The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of
sleep and its impacts on health outcomes. A primary metric of the SHHS is the
in-home polysomnogram, which includes two electroencephalographic (EEG)
channels for each subject, at two visits. The volume and importance of this
data presents enormous challenges for analysis. To address these challenges, we
introduce multilevel functional principal component analysis (MFPCA), a novel
statistical methodology designed to extract core intra- and inter-subject
geometric components of multilevel functional data. Though motivated by the
SHHS, the proposed methodology is generally applicable, with potential
relevance to many modern scientific studies of hierarchical or longitudinal
functional outcomes. Notably, using MFPCA, we identify and quantify
associations between EEG activity during sleep and adverse cardiovascular
outcomes.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS206 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org