x|
d′

2|z|tL(|x|)t∗(|z|) for some constant d′.
During the actual game Ge,x, before z is made nonrandom the construction

might have to compute Kt∗

U0
(y) + 5 for all queries of γe,x for which |y| ≤ |z|.

By Proposition 1.1.4 this takes at most |x|k2|z|t∗(|z|) time.
Therefore, overall, for some constant d′′ the total amount of time steps

elapsed before z is made nonrandom in the construction is at most

T = 2|x|
d′′

2|z|tL(|x|)t∗(|z|) + s < t∗2(|z|).

Here the inequality follows from the fact that t∗(log(f(|x|))) > 2|x|
d

tL(|x|)
for any constant d, and that |z| ≥ log(f(|x|)) .

�

Finally, to finish the proof of the theorem we need to show that Property 3
is satisfied.

1.7.11. Claim.
∑
x∈{0,1}∗ 2−H(x) ≤ 1

8 .

Proof. To begin, notice that

∑
x∈{0,1}∗

2−H(x) =
∑

x∈{0,1}∗
2−min(Kt∗

U0
(x)+5,F (x)+3)

≤
∑

x∈{0,1}∗
2−(Kt∗

U0
(x)+5) +

∑
x∈{0,1}∗

2−(F (x)+3).
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By Proposition 1.7.2,
∑
x∈{0,1}∗ 2−K

t∗
U0

(x) ≤ 1, so
∑
x∈{0,1}∗ 2−(Kt∗

U0
(x)+5) ≤

1/32. We also have that
∑
x∈{0,1}∗ 2−(F (x)+3) = (1/8)

∑
x∈{0,1}∗ 2−F (x). There-

fore, it is enough that
∑
x∈{0,1}∗ 2−F (x) ≤ 1/2, as this would imply that

∑
x∈{0,1}∗

2−H(x) ≤ 1

32
+

1

8
× 1

2
≤ 1

8
.

Let ZF be the set of all those queries that we (the F player) make nonran-
dom during the construction by playing a move in one of the games. We have
that ∑

x∈{0,1}∗
2−F (x) =

∑
x∈ZF

2−(|x|−4) +
∑
x 6∈ZF

2−(2|x|+3)

=
∑

x∈{0,1}∗
2−(2|x|+3) +

∑
x∈ZF

(2−(|x|−4) − 2−(2|x|+3))

≤ 1

8
+
∑
x∈ZF

(2−(|x|−4) − 2(2|x|+3)).

Thus it now suffices to show that totF =
∑
x∈ZF (2−(|x|−4)−2(2|x|+3)) ≤ 1/4.

Notice that totF is exactly the total number of points that the F player accrues
in all games throughout the lifetime of the construction. First let us consider
those games on which the K player cheats. We know that in all these games,
the F player accrues fewer points than the K player, and in particular accrues
fewer points during these games than totK , the total number of points the K
player accrues in all games throughout the lifetime of the construction. Let ZK
be the set of all those queries that the K player makes nonrandom during the
construction by playing a move in one of the games. We have that

totK =
∑
z∈ZK

2−(|z|−6) − 2−(2|z|+3) ≤
∑
z∈ZK

2−(Kt∗
U0

(z)+5)

≤
∑

z∈{0,1}∗
2−(Kt∗

U0
(z)+5) ≤ 1

32
,

where the first inequality uses that for all z ∈ ZK , Kt∗

U0
(z) ≤ |z| − 6, and the

last inequality again comes from Proposition 1.7.2.
Now consider games on which K does not cheat – for each Re there will be

exactly one of these. On each of these games the F player can accrue at most
ε = 2−e−3 points. Thus the total number of points the F player accrues on all
games that K does not cheat on is at most

∑∞
e=1 2−e−3 = 1/8.

Therefore totF ≤ 1/32 + 1/8 ≤ 1/4.
�



Chapter 2

Reductions to sparse sets

In this chapter we study the consequences of NP having non-uniform poly-
nomial size circuits of various types. We continue the work of Agrawal and
Arvind [2] who study the consequences that would follow if Sat were many-
one reducible to functions computable by non-uniform circuits consisting of a
single weighted threshold gate (written Sat ≤pm LT1).

They claim that as a consequence P = NP follows, but unfortunately their
proof was incorrect. We present a counter-example to their Splitting Lemma
[2, §4, p. 203], due to Amir Shpilka.

We take up this question again and use results from computational learning
theory to show that if Sat ≤pm LT1 then PH = PNP.

We furthermore show that if Sat disjunctive truth-table (or majority truth-
table) reduces to a sparse set then Sat ≤pm LT1 and hence a collapse of PH to
PNP also follows. Lastly we show several interesting consequences of Sat ≤pdtt
SPARSE.

The results in this chapter are based on the paper:

• Harry Buhrman, Lance Fortnow, John Hitchcock, and Bruno Loff. Learn-
ing reductions to sparse sets. In Proceedings of the 38th MFCS, pages
243–253, 2013.

2.1 Introduction

In this chapter we study consequences of NP having non-uniform polynomial
size circuits of various types. This question is intimately related to the existence
of sparse hard sets for NP under different types of reductions, and has played a
central role in complexity theory starting with the work of Berman, Hartmanis,
Karp, Lipton and Mahaney [27, 64, 74].

Karp and Lipton showed that if NP is Turing reducible to a sparse set then
the polynomial time hierarchy collapses to its second level. This was later
improved to a collapse of PH = ZPPNP [65, 31], and finally PH = Sp2 [40].1

1Sp2 is the second Level of the symmetric hierarchy, a class lying somewhere between PNP

and ZPPNP; see the complexity zoo [1] for more details.

27
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Improvement of this result to a deeper collapse is a challenging open question
whose positive solution would imply new unconditional circuit lower bounds.2

Mahaney [74] showed that if Sat reduces many-one to a sparse set then in
fact P = NP. This implication was subsequently improved by Ogiwara and
Watanabe [85] to bounded truth-table reductions, and later work extended this
result to other weak reductions [15, 14, 13, 87, 11, 16, 18]. Notoriously open is
to show a similar result for disjunctive truth-table reductions. The best known
consequence of this is a collapse of PH to PNP [17].

Agarwal and Arvind [2] studied the consequences of Sat many-one reducing
to LT1, the class of languages accepted by non-uniform circuits consisting of a
single weighted linear-threshold gate. They claimed that Sat ≤pm LT1 implies
P = NP — unfortunately, the proof in that paper was flawed, as it relied
essentially on their incorrect Splitting Lemma (p. 203).3

We will give a simple counter-example, due to Amir Shpilka, showing that
the Splitting Lemma fails. Then we take a fresh look at the Sat ≤pm LT1

setting and connect it with results in learning theory. We use an efficient
deterministic algorithm from Maass and Turán [73] for learning half spaces, to
obtain a collapse of the polynomial-time hierarchy to PNP from the assumption
that Sat ≤pm LT1. The main ingredient in the learning algorithm is the use of
linear programming, which also featured prominently in the work of Agrawal
and Arvind.

The use of learning theory in this area of complexity theory is not new and
was used before by [65, 31, 49, 51], however the use of deterministic learning
algorithms in relationship with the polynomial time hierarchy is new.

Next we examine the consequences of Sat ≤pdtt SPARSE and make a link
with the geometric approach above. Using the leftset technique from [85] it is
easy to show for conjunctive truth-table reductions that if Sat ≤pctt SPARSE
then P = NP. Frustratingly, for disjunctive truth table reductions the best
known consequence is PH = PNP, a result due to Arvind et al.[17], who use a
complicated argument. We use error-correcting codes to show that Sat ≤pdtt
SPARSE implies that Sat ≤pm LT1, which with our previous result gives a new
and more modular proof of the collapse to PNP. Our new approach enables us
to obtain the same collapse for majority reductions.

We finish with a handful of new consequences of Sat ≤pdtt SPARSE and
Sat ≤pmaj SPARSE. Interestingly, if we could improve our results to show that

PH = PNP
‖ follows from the assumption that Sat ≤pdtt SPARSE, this would

allow us to obtain the full collapse to P = NP (under the same assumption).

2Suppose, for instance, that NP ⊆ P/poly implies that PH ⊆ PNP. Then either NP
does not have polynomial-size circuits or Σp2 is in PNP, and then it follows from a result of
Kannan [63] that PNP does not have circuits of fixed-polynomial size, and from Impagliazzo
and Wigderson [56] that BPP ⊆ PNP.

3The mistake in this Splitting Lemma was not seen by any of the paper’s ref-
erees, but instead was accidentally discovered years later. For an anecdotal ac-
count of the episode, please consult http://blog.computationalcomplexity.org/2009/10/

thanks-for-fuzzy-memories.html.
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2.2 Preliminaries

We assume that the reader is familiar with computational complexity, as ex-
pounded, for instance, in [21, 10]. Hence we will use the usual notation for
complexity classes: P, NP, Σpi , Πp

i , ∆p
i , ZPP, etc.

The least common notation we use, is: PNP
‖ and FPNP

‖ , which are the classes
of sets and functions, respectively, that are polynomial-time computable with
non-adaptive queries to an NP oracle; PNP[q], and FPNP[q], the classes of sets
and functions that are polynomial-time computable by asking no more than
q(n) (possibly adaptive) queries to an NP oracle.

A linear threshold function L : {0, 1}m → {0, 1} is defined by a vector of m
real numbers w ∈ Rm, called weights, a threshold θ ∈ R, and the equation

L(z) =

{
1 if z · w > θ, and

0 if z · w ≤ θ.

Here z · w denotes the inner product
∑m
i=1 ziwi.

We let LT1(m) denote the class of linear-threshold functions with m-bit
binary inputs. We may freely assume, for functions in LT1(m), that the weights
and thresholds are integers of bit-length m logm [78, Thm. 16].

The following lemma is well-known [see 21]:

2.2.1. Lemma.
A ∈ P/poly ⇐⇒ A ∈ PSPARSE,

This result implies that a polynomial-time oracle reduction to a sparse
set can be seen as a polynomial-time circuit. In this chapter we will study
reductions to sparse sets for weaker notions of reductions. The weaker the
reduction, the weaker the access to non-uniformity.

In this paper we are concerned with three such reductions:

2.2.2. Definition. (dtt reductions) A set A disjunctive truth-table reduces
to a set S, written A ≤pdtt S, if there exists a polytime computable
function Q, outputting a set of queries, such that

x ∈ A ⇐⇒ Q(x) ∩ S 6= ∅.

(majority reductions) A set A majority truth-table reduces to a set S, writ-
ten A ≤pmaj S, if there exists a function Q, as above, such that

x ∈ A ⇐⇒ |Q(x) ∩ S| > |Q(x)|
2

(LT1 reductions) A setA reduces to linear-threshold functions, writtenA ≤pm
LT1, if there exists a polytime computable function f , and a family
{Ln}n∈N of linear threshold functions, such that4

x ∈ A=n ⇐⇒ Ln(f(x)) = 1.

4Notice that the length of f(x) must be a function of the length of x.
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2.3 A counter example to the Splitting Lemma

Here is a construction due to Amir Shpilka. Suppose we he have a set of m row
vectors {di}mi=1 in Qn, together with two sets of vectors {qi}mi=1 and {qi,j}mi,j=1

in Qn, such that

1. For each i, di · qi > 0 and d` · qi < 0 if ` 6= i; and

2. For each i, j, di · qi,j > 0, and dj · qi,j > 0, but d` · qi,j < 0 if ` 6∈ {i, j}.

In the nomenclature of [2], the di’s split the set of qi and qi,j ’s. Then the
Splitting Lemma claimed that m ≤ n+ 1. Now we present a counter-example
showing that actually m can be infinite whenever n ≥ 5.

For natural numbers i, j, define qi and qi,j as the first n coefficients of the
polynomials:

pi(x) = 1− 2(x− i)2 =

n−1∑
k=0

qi(k)xk

and

pi,j(x) = 1− 2(x− i)2(x− j)2 =

n−1∑
k=0

qi,j(k)xk.

Then for di = (i0, i1, . . . , in−1), whenever n ≥ 5 (the number of non-zero
coefficients of pi,j), it will hold that d` · qi = pi(`) and d` · qi,j = pi,j(`).
Now, for the infinity of points {di}i≥1, {qi}i≥1, and {qi,j}i,j≥1, it is clear by
inspection that the splitting property holds.

2.4 If Sat ≤pm LT1 ...

Attempting to derive P = NP from Sat ≤pm LT1 should prove difficult, since
by the results in the next section this would imply the same collapse for dtt
and majority reductions to sparse sets, and this problem has been open for a
long time. A ∈ P/poly follows from A ≤pm LT1, and so from Sat ≤pm LT1 and
[40] we get PH = Sp2. This collapse can be improved in the following way:

2.4.1. Theorem. If Sat ≤pm LT1, then PH = PNP.

We take a similar approach as [31]: the existence of a suitable learning algo-
rithm will, under the assumption that Sat ≤pm LT1, collapse the polynomial-
time hierarchy. The difference is that we have a deterministic learning algo-
rithm for linear threshold functions, but only (zero-error) probabilistic algo-
rithms with access to an NP oracle are known that can learn general circuits.

Our learning model is the online learning model of Angluin [9] for learning
with counter-examples. In our case, the learner wishes to identify an unknown
linear threshold function, say L ∈ LT1(m). At each learning step, the algorithm
proposes some hypothesis H ∈ LT1(m). If H 6= L, then the algorithm is given
a counter-example x such that H(x) 6= L(x). The algorithm is not allowed
to make any assumptions on the choice of counter-example, which could very



2.4. If Sat ≤pm LT1 ... 31

well be adversarially chosen. Based on the previous counter-examples and
hypotheses, the algorithm suggests a new hypothesis which is correct on the
inputs seen so far, and the process is repeated until H = L. The learning
complexity of such an algorithm is the maximum number of such steps that it
will need in order to learn any function in LT1(m).

2.4.2. Theorem ([73]). There is a deterministic polynomial-time algorithm
for learning LT1(m) functions in O(m3 logm) steps.

As a corollary, we will be able to prove Theorem 2.4.1, and the forthcom-
ing Theorem 2.4.3. It should be noted that both of these theorems hold for
polynomial-time many-one reductions to any class of functions which, like LT1,
have a polynomial-time algorithm for learning with counter-examples.

Proof of of Theorem 2.4.1. Suppose Sat ≤pm LT1, and let Ln be a family of
linear threshold functions, and f a polytime reduction, such that

ψ ∈ Sat=n ⇐⇒ Ln(f(ψ)) = 1. (2.1)

For a given formula of length n, we use the algorithm of Theorem 2.4.2 in order
to uncover a linear threshold function H with the same property (2.1) as Ln,
in polynomial time with the help of an NP oracle.

Let m = |f(ψ)| on inputs ψ of length n. We proceed as follows: we start
with an initial hypothesis H for Ln, given by the learning algorithm for LT1(m).
Then at each step in the learning process we ask the NP oracle if there exists
some formula ψ of length n such that:

1. ψ has no variables and evaluates to true, but H(f(ψ)) = 0, or

2. ψ has no variables and evaluates to false, but H(f(ψ)) = 1, or

3. H(f(ψ)) = 1 but both H(f(ψ0)) = 0 and H(f(ψ1)) = 0, or

4. H(f(ψ)) = 0, but H(f(ψ0)) = 1 or H(f(ψ1)) = 1.

Above, ψ0 and ψ1 are obtained by replacing the first variable of ψ respec-
tively with 0 or 1. Essentially, we are asking whether the set Sat(H) = {ψ |
H(f(ψ)) = 1} violates the self-reducibility of Sat. If this is not the case, then
necessarily Sat(H) = Sat=n — we have found a hypothesis H that is good
enough to decide Sat=n, so we are done.

But if the self-reducibility is violated, then for at least one φ ∈ {ψ,ψ0, ψ1},
we must have H(f(φ)) 6= Ln(f(φ)), and so f(φ) gives us a counter-example
to update the hypothesis H. We use prefix-search to obtain such a formula
φ, and from equation (2.1) this will provide us with a counter-example, i.e.,
H(f(φ)) 6= Ln(f(φ)).

After O(m3 logm) = poly(n) many iterations, we will either have learned
Ln, or otherwise obtained an hypothesis H suitable for the purpose of querying
Sat=n.

It now holds that if the NP oracle is given the bits representing H, it can
use these bits to decide Sat=n, and it can then simulate an NPNP = Σp2 oracle.
So Σp2, and consequently all of PH, collapses to PNP. 2 �
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In order to solve Sat=n, the algorithm above potentially asks Ω(nm3 logm)
adaptive queries to Sat. We can be a bit more clever, and actually reduce this
number to n. This will give us the following:

2.4.3. Theorem. If Sat ≤pm LT1, then NPSat=n

⊆ PSat[n] ∩NP/lin.

Proof. The idea is to use the self-reducibility of Sat once again, in order to
learn Sat=n first for formulas with no variables (formulas over constants, which
evaluate to true or false), then for formulas with 1 variable, then 2 variables, and
so on. Let Sat=n

k be the set of satisfiable formulas having exactly k variables.
Starting with the initial hypothesis H, we set out to learn Sat=n

0 . What is the
largest number of mistakes that we can make, i.e., how many times might we
need to change our hypothesis H until we have properly learned Sat=n

0 ?

Using a Sat oracle, we can ask: is there a sequence ψ1, . . . , ψ` of ` formulas,
having 0 variables, such that ψi+1 is always a counter-example to the hypothesis
constructed by our learning algorithm after seeing ψ1, . . . , ψi?

5

We know that such a sequence will have at most poly(n) formulas, and so
using binary search and with O(log n) such queries, we can find the length of
the largest sequence of counter-examples which can be given to our learning
algorithm before it necessarily learns Sat=n

0 . Let this length be `0.

Then because `0 is maximal, at this point we know that if the learning
algorithm is given any sequence of `0 counter-examples having no variables,
the constructed hypothesis H will be correct on Sat=n

0 , in the sense that ψ ∈
Sat=n

0 ⇐⇒ H(f(ψ)) = 1.

Now that we know `0, we set out to learn Sat=n
1 . Using Sat as an oracle, we

may ask: Is there a sequence of `0 counter-examples with 0 variables, followed
by ` counter-examples with 1 variable? Thus we may obtain `1, the length of
the largest sequence of counter-examples with 1 var, that can be given to the
learning algorithm after it has already learned every possible formula with 0
variables.

In general we know `0, . . . , `k−1, and we set out to learn Sat=n
k . Using

Sat as an oracle, we ask: Is there a sequence of `0 counter-examples with 0-
variables, followed by `1 counter-examples with 1-variable, . . ., followed by `k−1

counter-examples with k − 1 variables, followed by ` counter-examples with k
variables?

The key observation is that in order for the Sat oracle to be able to tell
whether a formula ψ with k variables is a counter-example to hypothesis H,
i.e., whether H(f(ψ)) 6= Sat(ψ), it will need to know whether ψ is or is not
satisfiable. In order to know this, the Sat oracle uses H itself, which at this
point is known to be correct for formulas with k − 1 variables, and thus ψ ∈
Sat ⇐⇒ H(f(ψ0)) = 1 or H(f(ψ1)) = 1.

5Formalizing the question as an NP-set gives us:

A = {〈0n, 0`〉 | ∃ψ̄, H̄∀i Hi = Learner(ψ1, . . . , ψi) ∧Hi−1(f(ψi)) 6= Sat(ψi)},

where ψ̄ is a sequence of ` formulas with 0 variables, H̄ is a sequence of ` threshold functions,
and i ∈ {1, . . . , `}. Notice that Hi−1(f(ψi)) 6= Sat(ψi) is decidable in polynomial time
because the formulas ψi have no variables.
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In the end we have n + 1 numbers `0, . . . , `n, and we know that if the
learning algorithm is given any sequence of `0 counter-examples having no
variables, followed by `1 counter-examples having 1 variable, . . ., followed by
`n counter-examples having n variables, then the constructed hypothesis H
will be correct on all of Sat=n. Furthermore, such a sequence must exist by
construction.

These numbers take up at most O(n log n) bits, and each bit is the outcome
of one (much larger, adaptive) query to Sat. Having access to `0, . . . , `n, an
NP machine can guess a proper sequence of counter-examples, and it will thus
obtain an hypothesis H which it can use to answer any query to Sat=n. Thus
NPSat=n

⊆ PSat[n logn], and NPSat=n

⊆ NP/n log n.
In order to improve n log n to n bits, or even n

c logn bits, the proof is similar,

but instead of learning how to decide Sat=n for one extra variable at a time,
we learn O(log n) extra variables at a time — this requires us to unfold the
self-reduction tree O(log n)-deep. �

Under the assumption that Sat has polynomial-size circuits, we may decide,
in coNP, whether a given string α(n) encodes a circuit correct for Sat=n.
However, there will possibly be many strings with this property — the following
theorem gives us a way to single out, in coNP, a unique advice string α(n)
suitable to decide Sat=n.

2.4.4. Theorem. If NP ⊆ P/poly, and PH ⊆ PNP, then PH ⊆ P/α for some
polynomial advice function 0n 7→ α(n) whose graph Gα = {〈0n, α(n)〉|n ∈ N} ∈
coNP.

Proof. Let A be ∆2-complete.6 Then there is a polytime machine M that
decides A=n with polynomially-long advice γ(n), where γ(n) codes a circuit
solving Sat=m, for some m = poly(n). The machine M uses γ(n) to answer
the queries needed in the ∆2 computation of A. Furthermore, the function
0n 7→ α̃(n), given by

α̃(n) is the lexicographically smallest string

such that x ∈ A=n ⇐⇒ M(x)/α̃(n) = 1,

is in PH and thus in FPSat. Then let N be a polytime machine computing
α̃ with a Sat oracle, and let’s say it makes k queries to compute α̃(n). Let
S ∈ coNP be the set of strings 〈0n, α̃, a1, . . . , ak, y1, . . . , yk〉 such that

1. N ā(0n) = α̃ (i.e., when a1, . . . , ak are given as answers to the queries of
N ),

2. if ai = 1 then yi is the lexicographically smallest satisfying assignment of
the i-th formula queried by N ā, and

3. if ai = 0 then yi = λ (the empty string) and the i-th formula queried by
N ā is not satisfiable.

6For instance, A is the set of pairs 〈ψ, z〉 such that z prefixes the lexicographically-least
satisfying assignment to the boolean formula ψ.
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Notice that for a given n, the string 〈0n, α̃, a1, . . . , ak, y1, . . . , yk〉 ∈ S is
uniquely defined, so S is the graph of α(n) = 〈α̃, a1, . . . , ak, y1, . . . , yk〉. When
given α(n), an algorithm for A can simply check if M(x)/α̃ = 1. �

2.4.5. Corollary. If Sat ≤pm LT1, then PH ⊆ P/α for some polynomial
advice function 0n 7→ α(n) whose graph Gα ∈ coNP.

2.5 LT1 versus dtt and maj reductions

In this section we show that LT1 reductions can simulate dtt and majority
reductions to sparse sets. Thus, effectively, the collapses we have proven for
LT1 reductions imply similar collapses for dtt and majority reductions.

2.5.1. Theorem. If A ≤pdtt SPARSE or A ≤pmaj SPARSE, then A ≤pm LT1.

Proof. We will use a Reed-Solomon code to construct the LT1 reduction. Sup-
pose A ≤pdtt S ∈ SPARSE, and assume w.l.o.g. that the dtt reduction is given
by a polytime computable function Q, such that

x ∈ A=n ⇐⇒ S=m ∩Q(x) 6= ∅, (2.2)

|S=m| = m, and

|Q(x)| = d.

That is, for every input x of length n, Q(x) = {y1, . . . , yd} always queries the
same number of d = d(n) strings of the same length m = m(n), and that there
will be exactly m strings in S=m. Such an assumption can always be made by
tweaking the reduction and changing S accordingly.

We will be working over the field F2` , for ` ≥ dlog dm2e. For any given
binary string s of length m, we define the polynomial ps(z) =

∑m
i=1 siz

i−1.
Now let C(s) be the encoding of s as a 2`× 2`-long binary string: this string is
the concatenation of ps(a), as a goes through all the 2` elements of F2` ; each
ps(a) is in turn encoded by a binary string of length 2`, having a 1 at position
ps(a) (for some fixed enumeration of F2`), and 0s elsewhere.

Note that |C(s)| = O(d2m4) = poly(n). Then vitally note that by encoding
strings this way, the number of bit positions where C(s) and C(y) are both 1,
given by the inner product C(s) · C(y),7 is exactly the number of elements
a ∈ F2` where ps(a) = py(a). So for any two words s, y ∈ {0, 1}m, using the
fact that ps − py is either identically zero, or has at most m− 1 roots,{

C(y) · C(s) ≤ m− 1 if y 6= s, and

C(y) · C(s) ≥ dm2 if y = s.

7Note that the binary strings C(s) and C(y) are seen as 0-1 vectors, and that the inner

product is a natural number
∑2`×2`

j=1 C(s)jC(y)j .
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Define g(x) =
∨d
i=1 C(yi), where Q(x) = {y1, . . . , yd}, and by

∨
we mean

bitwise-OR. Then{
g(x) · C(s) ≤

∑d
i=1 C(yi) · C(s) ≤ d(m− 1) if s 6∈ Q(x), and

g(x) · C(s) ≥ dm2 if s ∈ Q(x).

Finally, let wn = ⊕s∈S=mC(s), and f(x) = (g(x))⊕m, where by ⊕ we mean the
direct sum of vectors / concatenation of strings. Then f(x)·wn =

∑
s∈S=m g(x)·

C(s), and we come to{
f(x) · wn ≤ md(m− 1) if S=m ∩Q(x) = ∅, and

f(x) · wn ≥ dm2 if S=m ∩Q(x) 6= ∅.
(2.3)

So x ∈ A ⇐⇒ f(x) · wn > dm(m− 1), showing that A ≤pm LT1.
The transformation for maj reductions is similar. We begin with a dtt

reduction function Q, which is like before, except that now Equation (2.2) is
replaced with

x ∈ A=n ⇐⇒ |S=m ∩Q(x)| > d

2
.

Then both the LT1 reduction function f , and the set of weights wn are con-
structed exactly in the same way, but over a slightly larger field. Working
through the proof, if 2` is the size of our chosen field, and K = |S=m ∩Q(x)|,
then Equation (2.3) becomes:

2`K ≤ f(x) · wn ≤ 2`K + d(m− 1)(m−K).

Now choose ` ≥ dlog 4dm2e as the size of our field. Using the defining property
of the maj reduction, a small computation will show us that

x ∈ A=n ⇐⇒ K >
d

2
⇐⇒ f(x) · wn > 2`

(
d

2
+

1

4

)
— this defines our LT1 reduction. �

2.6 If Sat ≤pdtt SPARSE ...

Disjunctive truth-table reductions to sparse sets are powerful enough to sim-
ulate bounded truth-table reductions to sparse sets [3]. But the collapses
that are known, under the assumption that Sat ≤pdtt SPARSE, are not as
strong as those for btt reductions. We can summarize what was known about
Sat ≤pdtt SPARSE, in the following two theorems:

2.6.1. Consequence ([41, 12]). ... then FPNP
‖ = FPNP[log], UP ⊆ P, and

NP = RP.

2.6.2. Consequence ([17]). ... then PH = PNP = PRP = BPP.

To these consequences, we append our own observations, which follow from
the results in the previous sections.
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2.6.3. Consequence. ... then NPSat=n

⊆ PSat[n], NPSat=n

⊆ NP/lin.

2.6.4. Consequence. ... then PH ⊆ P/α for some function 0n 7→ α(n)
whose graph Gα ∈ coNP.

Finally, we note that we are not far away from obtaining the final conse-
quence P = NP.

2.6.5. Consequence. ... then EXP 6⊆ NP/log.

2.6.6. Consequence. ... then ENP 6⊆ SIZE(2εn) for some ε > 0.

2.6.7. Consequence. ... then the following statements are all equivalent:

1. P = NP.

2. PNP = PNP
‖ .

3. coNP ∩ SPARSE ⊆ NP.

4. ENP = ENP
‖ .

Proof of of Consequence 2.6.5. [47] show that

EXP ⊆ PNP
‖ ⇐⇒ EXP ⊆ NP/log.

But if we had EXP ⊆ PNP
‖ , then we could compute the lexicographically least

satisfying assignment of a given formula in FPNP
‖ , and thus in FPNP[log], by

Consequence 2.6.1. But then we could also do it in FP alone, simply by trying
every possible answer to the queries made by the FPNP[log] computation. But
then P = NP, and the necessary conclusion EXP ⊆ PH ⊆ P would contradict
the time-hierarchy theorem. �

Proof of of Consequence 2.6.6. By counting there is a function f : {0, 1}logn →
{0, 1} 6∈ SIZE(nε) which can be found in PΣ2 [cf. 63], and thus, by Consequence
2.6.2, in PNP. Translating this upwards we get a set in ENP with no circuits of
size 2εn. �

Proof of of Consequence 2.6.7. All of the items (2, 3, 4) follow trivially from
P = NP. We now prove each converse in turn.

(2⇒1) As in the proof of Consequence 2.6.5, P = NP follows if we are able
to compute the least satisfying assignment of a given formula in FPNP

‖ . This

is trivially the case when PNP = PNP
‖ .

(3⇒1) If SPARSE ∩ coNP ⊆ NP, then, from Consequence 2.6.4, we get
PH ⊆ NPGα ⊆ NPNP∩SPARSE: the non-deterministic machine just guesses the
advice α and checks it using the oracle. But NPNP∩SPARSE ⊆ NP [cf. 62],
and thus the least satisfying assignment of a given formula can be obtained in
FPNP
‖ .

(4⇒1) To see the third equivalence, notice that ENP = ENP
‖ , which together

with Consequence 2.6.6 implies we can derandomize BPP in PNP
‖ [cf. 84, 56,
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the proof is analogous to that in §1.4]. If we further take into account that
PH ⊆ BPP, by Consequence 2.6.2, then it follows that PH ⊆ PNP

‖ , and the

least satisfying assignment can be found in FPNP
‖ . �





Chapter 3

Hardness results for Knapsack problems

In this chapter we show various hardness results for knapsack and related prob-
lems; in particular we will show that unless the Exponential-Time Hypothesis
is false, subset-sum cannot be approximated any better than with an FPTAS.
We also provide new unconditional lower bounds for approximating knapsack in
Ketan Mulmuley’s parallel PRAM model. Furthermore, we give a simple new
algorithm for approximating knapsack and subset-sum, that can be adapted to
work for small space, or in small parallel time.

The results in this chapter are based on the paper:

• Harry Buhrman, Bruno Loff, and Leen Torenvliet. New hardness results
for knapsack problems. Submitted.

3.1 Introduction

The Knapsack problem is a natural example of an NP-complete optimization
problem which nevertheless has a fully-polynomial time approximation scheme
(FPTAS). However, there is no a priori reason to think that FPTAS would
be the best one could hope for. In fact, in order to prove NP-hardness of
knapsack we require the problem to be solved exactly, so in principle there
could exist polynomial-time approximation algorithms for knapsack with an
approximation ratio strictly closer to 1 than inverse-polynomial.

We begin this work by giving evidence that inverse-polynomial is as good
an approximation as we are likely to get. For example, we obtain the following:

3.1.1. Proposition. If there is a polynomial-time algorithm to approximate
knapsack with inverse-super-polynomial error ratio, then we can decide the sat-
isfiability of n-variable NC circuits of size ω(n) in time 2o(n).

In a way, this is a refinement of the NP-hardness of the knapsack problem.
The reduction actually offers a robust trade-off, in that algorithms with a
successively better approximation ratio can be used to simulate successively
larger non-deterministic NC-computations.

A reduction from 3Sat instead of NC circuit satisfiability was indepen-
dently discovered by Cygan et al. [45]. Their proof is more contrived, as it is

39
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the result of several intermediate reductions, and their result is slightly weaker,
though some of the reduction gadgets they use have a similar flavor to our own.
Our proof, however, is simple, short and direct.

From the proposition above, and the sparsification lemma of [57], we get,
in particular, a 2o(n)-time algorithm for 3Sat from the assumption that such
a good approximation can be obtained in polynomial time. This would con-
tradicting the Exponential–Time Hypothesis [55]. This is the first hardness-
of-approximation result of its kind, since hardness of approximation has been
shown for every other approximation ratio (cf. Section 3.4). This also follows
as a consequence of [45], although in that paper the result was not clearly
formulated.

The techniques in these proofs will allow us to prove a new unconditional
lower bound for solving knapsack in parallel, using Mulmuley’s parametric
complexity technique [77]. Our reduction techniques can be used to show that
the knapsack problem has high parametric complexity, even when the bit-
lengths of the inputs are small. It will follow that it is impossible to approximate

knapsack within a factor of 1 + ε in time o((log 1
ε )

1
4 ), and using 2o((log 1

ε )
1
4 )

processors, in Mulmuley’s parallel PRAM model without bit operations.

To complement these hardness results, we provide a simple, and to our
knowledge new, algorithm for approximating knapsack and subset-sum in par-
allel, obtained through a mix of two standard results: the meet-in-the-middle
algorithm for knapsack [53], and the PSPACE completeness of alternating
time [93]. We are able to approximate subset-sum up to error ratio 1 + ε in
space log 1

ε · log n. A linear arithmetic PRAM [see 77] can compute it in time
log n using ( 1

ε )logn processors. Alternatively, it may be implemented by an
O(log n)-depth AC circuit of size ( 1

ε )logn.

After some preliminaries in Section 3.2, we study in Section 3.3 both old and
new approximation algorithms for knapsack and related problems. In Section
3.4 we show how to reduce satisfiability problems to subset-sum with small
bit-weights, and then proceed with the lower-bounds for Mulmuley’s model in
Section 3.5.

3.2 Preliminaries

For a given natural number n, [n] denotes the set {1, . . . , n}, and Sn denotes
the group of permutations of n letters. For σ1, σ2 ∈ Sn, the permutation σ1σ2

is defined by (σ1σ2)(i) = σ2(σ1(i)) for all i ∈ [n]. For a given predicate P , we
will use the notation [P?] to denote 0 if P is false, and 1 if P is true.

3.2.1 Circuit classes and bounded non-determinism

A width-5 permutation branching program P over k input bits y1, . . . , yk is a set
(of so-called instructions) {(j, zj , αj , βj)}Sj=1, with zj ∈ [k], αj , βj ∈ S5. For a

given input ȳ ∈ {0, 1}k, the evaluation of the program P (ȳ) ∈ S5 is equal to
γ1γ2 . . . γS , where γj equals αj if yzj = 0 and equals βj if yzj = 1. We usually
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write P (ȳ) = 1 when P (ȳ) = e (the identity) and write P (ȳ) = 0 to mean
P (ȳ) 6= e.

We will let NC-Sat(S, k) denote the set of circuits C composed of k boolean
input gates and S fan-in-2 NAND gates, such that C(ȳ) = 1 for some choice
of ȳ ∈ {0, 1}k. We use ∃NC1(k) to denote the class of sets accepted by log-
depth fan-in-2 uniformly generated circuits of polynomial size which make use
of k non-deterministic bits — i.e., a set A is in ∃NC1(k) if there is a uniform
family of polysize boolean formulae Fn such that x ∈ A iff F|x|(x, y) = 1 for

some y ∈ {0, 1}k.1 Finally, we let NC1-Sat(S, k) denote the set of satisfiable
size-S formulae with k boolean variables. Notice that NC1-Sat(S, k) denotes
a set and ∃NC1(k) denotes a class of sets for which NC1-Sat(poly(n), k) is a
complete problem.

3.2.2 Mulmuley’s parallel model of computation

Mulmuley’s model is a semi-algebraic model of parallel computation. The in-
puts are usually thought of as having a binary part, giving the combinatorial
structure (for instance, the adjacency matrix of a graph), and an integer part,
giving numerical data about this structure (such as the weights of the edges
of said graph). The model treats these two types of data differently with re-
spect to pointer jumping, which makes its full description more involved than
it needs to be for our purpose. In fact, the knapsack problem has no combi-
natorial structure, and so we can look at a simpler form of Mulmuley’s model,
and leave the full details to [77].

A (numerical) problem in this setting is a family An of subsets of Zn. The
model of computation is the arithmetic PRAM, a device composed of a certain
number of registers and processors. At the beginning of the computation, a
tuple ā = (a1, . . . , an) is given as input by placing each ai in register i. Each
processor is given a numbered sequence of instructions, each of which is one of
the following:

• w = u ◦ v, where w is a register and u and v are either registers or
constants, and ◦ is one of +,−,×;

• If register i is greater than zero, then go to instruction `, or else go to
instruction `′.

At every time-step, each processor executes its current instruction simultane-
ously; we assume that concurrent reads and writes are OK, and are handled,
for instance, by ordering the processors according to some priority. All instruc-
tions have unit cost, which actually means that the model can handle very
large numbers. The machine eventually halts, for instance by letting processor
1 execute a special instruction, and we say that ā was accepted if register 1
holds a zero (meaning ā ∈ A), and was rejected otherwise.

It should be noted that division is not part of the basic instructions. As a
result of this, it can be proven that the model cannot know the least significant
bit of an n-bit register in o(

√
n) steps and using 2o(

√
n) processors; because of

1We may assume that such formula have logarithmic-depth [38, 39].
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this, the model is sometimes called PRAM without bit operations. This is an
algebraic model, in that the contents of the registers at any given time-step are
essentially polynomials in the numerical parameters given as the input.2

Now we may define Ketan’s class KC(P, T ) as the class of problems A
which can be decided by such a device using P processors and T time. An
algebraic algorithm will have P and T depend only on n, whereas a semi-
algebraic algorithm will have them depend on the bit-length of the integers ai.
This model is quite powerful, and in fact it is capable of implementing every
parallel algorithm that the we know of. Nevertheless, Mulmuley [77] shows

that the decision version of maximum flow is not in KC(2
√
n
a ,
√
n
a ), for some

constant a, even when the bit-lengths of the flow capacities are at most O(n2).
The result extends to any numerical problem, such as the traveling salesman
problem, to which max-flow reduces by a parallel algebraic reduction. But
subset-sum is not known to be such a problem.3 In the paper [90], it was

shown that subset-sum is not in KC(2
√
n
a ,
√
n
a ), but using a different technique

than Mulmuley’s, which gives no limit on the bit-length of the inputs among
which a hard instance will be found (we could say that the lower bound was
proven for algebraic algorithms, and not for semi-algebraic algorithms). In

Section 3.5 we prove that subset-sum is not in KC(2
1
an

1/4

, 1
an

1/4), even for
bit-length of the inputs bounded by O(n2).

3.2.3 Knapsack and generalizations

As part of our study we will include a variant of the knapsack problem which
we call the symmetric knapsack problem, and which is obtained by adding
additional constraints to the knapsack instance, in the form of equations over
the symmetric group. It will be seen that the symmetric knapsack problem is
significantly harder to solve than the knapsack problem. Our reason to study
this problem here is two-fold. First of all, not many hardness results are known
for problems in non-commutative algebra [cf. 81], and symmetric subset-sum is
a natural problem in that setting (see Observation 3.2.4 below). Secondly, our
results show that the addition of even the simplest combinatorial structure to
the knapsack problem already makes it significantly harder.

In the definition below, it helps to think of {1, . . . , n} as a set of items, the
v(i) as values, w(i) as weights, and σ(i) as patterns of these items, and that
our task is to fit a set of items of maximum total value into a knapsack that

2More precisely, the contents of a register at any given time-step is a polynomial in these
parameters, but precisely which polynomial depends on the outcomes of previous conditionals
(greater-than-zero instructions).

3While the max-flow problem, like any problem in P, reduces to the knapsack problem, it
does not seem to be possible to have such a reduction in a way that preserves the bit-length
of the numerical parameters (the flow capacities). So the lower bound for max-flow does not
imply a lower bound for the knapsack problem.

Intuitively, there is good reason to believe that such a reduction does not exist. The subset-
sum problem is a “purely numerical” problem, in the sense that it has no combinatorial
structure whatsoever; hence the combinatorial structure of a max-flow problem (the graph
itself) will need to be somehow encoded in the numbers of the subset-sum problem we would
wish to reduce to; but this graph can be much larger than the bit-lengths of the edge weights.
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can carry W weight, with the added restriction that the items we pick must
orderly fit together according to a certain pattern Σ.

3.2.1. Definition. The 0–1 symmetric knapsack problem, which we denote
with SymK(n, a, b) for given integer parameters n, a, b ≥ 0 , is defined as the
following optimization problem: We are given v : [n] → [2a], w : [n] → [2b],
σ : [n] → S5, as well as W ∈ [2b],Σ ∈ S5, and then, going over all subsets
I ⊆ [n], we wish to

maximize
∑
i∈I v(i)

s.t.
∑
i∈I w(i) ≤W⊙
i∈I σ(i) = Σ

The notation �i∈Iσ(i) means the product of the elements σ(i) for i ∈ I, in
ascending order of i, and for completion we let �i∈∅σ(i) denote e, the identity
permutation. Note that the order is important since S5 is not commutative.

Throughout, we will assume that every w(i) ≤ W , since of course larger
items do not fit into the knapsack, and can be ignored.

The symmetric subset-sum problem, SymSS(n, b), is the problem of decid-
ing, when given an instance X = (v, w, σ,W,Σ) of SymK(n, b, b) with v = w,
if there exists a feasible solution matching the bound W :

3.2.2. Definition. The symmetric subset-sum problem SymSS(n, b) is de-
fined as the following decision problem: We are given w : [n]→ [2b], σ : [n]→
S5, W ∈ [2b], and Σ ∈ S5, and we wish to decide if there exists an I ⊆ [n] such
that

∑
i∈I w(i) = W and �i∈Iσ(i) = Σ.

Again it will be convenient to think of [n] as a set of items, w(i) as weights,
and σ(i) as patterns. Intuitively, our goal is now to find a choice of items
matching a specific weight with a specific pattern. Note that subset-sum is
defined as a decision problem whereas knapsack is defined as an optimization
problem. If the we restrict σi to be the identity of S5, we have the original
knapsack and subset-sum problems:

3.2.3. Definition. The 0–1 knapsack problem K(n, a, b) is SymK(n, a, b) re-
stricted to the case when σi,Σ are all e. The 0–1 subset-sum problem SS(n, b)
is defined in the same way.

3.2.4. Observation. The symmetric subset-sum problem, as defined here, is a
natural problem in the setting of non-commutative algebra, because it is a special
case of the subset-sum problem over general groups (studied in [81]). Indeed, to
an instance (w, σ,W,Σ) of SymSS(n, b) corresponds an instance of the subset-
sum problem over the symmetric group, as follows. Let M = p1 . . . pm be the
smallest product of the first m primes such that M > n2b, and let φ(w, σ) = (w
mod p1, . . . , w mod pm, σ) be the canonical (additive) group isomorphism from
ZM×S5 to Zp1

×· · ·×Zpm×S5, itself a subgroup of SB, with B = p1+. . .+pm+5.
Then there exists an I ⊆ [n] such that

∑
i∈I w(i) = W and �i∈Iσ(i) = Σ,

if and only if there exists an I ⊆ [n] such that �i∈Iφ(w(i), σ(i)) = φ(W,Σ),
and this latter problem is an instance of subset-sum over SB.

From m ≤ b log n and [20, §2.7], we get B ≤ (b log n)2 ln(b log n) + 5.
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3.3 Approximation algorithms: Old and new

Given an instance X = (v, w, σ,W,Σ) of symmetric knapsack, it will have
a unique optimum value m∗, corresponding to one (among possibly many)
optimal solution I∗.

The goal of an approximation algorithm is to estimate the (unknown) value
of m∗. The algorithm is said to achieve approximation ratio α if it always
outputs a value m such that m∗ ≤ αm.

3.3.1 Equivalence of approximation and exact solution for
small weights

A classical observation in the study of knapsack problems is that, modulo a
multiplicative factor of n, solving an n-item knapsack approximately to ratio 1+
ε is equivalent to solving instances of knapsack having integer values bounded
by 1

ε . This holds the exact same way for the symmetric variant.

3.3.1. Theorem. Let ε > 0; then each problem in the following list reduces to
the one below:

1. Solving SymK(n, a, b) with approximation ratio 1 + ε;

2. Solving SymK(n, log n+ log(1 + 1
ε ), b) exactly;

3. Solving SymK(n, a, b) with approximation ratio 1 + ε
n2 .

This theorem will allow us to prove both upper and lower bounds for ap-
proximation algorithms by ignoring the approximation ratio altogether, and
working with instances having small values v(i). The proof is standard [95],
and we write it here for completeness.

Proof. (1 reduces to 2) Let X = (v, w, σ,W,Σ) be an instance of SymK(n, a, b),
and let V = maxi v(i). Set t = log( ε

1+ε ·
V
n ), and make v′(i) = bv(i)/2tc.

Define X ′ to be X with v replaced by v′. Our approximate solution I will be
an optimal solution of X ′. Note that X ′ is an instance of SymK(n, a′, b) with
a′ = log n+log(1+ 1

ε ), and that furthermore since w, σ,W,Σ remain unchanged,
then any I feasible for X ′ will be feasible for X also (and vice-versa).

To conclude, we prove an upper bound on the approximation ratio. So let
m =

∑
i∈I v(i) be the value of I (i.e., m′ is the X-value of the X ′-optimal

solution), and m∗ the value of an optimal solution I∗ of X. Since X ′ is X with
the t least significant bits truncated, it is easy to see that m∗−m ≤ n2t. Since,
furthermore, V ≤ m∗, we conclude that

m∗ −m
m

≤ n2t

V

which implies, by simple algebraic manipulation and our choice of t, that

m∗ ≤
(

V

V − n2t

)
m ≤ (1 + ε)m.

Item 2 reduces to 3 via the following more general claim:
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3.3.2. Claim. Solving SymK(n, a, b) exactly reduces to solving SymK(n, a, b)
with approximation ratio 1 + 1

n2a .

This is almost trivial to see. Note that the optimum of any instance of
SymK(n, a, b) is bounded by m∗ ≤ n2a. Hence any value m such that m∗ ≤
(1 + 1

n2a )m will have m∗ −m ≤ m
(

1− 1
1+ 1

n2a

)
< 1, and so m∗ = m (as they

are both integers). �

3.3.3. Observation. When the inputs are given in binary, the above reduc-
tions can be computed by an NC0 circuit. When the inputs are given as numer-
ical parameters to Mulmuley’s PRAM model, the reductions can be computed
in time O(log n+ log(1 + 1

ε )) using O(n/ε) processors.

3.3.2 Dynamic programming algorithm and a FPTAS

We now show that the original dynamic programming algorithm for classical
0–1 knapsack [26], together with its derived FPTAS, will also work for the
symmetric knapsack problem. Again the proof is standard.

3.3.4. Theorem. There is a dynamic programming algorithm for finding the
optimum of SymK(n, a, b), in time O(n22aB), where B is the time required to
sum and compare (b+ log n)-bit numbers.

Proof. Let X = (v, w, σ,W,Σ) be an instance of SymK(n, a, b), and let V =
maxi v(i). Throughout the algorithm, I = I(k, ṽ, σ̃), for k ∈ [n], ṽ ∈ [nV ], σ̃ ∈
M, when defined, will denote a solution which:

(1) is a subset of [k], meaning i 6∈ I for i > k;

(2) has value
∑
i∈I v(i) = ṽ,

(3) pattern �i∈Iσ(i) = σ̃, and

(4) is weight-optimal, in the sense that
∑
i∈I w(i) is minimum among the

weights of all solutions obeying (1-3).

Now I is computed iteratively: for k = 1, we set I(1, 0, e) = ∅ and
I(1, v(1), σ(1)) = {1}, and let I(1, ṽ, σ̃) remain undefined for all other pairs
of ṽ and σ̃ — i.e., with only one item we can either put it in I with value v(1)
and pattern σ(1), or not put it in I, which results in value 0 and pattern e.

Suppose we have defined I up to k − 1. Then let I ′ = I(k − 1, ṽ, σ̃), and
I ′′ = I(k − 1, ṽ − v(k), σ̃σ−1

k ) ∪ {k}. Then we define I(k, ṽ, σ̃) to be equal to
the I among I ′ and I ′′ that has minimum weight.4 Again the same reasoning
applies (we can either put k into I or not), and in this way we prove that the
requirement of minimum weight is inductively maintained.

If we keep I andW as arrays in a random access memory, then each iteration
can be computed in time O(nV B) = O(n2aB).

4And undefined if I′ and I′′ are both undefined.
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Finally, the optimum solution for X is the highest value ṽ for which I =
I(n, ṽ,Σ) is defined, and has weight no greater than W . �

As in the original 0–1 knapsack problem, this algorithm can be used to
obtain an FPTAS.

3.3.5. Corollary. Solutions of SymK(n, a, b) achieving approximation ratio
1 + ε can be obtained in time O((1 + 1

ε )n3B).

3.3.3 A new, simple algorithm for small space and small
parallel time

We present a very simple algorithm, to our knowledge new, that solves subset-
sum in O(W logn) time using O(logW · log n) space. Notice that if W is at least
2Ω(n/ logn), then we can instead run the trivial O(n)-space algorithm that tries
every possible setting of the items, for an improved 2n time bound. So this al-
gorithm is only interesting for smaller values of W ; but because approximation
algorithms are equivalent to algorithms for small weights (Theorem 3.3.1) this
makes our algorithm particularly suitable for approximation.

Our algorithm can be made to work for both the subset-sum and knapsack
problems. It is a mix of ideas from two classical papers from the 70s: the meet-
in-the-middle algorithm [53], and the PSPACE hardness of alternating time
[93]. It can appropriately be called recursive meet-in-the-middle algorithm.

3.3.6. Theorem (Recursive meet-in-the-middle). There is an algorithm
for SS(n, b) that works in time O(W logn) and space O(logW · log n).

3.3.7. Observation. It is interesting to compare the time and space parame-
ters of our algorithm with those of [71]. In that paper, the authors present a
clever algorithm for subset-sum based on the use of an adequate Fourier trans-
form, which runs in time Õ(n2W logW ) and space Õ(n2). Our algorithm is
slower, but when applying it to solve subset-sum approximately, our algorithm
uses less space, because usually W � 2n/ logn in this scenario.

We will present the algorithm for the subset-sum problem first, and then
explain how it generalizes to the symmetric version and the knapsack problem.

Proof of Theorem 3.3.6. We show a recursive procedure for the following
problem: we are given an instance X = (w,W ) ∈ SS(n, b), and a value
m ∈ [W ]; we will output whether there exists a subset of items I ⊆ [n] such
that

∑
i∈I w(i) = m. The procedure works as follows:

(1) (Base case) If n = 1, we return true iff w(1) = m, else we return false.

(2) We go through each possible value m′ ≤ m;

(3) then we consider the partial problems X1 having the first half of the items,
and X2, having the second half;

(4) we recursively call our procedure on inputs X1,m
′ and X2,m −m′: if no

solution was found for either of the sub-problems, we move on to the next
choice of m′;
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(5) if solutions were found, return true.

(6) If we have gone through every value, we return false.

To see that we return true in case a solution exists, note that if I is a
solution of X having value m, then I1 = I ∩ {1, . . . , bn2 c} and I2 = I \ I1 will
have some values, respectively m1 and m2. Since I has value m, it must be
that m2 = m−m1; hence the algorithm will find some solution for X1 and X2

when calling (4) with m′ = m1 (here we assume inductively that solutions will
be found for smaller n).

Finally, an algorithm for SS(n, b) will call this procedure with m = W . To
bound the time and space used, we notice that the recursion has depth log n,
and each call in the stack uses O(logW ) space to store m and m′. �

By analyzing the algorithm above, we can see that it is given by an alter-
nation of ORs and ANDs. Let SS(X,m) mean that there exists a solution for
X of value m. Then it is clear that

SS(X,m) ⇐⇒
∨

m′∈[m]

[SS(X1,m
′) ∧ SS(X2,m−m′)] .

Expanding this out in a circuit gives us O(log n) layers. The bottom layer will
simply contain equality tests. Hence we conclude that:

3.3.8. Corollary. A parallel version of the algorithm can be implemented
with AC circuits of depth O(log n) and size O(W lognb), or in an arithmetic
PRAM with O(W logn) processors running for O(log n) time.

3.3.9. Observation. For the knapsack problem K[n, a, b], where w and v may
be distinct, each recursive call will look for solutions whose weight is at most
m, rather than exactly m, and maintain in memory the maximum value among
the admissible solutions found so far (rather than simply whether there exists
a solution or not); i.e., the recursion is now:

K(X,m) = max{K(X1,m
′) + K(X2,m−m′)|m′ ∈ [m]},

where K(X,m) is the maximum value attainable for the instance X with weight
up to m. The basic case is v(1) if w(1) ≤ m, and 0 otherwise. This is com-
putable serially in O(W logn) time and (logW + a) log n space, or by means of
an AC circuit of depth O(log n) and size O(W logn(a2W 2 + b)).5

3.4 Hardness of approximation

In the last few decades, theoretical computer science has classified most known
NP-hard optimization problems according to how close to the optimum solution
a polynomial time algorithm is likely to get. For instance, if P 6= NP, then it
holds that:

5To see this, notice that the maximum of W -many a-bit numbers can be computed by
AC circuits of size O(W 2a2), and the basic case can be computed by a circuit of size O(b).
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• For some constants c > c′, SetCover can be approximated to error ratio
c log n, but not c′ log n [88].

• For some constants c > c′, Max2Sat can be approximated to error ratio
c [68], but not c′ [50].

• The problem of finding an optimal multi-processor scheduling with speed
factors6 has a PTAS, but no FPTAS [44, 52].

It is now natural to ask: how about problems that do have a FPTAS, can we
prove that this kind of approximability is optimal, under a hardness assumption
of some kind? We now show that the answer is yes, and that in this context
the (much stronger) exponential-time hypothesis is the adequate choice.

3.4.1 Hardness of approximation for knapsack

Our strategy is the usual: we reduce a hard problem to the task of approxi-
mating subset-sum with ratio better than 1 + 1

poly .

3.4.1. Theorem. NC-Sat(S, k) ≤AC0
m SS(O(S + k), O(S + k)).

Proof. We will show that there is a uniform AC0 circuit which, given as input
a size-S circuit C(ȳ) over k variables ȳ = y1, . . . , yk, will output an instance
X = (w,W ) of

SS(2k + 3S, 2k + 4S + 1),

that admits a subset-sum of weight W if and only if C(ȳ) = 1 for some choice
of ȳ.

Suppose C is given as a sequence (G1, . . . , GS) of binary NAND gates, where
each gate Gj is defined by the two gates feeding into it (these could be input

gates or gates Gj′ for j′ < j). Then X will have two items Y
(0)
i and Y

(1)
i for

each i ∈ [k], and three items G
(00)
j , G

(01)
j , G

(10)
j for each NAND gate j ∈ [S]. We

will construct our knapsack instance in such a way that any optimal solution

must choose exactly one of the Y
(0)
i , Y

(1)
i items for each i ∈ [k], and exactly

one of the Gabj items for each j ∈ [S]. For any optimal solution, a choice of the
Y items will force a choice of gate items corresponding to an evaluation of the
circuit.

It will help comprehension if we present the weights of the items in our
instance both algebraically and in table form. For i ∈ [k], j ∈ [S], let c(i, j)
be 2 if input i is the first input of gate j, 1 if it is the second input, and 0
otherwise. Similarly with gates, for j, j′ ∈ [S], let d(j, j′) be 2 if gate j is the
first input of gate j′, 1 if it is the second input, and 0 otherwise. We will set

6This is the problem of scheduling tasks to processors of different speeds, while attempting
to minimize execution time. Hence each task t in a set of tasks T has a length l(t), and each
processor p in a set of processors P has a speed factor s(p). We wish to find an assignment
of the tasks f : T → P minimizing completion time: maxp∈P

∑
t:f(t)=p l(t)s(p).
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the weights to:

w(Y
(0)
i ) = 22(k−i) + 4S+1

w(Y
(1)
i ) = 22(k−i) + 4S+1 +

S∑
j=1

c(i, j)24(S−j)+1

w(G
(00)
j ) = (2 + 1)× 24(S−j)+1 +

S∑
j′=j+1

d(j, j′)24(S−j′)+1 + [j = S?]

w(G
(01)
j ) = (2 + 0)× 24(S−j)+1 +

S∑
j′=j+1

d(j, j′)24(S−j′)+1 + [j = S?]

w(G
(10)
j ) = (0 + 1)× 24(S−j)+1 +

S∑
j′=j+1

d(j, j′)24(S−j′)+1 + [j = S?]

(Recall that [j = S?] denotes 1 when j = S and 0 otherwise.) We set the
maximum weight to:

W =

k∑
i=1

22(k−i) + 4S+1 +

S∑
j=1

3× 24(S−j)+1 + 1

The DLOGTIME uniformity of the reduction follows from the simplicity
of the above expressions, which make the circuit computing the bits of the
instance very easy to describe. Some global lookup is required to compute the
functions c and d, which makes the reduction AC0, rather than simply NC0.7

Let us see what these numbers look like when written in binary. Since each
number is less than 22k+4S+1, we will write them in a table with k + S + 1
blocks. The first k blocks have two bits each, the middle blocks have four bits
each, and the last block has one bit.

w 1 . . . i . . . k G1 . . . Gj . . . Gj′ . . . GS out

Y
(0)
i 00 . . . 01 . . . 00 0000 . . . 0000 . . . 0000 . . . 0000 0

Y
(1)
i 00 . . . 01 . . . 00 c(i, 1) . . . c(i, j) . . . c(i, j′) . . . c(i, S) 0

G
(00)
j 00 . . . 00 . . . 00 0000 0 0011 . . . d(j, j′) . . . d(j, S) [j = S?]

G
(01)
j 00 . . . 00 . . . 00 0000 0 0010 . . . d(j, j′) . . . d(j, S) [j = S?]

G
(10)
j 00 . . . 00 . . . 00 0000 0 0001 . . . d(j, j′) . . . d(j, S) [j = S?]

. . .
W 01 . . . 01 . . . 01 0011 . . . 0011 . . . 0011 . . . 0011 1

It is vital to notice that in each column Gj there will be exactly five non-
zero entries: two correspond to the inputs, having binary form 10 and 01, and
three correspond to the gate Gj , and have binary form 11, 10 and 01. These
are chosen so that for any setting ab ∈ {0, 1}2 of the items corresponding to
the two inputs, then if we wish to achieve the maximum weight W , we will be

forced to pick the gate item G
(ab)
j . Formally, we wish to prove the following

claim, from which the theorem follows immediately.

7The encoding of the circuit could be changed to make this lookup easier.
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3.4.2. Claim. The solutions I of X having weight exactly W , are in 1–1 cor-
respondence with the assignments of ȳ causing C(ȳ) = 1.

Given a choice of ȳ, we can define the solution I(ȳ) inductively as follows:

• {Y (yi)
i } ⊆ I;

• For each gate Gj , we let

– aj = 1 if input i is the first input to gate j and Y
(1)
i ∈ I, or if gate

` is the first input to gate j and G
(a`b`)
` ∈ I; and aj = 0 otherwise;

– similarly for bj and the second input to gate j.

• Then G
(ajbj)
j ∈ I if aj and bj are not both 1.

This solution will have weight exactly W , if C(ȳ) = 1, and weight W − 1, if
C(ȳ) = 0. This can be seen easily by inspection of the table above: for instance,

if Gj = NAND(yi, yi′), yi = 1 and yi′ = 0, then Y
(1)
i contributes (binary)

weight 10 to column Gj , Y
(0)
i contributes weight 0, and G

(10)
j contributes weight

01, for a total of 11, which is exactly W for that column. The final column will
be 1 iff the output gate GS evaluates to 1.

To complete the proof of the claim, and hence of the theorem, it suffices
to show that any solution achieving weight W must be of the form I(ȳ) for
some unique choice of ȳ. Let I be any solution with total weight W . Again
by inspection of the table above, we will find that, for each i, exactly one of

Y
(0)
i or Y

(1)
i must be in I. This follows by letting i be the hypothetical first

coordinate where this fails to hold: if both Y
(0)
i and Y

(1)
i are in I, then the

total weight will surpass W , and if both Y
(0)
i and Y

(1)
i are missed, the total

weight must be less than W because of the low weight of the items which are

yet to be fixed.8 So let Y
(yi)
i , for i ∈ [k], give us the set of chosen Y items.

Then again in an inductive fashion we establish that for each gate Gj we must

pick at most one item among G
(ab)
j , exactly as defined in I(ȳ): again it holds

that this is the unique choice which fits the weight W exactly right. �

This allows us to obtain a hardness-of-approximation result for the knapsack
problem:

3.4.3. Corollary. For every f(n) = ω(1), there exists g(n) = ω(n), such
that if subset-sum can be approximated to ratio 1 + n−f(n) in polynomial time,
then NC-Sat(g(n), g(n)) ⊆ DTIME(2o(n)) and the Exponential–Time Hypoth-
esis is false.

Proof. If subset-sum can be approximated thus, then by Claim 3.3.2 (more
precisely, by the analogous claim for subset-sum), we can solve SS(n, h(n) log n)
in time nc, for some non-decreasing super-constant h(n). By an appropriate

8Here it is worth pointing out: this is the reason we need to “pad” each block of the
weights with additional bits. This bears some resemblance to the superincreasing sequences
used in the Merkle-Hellman knapsack cryptosystem.
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substitution (say n← 2n/
√
h(n)), this implies we can solve SS(2n, ω(n)) in time

2o(n). By the previous theorem we can now conclude that NC-Sat(ω(n), ω(n))
can be solved in time 2o(n).

In particular this implies that the satisfiability of 3CNF formulas with ω(n)-
many clauses can be decided in time 2o(n) But the sparsification lemma of [57]
will then imply that the satisfiability of 3CNF formulas of any size can also be
decided in time 2o(n), i.e., that the Exponential–Time Hypothesis is false.

More precisely, the sparsification lemma states that there is a function f
such that, for any ε > 0, any 3CNF formula is equivalent to the OR of O(2εn)
3CNF formulas in which the number of clauses is f(ε)n, and these formulas
can be produced in time poly(n)2εn. Hence we let ε = ε(n) = o(1) decrease
slowly enough, causing f(ε(n)) = ω(1) to be sufficiently small, so that we can
solve 3CNF formulas with f(ε(n))n clauses in time 2o(n). Then producing and
evaluating the big OR of 3CNFs would take time poly(n)22εn+o(n) = 2o(n) in
total. �

Notice that this result is optimal, since for any constant c it is possible to
approximate knapsack to ratio 1 + 1

nc in polynomial time.

3.4.2 Hardness of approximation for symmetric knapsack

It is immediate to see that SymSS(n, n) is NP-hard, since it includes the
original subset-sum problem as a special case. However, the addition of a small
amount of combinatorial structure to the problem will allow for a hardness
result where the bit-length of the weights only depends logarithmically on the
formula size.

3.4.4. Theorem. NC1-Sat(S, k) ≤AC0
m SymSS(O(S2 + k), O(k logS)).

Proof. We will show that there is a uniform AC0 circuit which, given as input
a width-5 permutation branching program P (ȳ) over k variables ȳ = y1, . . . , yk
having size S, will output an instance X = (w, σ,W,Σ) of

SymSS(2(k + S), k(2 + `(S))), (`(S) = dlogS + 1e)

that admits a subset-sum of weight W if and only if P (ȳ) = e for some choice
of ȳ. The result then follows by Barrington’s theorem [24], which states that
any NC0 circuit can be evaluated by such a width-5 branching program.

So let P = {(j, zj , αj , βj)}Sj=1, with zj ∈ [k], αj , βj ∈ S5. We will always
use i to index the y’s, and j to index the instructions of P .

In our symmetric subset-sum problem, we will have two items for each

possible y, denoted by Y
(1)
i and Y

(0)
i ; these items represent the possible as-

signments of the respective variable. We will also have two items for each
instruction, denoted by Aj and Bj , which represent the choice of either αj or
βj .

We will construct our knapsack instance in such a way that the optimal

solution will choose exactly one of the Y
(0)
i , Y

(1)
i items for each i, and this

choice will force the correct choice of either Aj or Bj , whenever yi is the variable
consulted in the j-th instruction of P (i.e., whenever zj = i). If we choose to
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take item Y
(0)
i , for instance, then, in order to achieve weight W , we will be

forced to always pick every Aj whenever zj = i, and won’t be able to pick any
of the Bj .

Let N(i) ≤ S denote the number of times that yi is consulted by P , i.e.,
the number of j such that zj = i, and make ` = dlogS + 1e, so that each
N(i) < 2` − 1.

As before, we present the weights of the items in our instance both alge-
braically and in table form.

We will set the weights to:

w(Y
(0)
i ) = 22(k−i) + 2k` +N(i)22(k−i)`

w(Y
(1)
i ) = 22(k−i) + 2k` +N(i)2`+2(k−i)`

if zj = i, then w(Aj) = 2`+2(k−i)`

and w(Bj) = 22(k−i)`

We set the maximum weight to:

W =

k∑
i=1

22(k−i) + 2k` +N(i)
(

22(k−i)` + 2`+2(k−i)`
)
.

The DLOGTIME uniformity of the reduction follows from the simplicity
of the above expressions, which make the circuit computing the bits of the
instance very easy to describe. Sum is required to compute N(i), which makes
the reduction AC0, rather than simply NC0.

Let us again see what these numbers look like in table form. Since each
number is less than 22k + 2k`, we will write them in a table with 3k blocks. The
first k blocks have two bits each, and the last 2k blocks have ` bits each:

w 1 . . . i . . . k A(1) B(1) . . . A(i) B(i) . . . A(k) B(k)

Y
(0)
i 00 . . . 01 . . . 00 0 0 . . . 0 N(i) . . . 0 0

Y
(1)
i 00 . . . 01 . . . 00 0 0 . . . N(i) 0 . . . 0 0

Aj |zj=i 00 . . . 00 . . . 00 0 0 . . . 1 0 . . . 0 0
Bj |zj=i 00 . . . 00 . . . 00 0 0 . . . 0 1 . . . 0 0

. . .
W 01 . . . 01 . . . 01 N(1) N(1) . . . N(i) N(i) . . . N(k) N(k)

Finally, we set σ(Y
(0)
i ) = σ(Y

(1)
i ) = e, σ(Aj) = αj and σ(Bj) = βj . Fur-

thermore, in our sorting of the items (which is relevant for the outcome of
�iσ(i)), we ensure that the items Aj , Bj appear in growing order of j.

Here, our result follows from the following claim by setting Σ = e:

3.4.5. Claim. The solutions I of X having weight exactly W and pattern Σ,
are in 1–1 correspondence with the assignments of ȳ causing P (ȳ) = Σ.

To see this, notice that given a choice of ȳ, we define the solution I(ȳ) =

{Y (yi)
i }∪{Aj |zj = i∧yi = 0}∪{Bj |zj = i∧yi = 1}, and this solution will have



3.5. Lower bounds for parallel time 53

weight exactly W , and pattern P (ȳ). This can be seen easily by inspection of

the table above: for instance, if yi = 0, the choice of Y
(0)
i contributes weight

1 to the i-th column of the i-th block, and weight N(i) to the column B(i);
then the choice of N(i)-many Aj variables will contribute with a total weight
of N(i) to the column A(i). Now the pattern of I(ȳ) will simply be P (ȳ), by
construction.

To complete the proof of the claim, and hence of the theorem, it suffices
to show that any solution achieving weight W must be of the form I(ȳ) for
some unique choice of ȳ. Let I be any solution with total weight W . Again
by inspection of the table above, we will find that, for each i, exactly one of

Y
(0)
i or Y

(1)
i must be in I. This follows by letting i be the hypothetical first

coordinate where this fails to hold: if both Y
(0)
i and Y

(1)
i are missed, the total

weight will be less than W , and if both Y
(0)
i and Y

(1)
i are in I, then the total

weight will surpass W . So let Y
(yi)
i , for i ∈ [k], give us the set of chosen Y

items. In the same way as before, it is easy to see that, for each i, every Aj
with zj = i must be picked, if yi = 0, or otherwise every corresponding Bj
must be picked. Hence I = I(ȳ), as intended. �

Let us instantiate k, in order to see what kind of parameters show up:

3.4.6. Corollary. Symmetric knapsack cannot be approximated to ratio 1 +
2−(logn)3

in polynomial time, unless ∃NC1((log n)2) ⊆ P.

3.5 Lower bounds for parallel time

We will now prove that the knapsack problem cannot be efficiently parallelized
in Mulmuley’s model. The hardness of knapsack has already been proven in
[90] in the fully-algebraic setting, and now we present a proof for the opti-
mization version of subset-sum in the semi-algebraic setting. We do this using
Mulmuley’s parametric complexity technique. We will stick to the least general
definition that applies to the subset-sum case.

The optimization version of subset-sum is simply the knapsack problem
restricted to the case where the values of the items equal their weights; i.e., we
are given (w̄,W ) and we wish to compute:

S(w̄,W ) = max{ā · w̄|ā ∈ {0, 1}n and ā · w̄ ≤W}

We will now refer to the problem of computing S as simply the knapsack
problem. A linear parametrization for the knapsack problem is a function Pn :
R → Rn+1 mapping some interval [A,B] into instances (w̄,W ), where W is
fixed and each wi is given by a linear function of a single parameter λ. Pn is
said to have bit-length β = β(n) if all the coefficients of these linear functions
are integers of bit-length β. For each λ ∈ [A,B], let m(λ) = S(Pn(λ)).9 Then
it is easy to see that m(λ) is a piecewise-linear and convex function of λ. The

9Here we extend the knapsack problem to the reals. This can easily be done due to it
being a homogeneous optimization problem, i.e. S(αw̄, αW ) = αS(w̄,W ) for any constant
α. We could avoid this entirely, except that it makes the definitions easier to visualize.
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complexity ρ(n) of Pn is then the number of different slopes of m(λ) as λ goes
from A to B.

The parametric complexity of the knapsack problem for bit-length β(n),
φ(n, β(n)), is equal to the maximum complexity ρ(n), over all parametrizations
Pn of bit-length β(n). Now let us define the following decision version of the
knapsack problem: An = {(w̄,W, z)|S(w̄,W ) ≤ z}. Then the following is
proven in [77]:

3.5.1. Theorem (Theorem 3.3 of [77]). There exist large enough constants

a, b such that An cannot be solved in KC(2
√

log φ(n,β(n))/b,
√

log φ(n, β(n))/b);
this is so even if we restrict every numeric parameter in the input to be an
integer with bit-length at most aβ(n).

Below we will prove exponential lower bounds on φ(O(n2), O(n2)), which

imply that An is not in KC(2n
1
4 /b, n

1
4 /b), even for instances where each weight

has at most an bits. This is a stronger setting than the results in [90], which
prove that subset-sum is not in KC(2

√
n/b,
√
n/b), but without any restriction

on the bit-length at which the hard instances will be found. Unfortunately we
were unable to show a parallel algebraic reduction from An to subset-sum, and
hence our results hold only for the knapsack problem, rather than subset-sum.

3.5.1 High parametric complexity for knapsack

3.5.2. Theorem. φ(O(n2), O(n2)) ≥ 2n. Hence An is not in KC(2n
1
4 /b, n

1
4 /b),

even for bit-lengths restricted to O(n).

The proofs require a careful blending of the techniques of Theorem 3.4.1
and of the paper [77].

Proof. We will construct a linear parametrization P (λ) : [0, 2k] → SS(O(k +
K), O(k+K)) such that the weight of each item in P (λ) is a linear function of
λ ∈ [0, 2k], and such that the graph of the optimum value m(λ) of P (λ) will be
a piecewise linear convex graph with 2k-many different slopes. The hardness
then follows from Theorem 3.5.1.

Let ȳ = y1, . . . , yk+K denote binary vectors of length k+K = k+ k(k−1)
2 . For

1 ≤ i1 < i2 ≤ k, we let (i1, i2) stand for some bijection with k + 1, . . . , k +K,
and we make use of the notation y(i1,i2) for convenience.

Let C(ȳ) be the formula:∧
1≤i1<i2≤k

(
y(i1,i2) = yi1 ∧ ¬yi2

)
, (3.1)

and let X = XC be the corresponding subset-sum instance given by Theorem
3.4.1. Since C can be implemented by an NC circuit with 10K NAND gates,
then X will have 2k + 30K items and the weights have bit-lengths at most
2k + 40K + 1.
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Our P (λ) will have the same items as X, namely for each variable yi there

are two items designated Y
(0)
j and Y

(1)
j ,10 and we will use the generic desig-

nation Cj , for j = 1, . . . , 30K, to denote the remaining items11. However, the
weights of P (λ) will be different: although the most significant bits of P (λ)
will be set in the same way as in X (and thus do not depend on λ), the least
significant bits will be set so that as λ goes from 0 to 2k, the optimum value
of P (λ) will have 2k-many different slopes.

Again we will present P (λ) both numerically and in table form. Let wX
and WX denote the weights of X. We will set the weights of P (λ) as follows:

w(Y
(0)
i ) = 2k(k+5)wX(Y

(0)
i ) + f

(0)
i (λ)

w(Y
(1)
i ) = 2k(k+5)wX(Y

(1)
i ) + f

(1)
i (λ)

w(Cj) = 2k(k+5)wX(Cj)

W = 2k(k+5)WX + 2k(k+5) − 1

We define f as follows:

for 1 ≤ i ≤ k, f (0)
i (λ) = 2(k−i)(k+5)(2k−i+1 − λ)

f
(1)
i (λ) = 2(k−i)(k+5)(2k−i)

for 1 ≤ i1 < i2 ≤ k, f
(0)
(i1,i2)(λ) = 0

f
(1)
(i1,i2)(λ) = 2(k−i2)(k+5)2k−i1

Notice that the weights w are a left shift of wX by k(k+5) bits, except for the

items Y
(0)
j and Y

(1)
j , who additionally get a least-significant value parametrized

by λ. See also that the values of f , written in binary, can be partitioned into
k blocks of k + 5 bits each.

Let us illustrate this with the following table:

(2k + 40K + 1 bits) 1 . . . i . . . k

Y
(0)
i Thm. 3.4.1 0 . . . 2k−i+1 − λ . . . 0

Y
(1)
i Thm. 3.4.1 0 . . . 2k−i . . . 0

Y
(0)
(i1,i)
|i1<i Thm. 3.4.1 0 . . . 0 . . . 0

Y
(1)
(i1,i)
|i1<i Thm. 3.4.1 0 . . . 2k−i1 . . . 0

W Thm. 3.4.1 2k+5 − 1 . . . 2k+5 − 1 . . . 2k+5 − 1

The similarity with Theorem 3.4.1 ensures that we must pick exactly one of

Y
(0)
i and Y

(1)
i , and that C(ȳ) = 1 for the vector ȳ corresponding to this choice,

i.e.:

10We will also use the notation Y
(0)
(i1,i2)

, Y
(1)
(i1,i2)

to denote the items corresponding to the

variable y(i1,i2).
11By this we mean that each Cj , for j = 1, . . . , 30K, is one of the three items

G
′(00)
j , G

′(01)
j , G

′(10)
j for some j′, that appear in the proof of Theorem 3.4.1. We group

them together because we will treat them in the exact same way.
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3.5.3. Claim. Each optimal solution of P (λ) corresponds to a unique choice
of ȳ obeying equation (3.1).

The proof of this claim is exactly as before. The correspondence is no
longer bijective, since there might be values of ȳ obeying 3.1 which have sub-
optimal value due to f . However, any solution which is optimal up to the first
2k + 40K + 1 bits must already satisfy the formula C, and in this case these
bits must be set to WX as in the proof of Theorem 3.4.1. We take this one step
further, by noticing that (3.1) fully determines ȳ from the first k bits y1, . . . , yk.

So let ŷ denote y1, . . . , yk, and I(ŷ) be the solution containing the items

Y
(yi)
i , Y

(y1∧¬y2)
(i1,i2) , and the corresponding Cj ’s that simulate the computation of

the circuit. Notice that I(ŷ) maximizes the first 2k+ 10K + 1 bits of the value
to be exactly WX : so we define gλ : {0, 1}k → [2k(k+5)− 1], to be the optimum
of I(ŷ) minus 2k(k+5)WX . Now the following claim holds:

3.5.4. Claim. ŷ 7→ I(ŷ) is a bijective correspondence between {0, 1}k and so-
lutions of P (λ) having value at least 2k(k+5)WX . Furthermore, the optimum
solutions of P (λ) are those I(ŷ) which maximize gλ(ŷ).

From this we may define m∗(λ) = maxŷ∈{0,1}k gλ(ŷ), and this will be the

value of the optimum solution of P (λ), minus 2k(k+5)WX . The instance P (λ)
was constructed so that the optimum is given exactly by λ:

3.5.5. Claim. For a given λ ∈ [0, 2k) of the form λ = bλc+ ∆,∆ ∈ ( 1
4 ,

3
4 ), the

maximum value of gλ(ŷ) is attained when ŷ is the binary expansion of bλc.

We now prove this claim. Fix some choice ŷ = y1, . . . , yk. Then, by sum-
ming over the columns of the above table, and by equation (3.1), one sees that
the following formula holds:

gλ(ŷ) =

k∑
i=1

(
yi2

k−i + (1− yi)

(
2k−i+1 − λ+

∑
i1<i

yi12k−i1

))
2(k−i)(k+5)

(3.2)

Take the binary expansion of bλc = λ12k−1 + . . .+λk20. We prove that the
maximum of gλ is achieved when ŷ = λ1 . . . λk. For any ŷ 6= λ1 . . . λk, let d be
the first bit for which λd 6= yd. Then we let ỹ = λ1 . . . λdyd+1 . . . yk, and show
that gλ(ỹ) ≥ gλ(ŷ).

Let g
(i)
λ (ŷ)2(k−i)(k+5) be the i-th term in the summand of equation (3.2),

and Gi = g
(i)
λ (ỹ)− g(i)

λ (ŷ). Then Gi = 0 for i < d, and so

gλ(ỹ)− gλ(ŷ) = Gd2
(k−d)(k+5) +

∑
i>d

Gi2
(k−i)(k+5).
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We may lower bound Gd as follows:

Gd = (λd − yd)2k−d + (yd − λd)

(
2k−d+1 − λ+

∑
i1<d

λi12k−i1

)

= (λd − yd)

(
λd2

k−d − 2k−d + ∆ +
∑
i>d

λi2
k−i

)

≥ min(∆, 1−∆) ≥ 1

4

Since every |Gi| is upper bounded by 2k+3, it now follows that

gλ(ỹ)− gλ(ŷ) ≥ Gd2(k−d)(k+5) −
∑
i>d

|Gi|2(k−i)(k+5) > 0,

and the claim is proven.
Finally, we establish that the parametric complexity of knapsack is Ω(2k):

3.5.6. Claim. The slope of m∗(λ) is unique for each interval

(bλc+
1

4
, bλc+

3

4
) ⊂ [0, 2k].

Looking at equation 3.2, from the previous claim it follows that m∗(λ) =
gλ(bλc), which simplifies to the linear form:

m∗(λ) = gλ(λ1, . . . , λk) =
∑
i:λi=1

2(k−i)(k+5)λ+Abλc

for some constant Abλc. And so each binary expansion of bλc gives rise to a
unique slope. �

We now state the consequences for parallel algorithms attempting to ap-
proximate the knapsack problem.

3.5.7. Corollary. Knapsack instances with n items cannot be approximated

with error ratio 1 + ε in time (log 1
ε )

1
4 /a, and using 2(log 1

ε )
1
4 /a processors,

for some positive constant a, in Mulmuley’s parallel PRAM model without bit
operations.

Proof. By the same proof as in Claim 3.3.2 we can show that optimally solving
a knapsack instance (having v = w) with n items and bit-length n reduces
to solving the same knapsack instance with error ratio 1 + 1

n2n . So setting

1
ε = n2n, by Theorem 3.5.2 this cannot be done in KC(2n

1
4 /b, n

1
4 /b) for some

b, and hence neither in KC(2(log 1
ε )

1
4 /a, (log 1

ε )
1
4 /a) for some larger a. �

From our construction we also derive a new lower-bound for solving knap-
sack exactly, which matches the lower bound Mulmuley [77] proved for max-
flow.

3.5.8. Corollary. Knapsack instances with n items and bit-length O(n2)
cannot be solved in time

√
n/a, using 2

√
n/a processors, for some positive con-

stant a, in Mulmuley’s parallel PRAM model without bit operations.
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3.6 Open Problems

We consider the following two open problems worthy of further research. First,
we have proven a lower bound for the optimization version of the subset-sum
problem (the problem of computing S(w̄,W ) exactly), even in the case of small
input bit-lengths. Can we prove a lower bound for the decision version of
subset-sum? Surprisingly, there is a reduction from the optimization version
to the decision version [cf. 82], but this reduction is not algebraic, or even
semi-algebraic, and so the question remains open.

Second, we have proven that we can approximate knapsack up to error
1 + ε in log n time with ( 1

ε )logn processors, and that we cannot do it in time

(log 1
ε )

1
4 /a, and using 2(log 1

ε )
1
4 /a processors. Can this gap be closed?



Chapter 4

Towards a reverse Newman’s theorem
in information complexity

Newman’s theorem states that we can take any public-coin communication
protocol and convert it into one that uses only private randomness with but a
little increase in communication complexity. We consider a reversed scenario
in the context of information complexity: can we take a protocol that uses
private randomness and convert it into one that only uses public randomness
while preserving the information revealed to each player?

We prove that the answer is yes, at least for protocols that use a bounded
number of rounds. As an application, we prove new direct sum theorems
through the compression of interactive communication in the bounded-round
setting. To obtain this application, we prove a new one-shot variant of the
Slepian-Wolf coding theorem, interesting in its own right.

Furthermore, we show that if a Reverse Newman’s Theorem can be proven
in full generality, then full compression of interactive communication and fully-
general direct-sum theorems will result.

The results in this chapter are based on the paper:

• Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speel-
man, and Nikolay Vereshchagin. Towards a reverse Newman’s theorem
in interactive information complexity. In Proceedings of the 23rd CCC,
pages 24–33, 2013.

4.1 Introduction

Information cost was introduced by a series of papers [42, 22, 59, 23, 29] as a
complexity measure for two-player communication protocols. Internal informa-
tion cost measures the amount of information that each player learns about the
input of the other player while executing a given protocol. In the usual setting
of communication complexity we have two players, Alice and Bob, each having
an input x and y, respectively. Their goal is to determine the value f(x, y) for
some predetermined function f . They achieve the goal by communicating to
each other some amount of information about their inputs according to some
protocol.

59
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The usual measure considered in this setting is the number of bits ex-
changed by Alice and Bob, whereas the internal information cost measures
the amount of information transferred between the players during the commu-
nication. Clearly, the amount of information is upper bounded by the number
of bits exchanged but not vice versa. There might be a lengthy protocol (say
even of exponential size) that reveals very little information about the players’
inputs.

In recent years, a substantial research effort was devoted to proving the
converse relationship between the information cost and the length of protocols,
i.e., to proving that a protocol which reveals only I bits of information can be
simulated by a different protocol which communicates only (roughly) I bits.
Such results are known as compression theorems. [23] prove that a protocol
that communicates C bits and has internal information cost I can be replaced
by another protocol that communicates O(

√
I · C) bits. For the case when the

inputs of Alice and Bob are sampled from independent distributions they also
obtain a protocol that communicates O(I ·logC) bits. These conversions do not
preserve the number of rounds. In a follow-up paper, [29] consider a bounded
round setting and give a technique that converts the original q-round protocol
into a protocol with O(q · log I) rounds that communicates O(I + q log q

ε ) bits
with additional error ε.

All known compression theorems are in the randomized setting. We distin-
guish two types of randomness — public and private. Public random bits are
seen by both communicating players, and both players can take actions based
on these bits. Private random bits are seen only by one of the parties, either
Alice or Bob. We use public-coin (private-coin) to denote protocols that use
only public (private) randomness. If a protocol uses both public and private
randomness, we call it a mixed-coin protocol.

Simulating a private-coin protocol using public randomness is straightfor-
ward: Alice views a part of the public random bits as her private random bits,
Bob does the same using some other portion of the public bits, and they com-
municate according to the original private-coin protocol. This new protocol
communicates the same number of bits as the original protocol and computes
the same function. In the other direction, an efficient simulation of a public-
coin protocol using private randomness is provided by Newman’s Theorem [83].
Sending over Alice’s private random bits to make them public could in gen-
eral be costly as they may need e.g., polynomially many public random bits,
but Newman showed that it suffices for Alice to transfer only O(log n+ log 1

δ )
random bits to be able to simulate the original public-coin protocol, up to an
additional error of δ.

In the setting of information cost the situation is quite the opposite. Simu-
lating public randomness by private randomness is straightforward: one of the
players sends a part of his private random bits to the other player and then
they run the original protocol using these bits as the public randomness. Since
the random bits contain no information about either input, this simulation re-
veals no additional information about the inputs; thus the information cost of
the protocol stays the same. This is despite the fact that the new protocol may
communicate many more bits than the original one.
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However, the conversion of a private-randomness protocol into a public-
randomness protocol seems significantly harder. For instance, consider a pro-
tocol in which in the first round Alice sends to Bob her input x bit-wise XOR-ed
with her private randomness. Such a message does not reveal any information
to Bob about Alice’s input — as from Bob’s perspective he observes a random
string — but were Alice to reveal her private randomness to Bob, he would
learn her complete input x. This illustrates the difficulty in converting private
randomness into public.

We will generally call “Reverse Newman’s Theorem” (R.N.T.) a result that
makes randomness public in an interactive protocol without revealing more
information. This chapter is devoted to attacking the following:

R.N.T. Question. Can we take a private-coin protocol with in-
formation cost I and convert it into a public-coin protocol with the
same behavior and information cost Õ(I)?

Interestingly, the known compression theorems [23, 29, 60] give compressed
protocols that use only public randomness, and hence as a by-product they give
a conversion of private-randomness protocols into public-randomness equiva-
lents. However, the parameters of this conversion are far from the desired ones.1

In Section 4.4 we show that the R.N.T. question represents the core difficulty in
proving full compression theorems; namely, we will prove that any public-coin
protocol that reveals I bits of information can already be compressed to a pro-
tocol that uses Õ(I) bits of communication, and hence a fully general R.N.T.
would result in fully general compression results, together with the direct-sum
results that would follow as a consequence. This was discovered independently
by Denis Pankratov, who in his MSc thesis [86] extended the analysis of the
[23] compression schemes to show that they achieve full compression in the case
when only public randomness is used. Our compression scheme is similar but
slightly different: we discovered it originally while studying the compression
problem in a Kolmogorov complexity setting (as in [35]), and our proof for the
Shannon setting arises from the proper “translation” of this proof; we include
it for completeness and because we think it makes for a more elementary proof.

4.1.1 Main results

Our main contribution is a Reverse Newman’s Theorem in the bounded-round
scenario. We will show that any q-round private-coin protocol can be converted
to an O(q)-round public-coin protocol that reveals only additional Õ(q) bits of
information (Theorem 4.3.1). Our techniques are new and interesting. Our
main technical tool is a conversion of one-round private-randomness protocols
into one-round public-randomness protocols. This conversion proceeds in two
main steps. After discretizing the protocol so that the private randomness is
sampled uniformly from some finite domain, we convert the protocol into what
we call a 1-1 protocol, which is a protocol having the property that for each
input and each message there is at most one choice of private random bits that

1We discuss the differences in more detail in Section 4.5.
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will lead the players to send that message. We show that such a conversion can
be done without revealing too much extra information. In the second step we
take any 1-1 protocol and convert it into a public-coin protocol while leaking
only a small additional amount of information about the input. This part relies
on constructing special bipartite graphs that contain a large matching between
the right partition and any large subset of left vertices.

Furthermore, we will prove two compression results for public-randomness
protocols: a round-preserving compression scheme to be used in the bounded-
round case, and a general (not round-preserving) compression scheme which
can be used with a fully general R.N.T. Either of these protocols achieves
much better parameters than those currently available for general protocols
(that make use of private randomness as well as public). The round-preserving
compression scheme is essentially a constant-round average-case one-shot ver-
sion of the Slepian-Wolf coding theorem [92], and is interesting in its own right.

As a result of our R.N.T. and our round-preserving compression scheme,
we will get a new compression result for general (mixed-coin) bounded-round
protocols. Whereas previous results for the bounded-round scenario [29] gave
compression schemes with communication complexity similar to our own result,
their protocols were not round-preserving. We prove that a q-round protocol
that reveals I bits of information can be compressed to an O(q)-round protocol
that communicates O(I + 1) + q log( qnδ ) bits, with additional error δ. As a
consequence we will also improve the bounded-round direct-sum theorem of
[29].

Organization of the chapter. In Section 4.3 we discuss our Reverse
Newman’s Theorem. In Section 4.4 we will prove our compression results.
Section 4.5 will give applications to direct-sum theorems. Finally, Section 4.6
is dedicated to showing alternatives to the constructions we have presented, as
well as bounds that prevent further improvement to our techniques.

4.2 Preliminaries

We use capital letters to denote random variables, calligraphic letters to denote
sets, and lower-case letters to denote elements in the corresponding sets. So
typically A is a random variable distributed over the set A, and a is an element
of A. We will also use capital and lower-case letters to denote integers num-
bering or indexing certain sequences. We use ∆ (A,A′) to denote the statistical
distance between random variables A and A′:

∆ (A,A′) =
1

2

∑
a∈A
|Pr[A = a]− Pr[A′ = a]| .

4.2.1 Information theory

For a given probability random variable A distributed over the support A, its
entropy is

H(A) =
∑
a∈A

pa log
1

pa
,
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where pa = Pr[A = a]. Given a second random variable B that has a joint
distribution with A, the conditional entropy H(A|B) equals

Eb∈B [H(A|B = b)].

In this chapter, and when clear from the context, we denote a conditional
distribution A|B = b more succinctly by A|b.

4.2.1. Fact. If A has n possible outcomes then

H(A) ≤ log n.

4.2.2. Fact.

H(A|B) ≤ H(A) ≤ H(A,B), H(A|B,C) ≤ H(A|C) ≤ H(A,B|C).

4.2.3. Fact.

H(A,B) = H(A) +H(B|A), H(A,B|C) = H(A|C) +H(B|A,C).

We let I(A : B) denote the Shannon mutual information between A and
B, and I(A : B|C) denote the Shannon mutual information between A and B,
conditional on C:

I(A : B) = H(A)−H(A|B) = H(B)−H(B|A),

I(A : B|C) = H(A|C)−H(A|B,C) = H(B|C)−H(B|A,C).

Notice that I(A : B|C) may be larger than I(A : B), for instance when C
is the bitwise XOR of independent A and B.

4.2.4. Fact. The following equality is called chain rule:

I(A1, . . . , Ak : B|C) = I(A1 : B|C) +

k∑
i=2

I(Ai : B|C,A1, . . . , Ai−1)

Here A1, . . . , Ak stands for a random variable in the set of k-tuples and Ai
stands for its ith projection.

4.2.5. Fact. A and B are independent conditional on C (which means that
whatever outcome c of C we fix, A and B become independent conditional on
the event C = c) if and only if I(A : B|C) = 0.

4.2.6. Fact. If A and B are independent conditional on D then

I(A : C|B,D) = I(A : BC|D) ≤ I(A : C|D).

4.2.7. Fact. If A and C are independent conditional on the pair B,D then

I(A : B,C|D) = I(A : B|D).
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4.2.8. Fact. For any two random variables A,B over the same universe U , it
holds that

H(A)−H(B) ≤ log(|U|)∆ (A,B) + 1,

Proof. For each u in U , let cu = min{Pr[A = u],Pr[B = u]}, au = |Pr[A =
u] − cu| and bu = |Pr[B = u] − cu|. Then δ := ∆ (A,B) =

∑
u au =

∑
u bu,

and 1− δ =
∑
u cu.

So let µc, µa, µb be distributions, with µc(u) = cu/(1 − δ), µa(u) = au/δ,
and µb(u) = bu/δ. Then we can think of A as being generated by tossing a
coin A′ with bias Pr[A′ = 1] = δ, and if A′ = 1, then we sample according to
µa, and if A′ = 0, we sample according to µc. Similary we think of B as being
generatedby the toss of a coin B′ with the same bias, then sampling according
to µb if B′ = 1, and according to µc otherwise.

It now follows that:

H(A) ≤ H(A,A′) = H(A′) +H(A|A′) = H2(δ) + (1− δ)H(µc) + δH(µa),

where H2 is the binary entropy function. On the other hand,

H(B) ≥ H(B|B′) ≥ (1− δ)H(µc).

This gives us the claimed bound, since H(µa) ≤ log |U| and H2(δ) ≤ 1. �

4.2.2 Two-player protocols

We will be dealing with protocols that have both public and private random-
ness; this is not very common, so we will give the full definitions, which are
essentially those of [23, 29]. We will be working exclusively in the distribu-
tional setting, meaning that our inputs will be drawn from some distribution,
and we will be interested in the average case communication complexity, round
complexity, etc. From here onwards, we will assume that the input is given
to two players, Alice and Bob, by way of two random variables X,Y sampled
from a possibly correlated distribution µ over the support X × Y.

A private-coin protocol π with output set Z is defined as a rooted tree,
called the protocol tree, in the following way:

1. Each non-leaf node is owned by either Alice or Bob.
2. If v is a non-leaf node belonging to Alice, then:

(a) The children of v are owned by Bob; each child is labeled with a
binary string, and the set C(v) of labels of v’s children is prefix-free.

(b) Associated with v is a set Rv, and a function Mv : X ×Rv → C(v).

3. The situation is analogous for Bob’s nodes.
4. With each leaf we associate an output value in Z.

On input x, y the protocol is executed as follows:

1. Set v to be the root of the protocol tree.
2. If v is a leaf, the protocol ends and outputs the value associated with v.
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3. If v is owned by Alice, she picks a string rA,v uniformly at random fromRv
and sends the label of Mv(x, rA,v) to Bob, they both set v := Mv(x, rA,v),
and return to step 2.

4. If v is owned by Bob, he picks a string rB,v uniformly at random from
Rv and sends the label of Mv(x, rB,v) to Alice, they both set v :=
Mv(x, rB,v), and return to step 2.

A general, or mixed-coin, protocol is given by a distribution over private-coin
protocols. The players run such a protocol by using shared randomness to pick
an index r (independently of X and Y ) and then executing the corresponding
private-coin protocol πr. A protocol is called public-coin if every Rv has size
1, i.e., no private randomness is used.

We let π(x, y, r, rA, rB) denote the messages exchanged during the exe-
cution of π, for given inputs x, y, and random choices r, rA and rB , and
Outπ(x, y, r, rA, rB) be the output of π for said execution. The random variable
R is the public randomness, RA is Alice’s private randomness, and RB is Bob’s
private randomness; we use Π to denote the random variable π(X,Y,R,RA, RB).

4.2.9. Definition. The worst-case communication complexity of a protocol
π, CC(π), is the maximum number of bits that can be transmitted in a run of π
on any given input and choice of random strings. The average communication
complexity of a protocol π, with respect to the input distribution µ, denoted
ACCµ(π), is the average number of bits that are transmitted in an execution
of π, for inputs drawn from µ. The worst-case number of rounds of π, RC(π),
is the maximum depth reached in the protocol tree by a run of π on any given
input. The average number of rounds of π, w.r.t. µ, denoted ARCµ(π), is
the average depth reached in the protocol tree by an execution of π on input
distribution µ.

4.2.10. Definition. The (internal) information cost of protocol π with re-
spect to µ is:

ICµ(π) = I(Y : Π, R,RA|X) + I(X : Π, R,RB |Y )

Here the term I(Y : Π, R,RA|X) stands for the amount of information Alice
learns about Bob’s input after the execution of the protocol (and the meaning
of the second term is similar). This term can be re-written in several different
ways:

I(Y : Π, R,RA|X) = I(Y : Π|X,R,RA) = I(Y : Π, R|X,RA),

I(Y : Π, R,RA|X) = I(Y : Π, R|X) = I(Y : Π|X,R).

Here the first equality holds, as Bob’s input Y is independent from randomness
R,RA conditional on X, which is obvious (see Fact 4.2.6 from the preliminar-
ies). The second equality holds, since Y is independent from randomness R
conditional on X,RA, which is also obvious.

The third equality holds, as Y is independent from RA conditional on
Π, X,R (Fact 4.2.7). This independence follows from the rectangle property of
protocols: for every fixed Π, X,R the set of all pairs ((Y,RB), RA) producing
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the transcript Π is a rectangle and thus the pair (Y,RB) (and hence Y ) is
independent from RA conditional on Π, X,R. The fourth equality is proven
similarly to the first and the second ones.

The expressions I(Y : Π, R|X) and I(Y : Π|X,R) for the information re-
vealed to Alice are the most convenient ones and we will use them throughout
this chapter. Similar transformations can be applied to the second term in
Definition 4.2.10.

4.2.11. Definition. A protocol π is said to compute function f : X ×Y → Z
with error probability ε over distribution µ if

Pr
µ,R,RA,RB

[Outπ(x, y, r, rA, rB) = f(x, y)] ≥ 1− ε .

Many of our technical results require that the protocol uses a limited amount
of randomness at each step. This motivates the following definition.

4.2.12. Definition. A protocol π is an `-discrete protocol2 if |Rv| = 2` at
every node of the protocol tree.

When a protocol is `-discrete, we say that it uses ` bits of randomness for
each message; when ` is clear from context, we omit it. While the standard
communication model allows players to use an infinite amount of randomness
at each step, this is almost never an issue, since one may always “round the
message probabilities” to a finite precision. This intuition is captured in the
following observation.

4.2.13. Observation. Suppose π is a private-coin protocol. Then, there exists
an `-discrete protocol π′ with ` = O(log(|X |) + log(|Y|) + CC(π)) such that (i)
CC(π′) ≤ CC(π), (ii) RC(π′) ≤ RC(π), and (iii) for all x, y we have

∆ (Π′(x, y,RA, RB),Π(x, y,RA, RB)) ≤ 2−Ω(`).

Furthermore, for any input distribution µ, the error of π′ is at most the error
of π plus 2−`. Equally small differences hold between ACCµ(π′), ARCµ(π′), and
their π equivalents, and ICµ(π′) is within an additive constant of ICµ(π).

Proof. Let π be given by its protocol tree; for each node v, let its corresponding
function be Mv : X ×R → C(v) (if it is Alice’s node) or Mv : Y ×Rv → C(v).

We let π′ be given by the same protocol tree but where the functions Mv

are restricted to a finite set R′v of size ≤ k = 210`, with ` = log |X ||Y|+CC(π).
Hence by construction π′ has the same worst-case communication and number
of rounds as π.

Let Rv be a random variable uniformly distributed over Rv and R′v be a
random variable uniformly distributed over R′v.

2In a discrete protocol, we restrict only the amount of private randomness in this def-
inition. It is perhaps natural to also restrict the public randomness, but we will not need
to.



4.2. Preliminaries 67

4.2.14. Claim. For any node v of Alice’s there is a choice of R′v of size ≤ 210`

such that

|Pr[Mv(x,Rv) = m]− Pr[Mv(x,R
′
v) = m]| ≤ 2−4`

for every x and m. The obvious analogue holds for Bob’s nodes.

We prove that R′v exists by the probabilistic method. Let R̃ = {r1, . . . , rk}
be a random variable which is a multiset obtained by picking k elements uni-
formly from Rv, and define R′v as the random variable which picks an element
ri ∈ R̃ uniformly at random (counting multiplicities). Let Pm denote the
random variable that is

Pm = Pr[Mv(x,R
′
v) = m] =

∑k
i=1[Mv(x, ri) = m]

k
.

By linearity of expectation we find that:

E[Pm] =

∑k
i=1 E[Mv(x, ri) = m]

k
= Pr[Mv(x,Rv) = m].

And hence by Hoeffding’s inequality we conclude that:

Pr[|Pm − Pr[Mv(x,Rv) = m]| > 2−4`] ≤ 2 exp
(
−2k2−8`

)
� 2−`.

Hence by a union bound there must exist a choice for R̃ such that

|Pm − Pr[Mv(x,Rv) = m]| ≤ 2−4`

holds for every x and m; this choice is R′v.
Now fix x, y; from the claim it follows that for any transcript t,

|Pr[π(x, y) = t]− Pr[π′(x, y) = t]| ≤ 2−3`,

which in turn implies that

∆
(

Π(x, y, rA, rB),Π′(x, y,R′(a),R′(b))
)
≤ 2−2`.

This results in a difference of ≤ 2−` in success probability, average communi-
cation complexity, and average number of rounds, for any given input distribu-
tion. The technique we used is very similar to Newman’s proof of his theorem,
and we could have bounded the ammount of private randomness to something
exponentially smaller, while achieving similar bounds.

However, to prove that there is a small difference in information cost, we
need ` to be as large as log |X ||Y|+ CC(π). Begin by noting that:

I(Π : X|Y ) = H(π(X,Y,R)|Y )−H(π(X,Y,R)|X,Y ),

and then use Fact 4.2.8 to conclude that

1. |H(π(X,Y,R)|Y = y)−H(π′(X,Y,R′)|Y = y)| = O(1) for all y, and
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2. |H(π(X,Y,R)|X = x, Y = y) − H(π′(X,Y,R′)|X = x, Y = y)| = O(1)
for any x, y, and hence

3. |I(Π : X|Y )− I(Π′ : X|Y )| = O(1),

By a symmetric reasoning for Bob, we find that |ICµ(π)− ICµ(π)| = O(1). �

Hence, while working exclusively with discretized protocols, our theorems
will also hold for non-discretized protocols, except with an additional expo-
nentially small error term. We consider this error negligible, and hence avoid
discussing it beyond this point; the reader should bear in mind, though, that
when we say that we are able to simulate a discretized protocol exactly, this
will imply that we can simulate any protocol with 2−Ω(`) error.

We are particularly interested in the case of one-way protocols. In a one-way
protocol, Alice sends a single message to Bob, who must determine the output.
A one-way protocol π is thus given by a function Mπ : X ×R 7→M; on input
x Alice randomly generates r and sends Mπ(x, r). Note that if π is private-
coin, then ICµ(π) = I(X : M(X,RA)|Y ), and similarly, if π is public-coin, then
ICµ(π) = I(X : R,M(X,R)|Y ).

Finally, we close this section with a further restriction on protocols, which
we call 1–1. Proving an R.N.T. result for 1–1 protocols will be a useful inter-
mediate step in the general R.N.T. proof.

4.2.15. Definition. A one-way protocol π is a 1–1 protocol if Mπ(x, ·) is 1–1
for all x.

4.3 Towards a Reverse Newman’s Theorem

Our main result is the following:

4.3.1. Theorem (Reverse Newman’s Theorem, bounded-round version).
Let π be an arbitrary, `-discrete, mixed-coin, q-round protocol, and let C =
CC(π), n = max{log |X |, log |Y|}. Suppose that π’s public randomness R is
chosen from the uniform distribution over the set R, and π’s private random-
ness RA and RB is chosen from uniform distributions over the sets RA and
RB, respectively.

Then there exists a public-coin, q-round protocol π̃, whose public random-
ness R′ is drawn uniformly from R×RA ×RB, and that has the exact same
transcript distribution, i.e., for any input pair x, y and any message transcript
t,

Pr[π(x, y,R,RA, RB) = t] = Pr[π̃(x, y,R′) = t],

and for any distribution µ giving the input (X,Y ),

ICµ(π̃) ≤ ICµ(π) +O (q log (2n`)) . (4.1)

We conjecture, furthermore, that a fully general R.N.T. holds:
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4.3.2. Conjecture. Theorem 4.3.1 holds with (4.1) replaced by

ICµ(π̃) ≤ Õ(ICµ(π)),

where Õ(·) suppresses terms and factors logarithmic in ICµ(π) and CC(π).

In Sections 4.4 and 4.5, we show that R.N.T.s imply fully general compres-
sion of interactive communication, and hence the resulting direct-sum theorems
in information complexity. This results in new compression and direct-sum the-
orems for the bounded-round case. We believe that attacking Conjecture 4.3.2,
perhaps with an improvement of our techniques, is a sound and new approach
to proving these theorems.

Before proving Theorem 4.3.1 let us first remark that it suffices to show it
only for protocols π without public randomness (with an absolute constant in
the O-notation). To see this, fix any outcome r of the random variable R, and
look at the protocol π conditioned on R = r. This is a protocol without public
randomness, let us denote it by πr. Using the expression

I(X : Π|Y,R) + I(Y : Π|X,R)

for information cost of π, we see that it equals the average information cost
of the protocol πr. Therefore, assuming that we are able to convert πr into a
public-coin protocol π̃r, as in Theorem 4.3.1, we can let the protocol π̃ pick a
random r and then run π̃r. As the information cost of the resulting protocol
π̃ again equals the average information cost of π̃r, the inequality (4.1) follows
from similar inequalities for πr and π̃r. For this reason, the theorems below
will be proven for private-coin — rather than mixed-coin — protocols.

The O(q log(2n`))-term of (4.1) suggests that we have some loss of infor-
mation on each round. Indeed, Theorem 4.3.1 will be derived from its one-way
version.

4.3.1 Reverse Newman’s Theorem for one-way protocols

4.3.3. Theorem (R.N.T. for one-way protocols). For any one-way private-
coin `-discrete protocol π there exists a one-way public-coin `-discrete protocol
π′ such that π and π′ generate the same message distributions, and for any
input distribution (X,Y ) ∼ µ, we have

ICµ(π′) ≤ ICµ(π) +O(log(2n`)),

where n = log |X |.

Proof. We first sketch the proof. The public randomness R′ used by the new
protocol π′ will be the very same randomness R used by π. So we seem to
have very little room for changing π, but actually there is one change that
we are allowed to make. Let Mπ : X × R 7→ M be the function Alice uses
to generate her message. It will be helpful to think of Mπ as a table, with
rows corresponding to possible inputs x, columns corresponding to possible
choices of the private random string r, and the (x, r) entry being the message
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Mπ(x, r). Noticing that r is picked uniformly, Alice might instead send message
Mπ(x, φx(r)), where φx is some permutation of R. In other words, she may
permute each row in the table using a permutation φx for the row x. The
permutation φx will “scramble” the formerly-private now-public randomness
R into some new string r̃ = φx(r) about which Bob hopefully knows nothing.
This “scrambling” keeps the message distribution exactly as it was, changing
only which R results in which message. We will see that this can be done in
such a way that, in spite of knowing r, Bob has no hope of knowing r̃ = φx(r),
unless he already knows x to begin with.

To understand what permutation φx we need, we first note the following.
Let M ′ = Mπ′(X,R) denote the message that the protocol π′ we have to design
sends for input X and public randomness R. Then the information cost of π′

is
I(M ′, R : X|Y ).

The information cost of the original protocol π is

I(M : X|Y ) = I(M ′ : X|Y ),

where the equality holds as the distributions of the triples (M,X, Y ) and
(M ′, X, Y ) are identical (regardless of the chosen permutations φx). Thus the
difference between the information costs of π′ and π equals

I(M ′, R : X|Y )− I(M ′ : X|Y ) = I(R : X|M ′, Y ),

which is at most H(R|M ′, Y ). If we permute each row of the table in such a
way that every message m appears in at most d = (n · `)O(1) columns, then
given m we can specify the column (the random-choice R) used to pick m with
O(log n`) bits, and hence

H(R|M ′, Y ) = O(log n`).

Unfortunately, it may happen that there are no such permutations. For in-
stance, this is the case when a row has the same message m in every column.

We will show that if all messages in a row are distinct, then we can “almost”
achieve the goal: one can permute each row in such a way that with probability
at least 1 − 1/n2 the message M ′ = Mπ′(X,R) appears in at most d = (n ·
`)O(1) columns. Thus we first prove Theorem 4.3.3 for the special case of 1–1
protocols, i.e. for protocols where each row has distinct messages.

The proof of Theorem 4.3.3 for 1–1 protocols. We first will construct a
special bipartite graph G, which we call a matching graph. Its left nodes will
be all possible messages m and its right nodes will be all random strings r. Our
strategy will be to find a way of permuting each row of our table so that for
every row x and most columns r (in row x) the message Mπ′(x, r) in the cell
(x, r) of the table is connected by an edge to r in the graph G.

4.3.4. Definition. An (m, `, d, δ)-matching graph is a bipartite graph G =
(M∪R, E) such that |M| = 2m, |R| = 2`, deg(u) = d for each u ∈ M, and
such that for all M′ ⊆ M with |M′| = 2`, GM′∪R has a matching of size at
least 2`(1− δ).
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To gain some intuition about what is happening, suppose we had the follow-
ing fictional object : an (m, `, n, 0)-matching graph — i.e., we have a degree-n
graph with the property that any left-set of size |R| will have a perfect matching
with R that uses only edges in the graph. Now let Mx = Mπ(x,R) be the set
of messages that π can send on input x; then in the new protocol π′, Mπ′(x, r)
is the message that is matched with r in the perfect matching betweenMx and
R (see Figure 4.3.1). It should be clear that π′ gives each message exactly the
same probability mass.

Figure 4.1: An ideal ‘matching graph’.

To see that, in this new protocol π′, R reveals little information about
X when M ′ is known, notice that if we know the message m′ = Mπ′(x, r),
then in order to specify r we only need to say which edge in the graph must
be followed; this is specified with log n bits because our graph has degree n.
Hence I(X : R|M) ≤ H(R|M) ≤ log n.

In truth, matching graphs with such good parameters do not exist. But we
can have good-enough approximations, and we can show that this is enough for
our purposes. These graphs are obtained through the Probabilistic Method.

4.3.5. Lemma. For all integers ` ≤ m and positive δ there is an (m, `, d, δ)-
matching graph with d = O(m/δ).

In Section 4.6.1 we will show that the lemma holds also d = O((m − `)/δ2) +
ln(1/δ)/δ (Lemma 4.6.1). That bound has better dependence on m, ` (espe-
cially when m − ` � m). However, it has worse dependence on δ. In Sec-
tion 4.6.2 we show a lower bound of d = Ω((m− `)/δ), which almost matches
our upper bounds.
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Proof. Hall’s theorem [48] states that if in a bipartite graph every left subset of
cardinality i ≤ L has at least i neighbors then every left subset of cardinality
i ≤ L has a matching in the graph.

Thus it suffices to construct a bipartite graph having this property for L =
(1− δ)2`. By the union bound, a random graph3 of degree d fails to have this
property with probability at most

L∑
i=1

2mi2`i(i/2`)di.

Here 2mi is an upper bound for the number
(

2m

i

)
of i-element left subsets M′,

2`i is an upper bound for the number of i − 1-element right subsets R′, and
(i/2`)di is an upper bound for the probability that all neighbors ofM′ fall into
R′. For L ≤ (1− δ)2` this sum is upper bounded by a geometric series

L∑
i=1

(
2m2`(1− δ)d

)i
.

Thus we are done, if the base of this series 2m2`(1 − δ)d is less than 1/2, say,
which happens for sufficiently large d = O(m/δ). �

Now the proof of Theorem 4.3.3 for 1–1 protocols proceeds as follows. Let
n = log |X | and ` = log |R|. Assume without loss of generality that M =
M(X ,R); then |M| ≤ 2n+`. Now let G be an (n + `, `, d, δ)-matching graph
havingM as a subset of its left set and R as its right set, for δ = 1

n2 . For these
parameters, we are assured by Lemma 4.3.5 that such a matching graph exists
having left-degree d = O((n+ `)n2).

We construct the new protocol π′ as follows. For each x ∈ X let Mx =
M(x,R) be the set of messages that might be sent on input x. Noticing that
|Mx| = 2`, consider a partial G-matching betweenMx and R pairing all but a
δ-fraction ofMx; then define a bijection M ′x : R →Mx by setting M ′x(r) = m
if (m, r) is an edge in the matching, and pairing the unmatched m and r’s
arbitrarily (possibly using edges not in G). Finally, set M ′(x, r) = M ′x(r).

Since M ′(x, r) = M ′x(r) for some bijection M ′x between R and Mx, it is
clear that M and M ′ generate the same transcript distribution for any input
x.

Now we prove that M ′ does not reveal much more information than M .
We have seen that the difference between the information costs of π′ and π
is at most H(R|M ′, Y ). Thus it suffices to show that H(R|M ′, Y ) is at most
the logarithm of the left degree of the matching graph plus a constant. As
H(R|M ′, Y ) is the average of H(R|M ′, Y = y) over all choices of y, it suffices
to show that

H(R|M ′, Y = y) ≤ log d+ 3

for every y. While proving this inequality, we will drop the condition Y = y to
simplify notation.

3For each left vertex, we pick each of the d neighbours independently and uniformly from
the right-set.
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Let us introduce a new random variable K, which is a function of X,R,M ′

and takes the value 1 if (M ′, R) is an edge of the matching graph and is equal
to 0 otherwise. Recall that for every x the pair (M ′(x,R), R) is an edge of
the matching graph with probability at least 1 − 1/n2. Therefore, K = 0
with probability at most 1/n2. Call a message m bad if the probability that
K = 0 conditional to M ′ = m (that is, the fraction of rows x, among all rows
containing m, such that m was not matched within the graph in the row x)
is more than 1/n. Then M ′ is bad with probability less than 1/n, otherwise
K = 0 would happen with probability greater than 1/n2.

The conditional entropy H(R|M ′) is the average of

H(R|M ′ = m)

for m chosen according to the distribution of M ′. Notice that H(R|M ′ = m)
is at most the log-cardinality of X , because in 1–1 protocols R is a function
of the pair (M ′, X). Thus H(R|M ′ = m) ≤ n for all m, and hence the total
contribution of all bad m’s in H(R|M ′) is at most 1. Thus it suffices to show
that for all good m,

H(R|M ′ = m) ≤ log d+ 2.

To this end notice that

H(R|M ′ = m) ≤ H(K|M ′ = m) +H(R|K,M ′ = m) ≤ 1 +H(R|K,M ′ = m).

Thus it is enough to prove that H(R|K,M ′ = m) ≤ log d + 1 for all good m.
Again, H(R|K,M ′ = m) can be represented as the weighted sum of two terms,

H(R|K = 1,M ′ = m) and H(R|K = 0,M ′ = m).

The former term is at most log d, because when K = 1 and M ′ = m we can
specify R by the number of the edge (m,R) in the matching graph. The latter
term is at most n, but its weight is at most 1/n, since m is good. This completes
the proof of Theorem 4.3.3 for 1-1 protocols.

The proof of Theorem 4.3.3 in general case. The general case follows natu-
rally from the 1–1-case and the following lemma, which makes a protocol 1–1
by adding a small amount of communication.

4.3.6. Lemma (A 1–1 conversion which reveals little information).
Given a one-round `-discrete private-coin protocol π, there is a one-round 1–1
`-discrete private-coin protocol π′ whose message is of the form4

Mπ′(x, r) = (Mπ(x, r), J(x, r)),

for some function J , and such that

ICµ(π′) ≤ ICµ(π) + log `+ 1.

4On any input x and any choice of randomness r, Mπ′ (x, r) is obtained by taking Mπ(x, r)
and adding some additional communication J(x, r).
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Proof. We think of M(·, ·) as a table, where the inputs x ∈ X are the rows and
the random choices r ∈ R are the columns, and fix some ordering r1 < r2 < . . .
of R. The second part J(x, r) of Mπ′ will be the ordinal number of the message
M(x, r) inside the row x i.e.,

J(x, r) = |{r′ ≤ r|M(x, r′) = M(x, r)}|.

This ensures that Mπ′ is 1–1.
The difference between the information costs of π′ and π is

I(M,J : X|Y )− I(M : X|Y ) = I(J : X|Y,M).

Thus, it suffices to show that for every particular y,m we have5

I(J : X|Y = y,M = m) ≤ log `+ 1. (4.2)

Fix any y and m, and drop the conditions Y = y,M = m to simplify the
notation. By definition, I(J : X) = H(J) − H(J |X). For any fixed x the
random variable J has the uniform distribution over the set {1, 2, . . . ,Wx},
where Wx stands for the number of occurrences of the message m in row x of
the table.

Let us partition the x’s into ` classes so that if x is in the ith class then
2i−1 ≤ Wx < 2i. Let Z = Zy,m be the class to which X belongs. The entropy
of Z is at most log ` and hence we have

I(J : X) ≤ I(J : X|Z) +H(Z) ≤ I(J : X|Z) + log `.

Thus it suffices to show that for every i we have

I(J : X|Z = i) ≤ 1.

Notice that
H(J |Z = i) ≤ i,

as for all x in the ith class we have Wx ≤ 2i. On the other hand,

H(J |X,Z = i) ≥ i− 1,

as for every x in the ith class we have Wx ≥ 2i−1 and the distribution of J
conditional to X = x, Y = y,M = m,Z = i is uniform. Thus

I(J : X|Z = i) = H(J |Z = i)−H(J |X,Z = i) ≤ i− (i− 1) = 1.

�

Now we are able to finish the proof of Theorem 4.3.3 in the general case.
Suppose π is a given one-way private-coin `-discrete protocol. Let π2 be the 1–1
protocol guaranteed by Lemma 4.3.6, and let π3 be the protocol constructed
from π2 in the proof of Theorem 4.3.3 for the 1–1 case. Note that π3’s message

5In Section 4.6.3 we will prove a corresponding lower bound, implying that this upper-
bound is tight up to a constant term.
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is of the form Mπ3(X,R) = (Mπ(X,R), J(X,R)), since it is equidistributed
with Mπ2 . Furthermore, we have

ICµ(π3) ≤ ICµ(π) +O(log 2n`).

Now, create a protocol π4, which is identical to π3, except that Alice omits
J(X,R). Since for each x the message Mπ4

(x, r) sent by π4 equals M(x, φx(r))
for some permutation φx of R, it is clear that M and M ′ generate the same
transcript distribution for any input x. And

ICµ(π4) ≤ ICµ(π3) ≤ ICµ(π) +O(log 2n`) .

This completes the proof of Theorem 4.3.3. �

4.3.2 R.N.T. for many-round protocols

Let us derive Theorem 4.3.1 from Theorem 4.3.3.

Proof of Theorem 4.3.1. Let c be the constant hidden in the O-notation in
Theorem 4.3.3 so that every one-round private-coin `-discrete protocol π with
|X |, |Y| ≤ 2n can be converted into a one-round public-coin protocol π′ gener-
ating the same distribution on transcripts with

IC(π′) ≤ IC(π) + c log 2n`.

We are given a q-round private-coin protocol ρ and will simulate it by a public-
coin protocol ρ′ with

IC(ρ′) ≤ IC(ρ) + 2qc log 2n`.

The transformation of ρ into ρ′ is as one can expect: in each node v of the
protocol tree ρ we use a permutation of messages that depends on the input
of the player communicating in that node. More specifically, let m<j denote
the concatenation of messages sent by ρ′ up to round j. In the jth round
of ρ′ we apply the protocol ρ′m<j , which is obtained by the transformation of
Theorem 4.3.3 from the 1-round sub-protocol ρm<j of ρ rooted from the node
m<j of the protocol tree of ρ. This change does not affect the probability
distribution over messages sent in each node and hence the resulting protocol
ρ′ generates exactly the same distribution on transcripts. The protocol ρ′ uses
the same randomness as ρ; however, unlike ρ it uses public and not private
randomness.

We have to relate now the information cost of ρ′ to that of ρ. To this end we
split the information cost of ρ′ into the sum of information costs of each round
of ρ′. Specifically, by the Chain rule (Fact 4.2.4) the amount of information
revealed by ρ′ to Bob (say) equals

I(X : M1, R1, . . . ,Mq, Rq|Y ) =
∑
j

I(X : Mj , Rj |Y,M<j , R<j).
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where Rj denotes the randomness used in the jth round of ρ′ and Mj =
ρ′M<j

(X,Rj) denotes the message sent in the jth round of ρ′.

From I(R<j : Mj , Rj |Y,M<j) = 0,6 we conclude from Theorem 4.3.3 —
using Facts 4.2.5 and 4.2.6 from the preliminaries — that

I(X : Mj , Rj |Y,M<j , R<j) ≤ I(X : Mj , Rj |Y,M<j) ≤ I(X : Mj |Y,M<j)+c log 2n`,

where I(X : Mj |Y,M<j) in the right-hand side is the information cost of the
jth round of the original protocol ρ. Summing up this inequality over all
j = 1, . . . , q and applying the Chain rule to ρ we see that

I(X : M1, R1, . . . ,Mq, Rq|Y ) ≤ I(X : M1, . . . ,Mq|Y ) + qc log 2n`.

The similar inequality for the amount of information revealed by ρ and ρ′ to
Alice is proved analogously. �

4.4 Compression for public-coin protocols

We present in this section two results of the following general form: we will
take a public-coin protocol π that reveals little information, and “compress” it
into a protocol ρ that uses little communication to perform the same task with
about the same error probability. It turns out that the results in this setting
are simpler and give stronger compression than in the case where Alice and
Bob have private randomness (such as in [23, 29]). We present two bounds,
one that is dependent on the number of rounds of π, but which is also round-
efficient, in the sense that ρ will not use many more rounds than π; and one
that is independent of the number of rounds of π, but where the compression
is not as good when the number of rounds of π is small. We begin with the
latter.

4.4.1. Theorem. Suppose there exists a public-coin protocol π to compute f :
{0, 1}n × {0, 1}n → Z over the distribution µ with error probability δ′, and let
C = CC(π), I = ICµ(π). Then for any positive δ there is a public-coin protocol
ρ computing f over µ with error δ′+δ, and with ACCµ(ρ) = O(I · log(2Cn/δ)).

Proof. Our compression scheme is similar, but not identical, to that of [23]—the
absence of private randomness allows for a more elementary proof.

It suffices to prove the theorem only for deterministic protocols—the case
for public-coin protocols can be proved as follows. By fixing any outcome r
of randomness R of a public-coin protocol π, we obtain a protocol πr with-
out public randomness and can apply Theorem 4.4.1 to πr. The average
communication length of the resulting deterministic protocol ρr is at most
O(I(πr) · log(2Cn/δ)). Thus the average communication of the public-coin pro-
tocol ρ that chooses a random r and runs ρr will be at most O(I · log(2Cn/δ)).

6The reader is reminded that we defined protocols so that the message in each round
depends only on public randomness, the previous messages, and on a source of private ran-
domness that is independent from the private randomness used in previous rounds. It is easy
to see that such an assumption can be made.
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Thus we have to show that any deterministic protocol π can be simulated
with communication roughly:

I(Y : Π|X) + I(X : Π|Y ) = H(Π|X) +H(Π|Y )

(the equality follows because H(Π|X,Y ) = 0, since the transcript Π is a func-
tion of X and Y ). As we do not relate in this theorem the round complexity
of ρ to that of π, we may assume that in the protocol π every message is just
a bit (and the turn to communicate does not necessarily alternate). In other
words, the protocol tree has binary branching.

Given her input x, Alice knows the distribution of Π|x, and she can hence
compute the conditional probability Pr[π(X,Y ) = t|X = x] for each leaf t of the
protocol tree. We will use the notation wa(t|x) for this conditional probability.
Likewise Bob computes wb(t|y) = Pr[π(X,Y ) = t|Y = y]. Now it must hold
that π(x, y) is the unique leaf such that both wa(t|x), wb(t|y) are positive. Alice
and Bob then proceed in stages to find that leaf: at a given stage they have
agreed that a certain partial transcript, which is a node in the protocol tree
of π, is a prefix of π(x, y). Then each of them chooses a candidate transcript,
which is a leaf extending their partial transcript (the candidate transcripts of
Alice and Bob may be different). Then they find the largest common prefix
(lcp) of their two candidate transcripts, i.e., find the first bit at which their
candidate transcripts disagree. Now, because one of the players actually knows
what that bit should be (that bit depends either on x or on y), the player who
got it wrong can change her/his bit to its correct value, and this will give the
new partial transcripts they agree upon. They proceed this way until they both
know π(x, y).

It will be seen that the candidate leaf can be chosen in such a way that
the total probability mass under the nodes they have agreed upon halves at
every correction, and this will be enough to show that Alice will only need to
correct her candidate transcript H(Π|X) times (and Bob H(Π|Y ) times) on
average. Efficient protocols for finding the lcp of two strings will then give us
the required bounds.

We first construct an interactive protocol that makes use of a special device,
which we call lcp box. This is a conceptual interactive device with the following
behavior: Alice takes a string u and puts it in the lcp box, Bob takes a string
v and puts it in the lcp box, then a button is pressed, and Alice and Bob both
learn the largest common prefix of u and v. Using an lcp box will allow us
to ignore error events until the very end of the proof, avoiding an annoying
technicality that offers no additional insight.

4.4.2. Lemma. For any given probability distribution µ over input pairs and
for every deterministic protocol π with information cost I (w.r.t. µ) and worst
case communication C there is a deterministic protocol ρ̃ with zero communica-
tion computing the same function with the same error probability (w.r.t. µ) as
π, and using an lcp box for C-bitstrings at most I times on average (w.r.t. µ).

Proof. On inputs x and y, in the new protocol ρ̃ Alice and Bob compute
weights wa(t|x), wb(t|y) of every leaf of the protocol tree of π, as explained
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above. Furthermore, for every binary string s let wa(s|x) denote the sum of
weights wa(t|x) over all leaves t under s. Define wb(s|y) in a similar way.

The protocol ρ̃ runs in stages: before each stage i Alice and Bob have
agreed on a binary string s = si−1, which is a prefix of π(x, y). Initially s = s0

is empty.
On stage i Alice defines the candidate transcript ta as follows: she appends

0 to s = si−1 if wa(s0|x) > wa(s1|x) and she appends 1 to s otherwise. Let s′

denote the resulting string. Again, she appends 0 to s′ if wa(s′0|x) > wa(s′1|x)
and she appends 1 to s′ otherwise. She proceeds in this way until she gets a leaf
of the tree (by construction its weight is positive). Bob defines his candidate
transcript tb in a similar way. Then they put ta and tb in the lcp box and they
learn the largest common prefix s′ of ta and tb. By construction both wa(s′|x)
and wb(s

′|y) are positive and hence s′ is a prefix of π(x, y). Recall that no leaf
of the protocol tree is a prefix of another leaf. Therefore either s′ = ta = tb, in
which case they stop the protocol, as they both know π(x, y). Or s′ is a proper
prefix of both ta and tb. If the node s′ of the protocol tree belongs to Alice,
then Bob’s next bit is incorrect, and otherwise Alice’s next bit is incorrect.
They both add the correct bit to s′ and let si be the resulting string.

Each time Alice’s bit is incorrect wa(s|x) decreases by a factor of 1/2,
and similarly each time Bob’s bit is incorrect wb(s|y) decreases by a factor of
1/2. At the start we have wa(s|x) = wb(s|y) = 1 and at the end we have
wa(s|x) = wa(π(x, y)|x) and wb(s|y) = wb(π(x, y)|y). Hence they use the lcp
box at most

log2 1/wa(π(x, y)|x) + log2 1/wb(π(x, y)|y)

times. By definition of the conditional entropy the average of log2 1/wa(π(X,Y )|X)
is equal to H(Π|X) and the average of log2 1/wb(π(X,Y )|Y ) equals H(Π|Y ).
Thus Alice and Bob use the lcp box at most I times on average. �

Now we have to transform the protocol of Lemma 4.4.2 to a randomized
public-coin protocol computing f that does not use an lcp box, with addi-
tional error δ. The use of an lcp box can be simulated with an error-prone
implementation:

4.4.3. Lemma ([46]). For every positive ε and every natural C there is a ran-
domized public-coin protocol such that on input two C-bit strings x, y, it outputs
the largest common prefix of x, y with probability at least 1 − ε; its worst-case
communication complexity is O(log(C/ε)).

The lemma is proven by hashing (as in the randomized protocol for equality)
and binary search. From this lemma we obtain the following corollary.

4.4.4. Lemma. Let ρ̃ be a protocol that computes f : {0, 1}n × {0, 1}n → Z,
while using an lcp box ` ≤ 2n times on average for strings of length at most C.
Then ρ̃ can be simulated with error δ by a protocol ρ that does not use an lcp
box, and communicates O(` log( 2Cn

δ )) bits more on average.

Proof. The protocol ρ simulates ρ̃ by replacing each use of the lcp box with the
protocol given by Lemma 4.4.3 with some error parameter ε (to be specified
later). The simulation continues while the total communication is less than n.
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Once it becomes n, we stop the simulation and Alice just sends her input to
Bob.

Notice that the additional error probability introduced by the failure of the
protocol of Lemma 4.4.3 is at most ε`: for each input pair (x, y) the error
probability is at most εi(x, y), where i(x, y) stands for the number of times we
invoke lcp box for that particular pair, and the average of εi(x, y) over (x, y)
equals ε`. Thus if we take ε ≤ δ/`, the error probability introduced by failures
of the lcp box is it most δ.

Each call to the lcp box costs O(log(C/ε). Thus the communication of ρ is
at most

O(` log(C/ε)) + (`ε)(2n)

more on average than that of ρ̃. Here the first term is an upper bound for
the average communication over all triples (x, y, randomness for the lcp box)
such that no lcp failure occurs and the second term accounts for the average
communication over all remaining triples.

Let ε = δ/2n (which is less than δ/`, as we assume that ` ≤ 2n) so that the
average communication is at most O(` log( 2Cn

δ ) + `δ) = O(` log( 2Cn
δ )). �

We are now able to finish the proof of the theorem. Notice that the informa-
tion cost of the initial protocol is at most 2n. Hence we can apply Lemma 4.4.4
for ` = I to the protocol of Lemma 4.4.2. The average communication of the
resulting protocol ρ is at most O(I · log(2Cn/δ)). �

The proof of Theorem 4.4.1 offers no guarantee on the number of rounds of
the compressed protocol ρ. It is possible to compress a public-coin protocol on
a round-by-round basis while preserving, up to a multiplicative constant, the
total number of rounds used.

4.4.5. Theorem. Suppose there exists a public-coin protocol π to compute f :
{0, 1}n × {0, 1}n → Z over input distribution µ with error probability δ′, and
let I = ICµ(π) and q = RC(π). Then there exists a public-coin protocol ρ that
computes f over µ with error δ′+δ, and with ACCµ(ρ) = O(I+1)+q log(nq/δ)
and ARCµ(ρ) = O(q).

Proof. Again it suffices to prove the theorem for deterministic protocols π. The
idea of the proof is to show the result one round at a time. In round i, Alice, say,
must send a certain message mi to Bob. From Bob’s point of view, this message
is drawn according to the random variable Mi = Mi(X̃, y,m1, . . . ,mi−1) where
X̃ is Alice’s input conditioned on Bob’s input being y and on the messages
m1, . . . ,mi−1 that were previously exchanged. We will show that there is a
sub-protocol σi that can simulate round i with small error by using constantly-
many rounds and with

O(H(Mi|y,m1, . . . ,mi−1)) = O(I(X : Mi|y,m1, . . . ,mi−1))

bits of communication on average. Then putting these sub-protocols together,
and truncating the resulting protocol whenever the communication is excessive,
we obtain the protocol ρ which simulates π.
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The procedure to compress each round is achieved through an interactive
variant of the Slepian-Wolf theorem ([92, 89, 35]). We could not apply the
known theorems directly, however, since they were made to work in different
settings.

In a similar fashion to the proof of Theorem 4.4.1, we will make use of a
special interactive device, which we call a transmission µ-box, where µ is a
probability distribution over input pairs (X,Y ). Its behavior is as follows: one
player takes a string x and puts it in the transmission box, the other player
takes a string y and puts it in the box, a button is pressed, and then the second
player knows x. The usage of a transmission µ-box is charged in such a way
that the average cost when the input pair (X,Y ) is drawn at random with
respect to µ is O(H(X|Y ) + 1) bits of communication and O(1) rounds.

4.4.6. Lemma. Let π be any deterministic q-round protocol, and let µ be the
distribution of the inputs (X,Y ). Then there exists a deterministic protocol ρ̃
that makes use of the transmission box (each time for a different distribution)
to achieve the following properties.

1. The average communication of ρ̃ is ACCµ(ρ̃) = O(ICµ(π) + q);

2. The average number of rounds of ρ̃ is ARCµ(ρ̃) = O(q);

3. ρ̃ uses a transmission box q times; and

4. After ρ̃ is run on the inputs x, y, both players know π(x, y).

Proof. Let π<j(x, y) denote the sequence of messages sent by π in the first j−1
rounds for inputs x, y. The protocol ρ̃ simulates π on a round-per-round basis.

Assume that in the new protocol j−1 rounds were played. Let m<j denote
the sequence of j−1 messages sent earlier and let x, y stand for inputs. Assume
further that in jth round of π Alice has to communicate. Her message is a
function M of the sequence m<j and her input x. Let ν denote the probability
distribution on pairs (m, y) where

ν(m, y) = Pr[M(X,m<j) = m, Y = y|π<j(X,Y ) = m<j ].

In round j of protocol ρ̃, Alice puts the string M(x,m<j) into the transmission
ν-box and Bob puts there his input y and they press the button. If it is Bob’s
turn to communicate, then they reverse their positions.

Items 2, 3 and 4 from the statement of the Lemma follow from construction
of ρ̃ and from the description of the transmission box. It remains to bound the
average communication length of ρ̃. Again by assumption on the transmission
box, the average communication in round j is at most O(Ij + 1) where

Ij = H(M(X,π<j(X,Y ))|Y, π<j(X,Y )),

if it is Alice’s turn to communicate and

Ij = H(M(Y, π<j(X,Y ))|X,π<j(X,Y )),
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otherwise. From the chain rule (Fact 4.2.4) it follows that the sum of Ij over
all j of the first type is equal to I(Π : X|Y ), while the sum of Ij over all j of
the second type is equal to I(Π : Y |X). �

To proceed we need a protocol simulating the transmission box.

4.4.7. Lemma (Constant-round average-case one-shot Slepian–Wolf).
Let µ be the distribution of the inputs (X,Y ). For every positive ε there is a
public-coin communication protocol with the following properties:

1. For all x, y, after execution of the protocol Bob learns x with probability
at least 1− ε.

2. When (X,Y ) are drawn according to µ, the protocol communicates an

O(H(X|Y ) + 1) + log(1/ε)

average number of bits in O(1) average number of rounds.

Contrast this to the classical Slepian–Wolf theorem, where Alice and Bob
are given a stream of i.i.d. pairs (X1, Y1), . . . , (Xn, Yn), and Alice gets to trans-
mit X1, . . . , Xn by using only one-way communication, and with an amortized
communication of H(X|Y ).

Proof. Let y be Bob’s given input. For a given x in the support of X, let
p(x) = Pr[X = x|Y = y], and for a given subset X of the same support, let
p(X ) = Pr[X ∈ X |Y = y]. Then Bob begins by arranging the x’s in the
support of X by decreasing order of the probability p(x). He then defines the
two sets

X1 = {x1, . . . , xi(1)}, Z1 = X1,

where i(1) is the minimal index which makes p(X1) ≥ 1/2. Inductively, while
Zk 6= X, he then defines:

Xk+1 = {xi(k)+1, · · · , xi(k+1)}, Zk+1 = Zk ∪ Xk+1,

where i(k + 1) > i(k) is the minimal index which makes p(Xk+1) ≥ 1−p(Zk)
2 .

In other words, Xk+1 is the smallest set which takes the remaining highest-
probability x’s so that they total at least half of the remaining probability
mass.

Because at least one new xi is added at every step, this inductive procedure
gives Bob a finite number of sets Z1, . . . ,ZK = X. Then the protocol consists
of applying the protocol of the following lemma, which will be proved later.

4.4.8. Lemma. For every natural number m and every positive ε there exists a
randomized public-coin protocol with the following behavior. Suppose that Bob
is given a family of finite sets Z1 ⊆ · · · ⊆ ZK ⊂ {0, 1}m and Alice is given
a string z ∈ ZK . Then the protocol transmits z to Bob, except with a failure
probability of at most ε. For k the smallest index for which z ∈ Zk, the run
of this protocol uses at most 2k + 1 rounds and 2 log |Zk| + log 1

ε + 4k bits of
communication.
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Now let us bound the average number of rounds and communication com-
plexity. First notice that p(Xk) ≤ 21−k, and hence, taking the average over
Alice’s inputs, we find that

K∑
k=1

p(Xk)4k = O(1)

must upper-bound the average number of rounds, as well as the contribution of
the 4k term to the average communication. To upper-bound the contribution
of the 2 log |Zk| term, we first settle that:

(i) p(Xk) ≤ 2p(Xk+1) + 2p(xi(k)), which can be seen by summing two in-
equalities that follow from the minimality of i(k) in the definition of Xk:

p(Xk)− p(xi(k)) ≤
1− p(Zk−1)

2
,

1− p(Zk)

2
≤ p(Xk+1),

after which we get

p(Xk)

2
− p(xi(k)) ≤ p(Xk+1).

(ii) |Zk| ≤ 1
p(x) for any x ∈ Xk+1 ∪ {xi(k)}, which follows since every x′ ∈ Zk

has a higher-or-equal probability than the x’s in Xk+1 ∪ {xi(k)}, but the
sum of all the p(x′) still adds up to less than 1.

Now we are ready to bound the remaining term in the average communication:

K∑
k=1

p(Xk) log |Zk| ≤ 2

K−1∑
k=1

p(Xk+1) log |Zk|+p(XK) log |ZK |+2

K∑
k=1

p(xi(k)) log |Zk|

≤ 5
∑
x

p(x) log
1

p(x)
= O(H(X|Y = y));

above, the first inequality follows from (i), and the second from (ii). �

Proof of Lemma 4.4.8. The protocol is divided into stages and works as follows.
On the first stage, Bob begins by sending the number `1 = log |Z1| in unary to
Alice, and Alice responds by picking L1 = `1+log 1

ε +1 random linear functions

f
(1)
1 , . . . , f

(1)
L1

: Zn2 → Z2 using public randomness, and sending Bob the hash

values f
(1)
1 (z), . . . , f

(1)
L1

(z). Bob then looks for a string z′ ∈ Z1 that has the
same hash values he just received; if there is such a string, then Bob says so,
and the protocol is finished with Bob assuming that z′ = z.

Otherwise, the protocol continues. At stage k, Bob computes the number
`k = log |Zk|, and sends the number `k−`k−1 in unary to Alice; Alice responds

by picking Lk = `k − `k−1 + 1 random linear functions f
(k)
1 , . . . , f

(k)
Lk

, whose
evaluation on z she sends over to Bob. Bob then looks for a string z′ ∈ Zk
that has the same hash values for all the hash functions which were picked in
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this and previous stages; if there is such a string, then Bob says so, and the
protocol is finished with Bob assuming that z′ = z. If the protocol has not
halted in K rounds, Alice just sends her input to Bob.

An error will occur whenever a z′ 6= z is found that has the same fingerprint
as z. The probability that this happens at stage k for a specific z′ ∈ Zk is 2−L,
where L = `k + k + log 1

ε is the total number of hash functions picked up to
this stage. By a union bound, the probability that such a z′ exists is at most
|Zk|2−`k ε

2k
≤ ε

2k
. Again by a union bound, summing over all stages k we get

a total error probability of ε.
To bound the communication for z ∈ Zk, notice that sending all `1. . . . , `k

costs Bob at most log |Zk| + k bits of total communication7, that the total
number of hash values sent by Alice is at most log |Zk|+ 2k + log 1

ε , and that
Bob’s reply (saying whether the protocol should continue) costs him k bits. �

From Lemma 4.4.7 we get an analogue of Lemma 4.4.4.

4.4.9. Lemma. Let ρ̃ be a protocol to compute f : {0, 1}n × {0, 1}n → Z that
uses transmission boxes q times. Then, for any positive δ, ρ̃ can be simulated
with error δ by a protocol ρ that does not use transmission boxes, and commu-
nicates q log( qnδ ) + 1 bits more than ρ̃.

Proof. The protocol ρ simulates ρ̃ by replacing each use of a transmission box
with the protocol given by Lemma 4.4.7 with some error parameter ε (to be
specified later). The simulation continues while the total communication is less
than n. Once it becomes n, we stop the simulation and Alice just sends her
input to Bob.

The additional error probability introduced by the failure of the protocol
of Lemma 4.4.7 is at most qε. Assuming that ε ≤ δ/q, the error probability
introduced by a transmission box failure is it most δ.

Each call of a transmission box costs log(1/ε) bits of communication more
than we have charged the protocol ρ̃. Thus the communication of ρ is at most

q log(1/ε) + (qε)(2n)

longer than that of ρ̃. Let ε = δ/qn so that the communication of ρ be at most

q log(qn/δ) + δ/2 ≤ q log(qn/δ) + 1

more than that of ρ̃. �

We are able now to finish the proof of the theorem. Applying Lemma 4.4.9
to the protocol of Lemma 4.4.6 we get the desired protocol. �

4.5 Applications

From the combination of Theorems 4.3.1 and 4.4.5, and Observation 4.2.13, we
can obtain a new compression result for general protocols.

7We have added 1 bit per message because, sending `i ones to Alice, Bob should append
a zero to them — recall that the messages must form a prefix-free set.
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4.5.1. Corollary. Suppose there exists a mixed-coin, q-round protocol π to
compute f over the input distribution µ with error probability ε, and let C =
CC(π), I = ICµ(π), n = log |X | + log |Y|. Then there exists a public-coin,
O(q)-average-round protocol ρ that computes f over µ with error ε + δ, and
with

CC(ρ) ≤ O
(
I + q log

(
qnC

δ

))
. (4.3)

As we will see in the following sub-section, this will result in a new direct
sum theorem for bounded-round protocols. In general, given that we have
already proven Theorem 4.4.1, and given that this approach shows promise in
the bounded-round case, it becomes worthwhile to investigate whether we can
prove Conjecture 4.3.2 with similar techniques.

4.5.1 Direct-sum theorems for the bounded-round case

The following theorem was proven in [23]:

4.5.2. Theorem. ([23], Theorem 12.) Suppose that there is a q-round pro-
tocol πk that computes k copies of f with communication complexity C and
error ε, over the k-fold distribution µk. Then there exists a q-round mixed-coin
protocol π that computes a single copy of f with communication complexity C
and the same error probability ε, but with information cost ICµ(π) ≤ 2C

k for
any input distribution µ.

As a consequence of this theorem, and of Corollary 4.5.1, we will be able to
prove a direct sum theorem. The proof is a simple application of Theorem 4.5.2,
and Corollary 4.5.1.

4.5.3. Theorem (Direct sum theorem for the bounded-round case).
There is some constant d such that, for any input distribution µ and any
0 < ε < δ < 1, if f requires, on average, at least

C + q log

(
qnC

δ − ε

)
bits of communication, to be computed over µ with error δ in dq (average)
rounds, then f⊗k requires at least kC bits of communication, in the worst case,
to be computed over µ⊗k with error ε in q rounds.

4.5.2 Comparison with previous results

We may compare Corollary 4.5.1 with the results of [29]. In that paper, the
nC factor is missing inside the log of equation (4.3), but the number of rounds
of the compressed protocol is O(q log I) instead of O(q). A similar difference
appears in the resulting direct-sum theorems.

We remark that the compression of Jain et al. [60] is also achieved with
a round-by-round proof. Our direct-sum theorem is incomparable with their
more ambitious direct-product result. It is no surprise, then, that the communi-
cation complexity of their compression scheme is O( qIδ ), i.e., it incurs a factor
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of q, whereas we pay only an additive term of Õ(q). However, their direct-
product result also preserves the number of rounds in the protocol, whereas in
our result the number of rounds is only preserved within a constant factor.

4.6 Alternative constructions and matching lower
bounds

4.6.1 A different upper bound on the degree of matching
graphs

4.6.1. Lemma. For every integer ` ≤ m and real δ > 0 there is an (m, `, d, δ)-
matching graph with d = (2 + (m− `) ln 2)/δ2 + ln(1/δ)/δ.

Proof. We show the existence of such a graph using a probabilistic argument.
Let A and B be any sets of M = 2m left and L = 2` right nodes, respectively.
Construct a random graph G by choosing d random neighbors independently
for each u ∈ A. Different neighbors of the same node u are also chosen indepen-
dently, thus they might coincide. For any A′ ⊆ A of size L, let EA′ be the event
that GA′∪B does not have a matching of size L(1−δ), and let Bad :=

∨
A′ EA′ .

Note that the lemma holds if Pr[Bad] < 1.
Next, we bound Pr[EA′ ]. Let A′ = {u1, . . . , uL} be any set of L left nodes.

Let N (u) denote the neighborhood of a vertex u. Consider the following pro-
cedure for generating a matching for GA′∪B :

Find-Matching

1 Matching← ∅
2 V ← ∅
3 for i← 1 to L
4 if N (ui) 6⊆ V
5 pick arbitrary vi ∈ N (ui) \ V
6 Matching← Matching ∪ {(ui, vi)}
7 V ← V ∪ {vi}
8 return Matching

Define the indicator variables X1, . . . , XL as follows: Xi = 1 if the condition
in the 4th line of Find-Matching is true and 0 otherwise. From the definition
of these variables it follows that for all i and all b = (b1, . . . , bi) ∈ {0, 1}i the
conditional probability of Xi+1 = 0 given X1 = b1, . . . , Xi = bi is equal to

(|b|/L)d,

where |b| stands for Hamming weight of vector b, i.e. the number of 1s in
b = (b1, . . . , bi). Consider also similar random variables Y1, . . . , YL where the
distribution of Y1, . . . , YL is defined by the formula

Pr[Yi+1 = 0|Y1 = b1, . . . , Yi = bi] =

{
(|b|/L)d, if |b| < (1− δ)L,
1, if |b| ≥ (1− δ)L.
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In terms of X1, . . . , XL the event EA′ happens if and only if X1 + · · · +
XL < (1 − δ)L. For every string b of Hamming weight less than (1 − δ)L
the probabilities Pr[X = b] and Pr[Y = b] coincide. Thus it suffices to upper
bound the probability Pr[Y1 + · · · + YL < (1 − δ)L]. To this end consider
independent random variables Z1, . . . , ZL ∈ {0, 1}, where the probability of
Zi = 1 is (1− δ)d.

4.6.2. Claim. Pr[|Y | < (1− δ)L] ≤ Pr[|Z| < (1− δ)L].

Proof. We prove this using the coupling method. We claim that there is
a joint distribution of Y and Z such that the marginal distributions are as
defined above, and with probability 1 it holds that Zi ≤ Yi for all i. This joint
distribution is defined by the following process: we pick L independent reals
r1, . . . , rL ∈ [0; 1] and let

Zi =

{
0, if ri < (1− δ)d;
1, otherwise.

Yi =

0, if ri <
(
Y1+···+Yi−1

L

)d
and Y1+···+Yi−1

L < 1− δ;
1, otherwise.

We claim that the inequality Zi ≤ Yi (holding with probability 1) implies that
for every downward closed set E ⊂ {0, 1} it holds Pr[Y ∈ E] ≤ Pr[Z ∈ E]
(we call a set E downward closed if b ∈ E and b′ ≤ b, component-wise, implies
b′ ∈ E). Indeed,

Pr[Y ∈ E] ≤ Pr[Y ∈ E,Z ∈ E] ≤ Pr[Z ∈ E],

where the first inequality holds, since E is downward closed and thus Y ∈ E
implies Z ∈ E. The set of Boolean vectors b ∈ {0, 1}L of Hamming weight less
than (1− δ)L is downward closed hence the statement. �

By this lemma it suffices to upper bound the probability

Pr[Z1 + · · ·+ ZL < (1− δ)L],

which can be obtained by Chernoff bound.

Let S :=
∑

(1 − Zi), and let µ := E[S], p = (1 − δ)d. Note that µ = pL.
Also, let ψ := δ/p− 1. Using the multiplicative version of the Chernoff bound,
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so long as ψ > 0, we have

Pr[S > δL] = Pr[S > pL · (δ/p)]
= Pr[S > µ(1 + ψ)]

<

(
eψ

(1 + ψ)(1+ψ)

)µ
= exp

(
µ

(
δ

p
− 1− δ

p
ln(

δ

p
)

))
< exp

(
µ

(
δ

p
− δ

p
ln(

δ

p
)

))
= exp

(
pL

δ

p
(1− ln δ + ln p)

)
= exp (δL+ δL ln(1/δ) + δL ln p)

= exp (δL (1 + ln(1/δ) + ln p)) .

Thus for every set A′ of L left nodes we have Pr[EA′ ] < eδL(1+ln(1/δ)+ln p).
There are

(
M
L

)
subsets of A of size L. By Stirling’s Formula, we have(
M

L

)
≤ (M)L

L!
≤
(
Me

L

)L
= exp(L(1 + lnM/L)) .

By union bound we have

Pr[BAD] ≤ exp (M(1 + lnM/L)) · exp (δM(1 + ln(1/δ) + ln p))

= exp (M +M lnM/L+ δM + δM ln(1/δ) + δM ln p)

< exp
(
M +M lnM/L+ δM + δM ln(1/δ)− dδ2M

)
< 1 ,

where the final inequality uses d = (2 + lnM/L)/δ2 + ln(1/δ)/δ, which also
ensures that ψ > 0 whenever δ is sufficiently small. �

4.6.2 A lower bound on the degree of matching graphs

4.6.3. Lemma. An (m, `, d, δ)-matching graph must have

d = Ω

(
min

(
m− `
δ

, δ2`
))

.

Proof. We will prove that in such a bipartite graph there must exist a left-set
A of size 2m(1 − 4δ)d whose neighbours are contained in a right-set B of size
(1−2δ)2`. If the graph is a matching graph with said parameters, it must then
follow that |A| ≤ 2`, hence d ≥ (m− `)/ log(1− 4δ) = Ω((m− `)/δ).

We show this through the probabilistic method. Let us pick a random right-
set B of size (1 − 2δ)2`. For a given left-node a, the probability that all its
neighbours fall into B is at least(

2` − d
(1− 2δ)2` − d

)/( 2`

(1− 2δ)2`

)
≥ (1− 2δ)d

(
1− 2d

2`

)d
.
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Under the assumption that d ≤ δ2`, the left-hand side is at least (1− 4δ)d.
It must then hold that for such random B, the expected number of left-

nodes that map into B is 2m(1 − 4δ). Hence, for some choice of B, there will
exist a left-set A of the same size whose neighbours are all in B. �

4.6.3 A lower bound for equation (4.2) of the proof of
Lemma 4.3.6

4.6.4. Lemma. There is an `-discrete private-coin one-way protocol π, and a
message m sent by π, such that for J defined as in Lemma 4.3.6, it holds that

I(J : X|Mπ = m) = Ω(log `).

Proof. Suppose Alice is given an inputX uniformly distributed over {x1, . . . , xN},
and private randomness uniformly distributed over {r1, . . . , rN}, so that ` =
logN . Let π be a one-way protocol given by

Mπ(xj , rk) =

{
0 if k ≤

⌊
N
j+1

⌋
,

1 otherwise.

Then conditioned on Mπ = 0, we will have J(xj , rk) = k. Let M =
∑N
i=1b

N
i+1c

be the size of M−1
π (0). Finally, let m denote the event Mπ = 0. Then

I(X : J |m) = H(X|m)−H(X|m,J)

=

N∑
j=1

1

M
·
⌊

N

j + 1

⌋
log

M⌊
N
j+1

⌋ − N∑
k=1

1

M
·
⌊

N

k + 1

⌋
log

⌊
N

k + 1

⌋

= logM − 2

M

N∑
i=1

⌊
N

i+ 1

⌋
log

⌊
N

i+ 1

⌋
,

which is ≥ U iff:

2

N∑
i=1

⌊
N

i+ 1

⌋
log

⌊
N

i+ 1

⌋
≤M(logM − U) (4.4)

Let us denote the left-hand side with A and the right-hand side with B. Because
N
x is monotonically decreasing for x ≥ 1, then:

A ≤ 2

ln 2

∫ N+1

1

N

x
ln
N

x
dx.

The relevant primitive is
∫
N
x ln N

x dx = − 1
2N(ln N

x )2 and hence

A ≤ 2

ln 2

(
−1

2
N

(
ln

N

N + 1

)2

+
1

2
N(lnN)2

)

=
2

ln 2

(
N lnN ln(N + 1)− 1

2
N(ln(N + 1))2

)
.
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We denote this last quantity by A′. Good bounds for M are:8

N lnN − 3N ≤M =

N∑
i=1

⌊
N

i+ 1

⌋
≤ N lnN +N

Let B′ := N lnN − 3N , so that B ≥ B′(logB′ − U). Then we will show that
for an appropriate choice of U ,

A′ ≤ B′(logB′ − U)

and hence A ≤ B and also I(X : J |m) ≥ U . Equivalently,

A′ −B′ logB′ +B′U ≤ 0 (4.5)

For convenience, let α = ln(N+1)
lnN (which goes to 1 as N goes to ∞). Then

A′ = 1
ln 2N(lnN)2(2α−α2) and B′ logB′ = 1

ln 2N(lnN)2 + 1
ln 2N lnN ln lnN+

O(N lnN). Now the proof follows from the following:

4.6.5. Claim. N(lnN)2(2α− α2 − 1)→ − 1
N as N →∞.

Because under this claim, the dominant negative term in (4.5) is 1
ln 2N lnN ln lnN ,

and thus all we need to do is set U to be c ln lnN for some c < 1
ln 2 , that this

ensures (4.5) is negative. For such a choice of U , it will hold that

I(X : J |m) ≥ U = c ln lnN = Ω(log `).

Unfortunately, l’Hopital’s rule does not seem to help us, as the terms become
too complicated. Instead we estimate how fast (2α−α2−1) approaches 0 as N

goes to infinity. For this, let β =
ln( 1

x+1)

ln 1
x

and let us estimate β as x approaches

0. For x close to, but different from, 0, we have:

β = 1− 1

lnx
ln(x+ 1) = 1− x

lnx
+

x2

2 lnx
±O

(
x3

lnx

)
(the last equality is by the Taylor expansion of ln(x + 1) around 0). We also
have

β2 =

(
1− x

lnx
+

x2

2 lnx
−O

(
x3

lnx

))2

= β− x

lnx
+

x2

(lnx)2
+

x2

2 lnx
±O

(
x3

(lnx)2

)
.

Hence,

2β − β2 = 1− x2

(lnx)2
±O

(
x3

(lnx)2

)
.

From this we can conclude that for x = 1/N , we have

2α− α2 − 1 = − 1

N2(lnN)2
±O

(
1

N3(lnN)2

)
,

and our claim follows. �

8This is because the harmonic numbers Hn =
∑n
i=1 1/i converge to lnN + γ for the

Euler–Mascheroni constant γ ≈ 0.577.
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[13] Vikraman Arvind, Johannes Köbler, and Martin Mundhenk. On bounded
truth-table, conjunctive, and randomized reductions to sparse sets. In
Proceedings of the 12th FSTTCS, pages 140–151, 1992.
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man, and Nikolay Vereshchagin. Towards a reverse Newman’s theorem in
interactive information complexity. In Proceedings of the 23rd CCC, pages
24–33, 2013.

[31] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and
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