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Abstract— Much of the progress made in image processing in 

the past decades can be attributed to better modeling of image 

content, and a wise deployment of these models in relevant 

applications. In this paper, we review the role of this recent 

model in image processing, its rationale, and models related to it. 

As it turns out, the field of image processing is one of the main 

beneficiaries from the recent progress made in the theory and 

practice of sparse and redundant representations. Sparse coding 

is a key principle that underlies wavelet representation of images. 

Sparse representation based classification has led to interesting 

image recognition results, while the dictionary used for sparse 

coding plays a key role in it. In general, the choice of a proper 

dictionary can be done using one of two ways: i) building as 

parsifying  dictionary based on a mathematical model of the data, 

or ii) learning a dictionary to perform best on a training set.  

 

I. INTRODUCTION 

The process of digitally sampling a  natural  signal  leads to its 

representation as the sum of Delta functions in space or  time. 

This representation, while convenient for the purposes of 

display or playback, is mostly inefficient for analysis tasks. 

Signal processing techniques commonly require more 

meaningful representations which capture the useful 

characteristics of the signal for recognition, the representation 

should highlight salient features; for denoising, the 

representation should efficiently separate signal and noise; and 

for compression, the representation should capture a large part 

of the signal with only a few coefficients. Interestingly, in 

many cases these seemingly different goals align, sharing a 

core desire for simplification. Representing a signal involves 

the choice of a dictionary, which is the set of elementary 

signals or atoms used to decompose the signal. When the 

dictionary forms a basis, every signal is uniquely represented 

as the linear combination of the dictionary atoms. In the 

simplest case the dictionary is orthogonal, and the 

representation coefficients can be computed as inner products 

of the signal and the atoms; in the non-orthogonal case, the 

coefficients are the inner products of the signal and the 

dictionary inverse, also referred to as the bi-orthogonal 

dictionary. 

In the last decade, sparsity has emerged as one of the leading 

concepts in a wide range of signal-processing applications 

(restoration, feature extraction, compression, to name only a 

few applications). Sparsity has long been an attractive 

theoretical and practical signal property in many areas of 

applied mathematics (such as computational harmonic 

analysis, statistical estimation, and theoretical signal 

processing).The sparse representation theory has shown that 

sparse signals can be exactly reconstructed from a small 

number of elementary signals (or atoms).The sparse 

representation of natural signals can be achieved by exploiting 

its sparsity or compressibility. A natural signal is said to be 

sparse signal if that can be compactly expressed as a linear 

combination of a few small number of basis vectors .Sparse 

representation has become an invaluable tool as compared to 

direct time-domain and transform-domain signal processing 

methods.Sparse and redundant representation modeling of 

data assumes an ability to describe signals as linear 

combinations of a few atoms from a pre-specified dictionary. 

As such, the choice of the dictionary that sparsifies the signals 

is crucial for the success of this model. Unlike to DCT, DWT 

and PCA analysis and their variations sparse models do not 

impose any condition of orthogonallity on the basis vectors, 

hence allowing more flexibility to adapt the representation.  

 

II.  PROPOSED SOLUTION 

A.  Dictionary Learning: 

In its simplest form a linear generative model can be 

written algebraically as: 
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The input vector 
1 mRX is a vector of data 

derived from the image block under study, which is to be 

encoded. The observation is modeled as a linear 

combination of atoms id , which are the elementary 

structural representations establishing the 

dictionary
kmD 

. The vector S defines the multiplicative 

weights of these features. The vector  represents the 

error due to the inability of the model to represent the 

input exactly.  If the requirement is to have zero 

observation error, i.e. 0 and a square known 

orthogonal matrix D, the problem of finding S for any 
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input X becomes a standard orthogonal transform. For 

cases where both D and S are unknown for km   , 

PCA, ICA and similar variations are the established tools, 

which guarantee to have the elements of S uncorrelated 

and independent. The central problem in applying PCA 

and ICA is in finding the matrix D while minimizing  . 

Unlike to this sparse modeling deals with km  .Apart 

from estimating the dictionary D the need is also to find a 

method to compute S for a given estimate.  When a 

sufficient amount of training data is available, the 

dictionary can be adapted to the data itself. The joint 

optimization problem of dictionary learning and sparse 

coding is then expressed as: 
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where
pis is the pl norm and 10  p measures the 

sparsity of the vector is . Sparse approximation refers to 

an representation of X with fewer non-zero coefficients 

than the dimension m of X. A measure of the sparsity of a 

representation is counting the zeros or L0 norm. This 

norm is easy to compute, however, the problem of finding 

the minimum of equation (2) with this norm is NP-hard . 

Different approximations to this norm have therefore been 

discussed. 

A wide range of dictionary learning algorithms have 

been proposed in the literature . Standard unsupervised 

methods like K-means, K-SVD [1], and LLC [25] train 

visual dictionaries based on only information of images. 

A widely acceptable dictionary learning method for image 

restoration is the KSVD algorithm, which learns an over-

complete dictionary from a training dataset of natural 

image patches. Statistical learning theory has proved that 

augmenting the amount of training samples dramatically 

enhances the generalization of dictionary. However, 

addition of training samples may also lead to enlarge the 

variation in pattern with appearance of many types of 

textures and edges. Apparently natural images being 

greatly flushed with smooth blocks, use of single 

dictionary don’t efficiently preserve the high order 

statistical manifolds.   Based on KSVD, Mairal added a 

discriminative reconstruction constraint in the DL model 

to gain the discriminative ability. Algorithms that 

incorporate class-specific information when learning the 

dictionary have also been developed, and successfully 

applied for digit recognition and image classification. 

 

 K-SVD Algorithm 

1. Initialize Dictionary 

 Select atoms from input 

 Atoms can be patches from the image 

 Patches are overlapping  

2. Sparse Coding(OMP) 

 Use OMP or any other fast method 

 Output gives sparse code for all signals 

 Minimize error in representation  

3. Update Dictionary-One atom at a time  

 Replace unused atom with minimally represented  

signal  

 Identify signals that use k-th atom (non zero entries in 

rows of X)  

 Minimize this error matrix with rank-1 approx from 

SVD 

 [U,S,V] = svd(Ek) 

 Replace coeffiecient of atom dk in X with entries of 

s1v1 

 dk = u1/||u1||2 

This paper addresses about learning of multiple decoupled 

dictionaries in a framework to use Discrete Wavelet 

Transform for pattern classification. 

Sparse coding is the process of computing the representation 

coefficients X based on the given signal Y and the dictionary 

D. This process, commonly referred to as ―atom 

decomposition,‖ requires solving above equations , and this is 

typically done by a ―pursuit algorithm‖ that finds an 

approximate solution. Exact determination of sparsest 

representations proves to be an NP-hard problem. Thus, 

approximate solutions are considered instead, and in the past 

decade or so several efficient pursuit algorithms have been 

proposed. The simplest ones are the matching pursuit (MP) 

and the orthogonal matching pursuit (OMP) algorithms. These 

are greedy algorithms that select the dictionary atoms 

sequentially. These methods are very simple, involving the 

computation of inner products between the signal and 

dictionary columns, and possibly deploying some least squares 

solvers. Both above equations are easily addressed by 

changing the stopping rule of the algorithm. 

A second well-known pursuit approach is the basis pursuit 

(BP). It suggests a convexification of the problem sposed in 

the above equations by replacing the lo-norm with and  l1-

norm. The focal underdetermined system solver (FOCUSS) is 

very similar, using the l p-norm with  p≤ 1 as a replacement 

for the lo –norm in the above equations. Sparse representation 

of signals have drawn considerable interest in recent years. 

Sparse coding is a key principle that underlies wavelet 

representation of images. In this paper, we explain the effort 

of seeking a common wavelet sparse coding of images from 

same object category leads to an active basis model called 

Sparse-land model, where the images share the same set of 

selected wavelet elements, which forms a linea rbasis for 

restoring the blurred image. The aim of image restoration is 

the removal of noise (sensor noise, blur etc) from images. The 

simplest approach for noise removal is based on various types 

of filters such as low-pass filters or median filters. In this 
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paper, we used Haar wavelet transform based Weiner filter 

followed by PCD algorithm. We observed that the outcomes 

does not show any tendency to be sparse. In this case, we start 

by defining a random generator of sparse vector and it can be 

modified in various ways. One among them is 

MMSE(Minimum mean square error) estimator and it is used 

in this paper. This analysis gives a more solid foundation for 

the sparsest representation of deblurred image, which is said to 

be Sparse-land model. 

 

B.   Proposed Sparse Modeling Using DWT Classification And 

Decoupled Dictionary 

 

I) Dictionary Training 

 

 
 

 

II) Sparse Coding  

 

 
 

Fig:Sparse Coding 

 

     C.   Block Diagram 

 

FIG1 

 

 
 

 
FIG2 

 

III. DESCRIPTION  

 

―Discrete Wavelet Transform‖, transforms discrete signal 

from time domain into time-frequency domain. The 

transformation product is set of coefficients organized in the 

way that enables not only spectrum analyses of the signal, but 

also spectral behavior of the signal in time .This is achieved 

by decomposing signal, breaking it into two components, each 

caring information about source signal. Filters from the filter 

bank used for decomposition come in pairs: low pass and high 

pass. The filtering is succeeded by down sampling (obtained 

filtering result Is "re-sampled" so that every second coefficient 

is kept).Low pass filtered signal contains information about 

slow changing component of the signal, looking very similar 

to the original signal, only two times shorter in term of 

number of samples. High pass filtered signal contains 

information about fast changing component of the signal. In 
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most cases high pass component is not so rich with data 

offering good property for compression. In some cases ,such 

as audio or video signal, it is possible to discard some of the 

samples of the high pass component without noticing any 

significant changes in signal. Filters from the filter bank are 

called "wavelets". 

IV.IMPLEMENTATION 

1-level decomposition  of original image 

 
3-level decomposition of original image 

 
 

A.  Dictionary Training 

 

Dictionary training is a much more recent approach to 

dictionary design, and as such, has been strongly 

influenced by the latest advances in sparse representation 

theory and algorithms. The most recent training methods 

focus on and sparsity measures, which lead to simple 

formulations and enable the use of recently developed 

efficient sparse coding techniques The main advantage of 

trained dictionaries is that they lead to state-of-the-art 

results in many practical signal processing applications. 

The cost Vas in the case of the KLT is a dictionary with 

no known inner structure or fast implementation. Thus, 

the most recent contributions to the field employ 

parametric models in the training process, which produce 

structured dictionaries, and offer several advantages. A 

different development, which we do not discuss here, is 

the recent advancement in online dictionary learning 

which allows training dictionaries from very large sets of 

examples, and is found to accelerate convergence and 

improve the trained result. 

 

4.1 Results So Far For Dictionary Training: 

 

 
 

IV. CONCLUSION 

In this paper, we have briefly reviewed sparse and redundant 

representations as a new model that harnesses the local low-

dimensional structure of natural images. Dictionary learning is 

a central step in employing a sparsity based model for various 

data processing tasks. Therefore, the speed of such learning 

algorithms is key in making many algorithms more efficient 

and thus more practical. In this paper we have also propose 

two simple yet effective modifications for the KSVD learning 

algorithm and an image watermarking technique based on a 3-

level discrete wavelet transform has been implemented. 

 
REFERENCES 

[1] M. Aharon, M. Elad, and A.M. Bruckstein, ―The K-

SVD: An algorithm for designing of 

overcomplete dictionaries for sparse 

representation‖,IEEE Transactions On Signal 

Processing, vol. 54, pp. 4311–4322,November 

2006.http://en.wikipedia.org/wiki/Electrocardio

graphy 

[2] Gonzalez, Woods, ―Digital Image Processing‖ 

Prentice Hall of India, second edition, 813 pages. 

[3] F. Rodriguez and G. Sapiro. Sparse representations 

for image classification: Learning discriminative 

andreconstructive non-parametric dictionaries. 

IMA Preprint 2213, 2007.  

 


