178 research outputs found

    Image Decomposition and Separation Using Sparse Representations: An Overview

    Get PDF
    This paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by reviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck , proposed a novel decomposition method—morphological component analysis (MCA)—based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called morphological components, that are morphologically distinct, e.g., sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will provide an overview the generalized MCA introduced by the authors in and as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Single-Channel Speech Separation using Sparse Non-Negative Matrix Factorization

    Get PDF
    We apply machine learning techniques to the problem of separating multiple speech sources from a single microphone recording. The method of choice is a sparse non-negative matrix factorization algorithm, which in an unsupervised manner can learn sparse representations of the data. This is applied to the learning of personalized dictionaries from a speech corpus, which in turn are used to separate the audio stream into its components. We show that computational savings can be achieved by segmenting the training data on a phoneme level. To split the data, a conventional speech recognizer is used. The performance of the unsupervised and supervised adaptation schemes result in significant improvements in terms of the target-to-masker ratio. Index Terms: Single-channel source separation, sparse nonnegative matrix factorization

    Sparse Signal Decomposition for Periodic Signal Mixtures

    Get PDF

    Audio Source Separation with Discriminative Scattering Networks

    Full text link
    In this report we describe an ongoing line of research for solving single-channel source separation problems. Many monaural signal decomposition techniques proposed in the literature operate on a feature space consisting of a time-frequency representation of the input data. A challenge faced by these approaches is to effectively exploit the temporal dependencies of the signals at scales larger than the duration of a time-frame. In this work we propose to tackle this problem by modeling the signals using a time-frequency representation with multiple temporal resolutions. The proposed representation consists of a pyramid of wavelet scattering operators, which generalizes Constant Q Transforms (CQT) with extra layers of convolution and complex modulus. We first show that learning standard models with this multi-resolution setting improves source separation results over fixed-resolution methods. As study case, we use Non-Negative Matrix Factorizations (NMF) that has been widely considered in many audio application. Then, we investigate the inclusion of the proposed multi-resolution setting into a discriminative training regime. We discuss several alternatives using different deep neural network architectures

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Image decomposition and separation using sparse representations: an overview

    Get PDF
    International audienceThis paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by overviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck et al. [1], [2] proposed a novel decomposition method - Morphological Component Analysis (MCA) - based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called Morphological Components, that are morphologically distinct, e.g. sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will overview the Generalized MCA (GMCA) introduced by the authors in [3], [4] as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Generalization of the K-SVD algorithm for minimization of Ăź-divergence

    Full text link
    [EN] In this paper, we propose, describe, and test a modification of the K-SVD algorithm. Given a set of training data, the proposed algorithm computes an overcomplete dictionary by minimizing the ß-divergence () between the data and its representation as linear combinations of atoms of the dictionary, under strict sparsity restrictions. For the special case , the proposed algorithm minimizes the Frobenius norm and, therefore, for the proposed algorithm is equivalent to the original K-SVD algorithm. We describe the modifications needed and discuss the possible shortcomings of the new algorithm. The algorithm is tested with random matrices and with an example based on speech separation.This work has been partially supported by the EU together with the Spanish Government through TEC2015-67387-C4-1-R (MINECO/FEDER) and by Programa de FPU del Ministerio de Educacion, Cultura y Deporte FPU13/03828 (Spain).García Mollá, VM.; San Juan-Sebastian, P.; Virtanen, T.; Vidal Maciá, AM.; Alonso-Jordá, P. (2019). Generalization of the K-SVD algorithm for minimization of ß-divergence. Digital Signal Processing. 92:47-53. https://doi.org/10.1016/j.dsp.2019.05.001S47539
    • …
    corecore