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Abstract

We apply machine learning techniques to the problem of separat-

ing multiple speech sources from a single microphone recording.

The method of choice is a sparse non-negative matrix factorization

algorithm, which in an unsupervised manner can learn sparse rep-

resentations of the data. This is applied to the learning of person-

alized dictionaries from a speech corpus, which in turn are used

to separate the audio stream into its components. We show that

computational savings can be achieved by segmenting the training

data on a phoneme level. To split the data, a conventional speech

recognizer is used. The performance of the unsupervised and su-

pervised adaptation schemes result in significant improvements in

terms of the target-to-masker ratio.

Index Terms: Single-channel source separation, sparse non-

negative matrix factorization.

1. Introduction

A general problem in many applications is that of extracting the

underlying sources from a mixture. A classical example is the so-

called cocktail-party problem in which the problem is to recognize

or isolate what is being said by an individual speaker in a mix-

ture of speech from various speakers. A particular difficult version

of the cocktail-party problem occurs when only a single-channel

recording is available, yet the human auditory system solves this

problem for us. Despite its obvious possible applications in, e.g.,

hearing aids or as a preprocessor to a speech recognition system,

no machine has been built, which solves this problem in general.

Within the signal processing and machine learning communi-

ties, the single channel separation problem has been studied exten-

sively, and different parametric and non-parametric signal models

have been proposed.

Hidden Markov models (HMM) are quite powerful for mod-

elling a single speaker. It has been suggested by Roweis [1] to use

a factorial HMM to separate mixed speech. Another suggestion

by Roweis is to use a factorial-max vector quantizer [2]. Jang and

Lee [3] use independent component analysis (ICA) to learn a dic-

tionary for sparse encoding [4], which optimizes an independence

measure across the encoding of the different sources. Pearlmutter

and Olsson [5] generalize these results to overcomplete dictionar-

ies, where the number of dictionary elements is allowed to exceed

the dimensionality of the data. Other methods learn spectral dic-

tionaries based on different types of non-negative matrix factoriza-

tion (NMF) [6]. One idea is to assume a convolutive sum mixture,

allowing the basis functions to capture time-frequency structures

[7, 8].

A number researchers have taken ideas from the computa-

tional auditory scene analysis (CASA) literature, trying to incorpo-

rate various grouping cues of the human auditory system in speech

separation algorithms [9, 10]. In the work by Ellis and Weiss [11]

careful consideration is given to the representation of the audio sig-

nals so that the perceived quality of the separation is maximized.

In this work we propose to use the sparse non-negative ma-

trix factorization (SNMF) [12] as a computationally attractive ap-

proach to sparse encoding separation. As a first step, overcom-

plete dictionaries are estimated for different speakers to give sparse

representations of the signals. Separation of the source signals is

achieved by merging the dictionaries pertaining to the sources in

the mixture and then computing the sparse decomposition. We

explore the significance of the degree of sparseness and the num-

ber of dictionary elements. We then compare the basic unsuper-

vised SNMF with a supervised application of the same algorithm

in which the training data is split into phoneme-level subproblems,

leading to considerable computational savings.

2. Method

In the following, we consider modelling a magnitude spectrogram

representation of a mixed speech signal. We represent the speech

signal in the non-negative Mel spectrum magnitude domain, as

suggested by Ellis and Weiss [11]. Here we posit that the spec-

trogram can be sparsely represented in an overcomplete basis,

Y = DH (1)

that is, each data point held in the columns of Y is a linear combi-

nation of few columns of D. The dictionary, D, can hold arbitrar-

ily many columns, and the code matrix, H, is sparse. Furthermore,

we assume that the mixture signal is a sum of R source signals

Y =
RX
i

Yi.

The basis of the mixture signal is then the concatenation of the

source dictionaries, D = [D1 . . .Di . . .DR], and the complete

code matrix is the concatenation of the source-individual codes,

H =
�
H

⊤

1 . . .H⊤

i . . .H⊤

R

�⊤
. By enforcing the sparsity of the

code matrix, H, it is possible to separate Y into its sources if the

dictionaries are diverse enough.

As a consequence of the above, two connected tasks have to

be solved: 1) the learning of source-specific dictionaries that yield

sparse codes, and, 2) the computing of sparse decompositions for

separation. We will use the sparse non-negative matrix factoriza-

tion method proposed by Eggert and Körner [12] for both tasks.
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2.1. Sparse Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) computes the decom-

position in Equation (1) subject to the constraints that all matri-

ces are non-negative, leading to solutions that are parts-based or

sparse [6]. However, the basic NMF does not provide a well-

defined solution in the case of overcomplete dictionaries, when

the non-negativity constraints are not sufficient to obtain a sparse

solution. The sparse non-negative matrix factorization (SNMF)

optimizes the cost function

E = ||Y − D̄H||2F + λ
X
ij

Hij s.t. D,H ≥ 0 (2)

where D̄ is the column-wise normalized dictionary matrix. This

cost function is the basic NMF quadratic cost augmented by an

L1 norm penalty term on the coefficients in the code matrix. The

parameter, λ, controls the degree of sparsity. Any method that

optimizes Equation (2) can be regarded as computing a maximum

posterior (MAP) estimate given a Gaussian likelihood function and

a one-sided exponential prior distribution over H. The SNMF can

be computed by alternating updates of D and H by the following

rules [12]

Hij ← Hij •
Y

⊤

i D̄j

R⊤

i D̄j + λ

Dj ← Dj •

P
i
Hij

�
Yi + (R⊤

i D̄j)D̄j

�P
i
Hij

�
Ri + (V⊤

i D̄j)D̄j

�
where R = DH, and the bold operators indicate pointwise multi-

plication and division.

We first apply SNMF to learn dictionaries of individual speak-

ers. To separate speech mixtures we keep the dictionary fixed and

update only the code matrix, H. The speech is then separated by

computing the reconstruction of the parts of the sparse decompo-

sition pertaining to each of the used dictionaries.

2.2. Two Ways to Learn Sparse Dictionaries

We study two approaches to learning sparse dictionaries, see Fig-

ure 1. The first is a direct, unsupervised approach where the dic-

tionary is learned by computing the SNMF on a large training data

set of a single speaker. The second approach is to first segment

the training data according to phoneme labels obtained by speech

recognition software based on a hidden Markov model. Then, a

sparse dictionary is learned for each phoneme and the final dic-

tionary is constructed by concatenating the individual phoneme

dictionaries. As a consequence, a smaller learning problem is ad-

dressed by the SNMF for each of the phonemes.

The computational savings associated with this divide-and-

conquer approach are significant. Since the running time of the

SNMF scales with the size of the training data and the number

of elements in the dictionary, dividing the problem into SNMF

subproblems for each phoneme reduces the overall computational

burden by a factor corresponding to the number of phonemes. For

example, if the data is split into 40 phonemes, we need to solve 40

SNMF subproblems each with a complexity of 1/402 compared

to the full SNMF problem. In addition to this, since the phoneme

SNMF subproblems are much smaller than the total SNMF prob-

lem, a faster convergence of the iterative SNMF algorithm can

be expected. These advantages makes it desirable to compare the

quality of sparse dictionaries estimated by the two methods.
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Figure 1: Two approaches for learning sparse dictionaries of

speech. The first approach (a) is to learn the dictionary from

a sparse non-negative matrix factorization of the complete train-

ing data. The second approach (b) is to segment the training

data into individual phonemes, learn a sparse dictionary for each

phoneme, and compute the dictionary by concatenating the indi-

vidual phoneme dictionaries.
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Figure 2: The automatic phoneme transcription as computed by

the trained hidden Markov model (HMM) for an example sentence

from the Grid Corpus. A manual transcription is provided for com-

parison, confirming the conventional hypothesis that the HMM is

a useful tool in segmenting a speech signal into its phonemes.

3. Simulations

Part of the Grid Corpus [13] was used for evaluating the proposed

method for speech separation. The Grid Corpus consists of simple

structured sentences from a small vocabulary, and has 34 speakers

and 1000 sentences per speaker. Each utterance is a few seconds

and word level transcriptions are available. We used half of the

corpus as a training set.

3.1. Phoneme Transcription

First, we used speech recognition software to generate phoneme

transcriptions of the sentences. For each speaker in the corpus a

phoneme-based hidden Markov model (HMM) was trained using

the HTK toolkit1. The HMM’s were used to compute an align-

ment of the phonemes in each sentence, taking the pronuncia-

tions of each word from the British English Example Pronuncia-

tion (BEEP) dictionary2. This procedure provided phoneme-level

transcriptions of each sentence. In order to evaluate the quality

1Avaiable from htk.eng.cam.ac.uk.
2Available by anonymous ftp from

svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz.
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Figure 3: A few samples of columns of phoneme dictionaries

learned from female speech. The SNMF was applied to data,

which had been phoneme-labelled by a speech recognizer. Not

surprisingly, the basis functions exhibit the some general proper-

ties of the respective phonemes, and additional variation is cap-

tured by the algorithm, such as the fundamental frequency in the

case of voiced phonemes.

of the phoneme alignment, the automatic phoneme transcription

was compared to a manual transcription for a few sentences. We

found that the automatic phoneme alignment in general was quite

reasonable. An example is given in Figure 2.

3.2. Preprocessing and Learning Dictionaries

We preprocessed the speech data in a similar fashion to Ellis and

Weiss [11]: the speech was prefiltered with a high-pass filter,

1 − 0.95z−1, and the STFT was computed with an analysis win-

dow of 32ms at a sample rate of 25kHz. An overlap of 50 percent

was used between frames. This yielded a spectrogram with 401

frequency bins which was then mapped into 80 frequency bins on

the Mel scale. The training set was re-weighted so that all frames

containing energy above a threshold were normalized by their stan-

dard deviation. The resulting magnitude Mel-scale spectrogram

representation was employed in the experiments.

In order to assess the effects of the model hyper-parameters

and the effect of splitting the training data according the phoneme

transcriptions, a subset of four male and four female speakers were

extracted from the Grid Corpus. We constructed a set of 64 mixed

sentences by mixing two randomly selected sentences for all com-

binations of the eight selected test speakers.

Two different sets of dictionaries were estimated for each

speaker. The first set was computed by concatenating the spec-

trograms for each speaker and computing the SNMF on the com-

plete training data for that speaker. The second set was com-

puted by concatenating the parts of the training data correspond-

ing to each phoneme for each speaker, computing the SNMF for

each phoneme spectrogram individually, and finally concatenat-

ing the individual phoneme dictionaries. To save computation,

only 10 percent of the training set was used to train the dictionar-

ies. In a Matlab environment running on a 1.6GHz Intel proces-

sor the computation of the SNMF for each speaker took approxi-

mately 30 minutes, whereas the SNMFs for individual phonemes

were computed in a few seconds. The algorithm was allowed

to run for maximally 500 iterations or until convergence as de-

fined by the relative change in the cost function. Figure 3 shows
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Figure 4: Average signal-to-noise ratio (SNR) of the separated sig-

nals for dictionaries trained on the complete speech spectrograms

and on individual phonemes, (a) as a function of the dictionary

size, N , with sparsity λ = 0.1, and (b) as a function of the spar-

sity with N = 560. We found that the SNMF algorithm did not

give useful results when λ = 1.

samples from a dictionary which was learned using SNMF on

the phoneme-segmented training data for a female speaker. The

dictionaries were estimated for four different levels of sparsity,

λ = {0.0001, 0.001, 0.01, 0.1}, and four different dictionary

sizes, N = {70, 140, 280, 560}. This was done for both the com-

plete and the phoneme-segmented training data.

3.3. Speech Separation

For each test sentence, we concatenated the dictionaries of the

two speakers in the mixture, and computed the code matrix using

the SNMF updates. Then, we reconstructed the individual magni-

tude spectra of the two speakers and mapped them from the Mel-

frequency domain into the linear frequency STFT domain. Sepa-

rated waveforms were computed by spectral masking and spectro-

gram inversion, using the original phase of the mixed signal. The

separated waveforms were then compared with the original clean

signals, computing the signal-to-noise ratio.

The results in Figure 4 show that the quality of separation in-

creases with N . This agrees well with the findings of Ellis and

Weiss [11]. Furthermore, the choice of sparsity, λ, is impor-

tant for the performance of the separation method, especially in

the case of unsegmented data. The individual phoneme-level dic-

tionaries are so small in terms of N that the gain from enforc-

ing sparsity in the NMF is not as significant; the segmentation

in itself sparsifies the dictionary to some extend. Table 1 shows

that the method works best for separating speakers of opposite

gender, as would be expected. Audio examples are available at

mikkelschmidt.dk/interspeech2006 .



Complete Segmented

Same gender 4.8±0.4 dB 4.3±0.3 dB

Opp. gender 6.6±0.3 dB 6.4±0.3 dB

Table 1: Average signal-to-noise ratio (SNR) of the separated

signals for dictionaries trained on the complete speech spectro-

grams and on individual phonemes. Dictionaries were learned with

N = 560 and λ = 0.1.

TMR 6dB 3dB 0dB −3dB −6dB −9dB
Human Performance

ST 90% 72% 54% 52% 60% 68%
SG 93% 85% 76% 72% 77% 80%
DG 94% 91% 86% 88% 87% 83%
All 92% 83% 72% 71% 75% 77%

Proposed Method

ST 56% 53% 45% 38% 31% 28%
SG 60% 57% 52% 44% 37% 32%
DG 73% 72% 71% 63% 54% 41%
All 64% 62% 58% 51% 42% 35%

Table 2: Results from applying the SNMF to the Speech Sepa-

ration Challenge: the word-recognition rate (WRR) on separated

mixtures of speech in varying target-masker ratios (TMR) in same

talker (ST), same gender (SG) different gender (DG), and overall

(All) conditions compared with human performance on the mix-

tures. The WRR should be compared to that of other algorithms

applied to the same test set (see the conference proceedings).

3.4. Interspeech 2006: Speech Separation Challenge

We evaluated the algorithm on the Speech Separation test set,

which was constructed by adding a target and a masking speaker

at different target-to-masker ratios (TMR)3. As an evaluation cri-

terion, the word-recognition rate (WRR) for the letter and number

in the target speech signal was computed using the HTK speech

recognizer trained on data separated by the proposed method. A

part of the test was to blindly identify the target signal as the one

separated signal, which containing the word ‘white’. A total of 600

mixtures were evaluated for each TMR. The source signals were

separated and reconstructed in the time-domain as described pre-

viously. In Table 2, the performance of the method is contrasted

with the performance of human listeners [14]. A subtask in ob-

taining these results was to estimate the identities of the speak-

ers in the mixtures. This was done by exhaustively applying the

SNMF to the signals with all pairs of two dictionaries, selecting

the combination that gave the best fit. We are currently investigat-

ing methods to more efficiently determine the active sources in a

mixture.

4. Discussion and Outlook

We have successfully applied sparse non-negative matrix factor-

ization (SNMF) to the problem of monaural speech separation.

The SNMF learns large overcomplete dictionaries, leading to a

more sparse representations of individual speakers than for exam-

ple the basic NMF. Inspection of the dictionaries reveals that they

capture fundamental properties of speech, in fact they learn ba-

3This test set is due to Cooke and Lee. It is available at
http://www.dcs.shef.ac.uk/ martin/SpeechSeparationChallenge.htm.

sis functions that resemble phonemes. This has lead us to adopt

a working hypothesis that the learning of signal dictionaries on a

phoneme level is a computational shortcut to the goal, leading to

similar performance. Our experiments show that the practical per-

formance of sparse dictionaries learned in this way performs only

slightly worse than dictionaries learned on the complete dataset.

In future work, we hope to benefit further from the phoneme la-

belling of the dictionaries in formulating transitional models in the

encoding space of the SNMF, hopefully matching the dynamics of

speech.
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