6,172 research outputs found

    Sparse regression algorithm for activity estimation in γ\gamma spectrometry

    Full text link
    We consider the counting rate estimation of an unknown radioactive source, which emits photons at times modeled by an homogeneous Poisson process. A spectrometer converts the energy of incoming photons into electrical pulses, whose number provides a rough estimate of the intensity of the Poisson process. When the activity of the source is high, a physical phenomenon known as pileup effect distorts direct measurements, resulting in a significant bias to the standard estimators of the source activities used so far in the field. We show in this paper that the problem of counting rate estimation can be interpreted as a sparse regression problem. We suggest a post-processed, non-negative, version of the Least Absolute Shrinkage and Selection Operator (LASSO) to estimate the photon arrival times. The main difficulty in this problem is that no theoretical conditions can guarantee consistency in sparsity of LASSO, because the dictionary is not ideal and the signal is sampled. We therefore derive theoretical conditions and bounds which illustrate that the proposed method can none the less provide a good, close to the best attainable, estimate of the counting rate activity. The good performances of the proposed approach are studied on simulations and real datasets

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Sparse Proteomics Analysis - A compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

    Get PDF
    Background: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a particular disease. Machine learning algorithms are needed to (a) identify these discriminating features and (b) classify unknown spectra based on this feature set. Since the acquired data is usually noisy, the algorithms should be robust against noise and outliers, while the identified feature set should be as small as possible. Results: We present a new algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed sensing that allows us to identify a minimal discriminating set of features from mass spectrometry data-sets. We show (1) how our method performs on artificial and real-world data-sets, (2) that its performance is competitive with standard (and widely used) algorithms for analyzing proteomics data, and (3) that it is robust against random and systematic noise. We further demonstrate the applicability of our algorithm to two previously published clinical data-sets

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Investigation of Spatial and Temporal Aspects of Airborne Gamma Spectrometry: Final Report

    Get PDF
    A study has been conducted which demonstrates the reproducibility of Airborne Gamma-ray Spectrometry (AGS) and the effects of changes in survey parameters, particularly line spacing. This has involved analysis of new data collected from estuarine salt marsh and upland areas in West Cumbria and SW Scotland during three phases of field work, in which over 150000 spectra were recorded with a 16 litre NaI(Tl) detector. The shapes and inventories of radiometric features have been examined. It has been shown that features with dimensions that are large relative to the survey line spacing are very well reproduced with all line spacings, whereas smaller features show more variability. The AGS technique has been applied to measuring changes in the radiation environment over a range of time scales from a few days to several years using data collected during this and previous surveys of the area. Changes due to sedimentation and erosion of salt marshes, and hydrological transportation of upland activity have been observed

    Multilevel functional principal component analysis

    Full text link
    The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilevel functional principal component analysis (MFPCA), a novel statistical methodology designed to extract core intra- and inter-subject geometric components of multilevel functional data. Though motivated by the SHHS, the proposed methodology is generally applicable, with potential relevance to many modern scientific studies of hierarchical or longitudinal functional outcomes. Notably, using MFPCA, we identify and quantify associations between EEG activity during sleep and adverse cardiovascular outcomes.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS206 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Latent protein trees

    Get PDF
    Unbiased, label-free proteomics is becoming a powerful technique for measuring protein expression in almost any biological sample. The output of these measurements after preprocessing is a collection of features and their associated intensities for each sample. Subsets of features within the data are from the same peptide, subsets of peptides are from the same protein, and subsets of proteins are in the same biological pathways, therefore, there is the potential for very complex and informative correlational structure inherent in these data. Recent attempts to utilize this data often focus on the identification of single features that are associated with a particular phenotype that is relevant to the experiment. However, to date, there have been no published approaches that directly model what we know to be multiple different levels of correlation structure. Here we present a hierarchical Bayesian model which is specifically designed to model such correlation structure in unbiased, label-free proteomics. This model utilizes partial identification information from peptide sequencing and database lookup as well as the observed correlation in the data to appropriately compress features into latent proteins and to estimate their correlation structure. We demonstrate the effectiveness of the model using artificial/benchmark data and in the context of a series of proteomics measurements of blood plasma from a collection of volunteers who were infected with two different strains of viral influenza.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS639 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore