17,359 research outputs found

    Medical images modality classification using multi-scale dictionary learning

    Get PDF
    In this paper, we proposed a method for classification of medical images captured by different sensors (modalities) based on multi-scale wavelet representation using dictionary learning. Wavelet features extracted from an image provide discrimination useful for classification of medical images, namely, diffusion tensor imaging (DTI), magnetic resonance imaging (MRI), magnetic resonance angiography (MRA) and functional magnetic resonance imaging (FRMI). The ability of On-line dictionary learning (ODL) to achieve sparse representation of an image is exploited to develop dictionaries for each class using multi-scale representation (wavelets) feature. An experimental analysis performed on a set of images from the ICBM medical database demonstrates efficacy of the proposed method

    MULTIPLE DICTIONARY FOR SPARSE MODELING

    Get PDF
    Much of the progress made in image processing in the past decades can be attributed to better modeling of image content, and a wise deployment of these models in relevant applications. In this paper, we review the role of this recent model in image processing, its rationale, and models related to it. As it turns out, the field of image processing is one of the main beneficiaries from the recent progress made in the theory and practice of sparse and redundant representations. Sparse coding is a key principle that underlies wavelet representation of images. Sparse representation based classification has led to interesting image recognition results, while the dictionary used for sparse coding plays a key role in it. In general, the choice of a proper dictionary can be done using one of two ways: i) building asparsifying  dictionary based on a mathematical model of the data, or ii) learning a dictionary to perform best on a training set

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Transform-domain sparse representation based classification for machinery vibration signals

    Get PDF
    The working state of machinery can be reflected by vibration signals. Accurate classification of these vibration signals is helpful for the machinery fault diagnosis. A novel classification method for vibration signals, named Transform Domain Sparse Representation-based Classification (TDSRC), is proposed. The method achieves high classification accuracy by three steps. Firstly, time-domain vibration signals, including training samples and test samples, are transformed to another domain, e.g. frequency-domain, wavelet-domain etc. Then, the transform coefficients of the training samples are combined as a dictionary and the transform coefficients of the test samples are sparsely coded on the dictionary. Finally, the class label of the test samples is identified by their minimal reconstruction errors. Although the proposed method is very similar to the Sparse Representation-based Classification (SRC), experimental results illustrates its performance is far superior to SRC in the classification of vibration signals. These experiments include: frequency-domain classification of bearing vibration data from the Case Western Reserve University (CWRU) Bearing Data Center and wavelet-domain classification of six fault-types gearbox vibration data from our rotating machinery experimental platform

    Transform-domain sparse representation based classification for machinery vibration signals

    Get PDF
    The working state of machinery can be reflected by vibration signals. Accurate classification of these vibration signals is helpful for the machinery fault diagnosis. A novel classification method for vibration signals, named Transform Domain Sparse Representation-based Classification (TDSRC), is proposed. The method achieves high classification accuracy by three steps. Firstly, time-domain vibration signals, including training samples and test samples, are transformed to another domain, e.g. frequency-domain, wavelet-domain etc. Then, the transform coefficients of the training samples are combined as a dictionary and the transform coefficients of the test samples are sparsely coded on the dictionary. Finally, the class label of the test samples is identified by their minimal reconstruction errors. Although the proposed method is very similar to the Sparse Representation-based Classification (SRC), experimental results illustrates its performance is far superior to SRC in the classification of vibration signals. These experiments include: frequency-domain classification of bearing vibration data from the Case Western Reserve University (CWRU) Bearing Data Center and wavelet-domain classification of six fault-types gearbox vibration data from our rotating machinery experimental platform

    Wavelet-Based Compressive Sensing for Point Scatterers

    Get PDF
    Compressive Sensing (CS) allows for the sam-pling of signals at well below the Nyquist rate but does so, usually, at the cost of the suppression of lower amplitude sig-nal components. Recent work suggests that important infor-mation essential for recognizing targets in the radar context is contained in the side-lobes as well, which are often sup-pressed by CS. In this paper we extend existing techniques and introduce new techniques both for improving the accu-racy of CS reconstructions and for improving the separa-bility of scenes reconstructed using CS. We investigate the Discrete Wavelet Transform (DWT), and show how the use of the DWT as a representation basis may improve the accu-racy of reconstruction generally. Moreover, we introduce the concept of using multiple wavelet-based reconstructions of a scene, given only a single physical observation, to derive re-constructions that surpass even the best wavelet-based CS reconstructions. Lastly, we specifically consider the effect of the wavelet-based reconstruction on classification. This is done indirectly by comparing outputs of different algo-rithms using a variety of separability measures. We show that various wavelet-based CS reconstructions are substan-tially better than conventional CS approaches at inducing (or preserving) separability, and hence may be more useful in classification applications
    corecore