
Learning Weak Reductions to Sparse Sets

Harry Buhrman∗ Lance Fortnow† John M. Hitchcock‡

Bruno Loff§

Abstract

We study the consequences of NP having non-uniform polynomial
size circuits of various types. We continue the work of Agrawal and
Arvind [1] who study the consequences of Sat being many-one re-
ducible to functions computable by non-uniform circuits consisting of
a single weighted threshold gate. (Sat ≤p

m LT1). They claim that
as a consequence P = NP follows, but unfortunately their proof was
incorrect.

We take up this question and use results from computational learn-
ing theory to show that if Sat ≤p

m LT1 then PH = PNP.
We furthermore show that if Sat disjunctive truth-table (or major-

ity truth-table) reduces to a sparse set then Sat ≤p
m LT1 and hence a

collapse of PH to PNP also follows. Lastly we show several interesting
consequences of Sat ≤p

dtt SPARSE.

1 Introduction

In this paper we study consequences of NP having non-uniform polynomial
size circuits of various types. This question is intimately related to the
existence of sparse hard sets for Sat under different types of reductions,
and has played a central role in complexity theory starting with the work of
Berman, Hartmanis, Karp, Lipton and Mahaney [13, 23, 26].

Karp and Lipton showed that if NP is Turing reducible to a sparse set
then the polynomial time hierarchy collapse to its second level. This was
later improved to a collapse of PH = ZPPNP [24, 14], and finally PH =
Sp2 [15]. Improvement of this result to a deeper collapse is a challenging open
question that implies unconditional circuit lower bounds for classes in the
exponential time hierarchy.
∗CWI and U of Amsterdam, buhrman@cwi.nl. Supported by a Vici grant from NWO,

and EU-grant QCS.
†Northwestern, fortnow@eecs.northwestern.edu. Supported in part by NSF grants

CCF-0829754 and DMS-0652521.
‡University of Wyoming, jhitchco@cs.uwyo.edu. Supported in part by an NWO visiting

scholar grant and by NSF grants 0652601 and 0917417. Research done while visiting CWI.
§CWI, bruno.loff@cwi.nl. Supported by FCT grant SFRH/BD/43169/2008.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mahaney [26] showed that if Sat reduces many-one to a sparse set then in
fact P = NP. This implication was subsequently improved by Ogiwara and
Watanabe [29] to bounded truth-table reductions, and later work extended
this result to other weak reductions [6, 7, 8, 30, 5, 9, 10]. Notoriously open
is to show a similar result for disjunctive truth-table reductions. The best
known consequence of this is a collapse of PH to PNP [11].

Agarwal and Arvind [1] took a geometric view of this question and stud-
ied the consequences of Sat many-one reducing to LT1, the class of languages
accepted by non-uniform circuits consisting of a single weighted threshold
gate. They claimed that Sat ≤pm LT1 implies P = NP — unfortunately,
the proof in that paper was flawed, as it relied essentially on their incorrect
Splitting Lemma (p. 203).1

We take a fresh look at this approach and connect it with results in
learning theory. We use an efficient deterministic algorithm from Maass and
Turán [25] for learning half spaces, to obtain a collapse of the polynomial-
time hierarchy to PNP from the assumption that Sat ≤pm LT1. Interestingly
the main ingredient in the learning algorithm is the use of linear program-
ming, which also featured prominently in the work of Agrawal and Arvind.

The use of learning theory in this area of complexity theory is not new
and was used before by [24, 14, 18, 19], however the use of deterministic
learning algorithms in relationship with the polynomial time hierarchy is
new.

Next we examine the consequences of Sat ≤pdtt SPARSE and make a
link with the geometric approach above. Using the leftset technique from [29]
it is easy to show for conjunctive truth-table reductions that if Sat ≤pctt
SPARSE then P = NP. Frustratingly, for disjunctive truth table reductions
the best known consequence is PH = PNP, a result due to Arvind et al.[11],
who use a complicated argument. We use error-correcting codes to show
that SAT ≤pdtt SPARSE implies that Sat ≤pm LT1, which with our previous
result gives a new and more modular proof of the collapse to PNP. Our new
approach enables us to obtain the same collapse for majority reductions.

We finish with a handful of new consequences of Sat ≤pdtt SPARSE and
Sat ≤pmaj SPARSE. Interestingly it turns out that in the case of disjunctive
reductions, improvement of the above results to a collapse of PH = PNP

‖ is
sufficient to obtain the full collapse to P = NP.

1The mistake in this Splitting Lemma was not seen by any of the paper’s refer-
ees, but instead was accidentally discovered years later. For an anecdotal account
of the episode, please consult http://blog.computationalcomplexity.org/2009/10/

thanks-for-fuzzy-memories.html.

2

2 Preliminaries

We assume that the reader is familiar with computational complexity, as
expounded, for instance, in [4]. In particular, we make use of

A ∈ P/poly ⇐⇒ A ≤pT SPARSE,

so a reduction to a sparse set can be seen as a polynomial-time circuit. The
weaker the reduction, the weaker the access to non-uniformity.

The least common notation we use, is: PNP
‖ and FPNP

‖ , which are the
classes of sets and functions, respectively, that are polynomial-time com-
putable with non-adaptive queries to an NP oracle; PNP[q], and FPNP[q],
the classes of sets and functions that are polynomial-time computable by
asking no more than q(n) (possibly adaptive) queries to an NP oracle.

A linear threshold function L : {0, 1}m → {0, 1} is defined by a vector of
m real numbers w ∈ Rm, called weights, a threshold θ ∈ R, and the equation

L(z) =

{
1 if z · w > θ, and
0 if z · w ≤ θ.

Here z · w denotes the inner product
∑m

i=1 ziwi.
We let LT1(m) denote the class of linear threshold functions with m-bit

binary inputs. We may freely assume, for functions in LT1(m), that the
weights and threshold are integers of bit-length m logm [27, Thm. 16].

In this paper we are concerned with three kinds of reductions:

Definition 1. (dtt reductions) A set A disjunctive truth-table reduces to
a set S, written A ≤pdtt S, if there exists a polytime computable
function Q, outputting a set of queries, such that

x ∈ A ⇐⇒ Q(x) ∩ S 6= ∅.

(majority reductions) A set A majority truth-table reduces to a set S,
written A ≤pmaj S, if there exists a function Q, as above, such that

x ∈ A ⇐⇒ |Q(x) ∩ S| > |Q(x)|
2

(LT1 reductions) A set A reduces to linear-threshold functions, written
A ≤pm LT1, if there exists a polytime computable function f , and a
family {Ln}n∈N of linear threshold functions, such that2

x ∈ A=n ⇐⇒ Ln(f(x)) = 1.
2Notice that the length of f(x) must be a function of the length of x.

3

3 If Sat ≤pm LT1 ...

Attempting to derive P = NP should prove difficult, since by the next
section this would imply the same collapse for dtt and majority reductions
to sparse sets. Since A ≤pm LT1 implies A ∈ P/poly , then [15] gives us
PH = Sp2. This collapse can be improved in the following way:

Theorem 1. If Sat ≤pm LT1, then PH = PNP.

We take a similar approach as [14]: the existence of a suitable learn-
ing algorithm will, under the assumption that Sat ≤pm LT1, collapse the
polynomial-time hierarchy. The difference being that we have a determin-
istic learning algorithm for linear threshold functions, but only (zero-error)
probabilistic algorithms with access to an NP oracle are known that can
learn general circuits.

Our learning model is the on-line learning model of Angluin [3] for learn-
ing with counter-examples. In our case, the learner wishes to identify an un-
known linear threshold function, say L ∈ LT1(m). At each learning step, the
algorithm proposes some hypothesis H ∈ LT1(m). If H 6= L, then the algo-
rithm is given a counter-example x such that H(x) 6= L(x). The algorithm is
not allowed to make any assumptions on the counter-example, which could
very well be adversarially chosen. Based on the previous counter-examples
and hypotheses, the algorithm suggests a new hypothesis which is correct
on the inputs seen so far, and the process is repeated until H = L. The
learning complexity of such an algorithm is the maximum number of these
steps that it will need in order to learn any function in LT1(m).

Theorem 2 ([25]). There is a deterministic polynomial-time algorithm for
learning LT1(m) functions in O(m3 logm) steps.

As a corollary, we can now prove Theorem 1.

Proof of Theorem 1. Suppose Sat ≤pm LT1, and let Ln be a family of linear
threshold functions, and f a polytime reduction, such that

ψ ∈ Sat=n ⇐⇒ Ln(f(ψ)) = 1. (1)

For a given formula of length n, we use the algorithm of Theorem 2 in order
to uncover a linear threshold function H with the same property (1) as Ln,
in polynomial time with the help of an NP oracle.

Let m = |f(ψ)| on inputs ψ of length n. We proceed as follows: we
start with an initial hypothesis H for Ln, given by the learning algorithm
for LT1(m). Then at each step in the learning process we ask the NP oracle,
if there exists some formula ψ of length n such that:

1. ψ has no free variables and evaluates to true, but H(f(ψ)) = 0, or

4

2. ψ has no free variables and evaluates to false, but H(f(ψ)) = 1, or

3. H(f(ψ)) = 1 but both H(f(ψ0)) = 0 and H(f(ψ1)) = 0, or

4. H(f(ψ)) = 0, but H(f(ψ0)) = 1 or H(f(ψ1)) = 1.

Above, ψ0 and ψ1 are obtained by replacing the first variable of ψ respec-
tively with 0 or 1. Essentially, we are asking whether the set Sat(H) =
{ψ|H(f(ψ)) = 1} violates the self-reducibility of Sat. If this is not the case,
then necessarily Sat(H) = Sat=n, and we are done.

But if the self-reducibility is violated, then for at least one φ ∈ {ψ,ψ0, ψ1},
we must have H(f(φ)) 6= Ln(f(φ)), and so f(φ) gives us a counter-example
to update the hypothesisH. We use prefix-search to obtain such a formula ψ.
Then by equation (1) we can use the Sat oracle again in order to know which
φ ∈ {ψ,ψ0, ψ1} will provide the counter-example H(f(φ)) 6= Ln(f(φ)).

After O(m3 logm) = poly(n) many iterations, we will either have learnt
Ln, or otherwise obtained an hypothesis H suitable for the purpose of query-
ing Sat=n.

By feeding the NP oracle the suitable linear-threshold functions, it now
becomes possible to simulate a Σp

2 computation. So Σp
2, and consequently

all of PH, collapses to PNP.

The algorithm above is non-adaptive, and in order to solve Sat=n, it
potentially asks Ω(nm3 logm)-many queries to Sat. We can be a bit more
clever, and actually reduce this number to n. This will essentially give us
the following:

Theorem 3. If Sat ≤pm LT1, then NPSat=n ⊆ PSat[n] ∩NP/lin.

Proof. The idea is to use the self-reducibility of Sat once again, in order to
learn Sat=n first for formulas with no free variables, that evaluate to true
and ones that evaluate to false, then for formulas with 1 free variable, then 2
free variables, and so on. Let Sat=n

k be the set of satisfiable formulas having
exactly k free variables. Starting with the initial hypothesis H, we set out
to learn Sat=n

0 . What is the largest number of mistakes that we can make,
i.e., how many times might we need to change our hypothesis H until we
have properly learned Sat=n

0 ?
Using a Sat oracle, we can ask: is there a sequence ψ1, . . . , ψ` of `

formulas, having 0 vars, such that ψi+1 is always a counter-example to the
hypothesis constructed by our learning algorithm after seeing ψ1, . . . , ψi? 3

3Formalizing the question as an NP-set gives us:

A = {〈0n, 0`〉 | ∃~ψ, ~H∀i Hi = Learner(ψ1, . . . , ψi) ∧Hi−1(f(ψi)) 6= Sat(ψi)},

where ~ψ is a sequence of `-many formulas with 0 vars, ~H is a sequence of `-many thresh-
old functions, and i ∈ {1, . . . , `}. Notice that Hi−1(f(ψi)) 6= Sat(ψi) is decidable in
polynomial time because the formulas ψi have no variables.

5

We know that such a sequence will have at most poly(n) formulas, and
so using binary search, then by making O(log n) such queries, we can find
the length of the largest sequence of counter-examples which can be given
to our learning algorithm before it necessarily learns Sat=n

0 . Let this length
be `0.

Then because `0 is maximal, at this point we know that if the learning
algorithm is given any sequence of `0-many counter-examples having no
variables, the constructed hypothesis H will be correct on Sat=n

0 , in the
sense that ψ ∈ Sat=n

0 ⇐⇒ H(f(ψ)) = 1.
Now that we know `0, we set out to learn Sat=n

1 . Using Sat as an oracle,
we may ask: Is there a sequence of `0 counter-examples with 0 vars, followed
by ` counter-examples with 1 var? Thus we may obtain `1, the length of the
largest sequence of counter-examples with 1 var, that can be given to the
learning algorithm after it has already learned every possible formula with 0
vars.

In general we know `0, . . . , `k−1, and we set out to learn Sat=n
k . Using

Sat as an oracle, we ask: Is there a sequence of `0 counter-examples with
0-vars, followed by `1 counter-examples with 1-var, . . ., followed by `k−1

counter-examples with k − 1 vars, followed by ` counter-examples with k
vars?

The key observation is that in order for the Sat oracle to be able to tell
whether a formula ψ with k variables is a counter-example to hypothesis H,
i.e., whether H(f(ψ)) 6= Sat(ψ), it will need to know whether ψ is or is
not satisfiable. In order to know this, the Sat oracle uses H itself, which at
this point is known to be correct for formulas with k− 1 variables, and thus
ψ ∈ Sat ⇐⇒ H(f(ψ0)) = 1 or H(f(ψ1)) = 1.

In the end we have n + 1 numbers `0, . . . , `n, and we know that if the
learning algorithm is given any sequence of `0-many counter-examples hav-
ing no variables, followed by `1 counter-examples having 1 variable, . . .,
followed by `n counter-examples having n variables, then the constructed
hypothesis H will be correct on all of Sat=n. Furthermore, such a sequence
must exist by construction.

These numbers take up at most O(n log n) many bits, and each bit is
the outcome of one (much larger, adaptive) query to Sat. Having access to
`0, . . . , `n, an NP machine can guess a proper sequence of counter-examples,
and it will thus obtain an hypothesis H which it can use to answer any query
to Sat=n. Thus NPSat=n ⊆ PSat[n logn], and NPSat=n ⊆ NP/n log n.

In order to improve n log n into n bits, or even n
c logn bits, the proof is

similar, but instead of learning how to decide Sat=n for one extra variable
at a time, we learn O(log n) many extra variables at a time — this requires
us to unfold the self-reduction tree O(log n)-deep.

Under the assumption that Sat has polynomial-size circuits, we may
decide, in coNP, wether a given string α(n) encodes a circuit correct for

6

Sat=n. However, there will possibly be many strings with this property —
the following theorem gives us a way to single out, in coNP, a unique advice
string α(n) suitable to decide Sat=n. The proof will be put in appendix.

Theorem 4. If NP ⊆ P/poly, and PH ⊆ PNP, then PH ⊆ P/α for some
polynomial advice function 0n 7→ α(n) whose graph Gα = {〈0n, α(n)〉|n ∈
N} ∈ coNP.

Corollary 5. If Sat ≤pm LT1, then PH ⊆ P/α for some polynomial advice
function 0n 7→ α(n) whose graph Gα ∈ coNP.

4 LT1 versus dtt and maj reductions

In this section we show that LT1 reductions can simulate dtt and majority
reductions to sparse sets. Thus, effectively, the collapses we have proven for
LT1 reductions imply similar collapses for dtt and majority reductions.

Theorem 6. If A ≤pdtt SPARSE or A ≤pmaj SPARSE, then A ≤pm LT1.

Proof. We will use a Reed-Solomon code to construct the LT1 reduction.
Suppose A ≤pdtt S ∈ SPARSE, and assume w.l.o.g. that the dtt reduction
is given by a polytime computable function Q, such that

x ∈ A=n ⇐⇒ S=m ∩Q(x) 6= ∅, (2)

|S=m| = m, and

|Q(x)| = d.

That is, for every input x of length n, Q(x) = {y1, . . . , yd} always queries
the same number of d = d(n) strings of the same length m = m(n), and
that there will be exactly m many such strings in S=m.

We will be working over the field F2` , for ` ≥ dlog dm2e. For any given
binary string s of length m, we define the polynomial ps(z) =

∑m
i=1 siz

i−1.
Now let C(s) be the encoding of s as a 2`×2`-long binary string: this string
is the concatenation of ps(a), as a goes through all the 2` elements of F2` ;
each ps(a) is in turn encoded by a binary string of length 2`, having a 1 at
position ps(a) (for some fixed enumeration of F2`), and 0s elsewhere.

Note that |C(s)| = O(d2m4) = poly(n). Then vitally note that by
encoding strings this way, the number of bit positions where C(s) and C(y)
are equal, given by the inner product C(s) · C(y),4 is exactly the number of
elements a ∈ F2` where ps(a) = py(a). So for any two words s, y ∈ {0, 1}m,

4Note that the binary strings C(s) and C(y) are seen as 0-1 vectors, and that the inner

product is a natural number
P2`×2`

j=1 C(s)jC(y)j .

7

using the fact that ps − py is either identically zero, or has at most m − 1
roots, {

C(y) · C(s) ≤ m− 1 if y 6= s, and
C(y) · C(s) ≥ dm2 if y = s.

Define g(x) =
∨d
i=1C(yi), where Q(x) = {y1, . . . , yd}, and by

∨
we mean

bitwise-OR. Then{
g(x) · C(s) ≤

∑d
i=1C(yi) · C(s) ≤ d(m− 1) if s 6∈ Q(x), and

g(x) · C(s) ≥ dm2 if s ∈ Q(x).

Finally, let wn = ⊕s∈S=mC(s), and f(x) = (g(x))⊕m, where by ⊕ we mean
the direct sum of vectors / concatenation of strings. Then f(x) · wn =∑

s∈S=m g(x) · C(s), and we come to{
f(x) · wn ≤ md(m− 1) if S=m ∩Q(x) = ∅, and
f(x) · wn ≥ dm2 if S=m ∩Q(x) 6= ∅.

(3)

So x ∈ A ⇐⇒ f(x) · wn > dm(m− 1), showing that A ≤pm LT1.
The transformation for maj reductions is similar. We begin with a dtt

reduction function Q, which is like before, except that now Equation (2) is
replaced with

x ∈ A=n ⇐⇒ |S=m ∩Q(x)| > d

2
.

Then both the LT1 reduction function f , and the set of weights wn are
constructed exactly in the same way, but over a slightly larger field. Working
through the proof, if 2` is the size of our chosen field, and K = |S=m∩Q(x)|,
then Equation (3) becomes:

2`K ≤ f(x) · wn ≤ 2`K + d(m− 1)(m−K).

Now choose ` ≥ dlog 4dm2e as the size of our field. Using the defining
property of the maj reduction, a small computation will show us that

x ∈ A=n ⇐⇒ K >
d

2
⇐⇒ f(x) · wn > 2`

(
d

2
+

1
4

)
— this defines our LT1 reduction.

5 If Sat ≤pdtt SPARSE ...

Disjunctive truth-table reductions to sparse sets are powerful enough to
simulate bounded truth-table reductions to sparse sets [2]. But the collapses
that are known, under the assumption that Sat ≤pdtt SPARSE, are not as
strong as those for btt reductions. We can summarize what was known
about Sat ≤pdtt SPARSE, in the following two theorems:

8

Consequense 1 ([16, 12]). ... then FPNP
‖ = FPNP[log], UP ⊆ P, and

NP = RP.

Consequense 2 ([11]). ... then PH = PNP = PRP = BPP.

To these consequences, we append our own observations, which follow
from the results in the previous sections.

Consequense 3. ... then NPSat=n ⊆ PSat[n], NPSat=n ⊆ NP/lin.

Consequense 4. ... then PH ⊆ P/α for some function 0n 7→ α(n) whose
graph Gα ∈ coNP.

Finally, we note that we are not far away from obtaining the final con-
sequence P = NP.

Consequense 5. ... then E 6⊆ NP/log.

Consequense 6. ... then ENP 6⊆ SIZE(2εn) for some ε > 0.

Consequense 7. ... then the following statements are all equivalent:

1. P = NP.

2. PNP = PNP
‖ .

3. coNP ∩ SPARSE ⊆ NP.

4. ENP = ENP
‖ .

Proof of Consequence 5. [17] show that

EXP ⊆ PNP
‖ ⇐⇒ EXP ⊆ NP/log.

But if we had EXP ⊆ PNP
‖ , then we could compute the lexicographi-

cally least satisfying assignment of a given formula in FPNP
‖ , and thus

in FPNP[log], by Consequence 1. But then we could also do it in FP
alone, simply by trying every possible answer to the queries made by the
FPNP[log] computation. But then P = NP, and the necessary conclusion
EXP ⊆ PH ⊆ P would contradict the time-hierarchy theorem.

Proof of Consequence 6. By counting there is a function f : {0, 1}logn →
{0, 1} 6∈ SIZE(nε) which can be found in PΣ2 [cf. 22], and thus, by Conse-
quence 2, in PNP. Translating this upwards we get a set in ENP with no
circuits of size 2εn.

9

Proof of Consequence 7. As in the proof of Consequence 5, P = NP follows
if we are able to compute the least satisfying assignment of a given formula
in FPNP

‖ . This is trivially the case when PNP = PNP
‖ .

Now if SPARSE ∩ coNP ⊆ NP, then, from Consequence 4, we get
PH ⊆ NPGα ⊆ NPNP∩SPARSE: the non-deterministic machine just guesses
the advice α and checks it using the oracle. But NPNP∩SPARSE ⊆ NP [cf 21],
and thus the least satisfying assignment of a given formula can be obtained
in FPNP

‖ .
To see the third equivalence, notice that ENP = ENP

‖ , then Consequence
6 implies we can derandomise BPP in PNP

‖ [cf. 28, 20]; since PH ⊆ BPP,
this implies that the least satisfying assignment can be found in FPNP

‖ .

6 Final remarks

We remark that our paper also draws new conclusions from Sat ≤pmaj

SPARSE. It was previously known that, under this hypothesis, NP = RP,
but it remains open to show that FPNP

‖ = FPNP[log] [cf. 12]. However, the
results in this paper imply that Consequences 2, 3 and 4 of the previous
section also apply to the Sat ≤pmaj SPARSE case, which was previously
unknown.

References

[1] M. Agrawal and V. Arvind. Geometric sets of low information content.
Theor. Comput. Sci., 158(1-2):193–219, 1996.

[2] E. Allender, L. A. Hemachandra, M. Ogiwara, and O. Watanabe. Re-
lating equivalence and reducibility to sparse sets. SIAM J. Comput.,
21(3):521–539, 1992.

[3] D. Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342,
1987.

[4] S. Arora and B. Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

[5] V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano, M. Mund-
henk, M. Ogiwara, U. Schöning, R. Silvestri, and T. Thierauf. Reduc-
tions to sets of low information content. In K. Ambos-Spies, S. Homer,
and U. Schöning, editors, Complexity Theory: Current Research, pages
1–45. Cambridge University Press, 1993.

[6] V. Arvind, J. Köbler, and M. Mundhenk. Bounded truth-table and
conjunctive reductions to sparse and tally sets. Technical report, Uni-
versity of Ulm, 1992.

10

[7] V. Arvind, J. Köbler, and M. Mundhenk. Lowness and the complexity
of sparse and tally descriptions. In Proc. 3rd ISAAC, pages 249–258.
Springer, 1992.

[8] V. Arvind, J. Köbler, and M. Mundhenk. On bounded truth-table,
conjunctive, and randomized reductions to sparse sets. In Proc. 12th
CFSTTCS, pages 140–151. Springer-Verlag, 1992.

[9] V. Arvind, J. Köbler, and M. Mundhenk. Hausdorff reductions to sparse
sets and to sets of high information content. In MFCS ’93, pages 232–
241, 1993.

[10] V. Arvind, J. Köbler, and M. Mundhenk. Monotonous and randomized
reductions to sparse sets. Theo. Inform. and Appl., 30(2):155–179, 1996.

[11] V. Arvind, J. Köbler, and M. Mundhenk. Upper bounds for the com-
plexity of sparse and tally descriptions. Theor. Comput. Syst., 29:63–94,
1996.

[12] V. Arvind and J. Torán. Sparse sets, approximable sets, and parallel
queries to NP. In C. Meinel and S. Tison, editors, STACS 99, volume
1563 of Lect. Notes Comp. Sc., pages 281–290. Springer, 1999.

[13] L. Berman and J. Hartmanis. On isomorphisms and density of NP and
other complete sets. In Proc. 8th STOC, pages 30–40, 1976.

[14] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Ora-
cles and queries that are sufficient for exact learning. J. Comput. Syst.
Sci., 52(3):421–433, 1996.

[15] J.-Y. Cai. Sp2 ⊆ ZPPNP. J. Comput. Syst. Sci., 73(1):25–35, 2002.

[16] J.-Y. Cai, A. Naik, and D. Sivakumar. On the existence of hard sparse
sets under weak reductions. In C. Puech and R. Reischuk, editors,
STACS 96, volume 1046 of Lect. Notes Comp. Sc., pages 307–318.
Springer, 1996.

[17] L. Fortnow and A. Klivans. NP with small advice. In Proc. 20th CCC,
pages 228–234, 2005.

[18] R. Harkins and J. M. Hitchcock. Dimension, halfspaces, and the density
of hard sets. Theor. Comput. Syst., 49(3):601–614, 2011.

[19] J. M. Hitchcock. Online learning and resource-bounded dimension:
Winnow yields new lower bounds for hard sets. SIAM J. Comput.,
36(6):1696–1708, 2007.

[20] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential
circuits. In Proc. 29th STOCS, pages 220–229, 1997.

11

[21] J. Kadin. PNP[O(logn)] and sparse Turing-complete sets for NP. J.
Comput. Syst. Sci., 39(3):282–298, 1989.

[22] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse
sets. Inform. Comput., 55(1-3):40–56, 1982.

[23] R. Karp and R. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proc. 12th STOC, pages 302–309, 1980.

[24] J. Köbler and O. Watanabe. New collapse consequences of NP having
small circuits. In Z. Fülöp and F. Gécseg, editors, Automata, Languages
and Programming, volume 944 of Lect. Notes Comp. Sc., pages 196–207.
Springer, 1995.

[25] W. Maass and G. Turán. How fast can a threshold gate learn? In
Worksh. Comput. Learn. Theor. & Natur. Learn. Syst., volume 1, pages
381–414, Cambridge, MA, USA, 1994. MIT Press.

[26] S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of
Berman and Hartmanis. J. Comput. Syst. Sci., 25(2):130–143, 1982.

[27] S. Muroga, I. Toda, and S. Takasu. Theory of majority decision ele-
ments. J. Franklin. I., 271(5):376–418, 1961.

[28] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[29] M. Ogiwara and O. Watanabe. Polynomial-time bounded truth-table
reducibility of NP sets to sparse sets. SIAM J. Comput., 20(3):471–483,
1991.

[30] D. Ranjan and P. Rohatgi. On randomized reductions to sparse sets.
In Proc. 7th STOC, pages 239–242, 1992.

12

7 Appendix

Proof of Theorem 4. Let A be ∆2-complete. Then there is a polytime ma-
chine M that decides A=n with polynomially-long advice γ(n), where γ(n)
codes a circuit solving Sat=m, for some m = poly(n). The machineM uses
γ(n) to answer the queries needed in the ∆2 computation of A. Furthermore,
the function 0n 7→ α̃(n), given by

α̃(n) is the lexicographically smallest string
such that x ∈ A=n ⇐⇒ M(x)/α̃(n) = 1,

is in PH and thus in FPSat. Then let N be a polytime machine computing
α̃ with a Sat oracle, and let’s say it makes k queries to compute α̃(n). Let
S ∈ coNP be the set of strings 〈0n, α̃, a1, . . . , ak, y1, . . . , yk〉 such that

1. N~a(0n) = α̃ (i.e., when a1, . . . , ak are given as answers to the queries
of N),

2. if ai = 1 then yi is the lexicographically smallest satisfying assignment
of the i-th formula queried by N~a, and

3. if ai = 0 then yi = λ (the empty string) and the i-th formula queried
by N~a is not satisfiable.

Notice that for a given n, the string 〈0n, α̃, a1, . . . , ak, y1, . . . , yk〉 ∈ S
is uniquely defined, so S is the graph of α(n) = 〈α̃, a1, . . . , ak, y1, . . . , yk〉.
When given α(n), an algorithm for A can simply check if M(x)/α̃ = 1.

13

